xref: /openbmc/qemu/hw/arm/virt.c (revision b53db42bc0140a32e5196125b216a82d08992a7d)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
59 
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62                                                     void *data) \
63     { \
64         MachineClass *mc = MACHINE_CLASS(oc); \
65         virt_machine_##major##_##minor##_options(mc); \
66         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67         if (latest) { \
68             mc->alias = "virt"; \
69         } \
70     } \
71     static const TypeInfo machvirt_##major##_##minor##_info = { \
72         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73         .parent = TYPE_VIRT_MACHINE, \
74         .instance_init = virt_##major##_##minor##_instance_init, \
75         .class_init = virt_##major##_##minor##_class_init, \
76     }; \
77     static void machvirt_machine_##major##_##minor##_init(void) \
78     { \
79         type_register_static(&machvirt_##major##_##minor##_info); \
80     } \
81     type_init(machvirt_machine_##major##_##minor##_init);
82 
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
87 
88 
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
91 
92 #define PLATFORM_BUS_NUM_IRQS 64
93 
94 static ARMPlatformBusSystemParams platform_bus_params;
95 
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97  * RAM can go up to the 256GB mark, leaving 256GB of the physical
98  * address space unallocated and free for future use between 256G and 512G.
99  * If we need to provide more RAM to VMs in the future then we need to:
100  *  * allocate a second bank of RAM starting at 2TB and working up
101  *  * fix the DT and ACPI table generation code in QEMU to correctly
102  *    report two split lumps of RAM to the guest
103  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
104  * (We don't want to fill all the way up to 512GB with RAM because
105  * we might want it for non-RAM purposes later. Conversely it seems
106  * reasonable to assume that anybody configuring a VM with a quarter
107  * of a terabyte of RAM will be doing it on a host with more than a
108  * terabyte of physical address space.)
109  */
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112 
113 /* Addresses and sizes of our components.
114  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115  * 128MB..256MB is used for miscellaneous device I/O.
116  * 256MB..1GB is reserved for possible future PCI support (ie where the
117  * PCI memory window will go if we add a PCI host controller).
118  * 1GB and up is RAM (which may happily spill over into the
119  * high memory region beyond 4GB).
120  * This represents a compromise between how much RAM can be given to
121  * a 32 bit VM and leaving space for expansion and in particular for PCI.
122  * Note that devices should generally be placed at multiples of 0x10000,
123  * to accommodate guests using 64K pages.
124  */
125 static const MemMapEntry a15memmap[] = {
126     /* Space up to 0x8000000 is reserved for a boot ROM */
127     [VIRT_FLASH] =              {          0, 0x08000000 },
128     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
129     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
131     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
132     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
133     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
135     /* This redistributor space allows up to 2*64kB*123 CPUs */
136     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
137     [VIRT_UART] =               { 0x09000000, 0x00001000 },
138     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
139     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
140     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
141     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
142     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
143     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
145     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
146     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
147     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
148     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
149     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
150     /* Second PCIe window, 512GB wide at the 512GB boundary */
151     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
152 };
153 
154 static const int a15irqmap[] = {
155     [VIRT_UART] = 1,
156     [VIRT_RTC] = 2,
157     [VIRT_PCIE] = 3, /* ... to 6 */
158     [VIRT_GPIO] = 7,
159     [VIRT_SECURE_UART] = 8,
160     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
163 };
164 
165 static const char *valid_cpus[] = {
166     "cortex-a15",
167     "cortex-a53",
168     "cortex-a57",
169     "host",
170 };
171 
172 static bool cpuname_valid(const char *cpu)
173 {
174     int i;
175 
176     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177         if (strcmp(cpu, valid_cpus[i]) == 0) {
178             return true;
179         }
180     }
181     return false;
182 }
183 
184 static void create_fdt(VirtMachineState *vms)
185 {
186     void *fdt = create_device_tree(&vms->fdt_size);
187 
188     if (!fdt) {
189         error_report("create_device_tree() failed");
190         exit(1);
191     }
192 
193     vms->fdt = fdt;
194 
195     /* Header */
196     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
199 
200     /*
201      * /chosen and /memory nodes must exist for load_dtb
202      * to fill in necessary properties later
203      */
204     qemu_fdt_add_subnode(fdt, "/chosen");
205     qemu_fdt_add_subnode(fdt, "/memory");
206     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
207 
208     /* Clock node, for the benefit of the UART. The kernel device tree
209      * binding documentation claims the PL011 node clock properties are
210      * optional but in practice if you omit them the kernel refuses to
211      * probe for the device.
212      */
213     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214     qemu_fdt_add_subnode(fdt, "/apb-pclk");
215     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219                                 "clk24mhz");
220     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
221 
222 }
223 
224 static void fdt_add_psci_node(const VirtMachineState *vms)
225 {
226     uint32_t cpu_suspend_fn;
227     uint32_t cpu_off_fn;
228     uint32_t cpu_on_fn;
229     uint32_t migrate_fn;
230     void *fdt = vms->fdt;
231     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
232 
233     if (!vms->using_psci) {
234         return;
235     }
236 
237     qemu_fdt_add_subnode(fdt, "/psci");
238     if (armcpu->psci_version == 2) {
239         const char comp[] = "arm,psci-0.2\0arm,psci";
240         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
241 
242         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
243         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
244             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
245             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
246             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
247         } else {
248             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
249             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
250             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
251         }
252     } else {
253         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
254 
255         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
256         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
257         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
258         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
259     }
260 
261     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
262      * to the instruction that should be used to invoke PSCI functions.
263      * However, the device tree binding uses 'method' instead, so that is
264      * what we should use here.
265      */
266     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
267 
268     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
269     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
270     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
271     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
272 }
273 
274 static void fdt_add_timer_nodes(const VirtMachineState *vms)
275 {
276     /* On real hardware these interrupts are level-triggered.
277      * On KVM they were edge-triggered before host kernel version 4.4,
278      * and level-triggered afterwards.
279      * On emulated QEMU they are level-triggered.
280      *
281      * Getting the DTB info about them wrong is awkward for some
282      * guest kernels:
283      *  pre-4.8 ignore the DT and leave the interrupt configured
284      *   with whatever the GIC reset value (or the bootloader) left it at
285      *  4.8 before rc6 honour the incorrect data by programming it back
286      *   into the GIC, causing problems
287      *  4.8rc6 and later ignore the DT and always write "level triggered"
288      *   into the GIC
289      *
290      * For backwards-compatibility, virt-2.8 and earlier will continue
291      * to say these are edge-triggered, but later machines will report
292      * the correct information.
293      */
294     ARMCPU *armcpu;
295     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
296     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
297 
298     if (vmc->claim_edge_triggered_timers) {
299         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
300     }
301 
302     if (vms->gic_version == 2) {
303         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
304                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
305                              (1 << vms->smp_cpus) - 1);
306     }
307 
308     qemu_fdt_add_subnode(vms->fdt, "/timer");
309 
310     armcpu = ARM_CPU(qemu_get_cpu(0));
311     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
312         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
313         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
314                          compat, sizeof(compat));
315     } else {
316         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
317                                 "arm,armv7-timer");
318     }
319     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
320     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
321                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
322                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
323                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
324                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
325 }
326 
327 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
328 {
329     int cpu;
330     int addr_cells = 1;
331     unsigned int i;
332 
333     /*
334      * From Documentation/devicetree/bindings/arm/cpus.txt
335      *  On ARM v8 64-bit systems value should be set to 2,
336      *  that corresponds to the MPIDR_EL1 register size.
337      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
338      *  in the system, #address-cells can be set to 1, since
339      *  MPIDR_EL1[63:32] bits are not used for CPUs
340      *  identification.
341      *
342      *  Here we actually don't know whether our system is 32- or 64-bit one.
343      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
344      *  at least one of them has Aff3 populated, we set #address-cells to 2.
345      */
346     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
347         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
348 
349         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
350             addr_cells = 2;
351             break;
352         }
353     }
354 
355     qemu_fdt_add_subnode(vms->fdt, "/cpus");
356     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
357     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
358 
359     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
360         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
361         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
362 
363         qemu_fdt_add_subnode(vms->fdt, nodename);
364         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
365         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
366                                     armcpu->dtb_compatible);
367 
368         if (vms->using_psci && vms->smp_cpus > 1) {
369             qemu_fdt_setprop_string(vms->fdt, nodename,
370                                         "enable-method", "psci");
371         }
372 
373         if (addr_cells == 2) {
374             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
375                                  armcpu->mp_affinity);
376         } else {
377             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
378                                   armcpu->mp_affinity);
379         }
380 
381         i = numa_get_node_for_cpu(cpu);
382         if (i < nb_numa_nodes) {
383             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
384         }
385 
386         g_free(nodename);
387     }
388 }
389 
390 static void fdt_add_its_gic_node(VirtMachineState *vms)
391 {
392     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
393     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
394     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
395                             "arm,gic-v3-its");
396     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
397     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
398                                  2, vms->memmap[VIRT_GIC_ITS].base,
399                                  2, vms->memmap[VIRT_GIC_ITS].size);
400     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
401 }
402 
403 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
404 {
405     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
406     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
407     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
408                             "arm,gic-v2m-frame");
409     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
410     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
411                                  2, vms->memmap[VIRT_GIC_V2M].base,
412                                  2, vms->memmap[VIRT_GIC_V2M].size);
413     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
414 }
415 
416 static void fdt_add_gic_node(VirtMachineState *vms)
417 {
418     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
419     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
420 
421     qemu_fdt_add_subnode(vms->fdt, "/intc");
422     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
423     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
424     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
425     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
426     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
427     if (vms->gic_version == 3) {
428         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
429                                 "arm,gic-v3");
430         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
431                                      2, vms->memmap[VIRT_GIC_DIST].base,
432                                      2, vms->memmap[VIRT_GIC_DIST].size,
433                                      2, vms->memmap[VIRT_GIC_REDIST].base,
434                                      2, vms->memmap[VIRT_GIC_REDIST].size);
435     } else {
436         /* 'cortex-a15-gic' means 'GIC v2' */
437         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
438                                 "arm,cortex-a15-gic");
439         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
440                                       2, vms->memmap[VIRT_GIC_DIST].base,
441                                       2, vms->memmap[VIRT_GIC_DIST].size,
442                                       2, vms->memmap[VIRT_GIC_CPU].base,
443                                       2, vms->memmap[VIRT_GIC_CPU].size);
444     }
445 
446     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
447 }
448 
449 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
450 {
451     CPUState *cpu;
452     ARMCPU *armcpu;
453     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
454 
455     CPU_FOREACH(cpu) {
456         armcpu = ARM_CPU(cpu);
457         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
458             !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
459             return;
460         }
461     }
462 
463     if (vms->gic_version == 2) {
464         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
465                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
466                              (1 << vms->smp_cpus) - 1);
467     }
468 
469     armcpu = ARM_CPU(qemu_get_cpu(0));
470     qemu_fdt_add_subnode(vms->fdt, "/pmu");
471     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
472         const char compat[] = "arm,armv8-pmuv3";
473         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
474                          compat, sizeof(compat));
475         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
476                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
477     }
478 }
479 
480 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
481 {
482     const char *itsclass = its_class_name();
483     DeviceState *dev;
484 
485     if (!itsclass) {
486         /* Do nothing if not supported */
487         return;
488     }
489 
490     dev = qdev_create(NULL, itsclass);
491 
492     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
493                              &error_abort);
494     qdev_init_nofail(dev);
495     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
496 
497     fdt_add_its_gic_node(vms);
498 }
499 
500 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
501 {
502     int i;
503     int irq = vms->irqmap[VIRT_GIC_V2M];
504     DeviceState *dev;
505 
506     dev = qdev_create(NULL, "arm-gicv2m");
507     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
508     qdev_prop_set_uint32(dev, "base-spi", irq);
509     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
510     qdev_init_nofail(dev);
511 
512     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
513         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
514     }
515 
516     fdt_add_v2m_gic_node(vms);
517 }
518 
519 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
520 {
521     /* We create a standalone GIC */
522     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
523     DeviceState *gicdev;
524     SysBusDevice *gicbusdev;
525     const char *gictype;
526     int type = vms->gic_version, i;
527 
528     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
529 
530     gicdev = qdev_create(NULL, gictype);
531     qdev_prop_set_uint32(gicdev, "revision", type);
532     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
533     /* Note that the num-irq property counts both internal and external
534      * interrupts; there are always 32 of the former (mandated by GIC spec).
535      */
536     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
537     if (!kvm_irqchip_in_kernel()) {
538         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
539     }
540     qdev_init_nofail(gicdev);
541     gicbusdev = SYS_BUS_DEVICE(gicdev);
542     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
543     if (type == 3) {
544         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
545     } else {
546         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
547     }
548 
549     /* Wire the outputs from each CPU's generic timer to the
550      * appropriate GIC PPI inputs, and the GIC's IRQ output to
551      * the CPU's IRQ input.
552      */
553     for (i = 0; i < smp_cpus; i++) {
554         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
555         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
556         int irq;
557         /* Mapping from the output timer irq lines from the CPU to the
558          * GIC PPI inputs we use for the virt board.
559          */
560         const int timer_irq[] = {
561             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
562             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
563             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
564             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
565         };
566 
567         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
568             qdev_connect_gpio_out(cpudev, irq,
569                                   qdev_get_gpio_in(gicdev,
570                                                    ppibase + timer_irq[irq]));
571         }
572 
573         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
574         sysbus_connect_irq(gicbusdev, i + smp_cpus,
575                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
576     }
577 
578     for (i = 0; i < NUM_IRQS; i++) {
579         pic[i] = qdev_get_gpio_in(gicdev, i);
580     }
581 
582     fdt_add_gic_node(vms);
583 
584     if (type == 3 && !vmc->no_its) {
585         create_its(vms, gicdev);
586     } else if (type == 2) {
587         create_v2m(vms, pic);
588     }
589 }
590 
591 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
592                         MemoryRegion *mem, CharDriverState *chr)
593 {
594     char *nodename;
595     hwaddr base = vms->memmap[uart].base;
596     hwaddr size = vms->memmap[uart].size;
597     int irq = vms->irqmap[uart];
598     const char compat[] = "arm,pl011\0arm,primecell";
599     const char clocknames[] = "uartclk\0apb_pclk";
600     DeviceState *dev = qdev_create(NULL, "pl011");
601     SysBusDevice *s = SYS_BUS_DEVICE(dev);
602 
603     qdev_prop_set_chr(dev, "chardev", chr);
604     qdev_init_nofail(dev);
605     memory_region_add_subregion(mem, base,
606                                 sysbus_mmio_get_region(s, 0));
607     sysbus_connect_irq(s, 0, pic[irq]);
608 
609     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
610     qemu_fdt_add_subnode(vms->fdt, nodename);
611     /* Note that we can't use setprop_string because of the embedded NUL */
612     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
613                          compat, sizeof(compat));
614     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
615                                      2, base, 2, size);
616     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
617                                GIC_FDT_IRQ_TYPE_SPI, irq,
618                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
619     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
620                                vms->clock_phandle, vms->clock_phandle);
621     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
622                          clocknames, sizeof(clocknames));
623 
624     if (uart == VIRT_UART) {
625         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
626     } else {
627         /* Mark as not usable by the normal world */
628         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
629         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
630     }
631 
632     g_free(nodename);
633 }
634 
635 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
636 {
637     char *nodename;
638     hwaddr base = vms->memmap[VIRT_RTC].base;
639     hwaddr size = vms->memmap[VIRT_RTC].size;
640     int irq = vms->irqmap[VIRT_RTC];
641     const char compat[] = "arm,pl031\0arm,primecell";
642 
643     sysbus_create_simple("pl031", base, pic[irq]);
644 
645     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
646     qemu_fdt_add_subnode(vms->fdt, nodename);
647     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
648     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
649                                  2, base, 2, size);
650     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
651                            GIC_FDT_IRQ_TYPE_SPI, irq,
652                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
653     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
654     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
655     g_free(nodename);
656 }
657 
658 static DeviceState *gpio_key_dev;
659 static void virt_powerdown_req(Notifier *n, void *opaque)
660 {
661     /* use gpio Pin 3 for power button event */
662     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
663 }
664 
665 static Notifier virt_system_powerdown_notifier = {
666     .notify = virt_powerdown_req
667 };
668 
669 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
670 {
671     char *nodename;
672     DeviceState *pl061_dev;
673     hwaddr base = vms->memmap[VIRT_GPIO].base;
674     hwaddr size = vms->memmap[VIRT_GPIO].size;
675     int irq = vms->irqmap[VIRT_GPIO];
676     const char compat[] = "arm,pl061\0arm,primecell";
677 
678     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
679 
680     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
681     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
682     qemu_fdt_add_subnode(vms->fdt, nodename);
683     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
684                                  2, base, 2, size);
685     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
686     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
687     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
688     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
689                            GIC_FDT_IRQ_TYPE_SPI, irq,
690                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
691     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
692     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
693     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
694 
695     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
696                                         qdev_get_gpio_in(pl061_dev, 3));
697     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
698     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
699     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
700     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
701 
702     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
703     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
704                             "label", "GPIO Key Poweroff");
705     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
706                           KEY_POWER);
707     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
708                            "gpios", phandle, 3, 0);
709 
710     /* connect powerdown request */
711     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
712 
713     g_free(nodename);
714 }
715 
716 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
717 {
718     int i;
719     hwaddr size = vms->memmap[VIRT_MMIO].size;
720 
721     /* We create the transports in forwards order. Since qbus_realize()
722      * prepends (not appends) new child buses, the incrementing loop below will
723      * create a list of virtio-mmio buses with decreasing base addresses.
724      *
725      * When a -device option is processed from the command line,
726      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
727      * order. The upshot is that -device options in increasing command line
728      * order are mapped to virtio-mmio buses with decreasing base addresses.
729      *
730      * When this code was originally written, that arrangement ensured that the
731      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
732      * the first -device on the command line. (The end-to-end order is a
733      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
734      * guest kernel's name-to-address assignment strategy.)
735      *
736      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
737      * the message, if not necessarily the code, of commit 70161ff336.
738      * Therefore the loop now establishes the inverse of the original intent.
739      *
740      * Unfortunately, we can't counteract the kernel change by reversing the
741      * loop; it would break existing command lines.
742      *
743      * In any case, the kernel makes no guarantee about the stability of
744      * enumeration order of virtio devices (as demonstrated by it changing
745      * between kernel versions). For reliable and stable identification
746      * of disks users must use UUIDs or similar mechanisms.
747      */
748     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
749         int irq = vms->irqmap[VIRT_MMIO] + i;
750         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
751 
752         sysbus_create_simple("virtio-mmio", base, pic[irq]);
753     }
754 
755     /* We add dtb nodes in reverse order so that they appear in the finished
756      * device tree lowest address first.
757      *
758      * Note that this mapping is independent of the loop above. The previous
759      * loop influences virtio device to virtio transport assignment, whereas
760      * this loop controls how virtio transports are laid out in the dtb.
761      */
762     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
763         char *nodename;
764         int irq = vms->irqmap[VIRT_MMIO] + i;
765         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
766 
767         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
768         qemu_fdt_add_subnode(vms->fdt, nodename);
769         qemu_fdt_setprop_string(vms->fdt, nodename,
770                                 "compatible", "virtio,mmio");
771         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
772                                      2, base, 2, size);
773         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
774                                GIC_FDT_IRQ_TYPE_SPI, irq,
775                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
776         g_free(nodename);
777     }
778 }
779 
780 static void create_one_flash(const char *name, hwaddr flashbase,
781                              hwaddr flashsize, const char *file,
782                              MemoryRegion *sysmem)
783 {
784     /* Create and map a single flash device. We use the same
785      * parameters as the flash devices on the Versatile Express board.
786      */
787     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
788     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
789     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
790     const uint64_t sectorlength = 256 * 1024;
791 
792     if (dinfo) {
793         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
794                             &error_abort);
795     }
796 
797     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
798     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
799     qdev_prop_set_uint8(dev, "width", 4);
800     qdev_prop_set_uint8(dev, "device-width", 2);
801     qdev_prop_set_bit(dev, "big-endian", false);
802     qdev_prop_set_uint16(dev, "id0", 0x89);
803     qdev_prop_set_uint16(dev, "id1", 0x18);
804     qdev_prop_set_uint16(dev, "id2", 0x00);
805     qdev_prop_set_uint16(dev, "id3", 0x00);
806     qdev_prop_set_string(dev, "name", name);
807     qdev_init_nofail(dev);
808 
809     memory_region_add_subregion(sysmem, flashbase,
810                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
811 
812     if (file) {
813         char *fn;
814         int image_size;
815 
816         if (drive_get(IF_PFLASH, 0, 0)) {
817             error_report("The contents of the first flash device may be "
818                          "specified with -bios or with -drive if=pflash... "
819                          "but you cannot use both options at once");
820             exit(1);
821         }
822         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
823         if (!fn) {
824             error_report("Could not find ROM image '%s'", file);
825             exit(1);
826         }
827         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
828         g_free(fn);
829         if (image_size < 0) {
830             error_report("Could not load ROM image '%s'", file);
831             exit(1);
832         }
833     }
834 }
835 
836 static void create_flash(const VirtMachineState *vms,
837                          MemoryRegion *sysmem,
838                          MemoryRegion *secure_sysmem)
839 {
840     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
841      * Any file passed via -bios goes in the first of these.
842      * sysmem is the system memory space. secure_sysmem is the secure view
843      * of the system, and the first flash device should be made visible only
844      * there. The second flash device is visible to both secure and nonsecure.
845      * If sysmem == secure_sysmem this means there is no separate Secure
846      * address space and both flash devices are generally visible.
847      */
848     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
849     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
850     char *nodename;
851 
852     create_one_flash("virt.flash0", flashbase, flashsize,
853                      bios_name, secure_sysmem);
854     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
855                      NULL, sysmem);
856 
857     if (sysmem == secure_sysmem) {
858         /* Report both flash devices as a single node in the DT */
859         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
860         qemu_fdt_add_subnode(vms->fdt, nodename);
861         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
862         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
863                                      2, flashbase, 2, flashsize,
864                                      2, flashbase + flashsize, 2, flashsize);
865         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
866         g_free(nodename);
867     } else {
868         /* Report the devices as separate nodes so we can mark one as
869          * only visible to the secure world.
870          */
871         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
872         qemu_fdt_add_subnode(vms->fdt, nodename);
873         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
874         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
875                                      2, flashbase, 2, flashsize);
876         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
877         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
878         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
879         g_free(nodename);
880 
881         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
882         qemu_fdt_add_subnode(vms->fdt, nodename);
883         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
884         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
885                                      2, flashbase + flashsize, 2, flashsize);
886         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
887         g_free(nodename);
888     }
889 }
890 
891 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
892 {
893     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
894     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
895     FWCfgState *fw_cfg;
896     char *nodename;
897 
898     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
899     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
900 
901     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
902     qemu_fdt_add_subnode(vms->fdt, nodename);
903     qemu_fdt_setprop_string(vms->fdt, nodename,
904                             "compatible", "qemu,fw-cfg-mmio");
905     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
906                                  2, base, 2, size);
907     g_free(nodename);
908     return fw_cfg;
909 }
910 
911 static void create_pcie_irq_map(const VirtMachineState *vms,
912                                 uint32_t gic_phandle,
913                                 int first_irq, const char *nodename)
914 {
915     int devfn, pin;
916     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
917     uint32_t *irq_map = full_irq_map;
918 
919     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
920         for (pin = 0; pin < 4; pin++) {
921             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
922             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
923             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
924             int i;
925 
926             uint32_t map[] = {
927                 devfn << 8, 0, 0,                           /* devfn */
928                 pin + 1,                                    /* PCI pin */
929                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
930 
931             /* Convert map to big endian */
932             for (i = 0; i < 10; i++) {
933                 irq_map[i] = cpu_to_be32(map[i]);
934             }
935             irq_map += 10;
936         }
937     }
938 
939     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
940                      full_irq_map, sizeof(full_irq_map));
941 
942     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
943                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
944                            0x7           /* PCI irq */);
945 }
946 
947 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
948 {
949     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
950     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
951     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
952     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
953     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
954     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
955     hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
956     hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
957     hwaddr base = base_mmio;
958     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
959     int irq = vms->irqmap[VIRT_PCIE];
960     MemoryRegion *mmio_alias;
961     MemoryRegion *mmio_reg;
962     MemoryRegion *ecam_alias;
963     MemoryRegion *ecam_reg;
964     DeviceState *dev;
965     char *nodename;
966     int i;
967     PCIHostState *pci;
968 
969     dev = qdev_create(NULL, TYPE_GPEX_HOST);
970     qdev_init_nofail(dev);
971 
972     /* Map only the first size_ecam bytes of ECAM space */
973     ecam_alias = g_new0(MemoryRegion, 1);
974     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
975     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
976                              ecam_reg, 0, size_ecam);
977     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
978 
979     /* Map the MMIO window into system address space so as to expose
980      * the section of PCI MMIO space which starts at the same base address
981      * (ie 1:1 mapping for that part of PCI MMIO space visible through
982      * the window).
983      */
984     mmio_alias = g_new0(MemoryRegion, 1);
985     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
986     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
987                              mmio_reg, base_mmio, size_mmio);
988     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
989 
990     if (vms->highmem) {
991         /* Map high MMIO space */
992         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
993 
994         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
995                                  mmio_reg, base_mmio_high, size_mmio_high);
996         memory_region_add_subregion(get_system_memory(), base_mmio_high,
997                                     high_mmio_alias);
998     }
999 
1000     /* Map IO port space */
1001     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1002 
1003     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1004         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1005     }
1006 
1007     pci = PCI_HOST_BRIDGE(dev);
1008     if (pci->bus) {
1009         for (i = 0; i < nb_nics; i++) {
1010             NICInfo *nd = &nd_table[i];
1011 
1012             if (!nd->model) {
1013                 nd->model = g_strdup("virtio");
1014             }
1015 
1016             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1017         }
1018     }
1019 
1020     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1021     qemu_fdt_add_subnode(vms->fdt, nodename);
1022     qemu_fdt_setprop_string(vms->fdt, nodename,
1023                             "compatible", "pci-host-ecam-generic");
1024     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1025     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1026     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1027     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1028                            nr_pcie_buses - 1);
1029     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1030 
1031     if (vms->msi_phandle) {
1032         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1033                                vms->msi_phandle);
1034     }
1035 
1036     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1037                                  2, base_ecam, 2, size_ecam);
1038 
1039     if (vms->highmem) {
1040         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1041                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1042                                      2, base_pio, 2, size_pio,
1043                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1044                                      2, base_mmio, 2, size_mmio,
1045                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1046                                      2, base_mmio_high,
1047                                      2, base_mmio_high, 2, size_mmio_high);
1048     } else {
1049         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1050                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1051                                      2, base_pio, 2, size_pio,
1052                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1053                                      2, base_mmio, 2, size_mmio);
1054     }
1055 
1056     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1057     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1058 
1059     g_free(nodename);
1060 }
1061 
1062 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1063 {
1064     DeviceState *dev;
1065     SysBusDevice *s;
1066     int i;
1067     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1068     MemoryRegion *sysmem = get_system_memory();
1069 
1070     platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1071     platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1072     platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1073     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1074 
1075     fdt_params->system_params = &platform_bus_params;
1076     fdt_params->binfo = &vms->bootinfo;
1077     fdt_params->intc = "/intc";
1078     /*
1079      * register a machine init done notifier that creates the device tree
1080      * nodes of the platform bus and its children dynamic sysbus devices
1081      */
1082     arm_register_platform_bus_fdt_creator(fdt_params);
1083 
1084     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1085     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1086     qdev_prop_set_uint32(dev, "num_irqs",
1087         platform_bus_params.platform_bus_num_irqs);
1088     qdev_prop_set_uint32(dev, "mmio_size",
1089         platform_bus_params.platform_bus_size);
1090     qdev_init_nofail(dev);
1091     s = SYS_BUS_DEVICE(dev);
1092 
1093     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1094         int irqn = platform_bus_params.platform_bus_first_irq + i;
1095         sysbus_connect_irq(s, i, pic[irqn]);
1096     }
1097 
1098     memory_region_add_subregion(sysmem,
1099                                 platform_bus_params.platform_bus_base,
1100                                 sysbus_mmio_get_region(s, 0));
1101 }
1102 
1103 static void create_secure_ram(VirtMachineState *vms,
1104                               MemoryRegion *secure_sysmem)
1105 {
1106     MemoryRegion *secram = g_new(MemoryRegion, 1);
1107     char *nodename;
1108     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1109     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1110 
1111     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1112     vmstate_register_ram_global(secram);
1113     memory_region_add_subregion(secure_sysmem, base, secram);
1114 
1115     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1116     qemu_fdt_add_subnode(vms->fdt, nodename);
1117     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1118     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1119     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1120     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1121 
1122     g_free(nodename);
1123 }
1124 
1125 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1126 {
1127     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1128                                                  bootinfo);
1129 
1130     *fdt_size = board->fdt_size;
1131     return board->fdt;
1132 }
1133 
1134 static void virt_build_smbios(VirtMachineState *vms)
1135 {
1136     uint8_t *smbios_tables, *smbios_anchor;
1137     size_t smbios_tables_len, smbios_anchor_len;
1138     const char *product = "QEMU Virtual Machine";
1139 
1140     if (!vms->fw_cfg) {
1141         return;
1142     }
1143 
1144     if (kvm_enabled()) {
1145         product = "KVM Virtual Machine";
1146     }
1147 
1148     smbios_set_defaults("QEMU", product,
1149                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1150 
1151     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1152                       &smbios_anchor, &smbios_anchor_len);
1153 
1154     if (smbios_anchor) {
1155         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1156                         smbios_tables, smbios_tables_len);
1157         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1158                         smbios_anchor, smbios_anchor_len);
1159     }
1160 }
1161 
1162 static
1163 void virt_machine_done(Notifier *notifier, void *data)
1164 {
1165     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1166                                          machine_done);
1167 
1168     virt_acpi_setup(vms);
1169     virt_build_smbios(vms);
1170 }
1171 
1172 static void machvirt_init(MachineState *machine)
1173 {
1174     VirtMachineState *vms = VIRT_MACHINE(machine);
1175     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1176     qemu_irq pic[NUM_IRQS];
1177     MemoryRegion *sysmem = get_system_memory();
1178     MemoryRegion *secure_sysmem = NULL;
1179     int n, virt_max_cpus;
1180     MemoryRegion *ram = g_new(MemoryRegion, 1);
1181     const char *cpu_model = machine->cpu_model;
1182     char **cpustr;
1183     ObjectClass *oc;
1184     const char *typename;
1185     CPUClass *cc;
1186     Error *err = NULL;
1187     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1188     uint8_t clustersz;
1189 
1190     if (!cpu_model) {
1191         cpu_model = "cortex-a15";
1192     }
1193 
1194     /* We can probe only here because during property set
1195      * KVM is not available yet
1196      */
1197     if (!vms->gic_version) {
1198         if (!kvm_enabled()) {
1199             error_report("gic-version=host requires KVM");
1200             exit(1);
1201         }
1202 
1203         vms->gic_version = kvm_arm_vgic_probe();
1204         if (!vms->gic_version) {
1205             error_report("Unable to determine GIC version supported by host");
1206             exit(1);
1207         }
1208     }
1209 
1210     /* Separate the actual CPU model name from any appended features */
1211     cpustr = g_strsplit(cpu_model, ",", 2);
1212 
1213     if (!cpuname_valid(cpustr[0])) {
1214         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1215         exit(1);
1216     }
1217 
1218     /* If we have an EL3 boot ROM then the assumption is that it will
1219      * implement PSCI itself, so disable QEMU's internal implementation
1220      * so it doesn't get in the way. Instead of starting secondary
1221      * CPUs in PSCI powerdown state we will start them all running and
1222      * let the boot ROM sort them out.
1223      * The usual case is that we do use QEMU's PSCI implementation.
1224      */
1225     vms->using_psci = !(vms->secure && firmware_loaded);
1226 
1227     /* The maximum number of CPUs depends on the GIC version, or on how
1228      * many redistributors we can fit into the memory map.
1229      */
1230     if (vms->gic_version == 3) {
1231         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1232         clustersz = GICV3_TARGETLIST_BITS;
1233     } else {
1234         virt_max_cpus = GIC_NCPU;
1235         clustersz = GIC_TARGETLIST_BITS;
1236     }
1237 
1238     if (max_cpus > virt_max_cpus) {
1239         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1240                      "supported by machine 'mach-virt' (%d)",
1241                      max_cpus, virt_max_cpus);
1242         exit(1);
1243     }
1244 
1245     vms->smp_cpus = smp_cpus;
1246 
1247     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1248         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1249         exit(1);
1250     }
1251 
1252     if (vms->secure) {
1253         if (kvm_enabled()) {
1254             error_report("mach-virt: KVM does not support Security extensions");
1255             exit(1);
1256         }
1257 
1258         /* The Secure view of the world is the same as the NonSecure,
1259          * but with a few extra devices. Create it as a container region
1260          * containing the system memory at low priority; any secure-only
1261          * devices go in at higher priority and take precedence.
1262          */
1263         secure_sysmem = g_new(MemoryRegion, 1);
1264         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1265                            UINT64_MAX);
1266         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1267     }
1268 
1269     create_fdt(vms);
1270 
1271     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1272     if (!oc) {
1273         error_report("Unable to find CPU definition");
1274         exit(1);
1275     }
1276     typename = object_class_get_name(oc);
1277 
1278     /* convert -smp CPU options specified by the user into global props */
1279     cc = CPU_CLASS(oc);
1280     cc->parse_features(typename, cpustr[1], &err);
1281     g_strfreev(cpustr);
1282     if (err) {
1283         error_report_err(err);
1284         exit(1);
1285     }
1286 
1287     for (n = 0; n < smp_cpus; n++) {
1288         Object *cpuobj = object_new(typename);
1289         if (!vmc->disallow_affinity_adjustment) {
1290             /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1291              * GIC's target-list limitations. 32-bit KVM hosts currently
1292              * always create clusters of 4 CPUs, but that is expected to
1293              * change when they gain support for gicv3. When KVM is enabled
1294              * it will override the changes we make here, therefore our
1295              * purposes are to make TCG consistent (with 64-bit KVM hosts)
1296              * and to improve SGI efficiency.
1297              */
1298             uint8_t aff1 = n / clustersz;
1299             uint8_t aff0 = n % clustersz;
1300             object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1301                                     "mp-affinity", NULL);
1302         }
1303 
1304         if (!vms->secure) {
1305             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1306         }
1307 
1308         if (vms->using_psci) {
1309             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1310                                     "psci-conduit", NULL);
1311 
1312             /* Secondary CPUs start in PSCI powered-down state */
1313             if (n > 0) {
1314                 object_property_set_bool(cpuobj, true,
1315                                          "start-powered-off", NULL);
1316             }
1317         }
1318 
1319         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1320             object_property_set_bool(cpuobj, false, "pmu", NULL);
1321         }
1322 
1323         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1324             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1325                                     "reset-cbar", &error_abort);
1326         }
1327 
1328         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1329                                  &error_abort);
1330         if (vms->secure) {
1331             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1332                                      "secure-memory", &error_abort);
1333         }
1334 
1335         object_property_set_bool(cpuobj, true, "realized", NULL);
1336     }
1337     fdt_add_timer_nodes(vms);
1338     fdt_add_cpu_nodes(vms);
1339     fdt_add_psci_node(vms);
1340 
1341     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1342                                          machine->ram_size);
1343     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1344 
1345     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1346 
1347     create_gic(vms, pic);
1348 
1349     fdt_add_pmu_nodes(vms);
1350 
1351     create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1352 
1353     if (vms->secure) {
1354         create_secure_ram(vms, secure_sysmem);
1355         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1356     }
1357 
1358     create_rtc(vms, pic);
1359 
1360     create_pcie(vms, pic);
1361 
1362     create_gpio(vms, pic);
1363 
1364     /* Create mmio transports, so the user can create virtio backends
1365      * (which will be automatically plugged in to the transports). If
1366      * no backend is created the transport will just sit harmlessly idle.
1367      */
1368     create_virtio_devices(vms, pic);
1369 
1370     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1371     rom_set_fw(vms->fw_cfg);
1372 
1373     vms->machine_done.notify = virt_machine_done;
1374     qemu_add_machine_init_done_notifier(&vms->machine_done);
1375 
1376     vms->bootinfo.ram_size = machine->ram_size;
1377     vms->bootinfo.kernel_filename = machine->kernel_filename;
1378     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1379     vms->bootinfo.initrd_filename = machine->initrd_filename;
1380     vms->bootinfo.nb_cpus = smp_cpus;
1381     vms->bootinfo.board_id = -1;
1382     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1383     vms->bootinfo.get_dtb = machvirt_dtb;
1384     vms->bootinfo.firmware_loaded = firmware_loaded;
1385     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1386 
1387     /*
1388      * arm_load_kernel machine init done notifier registration must
1389      * happen before the platform_bus_create call. In this latter,
1390      * another notifier is registered which adds platform bus nodes.
1391      * Notifiers are executed in registration reverse order.
1392      */
1393     create_platform_bus(vms, pic);
1394 }
1395 
1396 static bool virt_get_secure(Object *obj, Error **errp)
1397 {
1398     VirtMachineState *vms = VIRT_MACHINE(obj);
1399 
1400     return vms->secure;
1401 }
1402 
1403 static void virt_set_secure(Object *obj, bool value, Error **errp)
1404 {
1405     VirtMachineState *vms = VIRT_MACHINE(obj);
1406 
1407     vms->secure = value;
1408 }
1409 
1410 static bool virt_get_highmem(Object *obj, Error **errp)
1411 {
1412     VirtMachineState *vms = VIRT_MACHINE(obj);
1413 
1414     return vms->highmem;
1415 }
1416 
1417 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1418 {
1419     VirtMachineState *vms = VIRT_MACHINE(obj);
1420 
1421     vms->highmem = value;
1422 }
1423 
1424 static char *virt_get_gic_version(Object *obj, Error **errp)
1425 {
1426     VirtMachineState *vms = VIRT_MACHINE(obj);
1427     const char *val = vms->gic_version == 3 ? "3" : "2";
1428 
1429     return g_strdup(val);
1430 }
1431 
1432 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1433 {
1434     VirtMachineState *vms = VIRT_MACHINE(obj);
1435 
1436     if (!strcmp(value, "3")) {
1437         vms->gic_version = 3;
1438     } else if (!strcmp(value, "2")) {
1439         vms->gic_version = 2;
1440     } else if (!strcmp(value, "host")) {
1441         vms->gic_version = 0; /* Will probe later */
1442     } else {
1443         error_setg(errp, "Invalid gic-version value");
1444         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1445     }
1446 }
1447 
1448 static void virt_machine_class_init(ObjectClass *oc, void *data)
1449 {
1450     MachineClass *mc = MACHINE_CLASS(oc);
1451 
1452     mc->init = machvirt_init;
1453     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1454      * it later in machvirt_init, where we have more information about the
1455      * configuration of the particular instance.
1456      */
1457     mc->max_cpus = 255;
1458     mc->has_dynamic_sysbus = true;
1459     mc->block_default_type = IF_VIRTIO;
1460     mc->no_cdrom = 1;
1461     mc->pci_allow_0_address = true;
1462     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1463     mc->minimum_page_bits = 12;
1464 }
1465 
1466 static const TypeInfo virt_machine_info = {
1467     .name          = TYPE_VIRT_MACHINE,
1468     .parent        = TYPE_MACHINE,
1469     .abstract      = true,
1470     .instance_size = sizeof(VirtMachineState),
1471     .class_size    = sizeof(VirtMachineClass),
1472     .class_init    = virt_machine_class_init,
1473 };
1474 
1475 static void machvirt_machine_init(void)
1476 {
1477     type_register_static(&virt_machine_info);
1478 }
1479 type_init(machvirt_machine_init);
1480 
1481 static void virt_2_9_instance_init(Object *obj)
1482 {
1483     VirtMachineState *vms = VIRT_MACHINE(obj);
1484 
1485     /* EL3 is disabled by default on virt: this makes us consistent
1486      * between KVM and TCG for this board, and it also allows us to
1487      * boot UEFI blobs which assume no TrustZone support.
1488      */
1489     vms->secure = false;
1490     object_property_add_bool(obj, "secure", virt_get_secure,
1491                              virt_set_secure, NULL);
1492     object_property_set_description(obj, "secure",
1493                                     "Set on/off to enable/disable the ARM "
1494                                     "Security Extensions (TrustZone)",
1495                                     NULL);
1496 
1497     /* High memory is enabled by default */
1498     vms->highmem = true;
1499     object_property_add_bool(obj, "highmem", virt_get_highmem,
1500                              virt_set_highmem, NULL);
1501     object_property_set_description(obj, "highmem",
1502                                     "Set on/off to enable/disable using "
1503                                     "physical address space above 32 bits",
1504                                     NULL);
1505     /* Default GIC type is v2 */
1506     vms->gic_version = 2;
1507     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1508                         virt_set_gic_version, NULL);
1509     object_property_set_description(obj, "gic-version",
1510                                     "Set GIC version. "
1511                                     "Valid values are 2, 3 and host", NULL);
1512 
1513     vms->memmap = a15memmap;
1514     vms->irqmap = a15irqmap;
1515 }
1516 
1517 static void virt_machine_2_9_options(MachineClass *mc)
1518 {
1519 }
1520 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1521 
1522 #define VIRT_COMPAT_2_8 \
1523     HW_COMPAT_2_8
1524 
1525 static void virt_2_8_instance_init(Object *obj)
1526 {
1527     virt_2_9_instance_init(obj);
1528 }
1529 
1530 static void virt_machine_2_8_options(MachineClass *mc)
1531 {
1532     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1533 
1534     virt_machine_2_9_options(mc);
1535     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1536     /* For 2.8 and earlier we falsely claimed in the DT that
1537      * our timers were edge-triggered, not level-triggered.
1538      */
1539     vmc->claim_edge_triggered_timers = true;
1540 }
1541 DEFINE_VIRT_MACHINE(2, 8)
1542 
1543 #define VIRT_COMPAT_2_7 \
1544     HW_COMPAT_2_7
1545 
1546 static void virt_2_7_instance_init(Object *obj)
1547 {
1548     virt_2_8_instance_init(obj);
1549 }
1550 
1551 static void virt_machine_2_7_options(MachineClass *mc)
1552 {
1553     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1554 
1555     virt_machine_2_8_options(mc);
1556     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1557     /* ITS was introduced with 2.8 */
1558     vmc->no_its = true;
1559     /* Stick with 1K pages for migration compatibility */
1560     mc->minimum_page_bits = 0;
1561 }
1562 DEFINE_VIRT_MACHINE(2, 7)
1563 
1564 #define VIRT_COMPAT_2_6 \
1565     HW_COMPAT_2_6
1566 
1567 static void virt_2_6_instance_init(Object *obj)
1568 {
1569     virt_2_7_instance_init(obj);
1570 }
1571 
1572 static void virt_machine_2_6_options(MachineClass *mc)
1573 {
1574     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1575 
1576     virt_machine_2_7_options(mc);
1577     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1578     vmc->disallow_affinity_adjustment = true;
1579     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1580     vmc->no_pmu = true;
1581 }
1582 DEFINE_VIRT_MACHINE(2, 6)
1583