xref: /openbmc/qemu/hw/arm/virt.c (revision acb0ef58)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "qemu/bitops.h"
42 #include "qemu/error-report.h"
43 
44 #define NUM_VIRTIO_TRANSPORTS 32
45 
46 /* Number of external interrupt lines to configure the GIC with */
47 #define NUM_IRQS 128
48 
49 #define GIC_FDT_IRQ_TYPE_SPI 0
50 #define GIC_FDT_IRQ_TYPE_PPI 1
51 
52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
56 
57 #define GIC_FDT_IRQ_PPI_CPU_START 8
58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
59 
60 enum {
61     VIRT_FLASH,
62     VIRT_MEM,
63     VIRT_CPUPERIPHS,
64     VIRT_GIC_DIST,
65     VIRT_GIC_CPU,
66     VIRT_UART,
67     VIRT_MMIO,
68 };
69 
70 typedef struct MemMapEntry {
71     hwaddr base;
72     hwaddr size;
73 } MemMapEntry;
74 
75 typedef struct VirtBoardInfo {
76     struct arm_boot_info bootinfo;
77     const char *cpu_model;
78     const MemMapEntry *memmap;
79     const int *irqmap;
80     int smp_cpus;
81     void *fdt;
82     int fdt_size;
83     uint32_t clock_phandle;
84 } VirtBoardInfo;
85 
86 /* Addresses and sizes of our components.
87  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
88  * 128MB..256MB is used for miscellaneous device I/O.
89  * 256MB..1GB is reserved for possible future PCI support (ie where the
90  * PCI memory window will go if we add a PCI host controller).
91  * 1GB and up is RAM (which may happily spill over into the
92  * high memory region beyond 4GB).
93  * This represents a compromise between how much RAM can be given to
94  * a 32 bit VM and leaving space for expansion and in particular for PCI.
95  */
96 static const MemMapEntry a15memmap[] = {
97     /* Space up to 0x8000000 is reserved for a boot ROM */
98     [VIRT_FLASH] = { 0, 0x8000000 },
99     [VIRT_CPUPERIPHS] = { 0x8000000, 0x20000 },
100     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
101     [VIRT_GIC_DIST] = { 0x8000000, 0x10000 },
102     [VIRT_GIC_CPU] = { 0x8010000, 0x10000 },
103     [VIRT_UART] = { 0x9000000, 0x1000 },
104     [VIRT_MMIO] = { 0xa000000, 0x200 },
105     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
106     /* 0x10000000 .. 0x40000000 reserved for PCI */
107     [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
108 };
109 
110 static const int a15irqmap[] = {
111     [VIRT_UART] = 1,
112     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
113 };
114 
115 static VirtBoardInfo machines[] = {
116     {
117         .cpu_model = "cortex-a15",
118         .memmap = a15memmap,
119         .irqmap = a15irqmap,
120     },
121     {
122         .cpu_model = "cortex-a57",
123         .memmap = a15memmap,
124         .irqmap = a15irqmap,
125     },
126     {
127         .cpu_model = "host",
128         .memmap = a15memmap,
129         .irqmap = a15irqmap,
130     },
131 };
132 
133 static VirtBoardInfo *find_machine_info(const char *cpu)
134 {
135     int i;
136 
137     for (i = 0; i < ARRAY_SIZE(machines); i++) {
138         if (strcmp(cpu, machines[i].cpu_model) == 0) {
139             return &machines[i];
140         }
141     }
142     return NULL;
143 }
144 
145 static void create_fdt(VirtBoardInfo *vbi)
146 {
147     void *fdt = create_device_tree(&vbi->fdt_size);
148 
149     if (!fdt) {
150         error_report("create_device_tree() failed");
151         exit(1);
152     }
153 
154     vbi->fdt = fdt;
155 
156     /* Header */
157     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
158     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
159     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
160 
161     /*
162      * /chosen and /memory nodes must exist for load_dtb
163      * to fill in necessary properties later
164      */
165     qemu_fdt_add_subnode(fdt, "/chosen");
166     qemu_fdt_add_subnode(fdt, "/memory");
167     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
168 
169     /* Clock node, for the benefit of the UART. The kernel device tree
170      * binding documentation claims the PL011 node clock properties are
171      * optional but in practice if you omit them the kernel refuses to
172      * probe for the device.
173      */
174     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
175     qemu_fdt_add_subnode(fdt, "/apb-pclk");
176     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
177     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
178     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
179     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
180                                 "clk24mhz");
181     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
182 
183     /* No PSCI for TCG yet */
184     if (kvm_enabled()) {
185         qemu_fdt_add_subnode(fdt, "/psci");
186         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
187         qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
188         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
189                                   PSCI_FN_CPU_SUSPEND);
190         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
191         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
192         qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
193     }
194 }
195 
196 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
197 {
198     /* Note that on A15 h/w these interrupts are level-triggered,
199      * but for the GIC implementation provided by both QEMU and KVM
200      * they are edge-triggered.
201      */
202     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
203 
204     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
205                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
206 
207     qemu_fdt_add_subnode(vbi->fdt, "/timer");
208     qemu_fdt_setprop_string(vbi->fdt, "/timer",
209                                 "compatible", "arm,armv7-timer");
210     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
211                                GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
212                                GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
213                                GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
214                                GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
215 }
216 
217 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
218 {
219     int cpu;
220 
221     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
222     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
223     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
224 
225     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
226         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
227         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
228 
229         qemu_fdt_add_subnode(vbi->fdt, nodename);
230         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
231         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
232                                     armcpu->dtb_compatible);
233 
234         if (vbi->smp_cpus > 1) {
235             qemu_fdt_setprop_string(vbi->fdt, nodename,
236                                         "enable-method", "psci");
237         }
238 
239         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
240         g_free(nodename);
241     }
242 }
243 
244 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
245 {
246     uint32_t gic_phandle;
247 
248     gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
249     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
250 
251     qemu_fdt_add_subnode(vbi->fdt, "/intc");
252     /* 'cortex-a15-gic' means 'GIC v2' */
253     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
254                             "arm,cortex-a15-gic");
255     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
256     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
257     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
258                                      2, vbi->memmap[VIRT_GIC_DIST].base,
259                                      2, vbi->memmap[VIRT_GIC_DIST].size,
260                                      2, vbi->memmap[VIRT_GIC_CPU].base,
261                                      2, vbi->memmap[VIRT_GIC_CPU].size);
262     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
263 }
264 
265 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
266 {
267     /* We create a standalone GIC v2 */
268     DeviceState *gicdev;
269     SysBusDevice *gicbusdev;
270     const char *gictype = "arm_gic";
271     int i;
272 
273     if (kvm_irqchip_in_kernel()) {
274         gictype = "kvm-arm-gic";
275     }
276 
277     gicdev = qdev_create(NULL, gictype);
278     qdev_prop_set_uint32(gicdev, "revision", 2);
279     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
280     /* Note that the num-irq property counts both internal and external
281      * interrupts; there are always 32 of the former (mandated by GIC spec).
282      */
283     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
284     qdev_init_nofail(gicdev);
285     gicbusdev = SYS_BUS_DEVICE(gicdev);
286     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
287     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
288 
289     /* Wire the outputs from each CPU's generic timer to the
290      * appropriate GIC PPI inputs, and the GIC's IRQ output to
291      * the CPU's IRQ input.
292      */
293     for (i = 0; i < smp_cpus; i++) {
294         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
295         int ppibase = NUM_IRQS + i * 32;
296         /* physical timer; we wire it up to the non-secure timer's ID,
297          * since a real A15 always has TrustZone but QEMU doesn't.
298          */
299         qdev_connect_gpio_out(cpudev, 0,
300                               qdev_get_gpio_in(gicdev, ppibase + 30));
301         /* virtual timer */
302         qdev_connect_gpio_out(cpudev, 1,
303                               qdev_get_gpio_in(gicdev, ppibase + 27));
304 
305         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
306     }
307 
308     for (i = 0; i < NUM_IRQS; i++) {
309         pic[i] = qdev_get_gpio_in(gicdev, i);
310     }
311 
312     fdt_add_gic_node(vbi);
313 }
314 
315 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
316 {
317     char *nodename;
318     hwaddr base = vbi->memmap[VIRT_UART].base;
319     hwaddr size = vbi->memmap[VIRT_UART].size;
320     int irq = vbi->irqmap[VIRT_UART];
321     const char compat[] = "arm,pl011\0arm,primecell";
322     const char clocknames[] = "uartclk\0apb_pclk";
323 
324     sysbus_create_simple("pl011", base, pic[irq]);
325 
326     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
327     qemu_fdt_add_subnode(vbi->fdt, nodename);
328     /* Note that we can't use setprop_string because of the embedded NUL */
329     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
330                          compat, sizeof(compat));
331     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
332                                      2, base, 2, size);
333     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
334                                GIC_FDT_IRQ_TYPE_SPI, irq,
335                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
336     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
337                                vbi->clock_phandle, vbi->clock_phandle);
338     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
339                          clocknames, sizeof(clocknames));
340     g_free(nodename);
341 }
342 
343 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
344 {
345     int i;
346     hwaddr size = vbi->memmap[VIRT_MMIO].size;
347 
348     /* Note that we have to create the transports in forwards order
349      * so that command line devices are inserted lowest address first,
350      * and then add dtb nodes in reverse order so that they appear in
351      * the finished device tree lowest address first.
352      */
353     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
354         int irq = vbi->irqmap[VIRT_MMIO] + i;
355         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
356 
357         sysbus_create_simple("virtio-mmio", base, pic[irq]);
358     }
359 
360     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
361         char *nodename;
362         int irq = vbi->irqmap[VIRT_MMIO] + i;
363         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
364 
365         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
366         qemu_fdt_add_subnode(vbi->fdt, nodename);
367         qemu_fdt_setprop_string(vbi->fdt, nodename,
368                                 "compatible", "virtio,mmio");
369         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
370                                      2, base, 2, size);
371         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
372                                GIC_FDT_IRQ_TYPE_SPI, irq,
373                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
374         g_free(nodename);
375     }
376 }
377 
378 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
379 {
380     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
381 
382     *fdt_size = board->fdt_size;
383     return board->fdt;
384 }
385 
386 static void machvirt_init(MachineState *machine)
387 {
388     qemu_irq pic[NUM_IRQS];
389     MemoryRegion *sysmem = get_system_memory();
390     int n;
391     MemoryRegion *ram = g_new(MemoryRegion, 1);
392     const char *cpu_model = machine->cpu_model;
393     VirtBoardInfo *vbi;
394 
395     if (!cpu_model) {
396         cpu_model = "cortex-a15";
397     }
398 
399     vbi = find_machine_info(cpu_model);
400 
401     if (!vbi) {
402         error_report("mach-virt: CPU %s not supported", cpu_model);
403         exit(1);
404     }
405 
406     vbi->smp_cpus = smp_cpus;
407 
408     /*
409      * Only supported method of starting secondary CPUs is PSCI and
410      * PSCI is not yet supported with TCG, so limit smp_cpus to 1
411      * if we're not using KVM.
412      */
413     if (!kvm_enabled() && smp_cpus > 1) {
414         error_report("mach-virt: must enable KVM to use multiple CPUs");
415         exit(1);
416     }
417 
418     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
419         error_report("mach-virt: cannot model more than 30GB RAM");
420         exit(1);
421     }
422 
423     create_fdt(vbi);
424     fdt_add_timer_nodes(vbi);
425 
426     for (n = 0; n < smp_cpus; n++) {
427         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
428         Object *cpuobj;
429 
430         if (!oc) {
431             fprintf(stderr, "Unable to find CPU definition\n");
432             exit(1);
433         }
434         cpuobj = object_new(object_class_get_name(oc));
435 
436         /* Secondary CPUs start in PSCI powered-down state */
437         if (n > 0) {
438             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
439         }
440 
441         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
442             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
443                                     "reset-cbar", &error_abort);
444         }
445 
446         object_property_set_bool(cpuobj, true, "realized", NULL);
447     }
448     fdt_add_cpu_nodes(vbi);
449 
450     memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
451     vmstate_register_ram_global(ram);
452     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
453 
454     create_gic(vbi, pic);
455 
456     create_uart(vbi, pic);
457 
458     /* Create mmio transports, so the user can create virtio backends
459      * (which will be automatically plugged in to the transports). If
460      * no backend is created the transport will just sit harmlessly idle.
461      */
462     create_virtio_devices(vbi, pic);
463 
464     vbi->bootinfo.ram_size = machine->ram_size;
465     vbi->bootinfo.kernel_filename = machine->kernel_filename;
466     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
467     vbi->bootinfo.initrd_filename = machine->initrd_filename;
468     vbi->bootinfo.nb_cpus = smp_cpus;
469     vbi->bootinfo.board_id = -1;
470     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
471     vbi->bootinfo.get_dtb = machvirt_dtb;
472     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
473 }
474 
475 static QEMUMachine machvirt_a15_machine = {
476     .name = "virt",
477     .desc = "ARM Virtual Machine",
478     .init = machvirt_init,
479     .max_cpus = 4,
480 };
481 
482 static void machvirt_machine_init(void)
483 {
484     qemu_register_machine(&machvirt_a15_machine);
485 }
486 
487 machine_init(machvirt_machine_init);
488