xref: /openbmc/qemu/hw/arm/virt.c (revision b097ba37)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/units.h"
33 #include "qapi/error.h"
34 #include "hw/sysbus.h"
35 #include "hw/arm/arm.h"
36 #include "hw/arm/primecell.h"
37 #include "hw/arm/virt.h"
38 #include "hw/block/flash.h"
39 #include "hw/vfio/vfio-calxeda-xgmac.h"
40 #include "hw/vfio/vfio-amd-xgbe.h"
41 #include "hw/display/ramfb.h"
42 #include "net/net.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/numa.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/kvm.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/firmware/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
62 #include "hw/acpi/acpi.h"
63 #include "target/arm/internals.h"
64 
65 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
66     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
67                                                     void *data) \
68     { \
69         MachineClass *mc = MACHINE_CLASS(oc); \
70         virt_machine_##major##_##minor##_options(mc); \
71         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
72         if (latest) { \
73             mc->alias = "virt"; \
74         } \
75     } \
76     static const TypeInfo machvirt_##major##_##minor##_info = { \
77         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
78         .parent = TYPE_VIRT_MACHINE, \
79         .class_init = virt_##major##_##minor##_class_init, \
80     }; \
81     static void machvirt_machine_##major##_##minor##_init(void) \
82     { \
83         type_register_static(&machvirt_##major##_##minor##_info); \
84     } \
85     type_init(machvirt_machine_##major##_##minor##_init);
86 
87 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
88     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
89 #define DEFINE_VIRT_MACHINE(major, minor) \
90     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
91 
92 
93 /* Number of external interrupt lines to configure the GIC with */
94 #define NUM_IRQS 256
95 
96 #define PLATFORM_BUS_NUM_IRQS 64
97 
98 /* Legacy RAM limit in GB (< version 4.0) */
99 #define LEGACY_RAMLIMIT_GB 255
100 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
101 
102 /* Addresses and sizes of our components.
103  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
104  * 128MB..256MB is used for miscellaneous device I/O.
105  * 256MB..1GB is reserved for possible future PCI support (ie where the
106  * PCI memory window will go if we add a PCI host controller).
107  * 1GB and up is RAM (which may happily spill over into the
108  * high memory region beyond 4GB).
109  * This represents a compromise between how much RAM can be given to
110  * a 32 bit VM and leaving space for expansion and in particular for PCI.
111  * Note that devices should generally be placed at multiples of 0x10000,
112  * to accommodate guests using 64K pages.
113  */
114 static const MemMapEntry base_memmap[] = {
115     /* Space up to 0x8000000 is reserved for a boot ROM */
116     [VIRT_FLASH] =              {          0, 0x08000000 },
117     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
118     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
119     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
120     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
121     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
122     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
123     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
124     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
125     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
126     /* This redistributor space allows up to 2*64kB*123 CPUs */
127     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
128     [VIRT_UART] =               { 0x09000000, 0x00001000 },
129     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
130     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
131     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
132     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
133     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
134     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
135     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
136     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
137     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
138     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
139     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
140     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
141     /* Actual RAM size depends on initial RAM and device memory settings */
142     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
143 };
144 
145 /*
146  * Highmem IO Regions: This memory map is floating, located after the RAM.
147  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
148  * top of the RAM, so that its base get the same alignment as the size,
149  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
150  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
151  * Note the extended_memmap is sized so that it eventually also includes the
152  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
153  * index of base_memmap).
154  */
155 static MemMapEntry extended_memmap[] = {
156     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
157     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
158     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
159     /* Second PCIe window */
160     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
161 };
162 
163 static const int a15irqmap[] = {
164     [VIRT_UART] = 1,
165     [VIRT_RTC] = 2,
166     [VIRT_PCIE] = 3, /* ... to 6 */
167     [VIRT_GPIO] = 7,
168     [VIRT_SECURE_UART] = 8,
169     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
170     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
171     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
172     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
173 };
174 
175 static const char *valid_cpus[] = {
176     ARM_CPU_TYPE_NAME("cortex-a15"),
177     ARM_CPU_TYPE_NAME("cortex-a53"),
178     ARM_CPU_TYPE_NAME("cortex-a57"),
179     ARM_CPU_TYPE_NAME("cortex-a72"),
180     ARM_CPU_TYPE_NAME("host"),
181     ARM_CPU_TYPE_NAME("max"),
182 };
183 
184 static bool cpu_type_valid(const char *cpu)
185 {
186     int i;
187 
188     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
189         if (strcmp(cpu, valid_cpus[i]) == 0) {
190             return true;
191         }
192     }
193     return false;
194 }
195 
196 static void create_fdt(VirtMachineState *vms)
197 {
198     void *fdt = create_device_tree(&vms->fdt_size);
199 
200     if (!fdt) {
201         error_report("create_device_tree() failed");
202         exit(1);
203     }
204 
205     vms->fdt = fdt;
206 
207     /* Header */
208     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
209     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
210     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
211 
212     /* /chosen must exist for load_dtb to fill in necessary properties later */
213     qemu_fdt_add_subnode(fdt, "/chosen");
214 
215     /* Clock node, for the benefit of the UART. The kernel device tree
216      * binding documentation claims the PL011 node clock properties are
217      * optional but in practice if you omit them the kernel refuses to
218      * probe for the device.
219      */
220     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
221     qemu_fdt_add_subnode(fdt, "/apb-pclk");
222     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
223     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
224     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
225     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
226                                 "clk24mhz");
227     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
228 
229     if (have_numa_distance) {
230         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
231         uint32_t *matrix = g_malloc0(size);
232         int idx, i, j;
233 
234         for (i = 0; i < nb_numa_nodes; i++) {
235             for (j = 0; j < nb_numa_nodes; j++) {
236                 idx = (i * nb_numa_nodes + j) * 3;
237                 matrix[idx + 0] = cpu_to_be32(i);
238                 matrix[idx + 1] = cpu_to_be32(j);
239                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
240             }
241         }
242 
243         qemu_fdt_add_subnode(fdt, "/distance-map");
244         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
245                                 "numa-distance-map-v1");
246         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
247                          matrix, size);
248         g_free(matrix);
249     }
250 }
251 
252 static void fdt_add_timer_nodes(const VirtMachineState *vms)
253 {
254     /* On real hardware these interrupts are level-triggered.
255      * On KVM they were edge-triggered before host kernel version 4.4,
256      * and level-triggered afterwards.
257      * On emulated QEMU they are level-triggered.
258      *
259      * Getting the DTB info about them wrong is awkward for some
260      * guest kernels:
261      *  pre-4.8 ignore the DT and leave the interrupt configured
262      *   with whatever the GIC reset value (or the bootloader) left it at
263      *  4.8 before rc6 honour the incorrect data by programming it back
264      *   into the GIC, causing problems
265      *  4.8rc6 and later ignore the DT and always write "level triggered"
266      *   into the GIC
267      *
268      * For backwards-compatibility, virt-2.8 and earlier will continue
269      * to say these are edge-triggered, but later machines will report
270      * the correct information.
271      */
272     ARMCPU *armcpu;
273     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
274     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
275 
276     if (vmc->claim_edge_triggered_timers) {
277         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
278     }
279 
280     if (vms->gic_version == 2) {
281         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
282                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
283                              (1 << vms->smp_cpus) - 1);
284     }
285 
286     qemu_fdt_add_subnode(vms->fdt, "/timer");
287 
288     armcpu = ARM_CPU(qemu_get_cpu(0));
289     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
290         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
291         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
292                          compat, sizeof(compat));
293     } else {
294         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
295                                 "arm,armv7-timer");
296     }
297     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
298     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
299                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
300                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
301                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
302                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
303 }
304 
305 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
306 {
307     int cpu;
308     int addr_cells = 1;
309     const MachineState *ms = MACHINE(vms);
310 
311     /*
312      * From Documentation/devicetree/bindings/arm/cpus.txt
313      *  On ARM v8 64-bit systems value should be set to 2,
314      *  that corresponds to the MPIDR_EL1 register size.
315      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
316      *  in the system, #address-cells can be set to 1, since
317      *  MPIDR_EL1[63:32] bits are not used for CPUs
318      *  identification.
319      *
320      *  Here we actually don't know whether our system is 32- or 64-bit one.
321      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
322      *  at least one of them has Aff3 populated, we set #address-cells to 2.
323      */
324     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
325         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
326 
327         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
328             addr_cells = 2;
329             break;
330         }
331     }
332 
333     qemu_fdt_add_subnode(vms->fdt, "/cpus");
334     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
335     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
336 
337     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
338         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
339         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
340         CPUState *cs = CPU(armcpu);
341 
342         qemu_fdt_add_subnode(vms->fdt, nodename);
343         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
344         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
345                                     armcpu->dtb_compatible);
346 
347         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
348             && vms->smp_cpus > 1) {
349             qemu_fdt_setprop_string(vms->fdt, nodename,
350                                         "enable-method", "psci");
351         }
352 
353         if (addr_cells == 2) {
354             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
355                                  armcpu->mp_affinity);
356         } else {
357             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
358                                   armcpu->mp_affinity);
359         }
360 
361         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
362             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
363                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
364         }
365 
366         g_free(nodename);
367     }
368 }
369 
370 static void fdt_add_its_gic_node(VirtMachineState *vms)
371 {
372     char *nodename;
373 
374     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
375     nodename = g_strdup_printf("/intc/its@%" PRIx64,
376                                vms->memmap[VIRT_GIC_ITS].base);
377     qemu_fdt_add_subnode(vms->fdt, nodename);
378     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
379                             "arm,gic-v3-its");
380     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
381     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
382                                  2, vms->memmap[VIRT_GIC_ITS].base,
383                                  2, vms->memmap[VIRT_GIC_ITS].size);
384     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
385     g_free(nodename);
386 }
387 
388 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
389 {
390     char *nodename;
391 
392     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
393                                vms->memmap[VIRT_GIC_V2M].base);
394     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
395     qemu_fdt_add_subnode(vms->fdt, nodename);
396     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
397                             "arm,gic-v2m-frame");
398     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
399     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
400                                  2, vms->memmap[VIRT_GIC_V2M].base,
401                                  2, vms->memmap[VIRT_GIC_V2M].size);
402     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
403     g_free(nodename);
404 }
405 
406 static void fdt_add_gic_node(VirtMachineState *vms)
407 {
408     char *nodename;
409 
410     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
411     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
412 
413     nodename = g_strdup_printf("/intc@%" PRIx64,
414                                vms->memmap[VIRT_GIC_DIST].base);
415     qemu_fdt_add_subnode(vms->fdt, nodename);
416     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
417     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
418     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
419     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
420     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
421     if (vms->gic_version == 3) {
422         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
423 
424         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
425                                 "arm,gic-v3");
426 
427         qemu_fdt_setprop_cell(vms->fdt, nodename,
428                               "#redistributor-regions", nb_redist_regions);
429 
430         if (nb_redist_regions == 1) {
431             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
432                                          2, vms->memmap[VIRT_GIC_DIST].base,
433                                          2, vms->memmap[VIRT_GIC_DIST].size,
434                                          2, vms->memmap[VIRT_GIC_REDIST].base,
435                                          2, vms->memmap[VIRT_GIC_REDIST].size);
436         } else {
437             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
438                                  2, vms->memmap[VIRT_GIC_DIST].base,
439                                  2, vms->memmap[VIRT_GIC_DIST].size,
440                                  2, vms->memmap[VIRT_GIC_REDIST].base,
441                                  2, vms->memmap[VIRT_GIC_REDIST].size,
442                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
443                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
444         }
445 
446         if (vms->virt) {
447             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
448                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
449                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
450         }
451     } else {
452         /* 'cortex-a15-gic' means 'GIC v2' */
453         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
454                                 "arm,cortex-a15-gic");
455         if (!vms->virt) {
456             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
457                                          2, vms->memmap[VIRT_GIC_DIST].base,
458                                          2, vms->memmap[VIRT_GIC_DIST].size,
459                                          2, vms->memmap[VIRT_GIC_CPU].base,
460                                          2, vms->memmap[VIRT_GIC_CPU].size);
461         } else {
462             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
463                                          2, vms->memmap[VIRT_GIC_DIST].base,
464                                          2, vms->memmap[VIRT_GIC_DIST].size,
465                                          2, vms->memmap[VIRT_GIC_CPU].base,
466                                          2, vms->memmap[VIRT_GIC_CPU].size,
467                                          2, vms->memmap[VIRT_GIC_HYP].base,
468                                          2, vms->memmap[VIRT_GIC_HYP].size,
469                                          2, vms->memmap[VIRT_GIC_VCPU].base,
470                                          2, vms->memmap[VIRT_GIC_VCPU].size);
471             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
472                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
473                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
474         }
475     }
476 
477     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
478     g_free(nodename);
479 }
480 
481 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
482 {
483     CPUState *cpu;
484     ARMCPU *armcpu;
485     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
486 
487     CPU_FOREACH(cpu) {
488         armcpu = ARM_CPU(cpu);
489         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
490             return;
491         }
492         if (kvm_enabled()) {
493             if (kvm_irqchip_in_kernel()) {
494                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
495             }
496             kvm_arm_pmu_init(cpu);
497         }
498     }
499 
500     if (vms->gic_version == 2) {
501         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
502                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
503                              (1 << vms->smp_cpus) - 1);
504     }
505 
506     armcpu = ARM_CPU(qemu_get_cpu(0));
507     qemu_fdt_add_subnode(vms->fdt, "/pmu");
508     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
509         const char compat[] = "arm,armv8-pmuv3";
510         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
511                          compat, sizeof(compat));
512         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
513                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
514     }
515 }
516 
517 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
518 {
519     const char *itsclass = its_class_name();
520     DeviceState *dev;
521 
522     if (!itsclass) {
523         /* Do nothing if not supported */
524         return;
525     }
526 
527     dev = qdev_create(NULL, itsclass);
528 
529     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
530                              &error_abort);
531     qdev_init_nofail(dev);
532     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
533 
534     fdt_add_its_gic_node(vms);
535 }
536 
537 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
538 {
539     int i;
540     int irq = vms->irqmap[VIRT_GIC_V2M];
541     DeviceState *dev;
542 
543     dev = qdev_create(NULL, "arm-gicv2m");
544     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
545     qdev_prop_set_uint32(dev, "base-spi", irq);
546     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
547     qdev_init_nofail(dev);
548 
549     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
550         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
551     }
552 
553     fdt_add_v2m_gic_node(vms);
554 }
555 
556 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
557 {
558     /* We create a standalone GIC */
559     DeviceState *gicdev;
560     SysBusDevice *gicbusdev;
561     const char *gictype;
562     int type = vms->gic_version, i;
563     uint32_t nb_redist_regions = 0;
564 
565     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
566 
567     gicdev = qdev_create(NULL, gictype);
568     qdev_prop_set_uint32(gicdev, "revision", type);
569     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
570     /* Note that the num-irq property counts both internal and external
571      * interrupts; there are always 32 of the former (mandated by GIC spec).
572      */
573     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
574     if (!kvm_irqchip_in_kernel()) {
575         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
576     }
577 
578     if (type == 3) {
579         uint32_t redist0_capacity =
580                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
581         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
582 
583         nb_redist_regions = virt_gicv3_redist_region_count(vms);
584 
585         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
586                              nb_redist_regions);
587         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
588 
589         if (nb_redist_regions == 2) {
590             uint32_t redist1_capacity =
591                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
592 
593             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
594                 MIN(smp_cpus - redist0_count, redist1_capacity));
595         }
596     } else {
597         if (!kvm_irqchip_in_kernel()) {
598             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
599                               vms->virt);
600         }
601     }
602     qdev_init_nofail(gicdev);
603     gicbusdev = SYS_BUS_DEVICE(gicdev);
604     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
605     if (type == 3) {
606         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
607         if (nb_redist_regions == 2) {
608             sysbus_mmio_map(gicbusdev, 2,
609                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
610         }
611     } else {
612         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
613         if (vms->virt) {
614             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
615             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
616         }
617     }
618 
619     /* Wire the outputs from each CPU's generic timer and the GICv3
620      * maintenance interrupt signal to the appropriate GIC PPI inputs,
621      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
622      */
623     for (i = 0; i < smp_cpus; i++) {
624         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
625         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
626         int irq;
627         /* Mapping from the output timer irq lines from the CPU to the
628          * GIC PPI inputs we use for the virt board.
629          */
630         const int timer_irq[] = {
631             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
632             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
633             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
634             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
635         };
636 
637         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
638             qdev_connect_gpio_out(cpudev, irq,
639                                   qdev_get_gpio_in(gicdev,
640                                                    ppibase + timer_irq[irq]));
641         }
642 
643         if (type == 3) {
644             qemu_irq irq = qdev_get_gpio_in(gicdev,
645                                             ppibase + ARCH_GIC_MAINT_IRQ);
646             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
647                                         0, irq);
648         } else if (vms->virt) {
649             qemu_irq irq = qdev_get_gpio_in(gicdev,
650                                             ppibase + ARCH_GIC_MAINT_IRQ);
651             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
652         }
653 
654         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
655                                     qdev_get_gpio_in(gicdev, ppibase
656                                                      + VIRTUAL_PMU_IRQ));
657 
658         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
659         sysbus_connect_irq(gicbusdev, i + smp_cpus,
660                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
661         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
662                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
663         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
664                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
665     }
666 
667     for (i = 0; i < NUM_IRQS; i++) {
668         pic[i] = qdev_get_gpio_in(gicdev, i);
669     }
670 
671     fdt_add_gic_node(vms);
672 
673     if (type == 3 && vms->its) {
674         create_its(vms, gicdev);
675     } else if (type == 2) {
676         create_v2m(vms, pic);
677     }
678 }
679 
680 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
681                         MemoryRegion *mem, Chardev *chr)
682 {
683     char *nodename;
684     hwaddr base = vms->memmap[uart].base;
685     hwaddr size = vms->memmap[uart].size;
686     int irq = vms->irqmap[uart];
687     const char compat[] = "arm,pl011\0arm,primecell";
688     const char clocknames[] = "uartclk\0apb_pclk";
689     DeviceState *dev = qdev_create(NULL, "pl011");
690     SysBusDevice *s = SYS_BUS_DEVICE(dev);
691 
692     qdev_prop_set_chr(dev, "chardev", chr);
693     qdev_init_nofail(dev);
694     memory_region_add_subregion(mem, base,
695                                 sysbus_mmio_get_region(s, 0));
696     sysbus_connect_irq(s, 0, pic[irq]);
697 
698     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
699     qemu_fdt_add_subnode(vms->fdt, nodename);
700     /* Note that we can't use setprop_string because of the embedded NUL */
701     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
702                          compat, sizeof(compat));
703     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
704                                      2, base, 2, size);
705     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
706                                GIC_FDT_IRQ_TYPE_SPI, irq,
707                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
708     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
709                                vms->clock_phandle, vms->clock_phandle);
710     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
711                          clocknames, sizeof(clocknames));
712 
713     if (uart == VIRT_UART) {
714         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
715     } else {
716         /* Mark as not usable by the normal world */
717         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
718         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
719 
720         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
721         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
722                                 nodename);
723     }
724 
725     g_free(nodename);
726 }
727 
728 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
729 {
730     char *nodename;
731     hwaddr base = vms->memmap[VIRT_RTC].base;
732     hwaddr size = vms->memmap[VIRT_RTC].size;
733     int irq = vms->irqmap[VIRT_RTC];
734     const char compat[] = "arm,pl031\0arm,primecell";
735 
736     sysbus_create_simple("pl031", base, pic[irq]);
737 
738     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
739     qemu_fdt_add_subnode(vms->fdt, nodename);
740     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
741     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
742                                  2, base, 2, size);
743     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
744                            GIC_FDT_IRQ_TYPE_SPI, irq,
745                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
746     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
747     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
748     g_free(nodename);
749 }
750 
751 static DeviceState *gpio_key_dev;
752 static void virt_powerdown_req(Notifier *n, void *opaque)
753 {
754     /* use gpio Pin 3 for power button event */
755     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
756 }
757 
758 static Notifier virt_system_powerdown_notifier = {
759     .notify = virt_powerdown_req
760 };
761 
762 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
763 {
764     char *nodename;
765     DeviceState *pl061_dev;
766     hwaddr base = vms->memmap[VIRT_GPIO].base;
767     hwaddr size = vms->memmap[VIRT_GPIO].size;
768     int irq = vms->irqmap[VIRT_GPIO];
769     const char compat[] = "arm,pl061\0arm,primecell";
770 
771     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
772 
773     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
774     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
775     qemu_fdt_add_subnode(vms->fdt, nodename);
776     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
777                                  2, base, 2, size);
778     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
779     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
780     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
781     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
782                            GIC_FDT_IRQ_TYPE_SPI, irq,
783                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
784     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
785     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
786     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
787 
788     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
789                                         qdev_get_gpio_in(pl061_dev, 3));
790     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
791     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
792     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
793     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
794 
795     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
796     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
797                             "label", "GPIO Key Poweroff");
798     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
799                           KEY_POWER);
800     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
801                            "gpios", phandle, 3, 0);
802 
803     /* connect powerdown request */
804     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
805 
806     g_free(nodename);
807 }
808 
809 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
810 {
811     int i;
812     hwaddr size = vms->memmap[VIRT_MMIO].size;
813 
814     /* We create the transports in forwards order. Since qbus_realize()
815      * prepends (not appends) new child buses, the incrementing loop below will
816      * create a list of virtio-mmio buses with decreasing base addresses.
817      *
818      * When a -device option is processed from the command line,
819      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
820      * order. The upshot is that -device options in increasing command line
821      * order are mapped to virtio-mmio buses with decreasing base addresses.
822      *
823      * When this code was originally written, that arrangement ensured that the
824      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
825      * the first -device on the command line. (The end-to-end order is a
826      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
827      * guest kernel's name-to-address assignment strategy.)
828      *
829      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
830      * the message, if not necessarily the code, of commit 70161ff336.
831      * Therefore the loop now establishes the inverse of the original intent.
832      *
833      * Unfortunately, we can't counteract the kernel change by reversing the
834      * loop; it would break existing command lines.
835      *
836      * In any case, the kernel makes no guarantee about the stability of
837      * enumeration order of virtio devices (as demonstrated by it changing
838      * between kernel versions). For reliable and stable identification
839      * of disks users must use UUIDs or similar mechanisms.
840      */
841     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
842         int irq = vms->irqmap[VIRT_MMIO] + i;
843         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
844 
845         sysbus_create_simple("virtio-mmio", base, pic[irq]);
846     }
847 
848     /* We add dtb nodes in reverse order so that they appear in the finished
849      * device tree lowest address first.
850      *
851      * Note that this mapping is independent of the loop above. The previous
852      * loop influences virtio device to virtio transport assignment, whereas
853      * this loop controls how virtio transports are laid out in the dtb.
854      */
855     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
856         char *nodename;
857         int irq = vms->irqmap[VIRT_MMIO] + i;
858         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
859 
860         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
861         qemu_fdt_add_subnode(vms->fdt, nodename);
862         qemu_fdt_setprop_string(vms->fdt, nodename,
863                                 "compatible", "virtio,mmio");
864         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
865                                      2, base, 2, size);
866         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
867                                GIC_FDT_IRQ_TYPE_SPI, irq,
868                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
869         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
870         g_free(nodename);
871     }
872 }
873 
874 static void create_one_flash(const char *name, hwaddr flashbase,
875                              hwaddr flashsize, const char *file,
876                              MemoryRegion *sysmem)
877 {
878     /* Create and map a single flash device. We use the same
879      * parameters as the flash devices on the Versatile Express board.
880      */
881     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
882     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
883     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
884     const uint64_t sectorlength = 256 * 1024;
885 
886     if (dinfo) {
887         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
888                             &error_abort);
889     }
890 
891     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
892     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
893     qdev_prop_set_uint8(dev, "width", 4);
894     qdev_prop_set_uint8(dev, "device-width", 2);
895     qdev_prop_set_bit(dev, "big-endian", false);
896     qdev_prop_set_uint16(dev, "id0", 0x89);
897     qdev_prop_set_uint16(dev, "id1", 0x18);
898     qdev_prop_set_uint16(dev, "id2", 0x00);
899     qdev_prop_set_uint16(dev, "id3", 0x00);
900     qdev_prop_set_string(dev, "name", name);
901     qdev_init_nofail(dev);
902 
903     memory_region_add_subregion(sysmem, flashbase,
904                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
905 
906     if (file) {
907         char *fn;
908         int image_size;
909 
910         if (drive_get(IF_PFLASH, 0, 0)) {
911             error_report("The contents of the first flash device may be "
912                          "specified with -bios or with -drive if=pflash... "
913                          "but you cannot use both options at once");
914             exit(1);
915         }
916         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
917         if (!fn) {
918             error_report("Could not find ROM image '%s'", file);
919             exit(1);
920         }
921         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
922         g_free(fn);
923         if (image_size < 0) {
924             error_report("Could not load ROM image '%s'", file);
925             exit(1);
926         }
927     }
928 }
929 
930 static void create_flash(const VirtMachineState *vms,
931                          MemoryRegion *sysmem,
932                          MemoryRegion *secure_sysmem)
933 {
934     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
935      * Any file passed via -bios goes in the first of these.
936      * sysmem is the system memory space. secure_sysmem is the secure view
937      * of the system, and the first flash device should be made visible only
938      * there. The second flash device is visible to both secure and nonsecure.
939      * If sysmem == secure_sysmem this means there is no separate Secure
940      * address space and both flash devices are generally visible.
941      */
942     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
943     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
944     char *nodename;
945 
946     create_one_flash("virt.flash0", flashbase, flashsize,
947                      bios_name, secure_sysmem);
948     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
949                      NULL, sysmem);
950 
951     if (sysmem == secure_sysmem) {
952         /* Report both flash devices as a single node in the DT */
953         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
954         qemu_fdt_add_subnode(vms->fdt, nodename);
955         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
956         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
957                                      2, flashbase, 2, flashsize,
958                                      2, flashbase + flashsize, 2, flashsize);
959         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
960         g_free(nodename);
961     } else {
962         /* Report the devices as separate nodes so we can mark one as
963          * only visible to the secure world.
964          */
965         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
966         qemu_fdt_add_subnode(vms->fdt, nodename);
967         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
968         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
969                                      2, flashbase, 2, flashsize);
970         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
971         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
972         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
973         g_free(nodename);
974 
975         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
976         qemu_fdt_add_subnode(vms->fdt, nodename);
977         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
978         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
979                                      2, flashbase + flashsize, 2, flashsize);
980         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
981         g_free(nodename);
982     }
983 }
984 
985 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
986 {
987     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
988     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
989     FWCfgState *fw_cfg;
990     char *nodename;
991 
992     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
993     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
994 
995     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
996     qemu_fdt_add_subnode(vms->fdt, nodename);
997     qemu_fdt_setprop_string(vms->fdt, nodename,
998                             "compatible", "qemu,fw-cfg-mmio");
999     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1000                                  2, base, 2, size);
1001     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1002     g_free(nodename);
1003     return fw_cfg;
1004 }
1005 
1006 static void create_pcie_irq_map(const VirtMachineState *vms,
1007                                 uint32_t gic_phandle,
1008                                 int first_irq, const char *nodename)
1009 {
1010     int devfn, pin;
1011     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1012     uint32_t *irq_map = full_irq_map;
1013 
1014     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1015         for (pin = 0; pin < 4; pin++) {
1016             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1017             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1018             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1019             int i;
1020 
1021             uint32_t map[] = {
1022                 devfn << 8, 0, 0,                           /* devfn */
1023                 pin + 1,                                    /* PCI pin */
1024                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1025 
1026             /* Convert map to big endian */
1027             for (i = 0; i < 10; i++) {
1028                 irq_map[i] = cpu_to_be32(map[i]);
1029             }
1030             irq_map += 10;
1031         }
1032     }
1033 
1034     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1035                      full_irq_map, sizeof(full_irq_map));
1036 
1037     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1038                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1039                            0x7           /* PCI irq */);
1040 }
1041 
1042 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1043                         PCIBus *bus)
1044 {
1045     char *node;
1046     const char compat[] = "arm,smmu-v3";
1047     int irq =  vms->irqmap[VIRT_SMMU];
1048     int i;
1049     hwaddr base = vms->memmap[VIRT_SMMU].base;
1050     hwaddr size = vms->memmap[VIRT_SMMU].size;
1051     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1052     DeviceState *dev;
1053 
1054     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1055         return;
1056     }
1057 
1058     dev = qdev_create(NULL, "arm-smmuv3");
1059 
1060     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1061                              &error_abort);
1062     qdev_init_nofail(dev);
1063     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1064     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1065         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1066     }
1067 
1068     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1069     qemu_fdt_add_subnode(vms->fdt, node);
1070     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1071     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1072 
1073     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1074             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1075             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1076             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1077             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1078 
1079     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1080                      sizeof(irq_names));
1081 
1082     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1083     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1084     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1085 
1086     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1087 
1088     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1089     g_free(node);
1090 }
1091 
1092 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1093 {
1094     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1095     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1096     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1097     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1098     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1099     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1100     hwaddr base_ecam, size_ecam;
1101     hwaddr base = base_mmio;
1102     int nr_pcie_buses;
1103     int irq = vms->irqmap[VIRT_PCIE];
1104     MemoryRegion *mmio_alias;
1105     MemoryRegion *mmio_reg;
1106     MemoryRegion *ecam_alias;
1107     MemoryRegion *ecam_reg;
1108     DeviceState *dev;
1109     char *nodename;
1110     int i, ecam_id;
1111     PCIHostState *pci;
1112 
1113     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1114     qdev_init_nofail(dev);
1115 
1116     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1117     base_ecam = vms->memmap[ecam_id].base;
1118     size_ecam = vms->memmap[ecam_id].size;
1119     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1120     /* Map only the first size_ecam bytes of ECAM space */
1121     ecam_alias = g_new0(MemoryRegion, 1);
1122     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1123     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1124                              ecam_reg, 0, size_ecam);
1125     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1126 
1127     /* Map the MMIO window into system address space so as to expose
1128      * the section of PCI MMIO space which starts at the same base address
1129      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1130      * the window).
1131      */
1132     mmio_alias = g_new0(MemoryRegion, 1);
1133     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1134     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1135                              mmio_reg, base_mmio, size_mmio);
1136     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1137 
1138     if (vms->highmem) {
1139         /* Map high MMIO space */
1140         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1141 
1142         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1143                                  mmio_reg, base_mmio_high, size_mmio_high);
1144         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1145                                     high_mmio_alias);
1146     }
1147 
1148     /* Map IO port space */
1149     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1150 
1151     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1152         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1153         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1154     }
1155 
1156     pci = PCI_HOST_BRIDGE(dev);
1157     if (pci->bus) {
1158         for (i = 0; i < nb_nics; i++) {
1159             NICInfo *nd = &nd_table[i];
1160 
1161             if (!nd->model) {
1162                 nd->model = g_strdup("virtio");
1163             }
1164 
1165             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1166         }
1167     }
1168 
1169     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1170     qemu_fdt_add_subnode(vms->fdt, nodename);
1171     qemu_fdt_setprop_string(vms->fdt, nodename,
1172                             "compatible", "pci-host-ecam-generic");
1173     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1174     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1175     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1176     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1177     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1178                            nr_pcie_buses - 1);
1179     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1180 
1181     if (vms->msi_phandle) {
1182         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1183                                vms->msi_phandle);
1184     }
1185 
1186     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1187                                  2, base_ecam, 2, size_ecam);
1188 
1189     if (vms->highmem) {
1190         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1191                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1192                                      2, base_pio, 2, size_pio,
1193                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1194                                      2, base_mmio, 2, size_mmio,
1195                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1196                                      2, base_mmio_high,
1197                                      2, base_mmio_high, 2, size_mmio_high);
1198     } else {
1199         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1200                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1201                                      2, base_pio, 2, size_pio,
1202                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1203                                      2, base_mmio, 2, size_mmio);
1204     }
1205 
1206     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1207     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1208 
1209     if (vms->iommu) {
1210         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1211 
1212         create_smmu(vms, pic, pci->bus);
1213 
1214         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1215                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1216     }
1217 
1218     g_free(nodename);
1219 }
1220 
1221 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1222 {
1223     DeviceState *dev;
1224     SysBusDevice *s;
1225     int i;
1226     MemoryRegion *sysmem = get_system_memory();
1227 
1228     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1229     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1230     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1231     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1232     qdev_init_nofail(dev);
1233     vms->platform_bus_dev = dev;
1234 
1235     s = SYS_BUS_DEVICE(dev);
1236     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1237         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1238         sysbus_connect_irq(s, i, pic[irqn]);
1239     }
1240 
1241     memory_region_add_subregion(sysmem,
1242                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1243                                 sysbus_mmio_get_region(s, 0));
1244 }
1245 
1246 static void create_secure_ram(VirtMachineState *vms,
1247                               MemoryRegion *secure_sysmem)
1248 {
1249     MemoryRegion *secram = g_new(MemoryRegion, 1);
1250     char *nodename;
1251     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1252     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1253 
1254     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1255                            &error_fatal);
1256     memory_region_add_subregion(secure_sysmem, base, secram);
1257 
1258     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1259     qemu_fdt_add_subnode(vms->fdt, nodename);
1260     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1261     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1262     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1263     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1264 
1265     g_free(nodename);
1266 }
1267 
1268 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1269 {
1270     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1271                                                  bootinfo);
1272 
1273     *fdt_size = board->fdt_size;
1274     return board->fdt;
1275 }
1276 
1277 static void virt_build_smbios(VirtMachineState *vms)
1278 {
1279     MachineClass *mc = MACHINE_GET_CLASS(vms);
1280     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1281     uint8_t *smbios_tables, *smbios_anchor;
1282     size_t smbios_tables_len, smbios_anchor_len;
1283     const char *product = "QEMU Virtual Machine";
1284 
1285     if (kvm_enabled()) {
1286         product = "KVM Virtual Machine";
1287     }
1288 
1289     smbios_set_defaults("QEMU", product,
1290                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1291                         true, SMBIOS_ENTRY_POINT_30);
1292 
1293     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1294                       &smbios_anchor, &smbios_anchor_len);
1295 
1296     if (smbios_anchor) {
1297         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1298                         smbios_tables, smbios_tables_len);
1299         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1300                         smbios_anchor, smbios_anchor_len);
1301     }
1302 }
1303 
1304 static
1305 void virt_machine_done(Notifier *notifier, void *data)
1306 {
1307     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1308                                          machine_done);
1309     ARMCPU *cpu = ARM_CPU(first_cpu);
1310     struct arm_boot_info *info = &vms->bootinfo;
1311     AddressSpace *as = arm_boot_address_space(cpu, info);
1312 
1313     /*
1314      * If the user provided a dtb, we assume the dynamic sysbus nodes
1315      * already are integrated there. This corresponds to a use case where
1316      * the dynamic sysbus nodes are complex and their generation is not yet
1317      * supported. In that case the user can take charge of the guest dt
1318      * while qemu takes charge of the qom stuff.
1319      */
1320     if (info->dtb_filename == NULL) {
1321         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1322                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1323                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1324                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1325     }
1326     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1327         exit(1);
1328     }
1329 
1330     virt_acpi_setup(vms);
1331     virt_build_smbios(vms);
1332 }
1333 
1334 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1335 {
1336     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1337     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1338 
1339     if (!vmc->disallow_affinity_adjustment) {
1340         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1341          * GIC's target-list limitations. 32-bit KVM hosts currently
1342          * always create clusters of 4 CPUs, but that is expected to
1343          * change when they gain support for gicv3. When KVM is enabled
1344          * it will override the changes we make here, therefore our
1345          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1346          * and to improve SGI efficiency.
1347          */
1348         if (vms->gic_version == 3) {
1349             clustersz = GICV3_TARGETLIST_BITS;
1350         } else {
1351             clustersz = GIC_TARGETLIST_BITS;
1352         }
1353     }
1354     return arm_cpu_mp_affinity(idx, clustersz);
1355 }
1356 
1357 static void virt_set_memmap(VirtMachineState *vms)
1358 {
1359     MachineState *ms = MACHINE(vms);
1360     hwaddr base, device_memory_base, device_memory_size;
1361     int i;
1362 
1363     vms->memmap = extended_memmap;
1364 
1365     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1366         vms->memmap[i] = base_memmap[i];
1367     }
1368 
1369     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1370         error_report("unsupported number of memory slots: %"PRIu64,
1371                      ms->ram_slots);
1372         exit(EXIT_FAILURE);
1373     }
1374 
1375     /*
1376      * We compute the base of the high IO region depending on the
1377      * amount of initial and device memory. The device memory start/size
1378      * is aligned on 1GiB. We never put the high IO region below 256GiB
1379      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1380      * The device region size assumes 1GiB page max alignment per slot.
1381      */
1382     device_memory_base =
1383         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1384     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1385 
1386     /* Base address of the high IO region */
1387     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1388     if (base < device_memory_base) {
1389         error_report("maxmem/slots too huge");
1390         exit(EXIT_FAILURE);
1391     }
1392     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1393         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1394     }
1395 
1396     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1397         hwaddr size = extended_memmap[i].size;
1398 
1399         base = ROUND_UP(base, size);
1400         vms->memmap[i].base = base;
1401         vms->memmap[i].size = size;
1402         base += size;
1403     }
1404     vms->highest_gpa = base - 1;
1405     if (device_memory_size > 0) {
1406         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1407         ms->device_memory->base = device_memory_base;
1408         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1409                            "device-memory", device_memory_size);
1410     }
1411 }
1412 
1413 static void machvirt_init(MachineState *machine)
1414 {
1415     VirtMachineState *vms = VIRT_MACHINE(machine);
1416     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1417     MachineClass *mc = MACHINE_GET_CLASS(machine);
1418     const CPUArchIdList *possible_cpus;
1419     qemu_irq pic[NUM_IRQS];
1420     MemoryRegion *sysmem = get_system_memory();
1421     MemoryRegion *secure_sysmem = NULL;
1422     int n, virt_max_cpus;
1423     MemoryRegion *ram = g_new(MemoryRegion, 1);
1424     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1425     bool aarch64 = true;
1426 
1427     /*
1428      * In accelerated mode, the memory map is computed earlier in kvm_type()
1429      * to create a VM with the right number of IPA bits.
1430      */
1431     if (!vms->memmap) {
1432         virt_set_memmap(vms);
1433     }
1434 
1435     /* We can probe only here because during property set
1436      * KVM is not available yet
1437      */
1438     if (vms->gic_version <= 0) {
1439         /* "host" or "max" */
1440         if (!kvm_enabled()) {
1441             if (vms->gic_version == 0) {
1442                 error_report("gic-version=host requires KVM");
1443                 exit(1);
1444             } else {
1445                 /* "max": currently means 3 for TCG */
1446                 vms->gic_version = 3;
1447             }
1448         } else {
1449             vms->gic_version = kvm_arm_vgic_probe();
1450             if (!vms->gic_version) {
1451                 error_report(
1452                     "Unable to determine GIC version supported by host");
1453                 exit(1);
1454             }
1455         }
1456     }
1457 
1458     if (!cpu_type_valid(machine->cpu_type)) {
1459         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1460         exit(1);
1461     }
1462 
1463     /* If we have an EL3 boot ROM then the assumption is that it will
1464      * implement PSCI itself, so disable QEMU's internal implementation
1465      * so it doesn't get in the way. Instead of starting secondary
1466      * CPUs in PSCI powerdown state we will start them all running and
1467      * let the boot ROM sort them out.
1468      * The usual case is that we do use QEMU's PSCI implementation;
1469      * if the guest has EL2 then we will use SMC as the conduit,
1470      * and otherwise we will use HVC (for backwards compatibility and
1471      * because if we're using KVM then we must use HVC).
1472      */
1473     if (vms->secure && firmware_loaded) {
1474         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1475     } else if (vms->virt) {
1476         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1477     } else {
1478         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1479     }
1480 
1481     /* The maximum number of CPUs depends on the GIC version, or on how
1482      * many redistributors we can fit into the memory map.
1483      */
1484     if (vms->gic_version == 3) {
1485         virt_max_cpus =
1486             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1487         virt_max_cpus +=
1488             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1489     } else {
1490         virt_max_cpus = GIC_NCPU;
1491     }
1492 
1493     if (max_cpus > virt_max_cpus) {
1494         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1495                      "supported by machine 'mach-virt' (%d)",
1496                      max_cpus, virt_max_cpus);
1497         exit(1);
1498     }
1499 
1500     vms->smp_cpus = smp_cpus;
1501 
1502     if (vms->virt && kvm_enabled()) {
1503         error_report("mach-virt: KVM does not support providing "
1504                      "Virtualization extensions to the guest CPU");
1505         exit(1);
1506     }
1507 
1508     if (vms->secure) {
1509         if (kvm_enabled()) {
1510             error_report("mach-virt: KVM does not support Security extensions");
1511             exit(1);
1512         }
1513 
1514         /* The Secure view of the world is the same as the NonSecure,
1515          * but with a few extra devices. Create it as a container region
1516          * containing the system memory at low priority; any secure-only
1517          * devices go in at higher priority and take precedence.
1518          */
1519         secure_sysmem = g_new(MemoryRegion, 1);
1520         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1521                            UINT64_MAX);
1522         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1523     }
1524 
1525     create_fdt(vms);
1526 
1527     possible_cpus = mc->possible_cpu_arch_ids(machine);
1528     for (n = 0; n < possible_cpus->len; n++) {
1529         Object *cpuobj;
1530         CPUState *cs;
1531 
1532         if (n >= smp_cpus) {
1533             break;
1534         }
1535 
1536         cpuobj = object_new(possible_cpus->cpus[n].type);
1537         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1538                                 "mp-affinity", NULL);
1539 
1540         cs = CPU(cpuobj);
1541         cs->cpu_index = n;
1542 
1543         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1544                           &error_fatal);
1545 
1546         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1547 
1548         if (!vms->secure) {
1549             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1550         }
1551 
1552         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1553             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1554         }
1555 
1556         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1557             object_property_set_int(cpuobj, vms->psci_conduit,
1558                                     "psci-conduit", NULL);
1559 
1560             /* Secondary CPUs start in PSCI powered-down state */
1561             if (n > 0) {
1562                 object_property_set_bool(cpuobj, true,
1563                                          "start-powered-off", NULL);
1564             }
1565         }
1566 
1567         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1568             object_property_set_bool(cpuobj, false, "pmu", NULL);
1569         }
1570 
1571         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1572             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1573                                     "reset-cbar", &error_abort);
1574         }
1575 
1576         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1577                                  &error_abort);
1578         if (vms->secure) {
1579             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1580                                      "secure-memory", &error_abort);
1581         }
1582 
1583         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1584         object_unref(cpuobj);
1585     }
1586     fdt_add_timer_nodes(vms);
1587     fdt_add_cpu_nodes(vms);
1588 
1589    if (!kvm_enabled()) {
1590         ARMCPU *cpu = ARM_CPU(first_cpu);
1591         bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1592 
1593         if (aarch64 && vms->highmem) {
1594             int requested_pa_size, pamax = arm_pamax(cpu);
1595 
1596             requested_pa_size = 64 - clz64(vms->highest_gpa);
1597             if (pamax < requested_pa_size) {
1598                 error_report("VCPU supports less PA bits (%d) than requested "
1599                             "by the memory map (%d)", pamax, requested_pa_size);
1600                 exit(1);
1601             }
1602         }
1603     }
1604 
1605     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1606                                          machine->ram_size);
1607     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1608     if (machine->device_memory) {
1609         memory_region_add_subregion(sysmem, machine->device_memory->base,
1610                                     &machine->device_memory->mr);
1611     }
1612 
1613     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1614 
1615     create_gic(vms, pic);
1616 
1617     fdt_add_pmu_nodes(vms);
1618 
1619     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1620 
1621     if (vms->secure) {
1622         create_secure_ram(vms, secure_sysmem);
1623         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1624     }
1625 
1626     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1627 
1628     create_rtc(vms, pic);
1629 
1630     create_pcie(vms, pic);
1631 
1632     create_gpio(vms, pic);
1633 
1634     /* Create mmio transports, so the user can create virtio backends
1635      * (which will be automatically plugged in to the transports). If
1636      * no backend is created the transport will just sit harmlessly idle.
1637      */
1638     create_virtio_devices(vms, pic);
1639 
1640     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1641     rom_set_fw(vms->fw_cfg);
1642 
1643     create_platform_bus(vms, pic);
1644 
1645     vms->bootinfo.ram_size = machine->ram_size;
1646     vms->bootinfo.kernel_filename = machine->kernel_filename;
1647     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1648     vms->bootinfo.initrd_filename = machine->initrd_filename;
1649     vms->bootinfo.nb_cpus = smp_cpus;
1650     vms->bootinfo.board_id = -1;
1651     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1652     vms->bootinfo.get_dtb = machvirt_dtb;
1653     vms->bootinfo.skip_dtb_autoload = true;
1654     vms->bootinfo.firmware_loaded = firmware_loaded;
1655     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1656 
1657     vms->machine_done.notify = virt_machine_done;
1658     qemu_add_machine_init_done_notifier(&vms->machine_done);
1659 }
1660 
1661 static bool virt_get_secure(Object *obj, Error **errp)
1662 {
1663     VirtMachineState *vms = VIRT_MACHINE(obj);
1664 
1665     return vms->secure;
1666 }
1667 
1668 static void virt_set_secure(Object *obj, bool value, Error **errp)
1669 {
1670     VirtMachineState *vms = VIRT_MACHINE(obj);
1671 
1672     vms->secure = value;
1673 }
1674 
1675 static bool virt_get_virt(Object *obj, Error **errp)
1676 {
1677     VirtMachineState *vms = VIRT_MACHINE(obj);
1678 
1679     return vms->virt;
1680 }
1681 
1682 static void virt_set_virt(Object *obj, bool value, Error **errp)
1683 {
1684     VirtMachineState *vms = VIRT_MACHINE(obj);
1685 
1686     vms->virt = value;
1687 }
1688 
1689 static bool virt_get_highmem(Object *obj, Error **errp)
1690 {
1691     VirtMachineState *vms = VIRT_MACHINE(obj);
1692 
1693     return vms->highmem;
1694 }
1695 
1696 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1697 {
1698     VirtMachineState *vms = VIRT_MACHINE(obj);
1699 
1700     vms->highmem = value;
1701 }
1702 
1703 static bool virt_get_its(Object *obj, Error **errp)
1704 {
1705     VirtMachineState *vms = VIRT_MACHINE(obj);
1706 
1707     return vms->its;
1708 }
1709 
1710 static void virt_set_its(Object *obj, bool value, Error **errp)
1711 {
1712     VirtMachineState *vms = VIRT_MACHINE(obj);
1713 
1714     vms->its = value;
1715 }
1716 
1717 static char *virt_get_gic_version(Object *obj, Error **errp)
1718 {
1719     VirtMachineState *vms = VIRT_MACHINE(obj);
1720     const char *val = vms->gic_version == 3 ? "3" : "2";
1721 
1722     return g_strdup(val);
1723 }
1724 
1725 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1726 {
1727     VirtMachineState *vms = VIRT_MACHINE(obj);
1728 
1729     if (!strcmp(value, "3")) {
1730         vms->gic_version = 3;
1731     } else if (!strcmp(value, "2")) {
1732         vms->gic_version = 2;
1733     } else if (!strcmp(value, "host")) {
1734         vms->gic_version = 0; /* Will probe later */
1735     } else if (!strcmp(value, "max")) {
1736         vms->gic_version = -1; /* Will probe later */
1737     } else {
1738         error_setg(errp, "Invalid gic-version value");
1739         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1740     }
1741 }
1742 
1743 static char *virt_get_iommu(Object *obj, Error **errp)
1744 {
1745     VirtMachineState *vms = VIRT_MACHINE(obj);
1746 
1747     switch (vms->iommu) {
1748     case VIRT_IOMMU_NONE:
1749         return g_strdup("none");
1750     case VIRT_IOMMU_SMMUV3:
1751         return g_strdup("smmuv3");
1752     default:
1753         g_assert_not_reached();
1754     }
1755 }
1756 
1757 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1758 {
1759     VirtMachineState *vms = VIRT_MACHINE(obj);
1760 
1761     if (!strcmp(value, "smmuv3")) {
1762         vms->iommu = VIRT_IOMMU_SMMUV3;
1763     } else if (!strcmp(value, "none")) {
1764         vms->iommu = VIRT_IOMMU_NONE;
1765     } else {
1766         error_setg(errp, "Invalid iommu value");
1767         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1768     }
1769 }
1770 
1771 static CpuInstanceProperties
1772 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1773 {
1774     MachineClass *mc = MACHINE_GET_CLASS(ms);
1775     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1776 
1777     assert(cpu_index < possible_cpus->len);
1778     return possible_cpus->cpus[cpu_index].props;
1779 }
1780 
1781 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1782 {
1783     return idx % nb_numa_nodes;
1784 }
1785 
1786 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1787 {
1788     int n;
1789     VirtMachineState *vms = VIRT_MACHINE(ms);
1790 
1791     if (ms->possible_cpus) {
1792         assert(ms->possible_cpus->len == max_cpus);
1793         return ms->possible_cpus;
1794     }
1795 
1796     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1797                                   sizeof(CPUArchId) * max_cpus);
1798     ms->possible_cpus->len = max_cpus;
1799     for (n = 0; n < ms->possible_cpus->len; n++) {
1800         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1801         ms->possible_cpus->cpus[n].arch_id =
1802             virt_cpu_mp_affinity(vms, n);
1803         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1804         ms->possible_cpus->cpus[n].props.thread_id = n;
1805     }
1806     return ms->possible_cpus;
1807 }
1808 
1809 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1810                                         DeviceState *dev, Error **errp)
1811 {
1812     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1813 
1814     if (vms->platform_bus_dev) {
1815         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1816             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1817                                      SYS_BUS_DEVICE(dev));
1818         }
1819     }
1820 }
1821 
1822 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1823                                                         DeviceState *dev)
1824 {
1825     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1826         return HOTPLUG_HANDLER(machine);
1827     }
1828 
1829     return NULL;
1830 }
1831 
1832 /*
1833  * for arm64 kvm_type [7-0] encodes the requested number of bits
1834  * in the IPA address space
1835  */
1836 static int virt_kvm_type(MachineState *ms, const char *type_str)
1837 {
1838     VirtMachineState *vms = VIRT_MACHINE(ms);
1839     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1840     int requested_pa_size;
1841 
1842     /* we freeze the memory map to compute the highest gpa */
1843     virt_set_memmap(vms);
1844 
1845     requested_pa_size = 64 - clz64(vms->highest_gpa);
1846 
1847     if (requested_pa_size > max_vm_pa_size) {
1848         error_report("-m and ,maxmem option values "
1849                      "require an IPA range (%d bits) larger than "
1850                      "the one supported by the host (%d bits)",
1851                      requested_pa_size, max_vm_pa_size);
1852        exit(1);
1853     }
1854     /*
1855      * By default we return 0 which corresponds to an implicit legacy
1856      * 40b IPA setting. Otherwise we return the actual requested PA
1857      * logsize
1858      */
1859     return requested_pa_size > 40 ? requested_pa_size : 0;
1860 }
1861 
1862 static void virt_machine_class_init(ObjectClass *oc, void *data)
1863 {
1864     MachineClass *mc = MACHINE_CLASS(oc);
1865     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1866 
1867     mc->init = machvirt_init;
1868     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1869      * The value may be reduced later when we have more information about the
1870      * configuration of the particular instance.
1871      */
1872     mc->max_cpus = 512;
1873     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1874     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1875     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1876     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1877     mc->block_default_type = IF_VIRTIO;
1878     mc->no_cdrom = 1;
1879     mc->pci_allow_0_address = true;
1880     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1881     mc->minimum_page_bits = 12;
1882     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1883     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1884     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1885     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1886     mc->kvm_type = virt_kvm_type;
1887     assert(!mc->get_hotplug_handler);
1888     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1889     hc->plug = virt_machine_device_plug_cb;
1890 }
1891 
1892 static void virt_instance_init(Object *obj)
1893 {
1894     VirtMachineState *vms = VIRT_MACHINE(obj);
1895     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1896 
1897     /* EL3 is disabled by default on virt: this makes us consistent
1898      * between KVM and TCG for this board, and it also allows us to
1899      * boot UEFI blobs which assume no TrustZone support.
1900      */
1901     vms->secure = false;
1902     object_property_add_bool(obj, "secure", virt_get_secure,
1903                              virt_set_secure, NULL);
1904     object_property_set_description(obj, "secure",
1905                                     "Set on/off to enable/disable the ARM "
1906                                     "Security Extensions (TrustZone)",
1907                                     NULL);
1908 
1909     /* EL2 is also disabled by default, for similar reasons */
1910     vms->virt = false;
1911     object_property_add_bool(obj, "virtualization", virt_get_virt,
1912                              virt_set_virt, NULL);
1913     object_property_set_description(obj, "virtualization",
1914                                     "Set on/off to enable/disable emulating a "
1915                                     "guest CPU which implements the ARM "
1916                                     "Virtualization Extensions",
1917                                     NULL);
1918 
1919     /* High memory is enabled by default */
1920     vms->highmem = true;
1921     object_property_add_bool(obj, "highmem", virt_get_highmem,
1922                              virt_set_highmem, NULL);
1923     object_property_set_description(obj, "highmem",
1924                                     "Set on/off to enable/disable using "
1925                                     "physical address space above 32 bits",
1926                                     NULL);
1927     /* Default GIC type is v2 */
1928     vms->gic_version = 2;
1929     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1930                         virt_set_gic_version, NULL);
1931     object_property_set_description(obj, "gic-version",
1932                                     "Set GIC version. "
1933                                     "Valid values are 2, 3 and host", NULL);
1934 
1935     vms->highmem_ecam = !vmc->no_highmem_ecam;
1936 
1937     if (vmc->no_its) {
1938         vms->its = false;
1939     } else {
1940         /* Default allows ITS instantiation */
1941         vms->its = true;
1942         object_property_add_bool(obj, "its", virt_get_its,
1943                                  virt_set_its, NULL);
1944         object_property_set_description(obj, "its",
1945                                         "Set on/off to enable/disable "
1946                                         "ITS instantiation",
1947                                         NULL);
1948     }
1949 
1950     /* Default disallows iommu instantiation */
1951     vms->iommu = VIRT_IOMMU_NONE;
1952     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1953     object_property_set_description(obj, "iommu",
1954                                     "Set the IOMMU type. "
1955                                     "Valid values are none and smmuv3",
1956                                     NULL);
1957 
1958     vms->irqmap = a15irqmap;
1959 }
1960 
1961 static const TypeInfo virt_machine_info = {
1962     .name          = TYPE_VIRT_MACHINE,
1963     .parent        = TYPE_MACHINE,
1964     .abstract      = true,
1965     .instance_size = sizeof(VirtMachineState),
1966     .class_size    = sizeof(VirtMachineClass),
1967     .class_init    = virt_machine_class_init,
1968     .instance_init = virt_instance_init,
1969     .interfaces = (InterfaceInfo[]) {
1970          { TYPE_HOTPLUG_HANDLER },
1971          { }
1972     },
1973 };
1974 
1975 static void machvirt_machine_init(void)
1976 {
1977     type_register_static(&virt_machine_info);
1978 }
1979 type_init(machvirt_machine_init);
1980 
1981 static void virt_machine_4_1_options(MachineClass *mc)
1982 {
1983 }
1984 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
1985 
1986 static void virt_machine_4_0_options(MachineClass *mc)
1987 {
1988     virt_machine_4_1_options(mc);
1989     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
1990 }
1991 DEFINE_VIRT_MACHINE(4, 0)
1992 
1993 static void virt_machine_3_1_options(MachineClass *mc)
1994 {
1995     virt_machine_4_0_options(mc);
1996     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
1997 }
1998 DEFINE_VIRT_MACHINE(3, 1)
1999 
2000 static void virt_machine_3_0_options(MachineClass *mc)
2001 {
2002     virt_machine_3_1_options(mc);
2003     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2004 }
2005 DEFINE_VIRT_MACHINE(3, 0)
2006 
2007 static void virt_machine_2_12_options(MachineClass *mc)
2008 {
2009     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2010 
2011     virt_machine_3_0_options(mc);
2012     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2013     vmc->no_highmem_ecam = true;
2014     mc->max_cpus = 255;
2015 }
2016 DEFINE_VIRT_MACHINE(2, 12)
2017 
2018 static void virt_machine_2_11_options(MachineClass *mc)
2019 {
2020     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2021 
2022     virt_machine_2_12_options(mc);
2023     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2024     vmc->smbios_old_sys_ver = true;
2025 }
2026 DEFINE_VIRT_MACHINE(2, 11)
2027 
2028 static void virt_machine_2_10_options(MachineClass *mc)
2029 {
2030     virt_machine_2_11_options(mc);
2031     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2032     /* before 2.11 we never faulted accesses to bad addresses */
2033     mc->ignore_memory_transaction_failures = true;
2034 }
2035 DEFINE_VIRT_MACHINE(2, 10)
2036 
2037 static void virt_machine_2_9_options(MachineClass *mc)
2038 {
2039     virt_machine_2_10_options(mc);
2040     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2041 }
2042 DEFINE_VIRT_MACHINE(2, 9)
2043 
2044 static void virt_machine_2_8_options(MachineClass *mc)
2045 {
2046     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2047 
2048     virt_machine_2_9_options(mc);
2049     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2050     /* For 2.8 and earlier we falsely claimed in the DT that
2051      * our timers were edge-triggered, not level-triggered.
2052      */
2053     vmc->claim_edge_triggered_timers = true;
2054 }
2055 DEFINE_VIRT_MACHINE(2, 8)
2056 
2057 static void virt_machine_2_7_options(MachineClass *mc)
2058 {
2059     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2060 
2061     virt_machine_2_8_options(mc);
2062     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2063     /* ITS was introduced with 2.8 */
2064     vmc->no_its = true;
2065     /* Stick with 1K pages for migration compatibility */
2066     mc->minimum_page_bits = 0;
2067 }
2068 DEFINE_VIRT_MACHINE(2, 7)
2069 
2070 static void virt_machine_2_6_options(MachineClass *mc)
2071 {
2072     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2073 
2074     virt_machine_2_7_options(mc);
2075     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2076     vmc->disallow_affinity_adjustment = true;
2077     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2078     vmc->no_pmu = true;
2079 }
2080 DEFINE_VIRT_MACHINE(2, 6)
2081