xref: /openbmc/qemu/hw/arm/virt.c (revision b1be65f6)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-md-pci.h"
80 #include "hw/virtio/virtio-iommu.h"
81 #include "hw/char/pl011.h"
82 #include "qemu/guest-random.h"
83 
84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
85     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86                                                     void *data) \
87     { \
88         MachineClass *mc = MACHINE_CLASS(oc); \
89         virt_machine_##major##_##minor##_options(mc); \
90         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91         if (latest) { \
92             mc->alias = "virt"; \
93         } \
94     } \
95     static const TypeInfo machvirt_##major##_##minor##_info = { \
96         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
97         .parent = TYPE_VIRT_MACHINE, \
98         .class_init = virt_##major##_##minor##_class_init, \
99     }; \
100     static void machvirt_machine_##major##_##minor##_init(void) \
101     { \
102         type_register_static(&machvirt_##major##_##minor##_info); \
103     } \
104     type_init(machvirt_machine_##major##_##minor##_init);
105 
106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
107     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
108 #define DEFINE_VIRT_MACHINE(major, minor) \
109     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110 
111 
112 /* Number of external interrupt lines to configure the GIC with */
113 #define NUM_IRQS 256
114 
115 #define PLATFORM_BUS_NUM_IRQS 64
116 
117 /* Legacy RAM limit in GB (< version 4.0) */
118 #define LEGACY_RAMLIMIT_GB 255
119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120 
121 /* Addresses and sizes of our components.
122  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
123  * 128MB..256MB is used for miscellaneous device I/O.
124  * 256MB..1GB is reserved for possible future PCI support (ie where the
125  * PCI memory window will go if we add a PCI host controller).
126  * 1GB and up is RAM (which may happily spill over into the
127  * high memory region beyond 4GB).
128  * This represents a compromise between how much RAM can be given to
129  * a 32 bit VM and leaving space for expansion and in particular for PCI.
130  * Note that devices should generally be placed at multiples of 0x10000,
131  * to accommodate guests using 64K pages.
132  */
133 static const MemMapEntry base_memmap[] = {
134     /* Space up to 0x8000000 is reserved for a boot ROM */
135     [VIRT_FLASH] =              {          0, 0x08000000 },
136     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
137     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
138     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
139     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
140     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
141     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
142     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
143     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
144     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
145     /* This redistributor space allows up to 2*64kB*123 CPUs */
146     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
147     [VIRT_UART] =               { 0x09000000, 0x00001000 },
148     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
149     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
150     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
151     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
152     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
153     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
154     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
155     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
156     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
157     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
158     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
159     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
160     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
161     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
162     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
163     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
164     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
165     /* Actual RAM size depends on initial RAM and device memory settings */
166     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
167 };
168 
169 /*
170  * Highmem IO Regions: This memory map is floating, located after the RAM.
171  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
172  * top of the RAM, so that its base get the same alignment as the size,
173  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
174  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
175  * Note the extended_memmap is sized so that it eventually also includes the
176  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
177  * index of base_memmap).
178  *
179  * The memory map for these Highmem IO Regions can be in legacy or compact
180  * layout, depending on 'compact-highmem' property. With legacy layout, the
181  * PA space for one specific region is always reserved, even if the region
182  * has been disabled or doesn't fit into the PA space. However, the PA space
183  * for the region won't be reserved in these circumstances with compact layout.
184  */
185 static MemMapEntry extended_memmap[] = {
186     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
187     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
188     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
189     /* Second PCIe window */
190     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
191 };
192 
193 static const int a15irqmap[] = {
194     [VIRT_UART] = 1,
195     [VIRT_RTC] = 2,
196     [VIRT_PCIE] = 3, /* ... to 6 */
197     [VIRT_GPIO] = 7,
198     [VIRT_SECURE_UART] = 8,
199     [VIRT_ACPI_GED] = 9,
200     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
201     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
202     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
203     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
204 };
205 
206 static const char *valid_cpus[] = {
207 #ifdef CONFIG_TCG
208     ARM_CPU_TYPE_NAME("cortex-a7"),
209     ARM_CPU_TYPE_NAME("cortex-a15"),
210     ARM_CPU_TYPE_NAME("cortex-a35"),
211     ARM_CPU_TYPE_NAME("cortex-a55"),
212     ARM_CPU_TYPE_NAME("cortex-a72"),
213     ARM_CPU_TYPE_NAME("cortex-a76"),
214     ARM_CPU_TYPE_NAME("cortex-a710"),
215     ARM_CPU_TYPE_NAME("a64fx"),
216     ARM_CPU_TYPE_NAME("neoverse-n1"),
217     ARM_CPU_TYPE_NAME("neoverse-v1"),
218 #endif
219     ARM_CPU_TYPE_NAME("cortex-a53"),
220     ARM_CPU_TYPE_NAME("cortex-a57"),
221     ARM_CPU_TYPE_NAME("host"),
222     ARM_CPU_TYPE_NAME("max"),
223 };
224 
225 static bool cpu_type_valid(const char *cpu)
226 {
227     int i;
228 
229     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
230         if (strcmp(cpu, valid_cpus[i]) == 0) {
231             return true;
232         }
233     }
234     return false;
235 }
236 
237 static void create_randomness(MachineState *ms, const char *node)
238 {
239     struct {
240         uint64_t kaslr;
241         uint8_t rng[32];
242     } seed;
243 
244     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
245         return;
246     }
247     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
248     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
249 }
250 
251 static void create_fdt(VirtMachineState *vms)
252 {
253     MachineState *ms = MACHINE(vms);
254     int nb_numa_nodes = ms->numa_state->num_nodes;
255     void *fdt = create_device_tree(&vms->fdt_size);
256 
257     if (!fdt) {
258         error_report("create_device_tree() failed");
259         exit(1);
260     }
261 
262     ms->fdt = fdt;
263 
264     /* Header */
265     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
266     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
267     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
268     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
269 
270     /* /chosen must exist for load_dtb to fill in necessary properties later */
271     qemu_fdt_add_subnode(fdt, "/chosen");
272     if (vms->dtb_randomness) {
273         create_randomness(ms, "/chosen");
274     }
275 
276     if (vms->secure) {
277         qemu_fdt_add_subnode(fdt, "/secure-chosen");
278         if (vms->dtb_randomness) {
279             create_randomness(ms, "/secure-chosen");
280         }
281     }
282 
283     /* Clock node, for the benefit of the UART. The kernel device tree
284      * binding documentation claims the PL011 node clock properties are
285      * optional but in practice if you omit them the kernel refuses to
286      * probe for the device.
287      */
288     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
289     qemu_fdt_add_subnode(fdt, "/apb-pclk");
290     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
291     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
292     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
293     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
294                                 "clk24mhz");
295     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
296 
297     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
298         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
299         uint32_t *matrix = g_malloc0(size);
300         int idx, i, j;
301 
302         for (i = 0; i < nb_numa_nodes; i++) {
303             for (j = 0; j < nb_numa_nodes; j++) {
304                 idx = (i * nb_numa_nodes + j) * 3;
305                 matrix[idx + 0] = cpu_to_be32(i);
306                 matrix[idx + 1] = cpu_to_be32(j);
307                 matrix[idx + 2] =
308                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
309             }
310         }
311 
312         qemu_fdt_add_subnode(fdt, "/distance-map");
313         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
314                                 "numa-distance-map-v1");
315         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
316                          matrix, size);
317         g_free(matrix);
318     }
319 }
320 
321 static void fdt_add_timer_nodes(const VirtMachineState *vms)
322 {
323     /* On real hardware these interrupts are level-triggered.
324      * On KVM they were edge-triggered before host kernel version 4.4,
325      * and level-triggered afterwards.
326      * On emulated QEMU they are level-triggered.
327      *
328      * Getting the DTB info about them wrong is awkward for some
329      * guest kernels:
330      *  pre-4.8 ignore the DT and leave the interrupt configured
331      *   with whatever the GIC reset value (or the bootloader) left it at
332      *  4.8 before rc6 honour the incorrect data by programming it back
333      *   into the GIC, causing problems
334      *  4.8rc6 and later ignore the DT and always write "level triggered"
335      *   into the GIC
336      *
337      * For backwards-compatibility, virt-2.8 and earlier will continue
338      * to say these are edge-triggered, but later machines will report
339      * the correct information.
340      */
341     ARMCPU *armcpu;
342     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
343     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
344     MachineState *ms = MACHINE(vms);
345 
346     if (vmc->claim_edge_triggered_timers) {
347         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
348     }
349 
350     if (vms->gic_version == VIRT_GIC_VERSION_2) {
351         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
352                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
353                              (1 << MACHINE(vms)->smp.cpus) - 1);
354     }
355 
356     qemu_fdt_add_subnode(ms->fdt, "/timer");
357 
358     armcpu = ARM_CPU(qemu_get_cpu(0));
359     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
360         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
361         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
362                          compat, sizeof(compat));
363     } else {
364         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
365                                 "arm,armv7-timer");
366     }
367     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
368     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
369                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
370                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
371                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
372                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
373 }
374 
375 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
376 {
377     int cpu;
378     int addr_cells = 1;
379     const MachineState *ms = MACHINE(vms);
380     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
381     int smp_cpus = ms->smp.cpus;
382 
383     /*
384      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
385      * On ARM v8 64-bit systems value should be set to 2,
386      * that corresponds to the MPIDR_EL1 register size.
387      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
388      * in the system, #address-cells can be set to 1, since
389      * MPIDR_EL1[63:32] bits are not used for CPUs
390      * identification.
391      *
392      * Here we actually don't know whether our system is 32- or 64-bit one.
393      * The simplest way to go is to examine affinity IDs of all our CPUs. If
394      * at least one of them has Aff3 populated, we set #address-cells to 2.
395      */
396     for (cpu = 0; cpu < smp_cpus; cpu++) {
397         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
398 
399         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
400             addr_cells = 2;
401             break;
402         }
403     }
404 
405     qemu_fdt_add_subnode(ms->fdt, "/cpus");
406     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
407     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
408 
409     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
410         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
411         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
412         CPUState *cs = CPU(armcpu);
413 
414         qemu_fdt_add_subnode(ms->fdt, nodename);
415         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
416         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
417                                     armcpu->dtb_compatible);
418 
419         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
420             qemu_fdt_setprop_string(ms->fdt, nodename,
421                                         "enable-method", "psci");
422         }
423 
424         if (addr_cells == 2) {
425             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
426                                  armcpu->mp_affinity);
427         } else {
428             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
429                                   armcpu->mp_affinity);
430         }
431 
432         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
433             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
434                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
435         }
436 
437         if (!vmc->no_cpu_topology) {
438             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
439                                   qemu_fdt_alloc_phandle(ms->fdt));
440         }
441 
442         g_free(nodename);
443     }
444 
445     if (!vmc->no_cpu_topology) {
446         /*
447          * Add vCPU topology description through fdt node cpu-map.
448          *
449          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
450          * In a SMP system, the hierarchy of CPUs can be defined through
451          * four entities that are used to describe the layout of CPUs in
452          * the system: socket/cluster/core/thread.
453          *
454          * A socket node represents the boundary of system physical package
455          * and its child nodes must be one or more cluster nodes. A system
456          * can contain several layers of clustering within a single physical
457          * package and cluster nodes can be contained in parent cluster nodes.
458          *
459          * Note: currently we only support one layer of clustering within
460          * each physical package.
461          */
462         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
463 
464         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
465             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
466             char *map_path;
467 
468             if (ms->smp.threads > 1) {
469                 map_path = g_strdup_printf(
470                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
471                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
472                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
473                     (cpu / ms->smp.threads) % ms->smp.cores,
474                     cpu % ms->smp.threads);
475             } else {
476                 map_path = g_strdup_printf(
477                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
478                     cpu / (ms->smp.clusters * ms->smp.cores),
479                     (cpu / ms->smp.cores) % ms->smp.clusters,
480                     cpu % ms->smp.cores);
481             }
482             qemu_fdt_add_path(ms->fdt, map_path);
483             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
484 
485             g_free(map_path);
486             g_free(cpu_path);
487         }
488     }
489 }
490 
491 static void fdt_add_its_gic_node(VirtMachineState *vms)
492 {
493     char *nodename;
494     MachineState *ms = MACHINE(vms);
495 
496     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
497     nodename = g_strdup_printf("/intc/its@%" PRIx64,
498                                vms->memmap[VIRT_GIC_ITS].base);
499     qemu_fdt_add_subnode(ms->fdt, nodename);
500     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
501                             "arm,gic-v3-its");
502     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
503     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
504     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
505                                  2, vms->memmap[VIRT_GIC_ITS].base,
506                                  2, vms->memmap[VIRT_GIC_ITS].size);
507     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
508     g_free(nodename);
509 }
510 
511 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
512 {
513     MachineState *ms = MACHINE(vms);
514     char *nodename;
515 
516     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
517                                vms->memmap[VIRT_GIC_V2M].base);
518     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
519     qemu_fdt_add_subnode(ms->fdt, nodename);
520     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
521                             "arm,gic-v2m-frame");
522     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
523     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
524                                  2, vms->memmap[VIRT_GIC_V2M].base,
525                                  2, vms->memmap[VIRT_GIC_V2M].size);
526     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
527     g_free(nodename);
528 }
529 
530 static void fdt_add_gic_node(VirtMachineState *vms)
531 {
532     MachineState *ms = MACHINE(vms);
533     char *nodename;
534 
535     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
536     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
537 
538     nodename = g_strdup_printf("/intc@%" PRIx64,
539                                vms->memmap[VIRT_GIC_DIST].base);
540     qemu_fdt_add_subnode(ms->fdt, nodename);
541     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
542     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
543     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
544     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
545     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
546     if (vms->gic_version != VIRT_GIC_VERSION_2) {
547         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
548 
549         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
550                                 "arm,gic-v3");
551 
552         qemu_fdt_setprop_cell(ms->fdt, nodename,
553                               "#redistributor-regions", nb_redist_regions);
554 
555         if (nb_redist_regions == 1) {
556             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
557                                          2, vms->memmap[VIRT_GIC_DIST].base,
558                                          2, vms->memmap[VIRT_GIC_DIST].size,
559                                          2, vms->memmap[VIRT_GIC_REDIST].base,
560                                          2, vms->memmap[VIRT_GIC_REDIST].size);
561         } else {
562             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563                                  2, vms->memmap[VIRT_GIC_DIST].base,
564                                  2, vms->memmap[VIRT_GIC_DIST].size,
565                                  2, vms->memmap[VIRT_GIC_REDIST].base,
566                                  2, vms->memmap[VIRT_GIC_REDIST].size,
567                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
568                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
569         }
570 
571         if (vms->virt) {
572             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
573                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
574                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
575         }
576     } else {
577         /* 'cortex-a15-gic' means 'GIC v2' */
578         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
579                                 "arm,cortex-a15-gic");
580         if (!vms->virt) {
581             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
582                                          2, vms->memmap[VIRT_GIC_DIST].base,
583                                          2, vms->memmap[VIRT_GIC_DIST].size,
584                                          2, vms->memmap[VIRT_GIC_CPU].base,
585                                          2, vms->memmap[VIRT_GIC_CPU].size);
586         } else {
587             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
588                                          2, vms->memmap[VIRT_GIC_DIST].base,
589                                          2, vms->memmap[VIRT_GIC_DIST].size,
590                                          2, vms->memmap[VIRT_GIC_CPU].base,
591                                          2, vms->memmap[VIRT_GIC_CPU].size,
592                                          2, vms->memmap[VIRT_GIC_HYP].base,
593                                          2, vms->memmap[VIRT_GIC_HYP].size,
594                                          2, vms->memmap[VIRT_GIC_VCPU].base,
595                                          2, vms->memmap[VIRT_GIC_VCPU].size);
596             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
597                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
598                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
599         }
600     }
601 
602     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
603     g_free(nodename);
604 }
605 
606 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
607 {
608     ARMCPU *armcpu = ARM_CPU(first_cpu);
609     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
610     MachineState *ms = MACHINE(vms);
611 
612     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
613         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
614         return;
615     }
616 
617     if (vms->gic_version == VIRT_GIC_VERSION_2) {
618         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
619                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
620                              (1 << MACHINE(vms)->smp.cpus) - 1);
621     }
622 
623     qemu_fdt_add_subnode(ms->fdt, "/pmu");
624     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
625         const char compat[] = "arm,armv8-pmuv3";
626         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
627                          compat, sizeof(compat));
628         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
629                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
630     }
631 }
632 
633 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
634 {
635     DeviceState *dev;
636     MachineState *ms = MACHINE(vms);
637     int irq = vms->irqmap[VIRT_ACPI_GED];
638     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
639 
640     if (ms->ram_slots) {
641         event |= ACPI_GED_MEM_HOTPLUG_EVT;
642     }
643 
644     if (ms->nvdimms_state->is_enabled) {
645         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
646     }
647 
648     dev = qdev_new(TYPE_ACPI_GED);
649     qdev_prop_set_uint32(dev, "ged-event", event);
650     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
651 
652     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
653     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
654     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
655 
656     return dev;
657 }
658 
659 static void create_its(VirtMachineState *vms)
660 {
661     const char *itsclass = its_class_name();
662     DeviceState *dev;
663 
664     if (!strcmp(itsclass, "arm-gicv3-its")) {
665         if (!vms->tcg_its) {
666             itsclass = NULL;
667         }
668     }
669 
670     if (!itsclass) {
671         /* Do nothing if not supported */
672         return;
673     }
674 
675     dev = qdev_new(itsclass);
676 
677     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
678                              &error_abort);
679     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
680     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
681 
682     fdt_add_its_gic_node(vms);
683     vms->msi_controller = VIRT_MSI_CTRL_ITS;
684 }
685 
686 static void create_v2m(VirtMachineState *vms)
687 {
688     int i;
689     int irq = vms->irqmap[VIRT_GIC_V2M];
690     DeviceState *dev;
691 
692     dev = qdev_new("arm-gicv2m");
693     qdev_prop_set_uint32(dev, "base-spi", irq);
694     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
695     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
696     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
697 
698     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
699         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
700                            qdev_get_gpio_in(vms->gic, irq + i));
701     }
702 
703     fdt_add_v2m_gic_node(vms);
704     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
705 }
706 
707 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
708 {
709     MachineState *ms = MACHINE(vms);
710     /* We create a standalone GIC */
711     SysBusDevice *gicbusdev;
712     const char *gictype;
713     int i;
714     unsigned int smp_cpus = ms->smp.cpus;
715     uint32_t nb_redist_regions = 0;
716     int revision;
717 
718     if (vms->gic_version == VIRT_GIC_VERSION_2) {
719         gictype = gic_class_name();
720     } else {
721         gictype = gicv3_class_name();
722     }
723 
724     switch (vms->gic_version) {
725     case VIRT_GIC_VERSION_2:
726         revision = 2;
727         break;
728     case VIRT_GIC_VERSION_3:
729         revision = 3;
730         break;
731     case VIRT_GIC_VERSION_4:
732         revision = 4;
733         break;
734     default:
735         g_assert_not_reached();
736     }
737     vms->gic = qdev_new(gictype);
738     qdev_prop_set_uint32(vms->gic, "revision", revision);
739     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
740     /* Note that the num-irq property counts both internal and external
741      * interrupts; there are always 32 of the former (mandated by GIC spec).
742      */
743     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
744     if (!kvm_irqchip_in_kernel()) {
745         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
746     }
747 
748     if (vms->gic_version != VIRT_GIC_VERSION_2) {
749         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
750         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
751 
752         nb_redist_regions = virt_gicv3_redist_region_count(vms);
753 
754         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
755                              nb_redist_regions);
756         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
757 
758         if (!kvm_irqchip_in_kernel()) {
759             if (vms->tcg_its) {
760                 object_property_set_link(OBJECT(vms->gic), "sysmem",
761                                          OBJECT(mem), &error_fatal);
762                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
763             }
764         }
765 
766         if (nb_redist_regions == 2) {
767             uint32_t redist1_capacity =
768                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
769 
770             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
771                 MIN(smp_cpus - redist0_count, redist1_capacity));
772         }
773     } else {
774         if (!kvm_irqchip_in_kernel()) {
775             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
776                               vms->virt);
777         }
778     }
779     gicbusdev = SYS_BUS_DEVICE(vms->gic);
780     sysbus_realize_and_unref(gicbusdev, &error_fatal);
781     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
782     if (vms->gic_version != VIRT_GIC_VERSION_2) {
783         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
784         if (nb_redist_regions == 2) {
785             sysbus_mmio_map(gicbusdev, 2,
786                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
787         }
788     } else {
789         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
790         if (vms->virt) {
791             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
792             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
793         }
794     }
795 
796     /* Wire the outputs from each CPU's generic timer and the GICv3
797      * maintenance interrupt signal to the appropriate GIC PPI inputs,
798      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
799      */
800     for (i = 0; i < smp_cpus; i++) {
801         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
802         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
803         /* Mapping from the output timer irq lines from the CPU to the
804          * GIC PPI inputs we use for the virt board.
805          */
806         const int timer_irq[] = {
807             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
808             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
809             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
810             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
811         };
812 
813         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
814             qdev_connect_gpio_out(cpudev, irq,
815                                   qdev_get_gpio_in(vms->gic,
816                                                    ppibase + timer_irq[irq]));
817         }
818 
819         if (vms->gic_version != VIRT_GIC_VERSION_2) {
820             qemu_irq irq = qdev_get_gpio_in(vms->gic,
821                                             ppibase + ARCH_GIC_MAINT_IRQ);
822             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
823                                         0, irq);
824         } else if (vms->virt) {
825             qemu_irq irq = qdev_get_gpio_in(vms->gic,
826                                             ppibase + ARCH_GIC_MAINT_IRQ);
827             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
828         }
829 
830         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
831                                     qdev_get_gpio_in(vms->gic, ppibase
832                                                      + VIRTUAL_PMU_IRQ));
833 
834         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
835         sysbus_connect_irq(gicbusdev, i + smp_cpus,
836                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
837         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
838                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
839         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
840                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
841     }
842 
843     fdt_add_gic_node(vms);
844 
845     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
846         create_its(vms);
847     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
848         create_v2m(vms);
849     }
850 }
851 
852 static void create_uart(const VirtMachineState *vms, int uart,
853                         MemoryRegion *mem, Chardev *chr)
854 {
855     char *nodename;
856     hwaddr base = vms->memmap[uart].base;
857     hwaddr size = vms->memmap[uart].size;
858     int irq = vms->irqmap[uart];
859     const char compat[] = "arm,pl011\0arm,primecell";
860     const char clocknames[] = "uartclk\0apb_pclk";
861     DeviceState *dev = qdev_new(TYPE_PL011);
862     SysBusDevice *s = SYS_BUS_DEVICE(dev);
863     MachineState *ms = MACHINE(vms);
864 
865     qdev_prop_set_chr(dev, "chardev", chr);
866     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
867     memory_region_add_subregion(mem, base,
868                                 sysbus_mmio_get_region(s, 0));
869     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
870 
871     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
872     qemu_fdt_add_subnode(ms->fdt, nodename);
873     /* Note that we can't use setprop_string because of the embedded NUL */
874     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
875                          compat, sizeof(compat));
876     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
877                                      2, base, 2, size);
878     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
879                                GIC_FDT_IRQ_TYPE_SPI, irq,
880                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
881     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
882                                vms->clock_phandle, vms->clock_phandle);
883     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
884                          clocknames, sizeof(clocknames));
885 
886     if (uart == VIRT_UART) {
887         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
888     } else {
889         /* Mark as not usable by the normal world */
890         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
891         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
892 
893         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
894                                 nodename);
895     }
896 
897     g_free(nodename);
898 }
899 
900 static void create_rtc(const VirtMachineState *vms)
901 {
902     char *nodename;
903     hwaddr base = vms->memmap[VIRT_RTC].base;
904     hwaddr size = vms->memmap[VIRT_RTC].size;
905     int irq = vms->irqmap[VIRT_RTC];
906     const char compat[] = "arm,pl031\0arm,primecell";
907     MachineState *ms = MACHINE(vms);
908 
909     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
910 
911     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
912     qemu_fdt_add_subnode(ms->fdt, nodename);
913     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
914     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
915                                  2, base, 2, size);
916     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
917                            GIC_FDT_IRQ_TYPE_SPI, irq,
918                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
919     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
920     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
921     g_free(nodename);
922 }
923 
924 static DeviceState *gpio_key_dev;
925 static void virt_powerdown_req(Notifier *n, void *opaque)
926 {
927     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
928 
929     if (s->acpi_dev) {
930         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
931     } else {
932         /* use gpio Pin 3 for power button event */
933         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
934     }
935 }
936 
937 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
938                              uint32_t phandle)
939 {
940     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
941                                         qdev_get_gpio_in(pl061_dev, 3));
942 
943     qemu_fdt_add_subnode(fdt, "/gpio-keys");
944     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
945 
946     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
947     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
948                             "label", "GPIO Key Poweroff");
949     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
950                           KEY_POWER);
951     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
952                            "gpios", phandle, 3, 0);
953 }
954 
955 #define SECURE_GPIO_POWEROFF 0
956 #define SECURE_GPIO_RESET    1
957 
958 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
959                                    uint32_t phandle)
960 {
961     DeviceState *gpio_pwr_dev;
962 
963     /* gpio-pwr */
964     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
965 
966     /* connect secure pl061 to gpio-pwr */
967     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
968                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
969     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
970                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
971 
972     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
973     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
974                             "gpio-poweroff");
975     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
976                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
977     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
978     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
979                             "okay");
980 
981     qemu_fdt_add_subnode(fdt, "/gpio-restart");
982     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
983                             "gpio-restart");
984     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
985                            "gpios", phandle, SECURE_GPIO_RESET, 0);
986     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
987     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
988                             "okay");
989 }
990 
991 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
992                                 MemoryRegion *mem)
993 {
994     char *nodename;
995     DeviceState *pl061_dev;
996     hwaddr base = vms->memmap[gpio].base;
997     hwaddr size = vms->memmap[gpio].size;
998     int irq = vms->irqmap[gpio];
999     const char compat[] = "arm,pl061\0arm,primecell";
1000     SysBusDevice *s;
1001     MachineState *ms = MACHINE(vms);
1002 
1003     pl061_dev = qdev_new("pl061");
1004     /* Pull lines down to 0 if not driven by the PL061 */
1005     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1006     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1007     s = SYS_BUS_DEVICE(pl061_dev);
1008     sysbus_realize_and_unref(s, &error_fatal);
1009     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1010     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1011 
1012     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1013     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1014     qemu_fdt_add_subnode(ms->fdt, nodename);
1015     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1016                                  2, base, 2, size);
1017     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1018     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1019     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1020     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1021                            GIC_FDT_IRQ_TYPE_SPI, irq,
1022                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1023     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1024     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1025     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1026 
1027     if (gpio != VIRT_GPIO) {
1028         /* Mark as not usable by the normal world */
1029         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1030         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1031     }
1032     g_free(nodename);
1033 
1034     /* Child gpio devices */
1035     if (gpio == VIRT_GPIO) {
1036         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1037     } else {
1038         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1039     }
1040 }
1041 
1042 static void create_virtio_devices(const VirtMachineState *vms)
1043 {
1044     int i;
1045     hwaddr size = vms->memmap[VIRT_MMIO].size;
1046     MachineState *ms = MACHINE(vms);
1047 
1048     /* We create the transports in forwards order. Since qbus_realize()
1049      * prepends (not appends) new child buses, the incrementing loop below will
1050      * create a list of virtio-mmio buses with decreasing base addresses.
1051      *
1052      * When a -device option is processed from the command line,
1053      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1054      * order. The upshot is that -device options in increasing command line
1055      * order are mapped to virtio-mmio buses with decreasing base addresses.
1056      *
1057      * When this code was originally written, that arrangement ensured that the
1058      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1059      * the first -device on the command line. (The end-to-end order is a
1060      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1061      * guest kernel's name-to-address assignment strategy.)
1062      *
1063      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1064      * the message, if not necessarily the code, of commit 70161ff336.
1065      * Therefore the loop now establishes the inverse of the original intent.
1066      *
1067      * Unfortunately, we can't counteract the kernel change by reversing the
1068      * loop; it would break existing command lines.
1069      *
1070      * In any case, the kernel makes no guarantee about the stability of
1071      * enumeration order of virtio devices (as demonstrated by it changing
1072      * between kernel versions). For reliable and stable identification
1073      * of disks users must use UUIDs or similar mechanisms.
1074      */
1075     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1076         int irq = vms->irqmap[VIRT_MMIO] + i;
1077         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1078 
1079         sysbus_create_simple("virtio-mmio", base,
1080                              qdev_get_gpio_in(vms->gic, irq));
1081     }
1082 
1083     /* We add dtb nodes in reverse order so that they appear in the finished
1084      * device tree lowest address first.
1085      *
1086      * Note that this mapping is independent of the loop above. The previous
1087      * loop influences virtio device to virtio transport assignment, whereas
1088      * this loop controls how virtio transports are laid out in the dtb.
1089      */
1090     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1091         char *nodename;
1092         int irq = vms->irqmap[VIRT_MMIO] + i;
1093         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1094 
1095         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1096         qemu_fdt_add_subnode(ms->fdt, nodename);
1097         qemu_fdt_setprop_string(ms->fdt, nodename,
1098                                 "compatible", "virtio,mmio");
1099         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1100                                      2, base, 2, size);
1101         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1102                                GIC_FDT_IRQ_TYPE_SPI, irq,
1103                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1104         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1105         g_free(nodename);
1106     }
1107 }
1108 
1109 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1110 
1111 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1112                                         const char *name,
1113                                         const char *alias_prop_name)
1114 {
1115     /*
1116      * Create a single flash device.  We use the same parameters as
1117      * the flash devices on the Versatile Express board.
1118      */
1119     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1120 
1121     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1122     qdev_prop_set_uint8(dev, "width", 4);
1123     qdev_prop_set_uint8(dev, "device-width", 2);
1124     qdev_prop_set_bit(dev, "big-endian", false);
1125     qdev_prop_set_uint16(dev, "id0", 0x89);
1126     qdev_prop_set_uint16(dev, "id1", 0x18);
1127     qdev_prop_set_uint16(dev, "id2", 0x00);
1128     qdev_prop_set_uint16(dev, "id3", 0x00);
1129     qdev_prop_set_string(dev, "name", name);
1130     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1131     object_property_add_alias(OBJECT(vms), alias_prop_name,
1132                               OBJECT(dev), "drive");
1133     return PFLASH_CFI01(dev);
1134 }
1135 
1136 static void virt_flash_create(VirtMachineState *vms)
1137 {
1138     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1139     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1140 }
1141 
1142 static void virt_flash_map1(PFlashCFI01 *flash,
1143                             hwaddr base, hwaddr size,
1144                             MemoryRegion *sysmem)
1145 {
1146     DeviceState *dev = DEVICE(flash);
1147 
1148     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1149     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1150     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1151     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1152 
1153     memory_region_add_subregion(sysmem, base,
1154                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1155                                                        0));
1156 }
1157 
1158 static void virt_flash_map(VirtMachineState *vms,
1159                            MemoryRegion *sysmem,
1160                            MemoryRegion *secure_sysmem)
1161 {
1162     /*
1163      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1164      * sysmem is the system memory space. secure_sysmem is the secure view
1165      * of the system, and the first flash device should be made visible only
1166      * there. The second flash device is visible to both secure and nonsecure.
1167      * If sysmem == secure_sysmem this means there is no separate Secure
1168      * address space and both flash devices are generally visible.
1169      */
1170     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1171     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1172 
1173     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1174                     secure_sysmem);
1175     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1176                     sysmem);
1177 }
1178 
1179 static void virt_flash_fdt(VirtMachineState *vms,
1180                            MemoryRegion *sysmem,
1181                            MemoryRegion *secure_sysmem)
1182 {
1183     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1184     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1185     MachineState *ms = MACHINE(vms);
1186     char *nodename;
1187 
1188     if (sysmem == secure_sysmem) {
1189         /* Report both flash devices as a single node in the DT */
1190         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1191         qemu_fdt_add_subnode(ms->fdt, nodename);
1192         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1193         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1194                                      2, flashbase, 2, flashsize,
1195                                      2, flashbase + flashsize, 2, flashsize);
1196         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1197         g_free(nodename);
1198     } else {
1199         /*
1200          * Report the devices as separate nodes so we can mark one as
1201          * only visible to the secure world.
1202          */
1203         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1204         qemu_fdt_add_subnode(ms->fdt, nodename);
1205         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1206         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1207                                      2, flashbase, 2, flashsize);
1208         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1209         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1210         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1211         g_free(nodename);
1212 
1213         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1214         qemu_fdt_add_subnode(ms->fdt, nodename);
1215         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1216         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1217                                      2, flashbase + flashsize, 2, flashsize);
1218         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1219         g_free(nodename);
1220     }
1221 }
1222 
1223 static bool virt_firmware_init(VirtMachineState *vms,
1224                                MemoryRegion *sysmem,
1225                                MemoryRegion *secure_sysmem)
1226 {
1227     int i;
1228     const char *bios_name;
1229     BlockBackend *pflash_blk0;
1230 
1231     /* Map legacy -drive if=pflash to machine properties */
1232     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1233         pflash_cfi01_legacy_drive(vms->flash[i],
1234                                   drive_get(IF_PFLASH, 0, i));
1235     }
1236 
1237     virt_flash_map(vms, sysmem, secure_sysmem);
1238 
1239     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1240 
1241     bios_name = MACHINE(vms)->firmware;
1242     if (bios_name) {
1243         char *fname;
1244         MemoryRegion *mr;
1245         int image_size;
1246 
1247         if (pflash_blk0) {
1248             error_report("The contents of the first flash device may be "
1249                          "specified with -bios or with -drive if=pflash... "
1250                          "but you cannot use both options at once");
1251             exit(1);
1252         }
1253 
1254         /* Fall back to -bios */
1255 
1256         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1257         if (!fname) {
1258             error_report("Could not find ROM image '%s'", bios_name);
1259             exit(1);
1260         }
1261         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1262         image_size = load_image_mr(fname, mr);
1263         g_free(fname);
1264         if (image_size < 0) {
1265             error_report("Could not load ROM image '%s'", bios_name);
1266             exit(1);
1267         }
1268     }
1269 
1270     return pflash_blk0 || bios_name;
1271 }
1272 
1273 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1274 {
1275     MachineState *ms = MACHINE(vms);
1276     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1277     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1278     FWCfgState *fw_cfg;
1279     char *nodename;
1280 
1281     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1282     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1283 
1284     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1285     qemu_fdt_add_subnode(ms->fdt, nodename);
1286     qemu_fdt_setprop_string(ms->fdt, nodename,
1287                             "compatible", "qemu,fw-cfg-mmio");
1288     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1289                                  2, base, 2, size);
1290     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1291     g_free(nodename);
1292     return fw_cfg;
1293 }
1294 
1295 static void create_pcie_irq_map(const MachineState *ms,
1296                                 uint32_t gic_phandle,
1297                                 int first_irq, const char *nodename)
1298 {
1299     int devfn, pin;
1300     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1301     uint32_t *irq_map = full_irq_map;
1302 
1303     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1304         for (pin = 0; pin < 4; pin++) {
1305             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1306             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1307             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1308             int i;
1309 
1310             uint32_t map[] = {
1311                 devfn << 8, 0, 0,                           /* devfn */
1312                 pin + 1,                                    /* PCI pin */
1313                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1314 
1315             /* Convert map to big endian */
1316             for (i = 0; i < 10; i++) {
1317                 irq_map[i] = cpu_to_be32(map[i]);
1318             }
1319             irq_map += 10;
1320         }
1321     }
1322 
1323     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1324                      full_irq_map, sizeof(full_irq_map));
1325 
1326     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1327                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1328                            0, 0,
1329                            0x7           /* PCI irq */);
1330 }
1331 
1332 static void create_smmu(const VirtMachineState *vms,
1333                         PCIBus *bus)
1334 {
1335     char *node;
1336     const char compat[] = "arm,smmu-v3";
1337     int irq =  vms->irqmap[VIRT_SMMU];
1338     int i;
1339     hwaddr base = vms->memmap[VIRT_SMMU].base;
1340     hwaddr size = vms->memmap[VIRT_SMMU].size;
1341     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1342     DeviceState *dev;
1343     MachineState *ms = MACHINE(vms);
1344 
1345     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1346         return;
1347     }
1348 
1349     dev = qdev_new(TYPE_ARM_SMMUV3);
1350 
1351     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1352                              &error_abort);
1353     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1354     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1355     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1356         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1357                            qdev_get_gpio_in(vms->gic, irq + i));
1358     }
1359 
1360     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1361     qemu_fdt_add_subnode(ms->fdt, node);
1362     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1363     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1364 
1365     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1366             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1367             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1368             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1369             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1370 
1371     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1372                      sizeof(irq_names));
1373 
1374     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1375 
1376     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1377 
1378     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1379     g_free(node);
1380 }
1381 
1382 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1383 {
1384     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1385     uint16_t bdf = vms->virtio_iommu_bdf;
1386     MachineState *ms = MACHINE(vms);
1387     char *node;
1388 
1389     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1390 
1391     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1392                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1393     qemu_fdt_add_subnode(ms->fdt, node);
1394     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1395     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1396                                  1, bdf << 8, 1, 0, 1, 0,
1397                                  1, 0, 1, 0);
1398 
1399     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1400     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1401     g_free(node);
1402 
1403     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1404                            0x0, vms->iommu_phandle, 0x0, bdf,
1405                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1406 }
1407 
1408 static void create_pcie(VirtMachineState *vms)
1409 {
1410     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1411     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1412     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1413     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1414     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1415     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1416     hwaddr base_ecam, size_ecam;
1417     hwaddr base = base_mmio;
1418     int nr_pcie_buses;
1419     int irq = vms->irqmap[VIRT_PCIE];
1420     MemoryRegion *mmio_alias;
1421     MemoryRegion *mmio_reg;
1422     MemoryRegion *ecam_alias;
1423     MemoryRegion *ecam_reg;
1424     DeviceState *dev;
1425     char *nodename;
1426     int i, ecam_id;
1427     PCIHostState *pci;
1428     MachineState *ms = MACHINE(vms);
1429     MachineClass *mc = MACHINE_GET_CLASS(ms);
1430 
1431     dev = qdev_new(TYPE_GPEX_HOST);
1432     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1433 
1434     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1435     base_ecam = vms->memmap[ecam_id].base;
1436     size_ecam = vms->memmap[ecam_id].size;
1437     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1438     /* Map only the first size_ecam bytes of ECAM space */
1439     ecam_alias = g_new0(MemoryRegion, 1);
1440     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1441     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1442                              ecam_reg, 0, size_ecam);
1443     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1444 
1445     /* Map the MMIO window into system address space so as to expose
1446      * the section of PCI MMIO space which starts at the same base address
1447      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1448      * the window).
1449      */
1450     mmio_alias = g_new0(MemoryRegion, 1);
1451     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1452     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1453                              mmio_reg, base_mmio, size_mmio);
1454     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1455 
1456     if (vms->highmem_mmio) {
1457         /* Map high MMIO space */
1458         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1459 
1460         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1461                                  mmio_reg, base_mmio_high, size_mmio_high);
1462         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1463                                     high_mmio_alias);
1464     }
1465 
1466     /* Map IO port space */
1467     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1468 
1469     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1470         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1471                            qdev_get_gpio_in(vms->gic, irq + i));
1472         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1473     }
1474 
1475     pci = PCI_HOST_BRIDGE(dev);
1476     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1477     vms->bus = pci->bus;
1478     if (vms->bus) {
1479         for (i = 0; i < nb_nics; i++) {
1480             pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1481         }
1482     }
1483 
1484     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1485     qemu_fdt_add_subnode(ms->fdt, nodename);
1486     qemu_fdt_setprop_string(ms->fdt, nodename,
1487                             "compatible", "pci-host-ecam-generic");
1488     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1489     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1490     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1491     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1492     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1493                            nr_pcie_buses - 1);
1494     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1495 
1496     if (vms->msi_phandle) {
1497         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1498                                0, vms->msi_phandle, 0, 0x10000);
1499     }
1500 
1501     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1502                                  2, base_ecam, 2, size_ecam);
1503 
1504     if (vms->highmem_mmio) {
1505         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1506                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1507                                      2, base_pio, 2, size_pio,
1508                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1509                                      2, base_mmio, 2, size_mmio,
1510                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1511                                      2, base_mmio_high,
1512                                      2, base_mmio_high, 2, size_mmio_high);
1513     } else {
1514         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1515                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1516                                      2, base_pio, 2, size_pio,
1517                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1518                                      2, base_mmio, 2, size_mmio);
1519     }
1520 
1521     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1522     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1523 
1524     if (vms->iommu) {
1525         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1526 
1527         switch (vms->iommu) {
1528         case VIRT_IOMMU_SMMUV3:
1529             create_smmu(vms, vms->bus);
1530             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1531                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1532             break;
1533         default:
1534             g_assert_not_reached();
1535         }
1536     }
1537 }
1538 
1539 static void create_platform_bus(VirtMachineState *vms)
1540 {
1541     DeviceState *dev;
1542     SysBusDevice *s;
1543     int i;
1544     MemoryRegion *sysmem = get_system_memory();
1545 
1546     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1547     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1548     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1549     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1550     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1551     vms->platform_bus_dev = dev;
1552 
1553     s = SYS_BUS_DEVICE(dev);
1554     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1555         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1556         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1557     }
1558 
1559     memory_region_add_subregion(sysmem,
1560                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1561                                 sysbus_mmio_get_region(s, 0));
1562 }
1563 
1564 static void create_tag_ram(MemoryRegion *tag_sysmem,
1565                            hwaddr base, hwaddr size,
1566                            const char *name)
1567 {
1568     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1569 
1570     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1571     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1572 }
1573 
1574 static void create_secure_ram(VirtMachineState *vms,
1575                               MemoryRegion *secure_sysmem,
1576                               MemoryRegion *secure_tag_sysmem)
1577 {
1578     MemoryRegion *secram = g_new(MemoryRegion, 1);
1579     char *nodename;
1580     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1581     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1582     MachineState *ms = MACHINE(vms);
1583 
1584     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1585                            &error_fatal);
1586     memory_region_add_subregion(secure_sysmem, base, secram);
1587 
1588     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1589     qemu_fdt_add_subnode(ms->fdt, nodename);
1590     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1591     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1592     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1593     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1594 
1595     if (secure_tag_sysmem) {
1596         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1597     }
1598 
1599     g_free(nodename);
1600 }
1601 
1602 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1603 {
1604     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1605                                                  bootinfo);
1606     MachineState *ms = MACHINE(board);
1607 
1608 
1609     *fdt_size = board->fdt_size;
1610     return ms->fdt;
1611 }
1612 
1613 static void virt_build_smbios(VirtMachineState *vms)
1614 {
1615     MachineClass *mc = MACHINE_GET_CLASS(vms);
1616     MachineState *ms = MACHINE(vms);
1617     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1618     uint8_t *smbios_tables, *smbios_anchor;
1619     size_t smbios_tables_len, smbios_anchor_len;
1620     struct smbios_phys_mem_area mem_array;
1621     const char *product = "QEMU Virtual Machine";
1622 
1623     if (kvm_enabled()) {
1624         product = "KVM Virtual Machine";
1625     }
1626 
1627     smbios_set_defaults("QEMU", product,
1628                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1629                         true, SMBIOS_ENTRY_POINT_TYPE_64);
1630 
1631     /* build the array of physical mem area from base_memmap */
1632     mem_array.address = vms->memmap[VIRT_MEM].base;
1633     mem_array.length = ms->ram_size;
1634 
1635     smbios_get_tables(ms, &mem_array, 1,
1636                       &smbios_tables, &smbios_tables_len,
1637                       &smbios_anchor, &smbios_anchor_len,
1638                       &error_fatal);
1639 
1640     if (smbios_anchor) {
1641         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1642                         smbios_tables, smbios_tables_len);
1643         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1644                         smbios_anchor, smbios_anchor_len);
1645     }
1646 }
1647 
1648 static
1649 void virt_machine_done(Notifier *notifier, void *data)
1650 {
1651     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1652                                          machine_done);
1653     MachineState *ms = MACHINE(vms);
1654     ARMCPU *cpu = ARM_CPU(first_cpu);
1655     struct arm_boot_info *info = &vms->bootinfo;
1656     AddressSpace *as = arm_boot_address_space(cpu, info);
1657 
1658     /*
1659      * If the user provided a dtb, we assume the dynamic sysbus nodes
1660      * already are integrated there. This corresponds to a use case where
1661      * the dynamic sysbus nodes are complex and their generation is not yet
1662      * supported. In that case the user can take charge of the guest dt
1663      * while qemu takes charge of the qom stuff.
1664      */
1665     if (info->dtb_filename == NULL) {
1666         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1667                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1668                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1669                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1670     }
1671     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1672         exit(1);
1673     }
1674 
1675     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1676 
1677     virt_acpi_setup(vms);
1678     virt_build_smbios(vms);
1679 }
1680 
1681 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1682 {
1683     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1684     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1685 
1686     if (!vmc->disallow_affinity_adjustment) {
1687         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1688          * GIC's target-list limitations. 32-bit KVM hosts currently
1689          * always create clusters of 4 CPUs, but that is expected to
1690          * change when they gain support for gicv3. When KVM is enabled
1691          * it will override the changes we make here, therefore our
1692          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1693          * and to improve SGI efficiency.
1694          */
1695         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1696             clustersz = GIC_TARGETLIST_BITS;
1697         } else {
1698             clustersz = GICV3_TARGETLIST_BITS;
1699         }
1700     }
1701     return arm_cpu_mp_affinity(idx, clustersz);
1702 }
1703 
1704 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1705                                                  int index)
1706 {
1707     bool *enabled_array[] = {
1708         &vms->highmem_redists,
1709         &vms->highmem_ecam,
1710         &vms->highmem_mmio,
1711     };
1712 
1713     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1714            ARRAY_SIZE(enabled_array));
1715     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1716 
1717     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1718 }
1719 
1720 static void virt_set_high_memmap(VirtMachineState *vms,
1721                                  hwaddr base, int pa_bits)
1722 {
1723     hwaddr region_base, region_size;
1724     bool *region_enabled, fits;
1725     int i;
1726 
1727     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1728         region_enabled = virt_get_high_memmap_enabled(vms, i);
1729         region_base = ROUND_UP(base, extended_memmap[i].size);
1730         region_size = extended_memmap[i].size;
1731 
1732         vms->memmap[i].base = region_base;
1733         vms->memmap[i].size = region_size;
1734 
1735         /*
1736          * Check each device to see if it fits in the PA space,
1737          * moving highest_gpa as we go. For compatibility, move
1738          * highest_gpa for disabled fitting devices as well, if
1739          * the compact layout has been disabled.
1740          *
1741          * For each device that doesn't fit, disable it.
1742          */
1743         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1744         *region_enabled &= fits;
1745         if (vms->highmem_compact && !*region_enabled) {
1746             continue;
1747         }
1748 
1749         base = region_base + region_size;
1750         if (fits) {
1751             vms->highest_gpa = base - 1;
1752         }
1753     }
1754 }
1755 
1756 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1757 {
1758     MachineState *ms = MACHINE(vms);
1759     hwaddr base, device_memory_base, device_memory_size, memtop;
1760     int i;
1761 
1762     vms->memmap = extended_memmap;
1763 
1764     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1765         vms->memmap[i] = base_memmap[i];
1766     }
1767 
1768     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1769         error_report("unsupported number of memory slots: %"PRIu64,
1770                      ms->ram_slots);
1771         exit(EXIT_FAILURE);
1772     }
1773 
1774     /*
1775      * !highmem is exactly the same as limiting the PA space to 32bit,
1776      * irrespective of the underlying capabilities of the HW.
1777      */
1778     if (!vms->highmem) {
1779         pa_bits = 32;
1780     }
1781 
1782     /*
1783      * We compute the base of the high IO region depending on the
1784      * amount of initial and device memory. The device memory start/size
1785      * is aligned on 1GiB. We never put the high IO region below 256GiB
1786      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1787      * The device region size assumes 1GiB page max alignment per slot.
1788      */
1789     device_memory_base =
1790         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1791     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1792 
1793     /* Base address of the high IO region */
1794     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1795     if (memtop > BIT_ULL(pa_bits)) {
1796 	    error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1797 			 pa_bits, memtop - BIT_ULL(pa_bits));
1798         exit(EXIT_FAILURE);
1799     }
1800     if (base < device_memory_base) {
1801         error_report("maxmem/slots too huge");
1802         exit(EXIT_FAILURE);
1803     }
1804     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1805         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1806     }
1807 
1808     /* We know for sure that at least the memory fits in the PA space */
1809     vms->highest_gpa = memtop - 1;
1810 
1811     virt_set_high_memmap(vms, base, pa_bits);
1812 
1813     if (device_memory_size > 0) {
1814         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1815     }
1816 }
1817 
1818 static VirtGICType finalize_gic_version_do(const char *accel_name,
1819                                            VirtGICType gic_version,
1820                                            int gics_supported,
1821                                            unsigned int max_cpus)
1822 {
1823     /* Convert host/max/nosel to GIC version number */
1824     switch (gic_version) {
1825     case VIRT_GIC_VERSION_HOST:
1826         if (!kvm_enabled()) {
1827             error_report("gic-version=host requires KVM");
1828             exit(1);
1829         }
1830 
1831         /* For KVM, gic-version=host means gic-version=max */
1832         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1833                                        gics_supported, max_cpus);
1834     case VIRT_GIC_VERSION_MAX:
1835         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1836             gic_version = VIRT_GIC_VERSION_4;
1837         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1838             gic_version = VIRT_GIC_VERSION_3;
1839         } else {
1840             gic_version = VIRT_GIC_VERSION_2;
1841         }
1842         break;
1843     case VIRT_GIC_VERSION_NOSEL:
1844         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1845             max_cpus <= GIC_NCPU) {
1846             gic_version = VIRT_GIC_VERSION_2;
1847         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1848             /*
1849              * in case the host does not support v2 emulation or
1850              * the end-user requested more than 8 VCPUs we now default
1851              * to v3. In any case defaulting to v2 would be broken.
1852              */
1853             gic_version = VIRT_GIC_VERSION_3;
1854         } else if (max_cpus > GIC_NCPU) {
1855             error_report("%s only supports GICv2 emulation but more than 8 "
1856                          "vcpus are requested", accel_name);
1857             exit(1);
1858         }
1859         break;
1860     case VIRT_GIC_VERSION_2:
1861     case VIRT_GIC_VERSION_3:
1862     case VIRT_GIC_VERSION_4:
1863         break;
1864     }
1865 
1866     /* Check chosen version is effectively supported */
1867     switch (gic_version) {
1868     case VIRT_GIC_VERSION_2:
1869         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1870             error_report("%s does not support GICv2 emulation", accel_name);
1871             exit(1);
1872         }
1873         break;
1874     case VIRT_GIC_VERSION_3:
1875         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1876             error_report("%s does not support GICv3 emulation", accel_name);
1877             exit(1);
1878         }
1879         break;
1880     case VIRT_GIC_VERSION_4:
1881         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1882             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1883                          accel_name);
1884             exit(1);
1885         }
1886         break;
1887     default:
1888         error_report("logic error in finalize_gic_version");
1889         exit(1);
1890         break;
1891     }
1892 
1893     return gic_version;
1894 }
1895 
1896 /*
1897  * finalize_gic_version - Determines the final gic_version
1898  * according to the gic-version property
1899  *
1900  * Default GIC type is v2
1901  */
1902 static void finalize_gic_version(VirtMachineState *vms)
1903 {
1904     const char *accel_name = current_accel_name();
1905     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1906     int gics_supported = 0;
1907 
1908     /* Determine which GIC versions the current environment supports */
1909     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1910         int probe_bitmap = kvm_arm_vgic_probe();
1911 
1912         if (!probe_bitmap) {
1913             error_report("Unable to determine GIC version supported by host");
1914             exit(1);
1915         }
1916 
1917         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1918             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1919         }
1920         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1921             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1922         }
1923     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1924         /* KVM w/o kernel irqchip can only deal with GICv2 */
1925         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1926         accel_name = "KVM with kernel-irqchip=off";
1927     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1928         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1929         if (module_object_class_by_name("arm-gicv3")) {
1930             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1931             if (vms->virt) {
1932                 /* GICv4 only makes sense if CPU has EL2 */
1933                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1934             }
1935         }
1936     } else {
1937         error_report("Unsupported accelerator, can not determine GIC support");
1938         exit(1);
1939     }
1940 
1941     /*
1942      * Then convert helpers like host/max to concrete GIC versions and ensure
1943      * the desired version is supported
1944      */
1945     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1946                                                gics_supported, max_cpus);
1947 }
1948 
1949 /*
1950  * virt_cpu_post_init() must be called after the CPUs have
1951  * been realized and the GIC has been created.
1952  */
1953 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1954 {
1955     int max_cpus = MACHINE(vms)->smp.max_cpus;
1956     bool aarch64, pmu, steal_time;
1957     CPUState *cpu;
1958 
1959     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1960     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1961     steal_time = object_property_get_bool(OBJECT(first_cpu),
1962                                           "kvm-steal-time", NULL);
1963 
1964     if (kvm_enabled()) {
1965         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1966         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1967 
1968         if (steal_time) {
1969             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1970             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1971 
1972             /* The memory region size must be a multiple of host page size. */
1973             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1974 
1975             if (pvtime_size > pvtime_reg_size) {
1976                 error_report("pvtime requires a %" HWADDR_PRId
1977                              " byte memory region for %d CPUs,"
1978                              " but only %" HWADDR_PRId " has been reserved",
1979                              pvtime_size, max_cpus, pvtime_reg_size);
1980                 exit(1);
1981             }
1982 
1983             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1984             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1985         }
1986 
1987         CPU_FOREACH(cpu) {
1988             if (pmu) {
1989                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1990                 if (kvm_irqchip_in_kernel()) {
1991                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1992                 }
1993                 kvm_arm_pmu_init(cpu);
1994             }
1995             if (steal_time) {
1996                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1997                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1998             }
1999         }
2000     } else {
2001         if (aarch64 && vms->highmem) {
2002             int requested_pa_size = 64 - clz64(vms->highest_gpa);
2003             int pamax = arm_pamax(ARM_CPU(first_cpu));
2004 
2005             if (pamax < requested_pa_size) {
2006                 error_report("VCPU supports less PA bits (%d) than "
2007                              "requested by the memory map (%d)",
2008                              pamax, requested_pa_size);
2009                 exit(1);
2010             }
2011         }
2012     }
2013 }
2014 
2015 static void machvirt_init(MachineState *machine)
2016 {
2017     VirtMachineState *vms = VIRT_MACHINE(machine);
2018     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2019     MachineClass *mc = MACHINE_GET_CLASS(machine);
2020     const CPUArchIdList *possible_cpus;
2021     MemoryRegion *sysmem = get_system_memory();
2022     MemoryRegion *secure_sysmem = NULL;
2023     MemoryRegion *tag_sysmem = NULL;
2024     MemoryRegion *secure_tag_sysmem = NULL;
2025     int n, virt_max_cpus;
2026     bool firmware_loaded;
2027     bool aarch64 = true;
2028     bool has_ged = !vmc->no_ged;
2029     unsigned int smp_cpus = machine->smp.cpus;
2030     unsigned int max_cpus = machine->smp.max_cpus;
2031 
2032     if (!cpu_type_valid(machine->cpu_type)) {
2033         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2034         exit(1);
2035     }
2036 
2037     possible_cpus = mc->possible_cpu_arch_ids(machine);
2038 
2039     /*
2040      * In accelerated mode, the memory map is computed earlier in kvm_type()
2041      * to create a VM with the right number of IPA bits.
2042      */
2043     if (!vms->memmap) {
2044         Object *cpuobj;
2045         ARMCPU *armcpu;
2046         int pa_bits;
2047 
2048         /*
2049          * Instantiate a temporary CPU object to find out about what
2050          * we are about to deal with. Once this is done, get rid of
2051          * the object.
2052          */
2053         cpuobj = object_new(possible_cpus->cpus[0].type);
2054         armcpu = ARM_CPU(cpuobj);
2055 
2056         pa_bits = arm_pamax(armcpu);
2057 
2058         object_unref(cpuobj);
2059 
2060         virt_set_memmap(vms, pa_bits);
2061     }
2062 
2063     /* We can probe only here because during property set
2064      * KVM is not available yet
2065      */
2066     finalize_gic_version(vms);
2067 
2068     if (vms->secure) {
2069         /*
2070          * The Secure view of the world is the same as the NonSecure,
2071          * but with a few extra devices. Create it as a container region
2072          * containing the system memory at low priority; any secure-only
2073          * devices go in at higher priority and take precedence.
2074          */
2075         secure_sysmem = g_new(MemoryRegion, 1);
2076         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2077                            UINT64_MAX);
2078         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2079     }
2080 
2081     firmware_loaded = virt_firmware_init(vms, sysmem,
2082                                          secure_sysmem ?: sysmem);
2083 
2084     /* If we have an EL3 boot ROM then the assumption is that it will
2085      * implement PSCI itself, so disable QEMU's internal implementation
2086      * so it doesn't get in the way. Instead of starting secondary
2087      * CPUs in PSCI powerdown state we will start them all running and
2088      * let the boot ROM sort them out.
2089      * The usual case is that we do use QEMU's PSCI implementation;
2090      * if the guest has EL2 then we will use SMC as the conduit,
2091      * and otherwise we will use HVC (for backwards compatibility and
2092      * because if we're using KVM then we must use HVC).
2093      */
2094     if (vms->secure && firmware_loaded) {
2095         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2096     } else if (vms->virt) {
2097         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2098     } else {
2099         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2100     }
2101 
2102     /*
2103      * The maximum number of CPUs depends on the GIC version, or on how
2104      * many redistributors we can fit into the memory map (which in turn
2105      * depends on whether this is a GICv3 or v4).
2106      */
2107     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2108         virt_max_cpus = GIC_NCPU;
2109     } else {
2110         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2111         if (vms->highmem_redists) {
2112             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2113         }
2114     }
2115 
2116     if (max_cpus > virt_max_cpus) {
2117         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2118                      "supported by machine 'mach-virt' (%d)",
2119                      max_cpus, virt_max_cpus);
2120         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2121             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2122         }
2123 
2124         exit(1);
2125     }
2126 
2127     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2128         error_report("mach-virt: %s does not support providing "
2129                      "Security extensions (TrustZone) to the guest CPU",
2130                      current_accel_name());
2131         exit(1);
2132     }
2133 
2134     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2135         error_report("mach-virt: %s does not support providing "
2136                      "Virtualization extensions to the guest CPU",
2137                      current_accel_name());
2138         exit(1);
2139     }
2140 
2141     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2142         error_report("mach-virt: %s does not support providing "
2143                      "MTE to the guest CPU",
2144                      current_accel_name());
2145         exit(1);
2146     }
2147 
2148     create_fdt(vms);
2149 
2150     assert(possible_cpus->len == max_cpus);
2151     for (n = 0; n < possible_cpus->len; n++) {
2152         Object *cpuobj;
2153         CPUState *cs;
2154 
2155         if (n >= smp_cpus) {
2156             break;
2157         }
2158 
2159         cpuobj = object_new(possible_cpus->cpus[n].type);
2160         object_property_set_int(cpuobj, "mp-affinity",
2161                                 possible_cpus->cpus[n].arch_id, NULL);
2162 
2163         cs = CPU(cpuobj);
2164         cs->cpu_index = n;
2165 
2166         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2167                           &error_fatal);
2168 
2169         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2170 
2171         if (!vms->secure) {
2172             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2173         }
2174 
2175         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2176             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2177         }
2178 
2179         if (vmc->kvm_no_adjvtime &&
2180             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2181             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2182         }
2183 
2184         if (vmc->no_kvm_steal_time &&
2185             object_property_find(cpuobj, "kvm-steal-time")) {
2186             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2187         }
2188 
2189         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2190             object_property_set_bool(cpuobj, "pmu", false, NULL);
2191         }
2192 
2193         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2194             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2195         }
2196 
2197         if (object_property_find(cpuobj, "reset-cbar")) {
2198             object_property_set_int(cpuobj, "reset-cbar",
2199                                     vms->memmap[VIRT_CPUPERIPHS].base,
2200                                     &error_abort);
2201         }
2202 
2203         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2204                                  &error_abort);
2205         if (vms->secure) {
2206             object_property_set_link(cpuobj, "secure-memory",
2207                                      OBJECT(secure_sysmem), &error_abort);
2208         }
2209 
2210         if (vms->mte) {
2211             /* Create the memory region only once, but link to all cpus. */
2212             if (!tag_sysmem) {
2213                 /*
2214                  * The property exists only if MemTag is supported.
2215                  * If it is, we must allocate the ram to back that up.
2216                  */
2217                 if (!object_property_find(cpuobj, "tag-memory")) {
2218                     error_report("MTE requested, but not supported "
2219                                  "by the guest CPU");
2220                     exit(1);
2221                 }
2222 
2223                 tag_sysmem = g_new(MemoryRegion, 1);
2224                 memory_region_init(tag_sysmem, OBJECT(machine),
2225                                    "tag-memory", UINT64_MAX / 32);
2226 
2227                 if (vms->secure) {
2228                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2229                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2230                                        "secure-tag-memory", UINT64_MAX / 32);
2231 
2232                     /* As with ram, secure-tag takes precedence over tag.  */
2233                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2234                                                         tag_sysmem, -1);
2235                 }
2236             }
2237 
2238             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2239                                      &error_abort);
2240             if (vms->secure) {
2241                 object_property_set_link(cpuobj, "secure-tag-memory",
2242                                          OBJECT(secure_tag_sysmem),
2243                                          &error_abort);
2244             }
2245         }
2246 
2247         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2248         object_unref(cpuobj);
2249     }
2250     fdt_add_timer_nodes(vms);
2251     fdt_add_cpu_nodes(vms);
2252 
2253     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2254                                 machine->ram);
2255 
2256     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2257 
2258     create_gic(vms, sysmem);
2259 
2260     virt_cpu_post_init(vms, sysmem);
2261 
2262     fdt_add_pmu_nodes(vms);
2263 
2264     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2265 
2266     if (vms->secure) {
2267         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2268         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2269     }
2270 
2271     if (tag_sysmem) {
2272         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2273                        machine->ram_size, "mach-virt.tag");
2274     }
2275 
2276     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2277 
2278     create_rtc(vms);
2279 
2280     create_pcie(vms);
2281 
2282     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2283         vms->acpi_dev = create_acpi_ged(vms);
2284     } else {
2285         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2286     }
2287 
2288     if (vms->secure && !vmc->no_secure_gpio) {
2289         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2290     }
2291 
2292      /* connect powerdown request */
2293      vms->powerdown_notifier.notify = virt_powerdown_req;
2294      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2295 
2296     /* Create mmio transports, so the user can create virtio backends
2297      * (which will be automatically plugged in to the transports). If
2298      * no backend is created the transport will just sit harmlessly idle.
2299      */
2300     create_virtio_devices(vms);
2301 
2302     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2303     rom_set_fw(vms->fw_cfg);
2304 
2305     create_platform_bus(vms);
2306 
2307     if (machine->nvdimms_state->is_enabled) {
2308         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2309             .space_id = AML_AS_SYSTEM_MEMORY,
2310             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2311             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2312         };
2313 
2314         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2315                                arm_virt_nvdimm_acpi_dsmio,
2316                                vms->fw_cfg, OBJECT(vms));
2317     }
2318 
2319     vms->bootinfo.ram_size = machine->ram_size;
2320     vms->bootinfo.board_id = -1;
2321     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2322     vms->bootinfo.get_dtb = machvirt_dtb;
2323     vms->bootinfo.skip_dtb_autoload = true;
2324     vms->bootinfo.firmware_loaded = firmware_loaded;
2325     vms->bootinfo.psci_conduit = vms->psci_conduit;
2326     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2327 
2328     vms->machine_done.notify = virt_machine_done;
2329     qemu_add_machine_init_done_notifier(&vms->machine_done);
2330 }
2331 
2332 static bool virt_get_secure(Object *obj, Error **errp)
2333 {
2334     VirtMachineState *vms = VIRT_MACHINE(obj);
2335 
2336     return vms->secure;
2337 }
2338 
2339 static void virt_set_secure(Object *obj, bool value, Error **errp)
2340 {
2341     VirtMachineState *vms = VIRT_MACHINE(obj);
2342 
2343     vms->secure = value;
2344 }
2345 
2346 static bool virt_get_virt(Object *obj, Error **errp)
2347 {
2348     VirtMachineState *vms = VIRT_MACHINE(obj);
2349 
2350     return vms->virt;
2351 }
2352 
2353 static void virt_set_virt(Object *obj, bool value, Error **errp)
2354 {
2355     VirtMachineState *vms = VIRT_MACHINE(obj);
2356 
2357     vms->virt = value;
2358 }
2359 
2360 static bool virt_get_highmem(Object *obj, Error **errp)
2361 {
2362     VirtMachineState *vms = VIRT_MACHINE(obj);
2363 
2364     return vms->highmem;
2365 }
2366 
2367 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2368 {
2369     VirtMachineState *vms = VIRT_MACHINE(obj);
2370 
2371     vms->highmem = value;
2372 }
2373 
2374 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2375 {
2376     VirtMachineState *vms = VIRT_MACHINE(obj);
2377 
2378     return vms->highmem_compact;
2379 }
2380 
2381 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2382 {
2383     VirtMachineState *vms = VIRT_MACHINE(obj);
2384 
2385     vms->highmem_compact = value;
2386 }
2387 
2388 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2389 {
2390     VirtMachineState *vms = VIRT_MACHINE(obj);
2391 
2392     return vms->highmem_redists;
2393 }
2394 
2395 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2396 {
2397     VirtMachineState *vms = VIRT_MACHINE(obj);
2398 
2399     vms->highmem_redists = value;
2400 }
2401 
2402 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2403 {
2404     VirtMachineState *vms = VIRT_MACHINE(obj);
2405 
2406     return vms->highmem_ecam;
2407 }
2408 
2409 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2410 {
2411     VirtMachineState *vms = VIRT_MACHINE(obj);
2412 
2413     vms->highmem_ecam = value;
2414 }
2415 
2416 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2417 {
2418     VirtMachineState *vms = VIRT_MACHINE(obj);
2419 
2420     return vms->highmem_mmio;
2421 }
2422 
2423 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2424 {
2425     VirtMachineState *vms = VIRT_MACHINE(obj);
2426 
2427     vms->highmem_mmio = value;
2428 }
2429 
2430 
2431 static bool virt_get_its(Object *obj, Error **errp)
2432 {
2433     VirtMachineState *vms = VIRT_MACHINE(obj);
2434 
2435     return vms->its;
2436 }
2437 
2438 static void virt_set_its(Object *obj, bool value, Error **errp)
2439 {
2440     VirtMachineState *vms = VIRT_MACHINE(obj);
2441 
2442     vms->its = value;
2443 }
2444 
2445 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2446 {
2447     VirtMachineState *vms = VIRT_MACHINE(obj);
2448 
2449     return vms->dtb_randomness;
2450 }
2451 
2452 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2453 {
2454     VirtMachineState *vms = VIRT_MACHINE(obj);
2455 
2456     vms->dtb_randomness = value;
2457 }
2458 
2459 static char *virt_get_oem_id(Object *obj, Error **errp)
2460 {
2461     VirtMachineState *vms = VIRT_MACHINE(obj);
2462 
2463     return g_strdup(vms->oem_id);
2464 }
2465 
2466 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2467 {
2468     VirtMachineState *vms = VIRT_MACHINE(obj);
2469     size_t len = strlen(value);
2470 
2471     if (len > 6) {
2472         error_setg(errp,
2473                    "User specified oem-id value is bigger than 6 bytes in size");
2474         return;
2475     }
2476 
2477     strncpy(vms->oem_id, value, 6);
2478 }
2479 
2480 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2481 {
2482     VirtMachineState *vms = VIRT_MACHINE(obj);
2483 
2484     return g_strdup(vms->oem_table_id);
2485 }
2486 
2487 static void virt_set_oem_table_id(Object *obj, const char *value,
2488                                   Error **errp)
2489 {
2490     VirtMachineState *vms = VIRT_MACHINE(obj);
2491     size_t len = strlen(value);
2492 
2493     if (len > 8) {
2494         error_setg(errp,
2495                    "User specified oem-table-id value is bigger than 8 bytes in size");
2496         return;
2497     }
2498     strncpy(vms->oem_table_id, value, 8);
2499 }
2500 
2501 
2502 bool virt_is_acpi_enabled(VirtMachineState *vms)
2503 {
2504     if (vms->acpi == ON_OFF_AUTO_OFF) {
2505         return false;
2506     }
2507     return true;
2508 }
2509 
2510 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2511                           void *opaque, Error **errp)
2512 {
2513     VirtMachineState *vms = VIRT_MACHINE(obj);
2514     OnOffAuto acpi = vms->acpi;
2515 
2516     visit_type_OnOffAuto(v, name, &acpi, errp);
2517 }
2518 
2519 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2520                           void *opaque, Error **errp)
2521 {
2522     VirtMachineState *vms = VIRT_MACHINE(obj);
2523 
2524     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2525 }
2526 
2527 static bool virt_get_ras(Object *obj, Error **errp)
2528 {
2529     VirtMachineState *vms = VIRT_MACHINE(obj);
2530 
2531     return vms->ras;
2532 }
2533 
2534 static void virt_set_ras(Object *obj, bool value, Error **errp)
2535 {
2536     VirtMachineState *vms = VIRT_MACHINE(obj);
2537 
2538     vms->ras = value;
2539 }
2540 
2541 static bool virt_get_mte(Object *obj, Error **errp)
2542 {
2543     VirtMachineState *vms = VIRT_MACHINE(obj);
2544 
2545     return vms->mte;
2546 }
2547 
2548 static void virt_set_mte(Object *obj, bool value, Error **errp)
2549 {
2550     VirtMachineState *vms = VIRT_MACHINE(obj);
2551 
2552     vms->mte = value;
2553 }
2554 
2555 static char *virt_get_gic_version(Object *obj, Error **errp)
2556 {
2557     VirtMachineState *vms = VIRT_MACHINE(obj);
2558     const char *val;
2559 
2560     switch (vms->gic_version) {
2561     case VIRT_GIC_VERSION_4:
2562         val = "4";
2563         break;
2564     case VIRT_GIC_VERSION_3:
2565         val = "3";
2566         break;
2567     default:
2568         val = "2";
2569         break;
2570     }
2571     return g_strdup(val);
2572 }
2573 
2574 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2575 {
2576     VirtMachineState *vms = VIRT_MACHINE(obj);
2577 
2578     if (!strcmp(value, "4")) {
2579         vms->gic_version = VIRT_GIC_VERSION_4;
2580     } else if (!strcmp(value, "3")) {
2581         vms->gic_version = VIRT_GIC_VERSION_3;
2582     } else if (!strcmp(value, "2")) {
2583         vms->gic_version = VIRT_GIC_VERSION_2;
2584     } else if (!strcmp(value, "host")) {
2585         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2586     } else if (!strcmp(value, "max")) {
2587         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2588     } else {
2589         error_setg(errp, "Invalid gic-version value");
2590         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2591     }
2592 }
2593 
2594 static char *virt_get_iommu(Object *obj, Error **errp)
2595 {
2596     VirtMachineState *vms = VIRT_MACHINE(obj);
2597 
2598     switch (vms->iommu) {
2599     case VIRT_IOMMU_NONE:
2600         return g_strdup("none");
2601     case VIRT_IOMMU_SMMUV3:
2602         return g_strdup("smmuv3");
2603     default:
2604         g_assert_not_reached();
2605     }
2606 }
2607 
2608 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2609 {
2610     VirtMachineState *vms = VIRT_MACHINE(obj);
2611 
2612     if (!strcmp(value, "smmuv3")) {
2613         vms->iommu = VIRT_IOMMU_SMMUV3;
2614     } else if (!strcmp(value, "none")) {
2615         vms->iommu = VIRT_IOMMU_NONE;
2616     } else {
2617         error_setg(errp, "Invalid iommu value");
2618         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2619     }
2620 }
2621 
2622 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2623 {
2624     VirtMachineState *vms = VIRT_MACHINE(obj);
2625 
2626     return vms->default_bus_bypass_iommu;
2627 }
2628 
2629 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2630                                               Error **errp)
2631 {
2632     VirtMachineState *vms = VIRT_MACHINE(obj);
2633 
2634     vms->default_bus_bypass_iommu = value;
2635 }
2636 
2637 static CpuInstanceProperties
2638 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2639 {
2640     MachineClass *mc = MACHINE_GET_CLASS(ms);
2641     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2642 
2643     assert(cpu_index < possible_cpus->len);
2644     return possible_cpus->cpus[cpu_index].props;
2645 }
2646 
2647 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2648 {
2649     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2650 
2651     return socket_id % ms->numa_state->num_nodes;
2652 }
2653 
2654 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2655 {
2656     int n;
2657     unsigned int max_cpus = ms->smp.max_cpus;
2658     VirtMachineState *vms = VIRT_MACHINE(ms);
2659     MachineClass *mc = MACHINE_GET_CLASS(vms);
2660 
2661     if (ms->possible_cpus) {
2662         assert(ms->possible_cpus->len == max_cpus);
2663         return ms->possible_cpus;
2664     }
2665 
2666     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2667                                   sizeof(CPUArchId) * max_cpus);
2668     ms->possible_cpus->len = max_cpus;
2669     for (n = 0; n < ms->possible_cpus->len; n++) {
2670         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2671         ms->possible_cpus->cpus[n].arch_id =
2672             virt_cpu_mp_affinity(vms, n);
2673 
2674         assert(!mc->smp_props.dies_supported);
2675         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2676         ms->possible_cpus->cpus[n].props.socket_id =
2677             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2678         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2679         ms->possible_cpus->cpus[n].props.cluster_id =
2680             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2681         ms->possible_cpus->cpus[n].props.has_core_id = true;
2682         ms->possible_cpus->cpus[n].props.core_id =
2683             (n / ms->smp.threads) % ms->smp.cores;
2684         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2685         ms->possible_cpus->cpus[n].props.thread_id =
2686             n % ms->smp.threads;
2687     }
2688     return ms->possible_cpus;
2689 }
2690 
2691 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2692                                  Error **errp)
2693 {
2694     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2695     const MachineState *ms = MACHINE(hotplug_dev);
2696     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2697 
2698     if (!vms->acpi_dev) {
2699         error_setg(errp,
2700                    "memory hotplug is not enabled: missing acpi-ged device");
2701         return;
2702     }
2703 
2704     if (vms->mte) {
2705         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2706         return;
2707     }
2708 
2709     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2710         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2711         return;
2712     }
2713 
2714     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2715 }
2716 
2717 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2718                              DeviceState *dev, Error **errp)
2719 {
2720     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2721     MachineState *ms = MACHINE(hotplug_dev);
2722     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2723 
2724     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2725 
2726     if (is_nvdimm) {
2727         nvdimm_plug(ms->nvdimms_state);
2728     }
2729 
2730     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2731                          dev, &error_abort);
2732 }
2733 
2734 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2735                                             DeviceState *dev, Error **errp)
2736 {
2737     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2738 
2739     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2740         virt_memory_pre_plug(hotplug_dev, dev, errp);
2741     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2742         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2743     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2744         hwaddr db_start = 0, db_end = 0;
2745         char *resv_prop_str;
2746 
2747         if (vms->iommu != VIRT_IOMMU_NONE) {
2748             error_setg(errp, "virt machine does not support multiple IOMMUs");
2749             return;
2750         }
2751 
2752         switch (vms->msi_controller) {
2753         case VIRT_MSI_CTRL_NONE:
2754             return;
2755         case VIRT_MSI_CTRL_ITS:
2756             /* GITS_TRANSLATER page */
2757             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2758             db_end = base_memmap[VIRT_GIC_ITS].base +
2759                      base_memmap[VIRT_GIC_ITS].size - 1;
2760             break;
2761         case VIRT_MSI_CTRL_GICV2M:
2762             /* MSI_SETSPI_NS page */
2763             db_start = base_memmap[VIRT_GIC_V2M].base;
2764             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2765             break;
2766         }
2767         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2768                                         db_start, db_end,
2769                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2770 
2771         object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2772         object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2773                                 resv_prop_str, errp);
2774         g_free(resv_prop_str);
2775     }
2776 }
2777 
2778 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2779                                         DeviceState *dev, Error **errp)
2780 {
2781     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2782 
2783     if (vms->platform_bus_dev) {
2784         MachineClass *mc = MACHINE_GET_CLASS(vms);
2785 
2786         if (device_is_dynamic_sysbus(mc, dev)) {
2787             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2788                                      SYS_BUS_DEVICE(dev));
2789         }
2790     }
2791 
2792     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2793         virt_memory_plug(hotplug_dev, dev, errp);
2794     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2795         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2796     }
2797 
2798     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2799         PCIDevice *pdev = PCI_DEVICE(dev);
2800 
2801         vms->iommu = VIRT_IOMMU_VIRTIO;
2802         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2803         create_virtio_iommu_dt_bindings(vms);
2804     }
2805 }
2806 
2807 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2808                                      DeviceState *dev, Error **errp)
2809 {
2810     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2811 
2812     if (!vms->acpi_dev) {
2813         error_setg(errp,
2814                    "memory hotplug is not enabled: missing acpi-ged device");
2815         return;
2816     }
2817 
2818     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2819         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2820         return;
2821     }
2822 
2823     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2824                                    errp);
2825 }
2826 
2827 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2828                              DeviceState *dev, Error **errp)
2829 {
2830     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2831     Error *local_err = NULL;
2832 
2833     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2834     if (local_err) {
2835         goto out;
2836     }
2837 
2838     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2839     qdev_unrealize(dev);
2840 
2841 out:
2842     error_propagate(errp, local_err);
2843 }
2844 
2845 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2846                                           DeviceState *dev, Error **errp)
2847 {
2848     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2849         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2850     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2851         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2852                                      errp);
2853     } else {
2854         error_setg(errp, "device unplug request for unsupported device"
2855                    " type: %s", object_get_typename(OBJECT(dev)));
2856     }
2857 }
2858 
2859 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2860                                           DeviceState *dev, Error **errp)
2861 {
2862     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2863         virt_dimm_unplug(hotplug_dev, dev, errp);
2864     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2865         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2866     } else {
2867         error_setg(errp, "virt: device unplug for unsupported device"
2868                    " type: %s", object_get_typename(OBJECT(dev)));
2869     }
2870 }
2871 
2872 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2873                                                         DeviceState *dev)
2874 {
2875     MachineClass *mc = MACHINE_GET_CLASS(machine);
2876 
2877     if (device_is_dynamic_sysbus(mc, dev) ||
2878         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2879         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2880         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2881         return HOTPLUG_HANDLER(machine);
2882     }
2883     return NULL;
2884 }
2885 
2886 /*
2887  * for arm64 kvm_type [7-0] encodes the requested number of bits
2888  * in the IPA address space
2889  */
2890 static int virt_kvm_type(MachineState *ms, const char *type_str)
2891 {
2892     VirtMachineState *vms = VIRT_MACHINE(ms);
2893     int max_vm_pa_size, requested_pa_size;
2894     bool fixed_ipa;
2895 
2896     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2897 
2898     /* we freeze the memory map to compute the highest gpa */
2899     virt_set_memmap(vms, max_vm_pa_size);
2900 
2901     requested_pa_size = 64 - clz64(vms->highest_gpa);
2902 
2903     /*
2904      * KVM requires the IPA size to be at least 32 bits.
2905      */
2906     if (requested_pa_size < 32) {
2907         requested_pa_size = 32;
2908     }
2909 
2910     if (requested_pa_size > max_vm_pa_size) {
2911         error_report("-m and ,maxmem option values "
2912                      "require an IPA range (%d bits) larger than "
2913                      "the one supported by the host (%d bits)",
2914                      requested_pa_size, max_vm_pa_size);
2915         return -1;
2916     }
2917     /*
2918      * We return the requested PA log size, unless KVM only supports
2919      * the implicit legacy 40b IPA setting, in which case the kvm_type
2920      * must be 0.
2921      */
2922     return fixed_ipa ? 0 : requested_pa_size;
2923 }
2924 
2925 static void virt_machine_class_init(ObjectClass *oc, void *data)
2926 {
2927     MachineClass *mc = MACHINE_CLASS(oc);
2928     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2929 
2930     mc->init = machvirt_init;
2931     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2932      * The value may be reduced later when we have more information about the
2933      * configuration of the particular instance.
2934      */
2935     mc->max_cpus = 512;
2936     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2937     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2938     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2939     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2940 #ifdef CONFIG_TPM
2941     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2942 #endif
2943     mc->block_default_type = IF_VIRTIO;
2944     mc->no_cdrom = 1;
2945     mc->pci_allow_0_address = true;
2946     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2947     mc->minimum_page_bits = 12;
2948     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2949     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2950 #ifdef CONFIG_TCG
2951     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2952 #else
2953     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2954 #endif
2955     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2956     mc->kvm_type = virt_kvm_type;
2957     assert(!mc->get_hotplug_handler);
2958     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2959     hc->pre_plug = virt_machine_device_pre_plug_cb;
2960     hc->plug = virt_machine_device_plug_cb;
2961     hc->unplug_request = virt_machine_device_unplug_request_cb;
2962     hc->unplug = virt_machine_device_unplug_cb;
2963     mc->nvdimm_supported = true;
2964     mc->smp_props.clusters_supported = true;
2965     mc->auto_enable_numa_with_memhp = true;
2966     mc->auto_enable_numa_with_memdev = true;
2967     /* platform instead of architectural choice */
2968     mc->cpu_cluster_has_numa_boundary = true;
2969     mc->default_ram_id = "mach-virt.ram";
2970     mc->default_nic = "virtio-net-pci";
2971 
2972     object_class_property_add(oc, "acpi", "OnOffAuto",
2973         virt_get_acpi, virt_set_acpi,
2974         NULL, NULL);
2975     object_class_property_set_description(oc, "acpi",
2976         "Enable ACPI");
2977     object_class_property_add_bool(oc, "secure", virt_get_secure,
2978                                    virt_set_secure);
2979     object_class_property_set_description(oc, "secure",
2980                                                 "Set on/off to enable/disable the ARM "
2981                                                 "Security Extensions (TrustZone)");
2982 
2983     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2984                                    virt_set_virt);
2985     object_class_property_set_description(oc, "virtualization",
2986                                           "Set on/off to enable/disable emulating a "
2987                                           "guest CPU which implements the ARM "
2988                                           "Virtualization Extensions");
2989 
2990     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2991                                    virt_set_highmem);
2992     object_class_property_set_description(oc, "highmem",
2993                                           "Set on/off to enable/disable using "
2994                                           "physical address space above 32 bits");
2995 
2996     object_class_property_add_bool(oc, "compact-highmem",
2997                                    virt_get_compact_highmem,
2998                                    virt_set_compact_highmem);
2999     object_class_property_set_description(oc, "compact-highmem",
3000                                           "Set on/off to enable/disable compact "
3001                                           "layout for high memory regions");
3002 
3003     object_class_property_add_bool(oc, "highmem-redists",
3004                                    virt_get_highmem_redists,
3005                                    virt_set_highmem_redists);
3006     object_class_property_set_description(oc, "highmem-redists",
3007                                           "Set on/off to enable/disable high "
3008                                           "memory region for GICv3 or GICv4 "
3009                                           "redistributor");
3010 
3011     object_class_property_add_bool(oc, "highmem-ecam",
3012                                    virt_get_highmem_ecam,
3013                                    virt_set_highmem_ecam);
3014     object_class_property_set_description(oc, "highmem-ecam",
3015                                           "Set on/off to enable/disable high "
3016                                           "memory region for PCI ECAM");
3017 
3018     object_class_property_add_bool(oc, "highmem-mmio",
3019                                    virt_get_highmem_mmio,
3020                                    virt_set_highmem_mmio);
3021     object_class_property_set_description(oc, "highmem-mmio",
3022                                           "Set on/off to enable/disable high "
3023                                           "memory region for PCI MMIO");
3024 
3025     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3026                                   virt_set_gic_version);
3027     object_class_property_set_description(oc, "gic-version",
3028                                           "Set GIC version. "
3029                                           "Valid values are 2, 3, 4, host and max");
3030 
3031     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3032     object_class_property_set_description(oc, "iommu",
3033                                           "Set the IOMMU type. "
3034                                           "Valid values are none and smmuv3");
3035 
3036     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3037                                    virt_get_default_bus_bypass_iommu,
3038                                    virt_set_default_bus_bypass_iommu);
3039     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3040                                           "Set on/off to enable/disable "
3041                                           "bypass_iommu for default root bus");
3042 
3043     object_class_property_add_bool(oc, "ras", virt_get_ras,
3044                                    virt_set_ras);
3045     object_class_property_set_description(oc, "ras",
3046                                           "Set on/off to enable/disable reporting host memory errors "
3047                                           "to a KVM guest using ACPI and guest external abort exceptions");
3048 
3049     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3050     object_class_property_set_description(oc, "mte",
3051                                           "Set on/off to enable/disable emulating a "
3052                                           "guest CPU which implements the ARM "
3053                                           "Memory Tagging Extension");
3054 
3055     object_class_property_add_bool(oc, "its", virt_get_its,
3056                                    virt_set_its);
3057     object_class_property_set_description(oc, "its",
3058                                           "Set on/off to enable/disable "
3059                                           "ITS instantiation");
3060 
3061     object_class_property_add_bool(oc, "dtb-randomness",
3062                                    virt_get_dtb_randomness,
3063                                    virt_set_dtb_randomness);
3064     object_class_property_set_description(oc, "dtb-randomness",
3065                                           "Set off to disable passing random or "
3066                                           "non-deterministic dtb nodes to guest");
3067 
3068     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3069                                    virt_get_dtb_randomness,
3070                                    virt_set_dtb_randomness);
3071     object_class_property_set_description(oc, "dtb-kaslr-seed",
3072                                           "Deprecated synonym of dtb-randomness");
3073 
3074     object_class_property_add_str(oc, "x-oem-id",
3075                                   virt_get_oem_id,
3076                                   virt_set_oem_id);
3077     object_class_property_set_description(oc, "x-oem-id",
3078                                           "Override the default value of field OEMID "
3079                                           "in ACPI table header."
3080                                           "The string may be up to 6 bytes in size");
3081 
3082 
3083     object_class_property_add_str(oc, "x-oem-table-id",
3084                                   virt_get_oem_table_id,
3085                                   virt_set_oem_table_id);
3086     object_class_property_set_description(oc, "x-oem-table-id",
3087                                           "Override the default value of field OEM Table ID "
3088                                           "in ACPI table header."
3089                                           "The string may be up to 8 bytes in size");
3090 
3091 }
3092 
3093 static void virt_instance_init(Object *obj)
3094 {
3095     VirtMachineState *vms = VIRT_MACHINE(obj);
3096     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3097 
3098     /* EL3 is disabled by default on virt: this makes us consistent
3099      * between KVM and TCG for this board, and it also allows us to
3100      * boot UEFI blobs which assume no TrustZone support.
3101      */
3102     vms->secure = false;
3103 
3104     /* EL2 is also disabled by default, for similar reasons */
3105     vms->virt = false;
3106 
3107     /* High memory is enabled by default */
3108     vms->highmem = true;
3109     vms->highmem_compact = !vmc->no_highmem_compact;
3110     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3111 
3112     vms->highmem_ecam = !vmc->no_highmem_ecam;
3113     vms->highmem_mmio = true;
3114     vms->highmem_redists = true;
3115 
3116     if (vmc->no_its) {
3117         vms->its = false;
3118     } else {
3119         /* Default allows ITS instantiation */
3120         vms->its = true;
3121 
3122         if (vmc->no_tcg_its) {
3123             vms->tcg_its = false;
3124         } else {
3125             vms->tcg_its = true;
3126         }
3127     }
3128 
3129     /* Default disallows iommu instantiation */
3130     vms->iommu = VIRT_IOMMU_NONE;
3131 
3132     /* The default root bus is attached to iommu by default */
3133     vms->default_bus_bypass_iommu = false;
3134 
3135     /* Default disallows RAS instantiation */
3136     vms->ras = false;
3137 
3138     /* MTE is disabled by default.  */
3139     vms->mte = false;
3140 
3141     /* Supply kaslr-seed and rng-seed by default */
3142     vms->dtb_randomness = true;
3143 
3144     vms->irqmap = a15irqmap;
3145 
3146     virt_flash_create(vms);
3147 
3148     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3149     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3150 }
3151 
3152 static const TypeInfo virt_machine_info = {
3153     .name          = TYPE_VIRT_MACHINE,
3154     .parent        = TYPE_MACHINE,
3155     .abstract      = true,
3156     .instance_size = sizeof(VirtMachineState),
3157     .class_size    = sizeof(VirtMachineClass),
3158     .class_init    = virt_machine_class_init,
3159     .instance_init = virt_instance_init,
3160     .interfaces = (InterfaceInfo[]) {
3161          { TYPE_HOTPLUG_HANDLER },
3162          { }
3163     },
3164 };
3165 
3166 static void machvirt_machine_init(void)
3167 {
3168     type_register_static(&virt_machine_info);
3169 }
3170 type_init(machvirt_machine_init);
3171 
3172 static void virt_machine_8_2_options(MachineClass *mc)
3173 {
3174 }
3175 DEFINE_VIRT_MACHINE_AS_LATEST(8, 2)
3176 
3177 static void virt_machine_8_1_options(MachineClass *mc)
3178 {
3179     virt_machine_8_2_options(mc);
3180     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3181 }
3182 DEFINE_VIRT_MACHINE(8, 1)
3183 
3184 static void virt_machine_8_0_options(MachineClass *mc)
3185 {
3186     virt_machine_8_1_options(mc);
3187     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3188 }
3189 DEFINE_VIRT_MACHINE(8, 0)
3190 
3191 static void virt_machine_7_2_options(MachineClass *mc)
3192 {
3193     virt_machine_8_0_options(mc);
3194     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3195 }
3196 DEFINE_VIRT_MACHINE(7, 2)
3197 
3198 static void virt_machine_7_1_options(MachineClass *mc)
3199 {
3200     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3201 
3202     virt_machine_7_2_options(mc);
3203     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3204     /* Compact layout for high memory regions was introduced with 7.2 */
3205     vmc->no_highmem_compact = true;
3206 }
3207 DEFINE_VIRT_MACHINE(7, 1)
3208 
3209 static void virt_machine_7_0_options(MachineClass *mc)
3210 {
3211     virt_machine_7_1_options(mc);
3212     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3213 }
3214 DEFINE_VIRT_MACHINE(7, 0)
3215 
3216 static void virt_machine_6_2_options(MachineClass *mc)
3217 {
3218     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3219 
3220     virt_machine_7_0_options(mc);
3221     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3222     vmc->no_tcg_lpa2 = true;
3223 }
3224 DEFINE_VIRT_MACHINE(6, 2)
3225 
3226 static void virt_machine_6_1_options(MachineClass *mc)
3227 {
3228     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3229 
3230     virt_machine_6_2_options(mc);
3231     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3232     mc->smp_props.prefer_sockets = true;
3233     vmc->no_cpu_topology = true;
3234 
3235     /* qemu ITS was introduced with 6.2 */
3236     vmc->no_tcg_its = true;
3237 }
3238 DEFINE_VIRT_MACHINE(6, 1)
3239 
3240 static void virt_machine_6_0_options(MachineClass *mc)
3241 {
3242     virt_machine_6_1_options(mc);
3243     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3244 }
3245 DEFINE_VIRT_MACHINE(6, 0)
3246 
3247 static void virt_machine_5_2_options(MachineClass *mc)
3248 {
3249     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3250 
3251     virt_machine_6_0_options(mc);
3252     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3253     vmc->no_secure_gpio = true;
3254 }
3255 DEFINE_VIRT_MACHINE(5, 2)
3256 
3257 static void virt_machine_5_1_options(MachineClass *mc)
3258 {
3259     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3260 
3261     virt_machine_5_2_options(mc);
3262     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3263     vmc->no_kvm_steal_time = true;
3264 }
3265 DEFINE_VIRT_MACHINE(5, 1)
3266 
3267 static void virt_machine_5_0_options(MachineClass *mc)
3268 {
3269     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3270 
3271     virt_machine_5_1_options(mc);
3272     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3273     mc->numa_mem_supported = true;
3274     vmc->acpi_expose_flash = true;
3275     mc->auto_enable_numa_with_memdev = false;
3276 }
3277 DEFINE_VIRT_MACHINE(5, 0)
3278 
3279 static void virt_machine_4_2_options(MachineClass *mc)
3280 {
3281     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3282 
3283     virt_machine_5_0_options(mc);
3284     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3285     vmc->kvm_no_adjvtime = true;
3286 }
3287 DEFINE_VIRT_MACHINE(4, 2)
3288 
3289 static void virt_machine_4_1_options(MachineClass *mc)
3290 {
3291     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3292 
3293     virt_machine_4_2_options(mc);
3294     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3295     vmc->no_ged = true;
3296     mc->auto_enable_numa_with_memhp = false;
3297 }
3298 DEFINE_VIRT_MACHINE(4, 1)
3299 
3300 static void virt_machine_4_0_options(MachineClass *mc)
3301 {
3302     virt_machine_4_1_options(mc);
3303     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3304 }
3305 DEFINE_VIRT_MACHINE(4, 0)
3306 
3307 static void virt_machine_3_1_options(MachineClass *mc)
3308 {
3309     virt_machine_4_0_options(mc);
3310     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3311 }
3312 DEFINE_VIRT_MACHINE(3, 1)
3313 
3314 static void virt_machine_3_0_options(MachineClass *mc)
3315 {
3316     virt_machine_3_1_options(mc);
3317     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3318 }
3319 DEFINE_VIRT_MACHINE(3, 0)
3320 
3321 static void virt_machine_2_12_options(MachineClass *mc)
3322 {
3323     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3324 
3325     virt_machine_3_0_options(mc);
3326     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3327     vmc->no_highmem_ecam = true;
3328     mc->max_cpus = 255;
3329 }
3330 DEFINE_VIRT_MACHINE(2, 12)
3331 
3332 static void virt_machine_2_11_options(MachineClass *mc)
3333 {
3334     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3335 
3336     virt_machine_2_12_options(mc);
3337     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3338     vmc->smbios_old_sys_ver = true;
3339 }
3340 DEFINE_VIRT_MACHINE(2, 11)
3341 
3342 static void virt_machine_2_10_options(MachineClass *mc)
3343 {
3344     virt_machine_2_11_options(mc);
3345     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3346     /* before 2.11 we never faulted accesses to bad addresses */
3347     mc->ignore_memory_transaction_failures = true;
3348 }
3349 DEFINE_VIRT_MACHINE(2, 10)
3350 
3351 static void virt_machine_2_9_options(MachineClass *mc)
3352 {
3353     virt_machine_2_10_options(mc);
3354     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3355 }
3356 DEFINE_VIRT_MACHINE(2, 9)
3357 
3358 static void virt_machine_2_8_options(MachineClass *mc)
3359 {
3360     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3361 
3362     virt_machine_2_9_options(mc);
3363     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3364     /* For 2.8 and earlier we falsely claimed in the DT that
3365      * our timers were edge-triggered, not level-triggered.
3366      */
3367     vmc->claim_edge_triggered_timers = true;
3368 }
3369 DEFINE_VIRT_MACHINE(2, 8)
3370 
3371 static void virt_machine_2_7_options(MachineClass *mc)
3372 {
3373     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3374 
3375     virt_machine_2_8_options(mc);
3376     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3377     /* ITS was introduced with 2.8 */
3378     vmc->no_its = true;
3379     /* Stick with 1K pages for migration compatibility */
3380     mc->minimum_page_bits = 0;
3381 }
3382 DEFINE_VIRT_MACHINE(2, 7)
3383 
3384 static void virt_machine_2_6_options(MachineClass *mc)
3385 {
3386     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3387 
3388     virt_machine_2_7_options(mc);
3389     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3390     vmc->disallow_affinity_adjustment = true;
3391     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3392     vmc->no_pmu = true;
3393 }
3394 DEFINE_VIRT_MACHINE(2, 6)
3395