1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/arm/virt.h" 35 #include "hw/devices.h" 36 #include "net/net.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/kvm.h" 41 #include "hw/boards.h" 42 #include "hw/loader.h" 43 #include "exec/address-spaces.h" 44 #include "qemu/bitops.h" 45 #include "qemu/error-report.h" 46 #include "hw/pci-host/gpex.h" 47 #include "hw/arm/virt-acpi-build.h" 48 #include "hw/arm/sysbus-fdt.h" 49 #include "hw/platform-bus.h" 50 #include "hw/arm/fdt.h" 51 #include "hw/intc/arm_gic_common.h" 52 #include "kvm_arm.h" 53 #include "hw/smbios/smbios.h" 54 #include "qapi/visitor.h" 55 #include "standard-headers/linux/input.h" 56 57 /* Number of external interrupt lines to configure the GIC with */ 58 #define NUM_IRQS 256 59 60 #define PLATFORM_BUS_NUM_IRQS 64 61 62 static ARMPlatformBusSystemParams platform_bus_params; 63 64 typedef struct VirtBoardInfo { 65 struct arm_boot_info bootinfo; 66 const char *cpu_model; 67 const MemMapEntry *memmap; 68 const int *irqmap; 69 int smp_cpus; 70 void *fdt; 71 int fdt_size; 72 uint32_t clock_phandle; 73 uint32_t gic_phandle; 74 uint32_t v2m_phandle; 75 } VirtBoardInfo; 76 77 typedef struct { 78 MachineClass parent; 79 VirtBoardInfo *daughterboard; 80 } VirtMachineClass; 81 82 typedef struct { 83 MachineState parent; 84 bool secure; 85 bool highmem; 86 int32_t gic_version; 87 } VirtMachineState; 88 89 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 90 #define VIRT_MACHINE(obj) \ 91 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 92 #define VIRT_MACHINE_GET_CLASS(obj) \ 93 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 94 #define VIRT_MACHINE_CLASS(klass) \ 95 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 96 97 /* Addresses and sizes of our components. 98 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 99 * 128MB..256MB is used for miscellaneous device I/O. 100 * 256MB..1GB is reserved for possible future PCI support (ie where the 101 * PCI memory window will go if we add a PCI host controller). 102 * 1GB and up is RAM (which may happily spill over into the 103 * high memory region beyond 4GB). 104 * This represents a compromise between how much RAM can be given to 105 * a 32 bit VM and leaving space for expansion and in particular for PCI. 106 * Note that devices should generally be placed at multiples of 0x10000, 107 * to accommodate guests using 64K pages. 108 */ 109 static const MemMapEntry a15memmap[] = { 110 /* Space up to 0x8000000 is reserved for a boot ROM */ 111 [VIRT_FLASH] = { 0, 0x08000000 }, 112 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 113 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 114 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 115 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 116 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 117 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 118 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 119 /* This redistributor space allows up to 2*64kB*123 CPUs */ 120 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 121 [VIRT_UART] = { 0x09000000, 0x00001000 }, 122 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 123 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 124 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 125 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 126 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 127 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 128 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 129 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 130 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 131 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 132 /* Second PCIe window, 512GB wide at the 512GB boundary */ 133 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 134 }; 135 136 static const int a15irqmap[] = { 137 [VIRT_UART] = 1, 138 [VIRT_RTC] = 2, 139 [VIRT_PCIE] = 3, /* ... to 6 */ 140 [VIRT_GPIO] = 7, 141 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 142 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 143 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 144 }; 145 146 static VirtBoardInfo machines[] = { 147 { 148 .cpu_model = "cortex-a15", 149 .memmap = a15memmap, 150 .irqmap = a15irqmap, 151 }, 152 { 153 .cpu_model = "cortex-a53", 154 .memmap = a15memmap, 155 .irqmap = a15irqmap, 156 }, 157 { 158 .cpu_model = "cortex-a57", 159 .memmap = a15memmap, 160 .irqmap = a15irqmap, 161 }, 162 { 163 .cpu_model = "host", 164 .memmap = a15memmap, 165 .irqmap = a15irqmap, 166 }, 167 }; 168 169 static VirtBoardInfo *find_machine_info(const char *cpu) 170 { 171 int i; 172 173 for (i = 0; i < ARRAY_SIZE(machines); i++) { 174 if (strcmp(cpu, machines[i].cpu_model) == 0) { 175 return &machines[i]; 176 } 177 } 178 return NULL; 179 } 180 181 static void create_fdt(VirtBoardInfo *vbi) 182 { 183 void *fdt = create_device_tree(&vbi->fdt_size); 184 185 if (!fdt) { 186 error_report("create_device_tree() failed"); 187 exit(1); 188 } 189 190 vbi->fdt = fdt; 191 192 /* Header */ 193 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 194 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 195 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 196 197 /* 198 * /chosen and /memory nodes must exist for load_dtb 199 * to fill in necessary properties later 200 */ 201 qemu_fdt_add_subnode(fdt, "/chosen"); 202 qemu_fdt_add_subnode(fdt, "/memory"); 203 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 204 205 /* Clock node, for the benefit of the UART. The kernel device tree 206 * binding documentation claims the PL011 node clock properties are 207 * optional but in practice if you omit them the kernel refuses to 208 * probe for the device. 209 */ 210 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 211 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 212 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 213 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 214 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 216 "clk24mhz"); 217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 218 219 } 220 221 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 222 { 223 uint32_t cpu_suspend_fn; 224 uint32_t cpu_off_fn; 225 uint32_t cpu_on_fn; 226 uint32_t migrate_fn; 227 void *fdt = vbi->fdt; 228 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 229 230 qemu_fdt_add_subnode(fdt, "/psci"); 231 if (armcpu->psci_version == 2) { 232 const char comp[] = "arm,psci-0.2\0arm,psci"; 233 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 234 235 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 236 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 237 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 238 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 239 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 240 } else { 241 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 242 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 243 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 244 } 245 } else { 246 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 247 248 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 249 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 250 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 251 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 252 } 253 254 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 255 * to the instruction that should be used to invoke PSCI functions. 256 * However, the device tree binding uses 'method' instead, so that is 257 * what we should use here. 258 */ 259 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 260 261 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 262 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 263 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 264 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 265 } 266 267 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 268 { 269 /* Note that on A15 h/w these interrupts are level-triggered, 270 * but for the GIC implementation provided by both QEMU and KVM 271 * they are edge-triggered. 272 */ 273 ARMCPU *armcpu; 274 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 275 276 if (gictype == 2) { 277 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 278 GIC_FDT_IRQ_PPI_CPU_WIDTH, 279 (1 << vbi->smp_cpus) - 1); 280 } 281 282 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 283 284 armcpu = ARM_CPU(qemu_get_cpu(0)); 285 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 286 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 287 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 288 compat, sizeof(compat)); 289 } else { 290 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 291 "arm,armv7-timer"); 292 } 293 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 294 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 295 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 298 } 299 300 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 301 { 302 int cpu; 303 int addr_cells = 1; 304 305 /* 306 * From Documentation/devicetree/bindings/arm/cpus.txt 307 * On ARM v8 64-bit systems value should be set to 2, 308 * that corresponds to the MPIDR_EL1 register size. 309 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 310 * in the system, #address-cells can be set to 1, since 311 * MPIDR_EL1[63:32] bits are not used for CPUs 312 * identification. 313 * 314 * Here we actually don't know whether our system is 32- or 64-bit one. 315 * The simplest way to go is to examine affinity IDs of all our CPUs. If 316 * at least one of them has Aff3 populated, we set #address-cells to 2. 317 */ 318 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 319 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 320 321 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 322 addr_cells = 2; 323 break; 324 } 325 } 326 327 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 328 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 329 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 330 331 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 332 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 333 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 334 335 qemu_fdt_add_subnode(vbi->fdt, nodename); 336 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 337 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 338 armcpu->dtb_compatible); 339 340 if (vbi->smp_cpus > 1) { 341 qemu_fdt_setprop_string(vbi->fdt, nodename, 342 "enable-method", "psci"); 343 } 344 345 if (addr_cells == 2) { 346 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 347 armcpu->mp_affinity); 348 } else { 349 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 350 armcpu->mp_affinity); 351 } 352 353 g_free(nodename); 354 } 355 } 356 357 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 358 { 359 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 360 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 361 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 362 "arm,gic-v2m-frame"); 363 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 364 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 365 2, vbi->memmap[VIRT_GIC_V2M].base, 366 2, vbi->memmap[VIRT_GIC_V2M].size); 367 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 368 } 369 370 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 371 { 372 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 373 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 374 375 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 376 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 377 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 378 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 379 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 380 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 381 if (type == 3) { 382 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 383 "arm,gic-v3"); 384 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 385 2, vbi->memmap[VIRT_GIC_DIST].base, 386 2, vbi->memmap[VIRT_GIC_DIST].size, 387 2, vbi->memmap[VIRT_GIC_REDIST].base, 388 2, vbi->memmap[VIRT_GIC_REDIST].size); 389 } else { 390 /* 'cortex-a15-gic' means 'GIC v2' */ 391 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 392 "arm,cortex-a15-gic"); 393 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 394 2, vbi->memmap[VIRT_GIC_DIST].base, 395 2, vbi->memmap[VIRT_GIC_DIST].size, 396 2, vbi->memmap[VIRT_GIC_CPU].base, 397 2, vbi->memmap[VIRT_GIC_CPU].size); 398 } 399 400 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 401 } 402 403 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 404 { 405 int i; 406 int irq = vbi->irqmap[VIRT_GIC_V2M]; 407 DeviceState *dev; 408 409 dev = qdev_create(NULL, "arm-gicv2m"); 410 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 411 qdev_prop_set_uint32(dev, "base-spi", irq); 412 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 413 qdev_init_nofail(dev); 414 415 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 416 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 417 } 418 419 fdt_add_v2m_gic_node(vbi); 420 } 421 422 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 423 { 424 /* We create a standalone GIC */ 425 DeviceState *gicdev; 426 SysBusDevice *gicbusdev; 427 const char *gictype; 428 int i; 429 430 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 431 432 gicdev = qdev_create(NULL, gictype); 433 qdev_prop_set_uint32(gicdev, "revision", type); 434 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 435 /* Note that the num-irq property counts both internal and external 436 * interrupts; there are always 32 of the former (mandated by GIC spec). 437 */ 438 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 439 if (!kvm_irqchip_in_kernel()) { 440 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 441 } 442 qdev_init_nofail(gicdev); 443 gicbusdev = SYS_BUS_DEVICE(gicdev); 444 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 445 if (type == 3) { 446 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 447 } else { 448 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 449 } 450 451 /* Wire the outputs from each CPU's generic timer to the 452 * appropriate GIC PPI inputs, and the GIC's IRQ output to 453 * the CPU's IRQ input. 454 */ 455 for (i = 0; i < smp_cpus; i++) { 456 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 457 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 458 int irq; 459 /* Mapping from the output timer irq lines from the CPU to the 460 * GIC PPI inputs we use for the virt board. 461 */ 462 const int timer_irq[] = { 463 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 464 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 465 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 466 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 467 }; 468 469 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 470 qdev_connect_gpio_out(cpudev, irq, 471 qdev_get_gpio_in(gicdev, 472 ppibase + timer_irq[irq])); 473 } 474 475 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 476 sysbus_connect_irq(gicbusdev, i + smp_cpus, 477 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 478 } 479 480 for (i = 0; i < NUM_IRQS; i++) { 481 pic[i] = qdev_get_gpio_in(gicdev, i); 482 } 483 484 fdt_add_gic_node(vbi, type); 485 486 if (type == 2) { 487 create_v2m(vbi, pic); 488 } 489 } 490 491 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 492 { 493 char *nodename; 494 hwaddr base = vbi->memmap[VIRT_UART].base; 495 hwaddr size = vbi->memmap[VIRT_UART].size; 496 int irq = vbi->irqmap[VIRT_UART]; 497 const char compat[] = "arm,pl011\0arm,primecell"; 498 const char clocknames[] = "uartclk\0apb_pclk"; 499 500 sysbus_create_simple("pl011", base, pic[irq]); 501 502 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 503 qemu_fdt_add_subnode(vbi->fdt, nodename); 504 /* Note that we can't use setprop_string because of the embedded NUL */ 505 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 506 compat, sizeof(compat)); 507 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 508 2, base, 2, size); 509 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 510 GIC_FDT_IRQ_TYPE_SPI, irq, 511 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 512 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 513 vbi->clock_phandle, vbi->clock_phandle); 514 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 515 clocknames, sizeof(clocknames)); 516 517 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 518 g_free(nodename); 519 } 520 521 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 522 { 523 char *nodename; 524 hwaddr base = vbi->memmap[VIRT_RTC].base; 525 hwaddr size = vbi->memmap[VIRT_RTC].size; 526 int irq = vbi->irqmap[VIRT_RTC]; 527 const char compat[] = "arm,pl031\0arm,primecell"; 528 529 sysbus_create_simple("pl031", base, pic[irq]); 530 531 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 532 qemu_fdt_add_subnode(vbi->fdt, nodename); 533 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 534 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 535 2, base, 2, size); 536 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 537 GIC_FDT_IRQ_TYPE_SPI, irq, 538 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 539 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 540 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 541 g_free(nodename); 542 } 543 544 static DeviceState *pl061_dev; 545 static void virt_powerdown_req(Notifier *n, void *opaque) 546 { 547 /* use gpio Pin 3 for power button event */ 548 qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1); 549 } 550 551 static Notifier virt_system_powerdown_notifier = { 552 .notify = virt_powerdown_req 553 }; 554 555 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 556 { 557 char *nodename; 558 hwaddr base = vbi->memmap[VIRT_GPIO].base; 559 hwaddr size = vbi->memmap[VIRT_GPIO].size; 560 int irq = vbi->irqmap[VIRT_GPIO]; 561 const char compat[] = "arm,pl061\0arm,primecell"; 562 563 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 564 565 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 566 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 567 qemu_fdt_add_subnode(vbi->fdt, nodename); 568 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 569 2, base, 2, size); 570 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 571 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 572 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 573 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 574 GIC_FDT_IRQ_TYPE_SPI, irq, 575 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 576 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 577 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 578 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 579 580 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 581 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 582 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 583 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 584 585 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 586 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 587 "label", "GPIO Key Poweroff"); 588 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 589 KEY_POWER); 590 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 591 "gpios", phandle, 3, 0); 592 593 /* connect powerdown request */ 594 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 595 596 g_free(nodename); 597 } 598 599 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 600 { 601 int i; 602 hwaddr size = vbi->memmap[VIRT_MMIO].size; 603 604 /* We create the transports in forwards order. Since qbus_realize() 605 * prepends (not appends) new child buses, the incrementing loop below will 606 * create a list of virtio-mmio buses with decreasing base addresses. 607 * 608 * When a -device option is processed from the command line, 609 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 610 * order. The upshot is that -device options in increasing command line 611 * order are mapped to virtio-mmio buses with decreasing base addresses. 612 * 613 * When this code was originally written, that arrangement ensured that the 614 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 615 * the first -device on the command line. (The end-to-end order is a 616 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 617 * guest kernel's name-to-address assignment strategy.) 618 * 619 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 620 * the message, if not necessarily the code, of commit 70161ff336. 621 * Therefore the loop now establishes the inverse of the original intent. 622 * 623 * Unfortunately, we can't counteract the kernel change by reversing the 624 * loop; it would break existing command lines. 625 * 626 * In any case, the kernel makes no guarantee about the stability of 627 * enumeration order of virtio devices (as demonstrated by it changing 628 * between kernel versions). For reliable and stable identification 629 * of disks users must use UUIDs or similar mechanisms. 630 */ 631 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 632 int irq = vbi->irqmap[VIRT_MMIO] + i; 633 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 634 635 sysbus_create_simple("virtio-mmio", base, pic[irq]); 636 } 637 638 /* We add dtb nodes in reverse order so that they appear in the finished 639 * device tree lowest address first. 640 * 641 * Note that this mapping is independent of the loop above. The previous 642 * loop influences virtio device to virtio transport assignment, whereas 643 * this loop controls how virtio transports are laid out in the dtb. 644 */ 645 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 646 char *nodename; 647 int irq = vbi->irqmap[VIRT_MMIO] + i; 648 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 649 650 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 651 qemu_fdt_add_subnode(vbi->fdt, nodename); 652 qemu_fdt_setprop_string(vbi->fdt, nodename, 653 "compatible", "virtio,mmio"); 654 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 655 2, base, 2, size); 656 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 657 GIC_FDT_IRQ_TYPE_SPI, irq, 658 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 659 g_free(nodename); 660 } 661 } 662 663 static void create_one_flash(const char *name, hwaddr flashbase, 664 hwaddr flashsize) 665 { 666 /* Create and map a single flash device. We use the same 667 * parameters as the flash devices on the Versatile Express board. 668 */ 669 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 670 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 671 const uint64_t sectorlength = 256 * 1024; 672 673 if (dinfo) { 674 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 675 &error_abort); 676 } 677 678 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 679 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 680 qdev_prop_set_uint8(dev, "width", 4); 681 qdev_prop_set_uint8(dev, "device-width", 2); 682 qdev_prop_set_bit(dev, "big-endian", false); 683 qdev_prop_set_uint16(dev, "id0", 0x89); 684 qdev_prop_set_uint16(dev, "id1", 0x18); 685 qdev_prop_set_uint16(dev, "id2", 0x00); 686 qdev_prop_set_uint16(dev, "id3", 0x00); 687 qdev_prop_set_string(dev, "name", name); 688 qdev_init_nofail(dev); 689 690 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 691 } 692 693 static void create_flash(const VirtBoardInfo *vbi) 694 { 695 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 696 * Any file passed via -bios goes in the first of these. 697 */ 698 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 699 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 700 char *nodename; 701 702 if (bios_name) { 703 char *fn; 704 int image_size; 705 706 if (drive_get(IF_PFLASH, 0, 0)) { 707 error_report("The contents of the first flash device may be " 708 "specified with -bios or with -drive if=pflash... " 709 "but you cannot use both options at once"); 710 exit(1); 711 } 712 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 713 if (!fn) { 714 error_report("Could not find ROM image '%s'", bios_name); 715 exit(1); 716 } 717 image_size = load_image_targphys(fn, flashbase, flashsize); 718 g_free(fn); 719 if (image_size < 0) { 720 error_report("Could not load ROM image '%s'", bios_name); 721 exit(1); 722 } 723 } 724 725 create_one_flash("virt.flash0", flashbase, flashsize); 726 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 727 728 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 729 qemu_fdt_add_subnode(vbi->fdt, nodename); 730 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 731 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 732 2, flashbase, 2, flashsize, 733 2, flashbase + flashsize, 2, flashsize); 734 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 735 g_free(nodename); 736 } 737 738 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 739 { 740 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 741 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 742 char *nodename; 743 744 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 745 746 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 747 qemu_fdt_add_subnode(vbi->fdt, nodename); 748 qemu_fdt_setprop_string(vbi->fdt, nodename, 749 "compatible", "qemu,fw-cfg-mmio"); 750 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 751 2, base, 2, size); 752 g_free(nodename); 753 } 754 755 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 756 int first_irq, const char *nodename) 757 { 758 int devfn, pin; 759 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 760 uint32_t *irq_map = full_irq_map; 761 762 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 763 for (pin = 0; pin < 4; pin++) { 764 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 765 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 766 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 767 int i; 768 769 uint32_t map[] = { 770 devfn << 8, 0, 0, /* devfn */ 771 pin + 1, /* PCI pin */ 772 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 773 774 /* Convert map to big endian */ 775 for (i = 0; i < 10; i++) { 776 irq_map[i] = cpu_to_be32(map[i]); 777 } 778 irq_map += 10; 779 } 780 } 781 782 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 783 full_irq_map, sizeof(full_irq_map)); 784 785 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 786 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 787 0x7 /* PCI irq */); 788 } 789 790 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 791 bool use_highmem) 792 { 793 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 794 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 795 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 796 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 797 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 798 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 799 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 800 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 801 hwaddr base = base_mmio; 802 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 803 int irq = vbi->irqmap[VIRT_PCIE]; 804 MemoryRegion *mmio_alias; 805 MemoryRegion *mmio_reg; 806 MemoryRegion *ecam_alias; 807 MemoryRegion *ecam_reg; 808 DeviceState *dev; 809 char *nodename; 810 int i; 811 812 dev = qdev_create(NULL, TYPE_GPEX_HOST); 813 qdev_init_nofail(dev); 814 815 /* Map only the first size_ecam bytes of ECAM space */ 816 ecam_alias = g_new0(MemoryRegion, 1); 817 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 818 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 819 ecam_reg, 0, size_ecam); 820 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 821 822 /* Map the MMIO window into system address space so as to expose 823 * the section of PCI MMIO space which starts at the same base address 824 * (ie 1:1 mapping for that part of PCI MMIO space visible through 825 * the window). 826 */ 827 mmio_alias = g_new0(MemoryRegion, 1); 828 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 829 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 830 mmio_reg, base_mmio, size_mmio); 831 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 832 833 if (use_highmem) { 834 /* Map high MMIO space */ 835 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 836 837 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 838 mmio_reg, base_mmio_high, size_mmio_high); 839 memory_region_add_subregion(get_system_memory(), base_mmio_high, 840 high_mmio_alias); 841 } 842 843 /* Map IO port space */ 844 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 845 846 for (i = 0; i < GPEX_NUM_IRQS; i++) { 847 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 848 } 849 850 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 851 qemu_fdt_add_subnode(vbi->fdt, nodename); 852 qemu_fdt_setprop_string(vbi->fdt, nodename, 853 "compatible", "pci-host-ecam-generic"); 854 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 855 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 856 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 857 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 858 nr_pcie_buses - 1); 859 860 if (vbi->v2m_phandle) { 861 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 862 vbi->v2m_phandle); 863 } 864 865 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 866 2, base_ecam, 2, size_ecam); 867 868 if (use_highmem) { 869 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 870 1, FDT_PCI_RANGE_IOPORT, 2, 0, 871 2, base_pio, 2, size_pio, 872 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 873 2, base_mmio, 2, size_mmio, 874 1, FDT_PCI_RANGE_MMIO_64BIT, 875 2, base_mmio_high, 876 2, base_mmio_high, 2, size_mmio_high); 877 } else { 878 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 879 1, FDT_PCI_RANGE_IOPORT, 2, 0, 880 2, base_pio, 2, size_pio, 881 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 882 2, base_mmio, 2, size_mmio); 883 } 884 885 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 886 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 887 888 g_free(nodename); 889 } 890 891 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 892 { 893 DeviceState *dev; 894 SysBusDevice *s; 895 int i; 896 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 897 MemoryRegion *sysmem = get_system_memory(); 898 899 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 900 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 901 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 902 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 903 904 fdt_params->system_params = &platform_bus_params; 905 fdt_params->binfo = &vbi->bootinfo; 906 fdt_params->intc = "/intc"; 907 /* 908 * register a machine init done notifier that creates the device tree 909 * nodes of the platform bus and its children dynamic sysbus devices 910 */ 911 arm_register_platform_bus_fdt_creator(fdt_params); 912 913 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 914 dev->id = TYPE_PLATFORM_BUS_DEVICE; 915 qdev_prop_set_uint32(dev, "num_irqs", 916 platform_bus_params.platform_bus_num_irqs); 917 qdev_prop_set_uint32(dev, "mmio_size", 918 platform_bus_params.platform_bus_size); 919 qdev_init_nofail(dev); 920 s = SYS_BUS_DEVICE(dev); 921 922 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 923 int irqn = platform_bus_params.platform_bus_first_irq + i; 924 sysbus_connect_irq(s, i, pic[irqn]); 925 } 926 927 memory_region_add_subregion(sysmem, 928 platform_bus_params.platform_bus_base, 929 sysbus_mmio_get_region(s, 0)); 930 } 931 932 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 933 { 934 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 935 936 *fdt_size = board->fdt_size; 937 return board->fdt; 938 } 939 940 static void virt_build_smbios(VirtGuestInfo *guest_info) 941 { 942 FWCfgState *fw_cfg = guest_info->fw_cfg; 943 uint8_t *smbios_tables, *smbios_anchor; 944 size_t smbios_tables_len, smbios_anchor_len; 945 const char *product = "QEMU Virtual Machine"; 946 947 if (!fw_cfg) { 948 return; 949 } 950 951 if (kvm_enabled()) { 952 product = "KVM Virtual Machine"; 953 } 954 955 smbios_set_defaults("QEMU", product, 956 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 957 958 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 959 &smbios_anchor, &smbios_anchor_len); 960 961 if (smbios_anchor) { 962 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 963 smbios_tables, smbios_tables_len); 964 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 965 smbios_anchor, smbios_anchor_len); 966 } 967 } 968 969 static 970 void virt_guest_info_machine_done(Notifier *notifier, void *data) 971 { 972 VirtGuestInfoState *guest_info_state = container_of(notifier, 973 VirtGuestInfoState, machine_done); 974 virt_acpi_setup(&guest_info_state->info); 975 virt_build_smbios(&guest_info_state->info); 976 } 977 978 static void machvirt_init(MachineState *machine) 979 { 980 VirtMachineState *vms = VIRT_MACHINE(machine); 981 qemu_irq pic[NUM_IRQS]; 982 MemoryRegion *sysmem = get_system_memory(); 983 int gic_version = vms->gic_version; 984 int n, max_cpus; 985 MemoryRegion *ram = g_new(MemoryRegion, 1); 986 const char *cpu_model = machine->cpu_model; 987 VirtBoardInfo *vbi; 988 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 989 VirtGuestInfo *guest_info = &guest_info_state->info; 990 char **cpustr; 991 992 if (!cpu_model) { 993 cpu_model = "cortex-a15"; 994 } 995 996 /* We can probe only here because during property set 997 * KVM is not available yet 998 */ 999 if (!gic_version) { 1000 gic_version = kvm_arm_vgic_probe(); 1001 if (!gic_version) { 1002 error_report("Unable to determine GIC version supported by host"); 1003 error_printf("KVM acceleration is probably not supported\n"); 1004 exit(1); 1005 } 1006 } 1007 1008 /* Separate the actual CPU model name from any appended features */ 1009 cpustr = g_strsplit(cpu_model, ",", 2); 1010 1011 vbi = find_machine_info(cpustr[0]); 1012 1013 if (!vbi) { 1014 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1015 exit(1); 1016 } 1017 1018 /* The maximum number of CPUs depends on the GIC version, or on how 1019 * many redistributors we can fit into the memory map. 1020 */ 1021 if (gic_version == 3) { 1022 max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1023 } else { 1024 max_cpus = GIC_NCPU; 1025 } 1026 1027 if (smp_cpus > max_cpus) { 1028 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1029 "supported by machine 'mach-virt' (%d)", 1030 smp_cpus, max_cpus); 1031 exit(1); 1032 } 1033 1034 vbi->smp_cpus = smp_cpus; 1035 1036 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1037 error_report("mach-virt: cannot model more than 30GB RAM"); 1038 exit(1); 1039 } 1040 1041 create_fdt(vbi); 1042 1043 for (n = 0; n < smp_cpus; n++) { 1044 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1045 CPUClass *cc = CPU_CLASS(oc); 1046 Object *cpuobj; 1047 Error *err = NULL; 1048 char *cpuopts = g_strdup(cpustr[1]); 1049 1050 if (!oc) { 1051 error_report("Unable to find CPU definition"); 1052 exit(1); 1053 } 1054 cpuobj = object_new(object_class_get_name(oc)); 1055 1056 /* Handle any CPU options specified by the user */ 1057 cc->parse_features(CPU(cpuobj), cpuopts, &err); 1058 g_free(cpuopts); 1059 if (err) { 1060 error_report_err(err); 1061 exit(1); 1062 } 1063 1064 if (!vms->secure) { 1065 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1066 } 1067 1068 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 1069 NULL); 1070 1071 /* Secondary CPUs start in PSCI powered-down state */ 1072 if (n > 0) { 1073 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 1074 } 1075 1076 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1077 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1078 "reset-cbar", &error_abort); 1079 } 1080 1081 object_property_set_bool(cpuobj, true, "realized", NULL); 1082 } 1083 g_strfreev(cpustr); 1084 fdt_add_timer_nodes(vbi, gic_version); 1085 fdt_add_cpu_nodes(vbi); 1086 fdt_add_psci_node(vbi); 1087 1088 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1089 machine->ram_size); 1090 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1091 1092 create_flash(vbi); 1093 1094 create_gic(vbi, pic, gic_version, vms->secure); 1095 1096 create_uart(vbi, pic); 1097 1098 create_rtc(vbi, pic); 1099 1100 create_pcie(vbi, pic, vms->highmem); 1101 1102 create_gpio(vbi, pic); 1103 1104 /* Create mmio transports, so the user can create virtio backends 1105 * (which will be automatically plugged in to the transports). If 1106 * no backend is created the transport will just sit harmlessly idle. 1107 */ 1108 create_virtio_devices(vbi, pic); 1109 1110 create_fw_cfg(vbi, &address_space_memory); 1111 rom_set_fw(fw_cfg_find()); 1112 1113 guest_info->smp_cpus = smp_cpus; 1114 guest_info->fw_cfg = fw_cfg_find(); 1115 guest_info->memmap = vbi->memmap; 1116 guest_info->irqmap = vbi->irqmap; 1117 guest_info->use_highmem = vms->highmem; 1118 guest_info->gic_version = gic_version; 1119 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1120 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1121 1122 vbi->bootinfo.ram_size = machine->ram_size; 1123 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1124 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1125 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1126 vbi->bootinfo.nb_cpus = smp_cpus; 1127 vbi->bootinfo.board_id = -1; 1128 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1129 vbi->bootinfo.get_dtb = machvirt_dtb; 1130 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1131 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1132 1133 /* 1134 * arm_load_kernel machine init done notifier registration must 1135 * happen before the platform_bus_create call. In this latter, 1136 * another notifier is registered which adds platform bus nodes. 1137 * Notifiers are executed in registration reverse order. 1138 */ 1139 create_platform_bus(vbi, pic); 1140 } 1141 1142 static bool virt_get_secure(Object *obj, Error **errp) 1143 { 1144 VirtMachineState *vms = VIRT_MACHINE(obj); 1145 1146 return vms->secure; 1147 } 1148 1149 static void virt_set_secure(Object *obj, bool value, Error **errp) 1150 { 1151 VirtMachineState *vms = VIRT_MACHINE(obj); 1152 1153 vms->secure = value; 1154 } 1155 1156 static bool virt_get_highmem(Object *obj, Error **errp) 1157 { 1158 VirtMachineState *vms = VIRT_MACHINE(obj); 1159 1160 return vms->highmem; 1161 } 1162 1163 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1164 { 1165 VirtMachineState *vms = VIRT_MACHINE(obj); 1166 1167 vms->highmem = value; 1168 } 1169 1170 static char *virt_get_gic_version(Object *obj, Error **errp) 1171 { 1172 VirtMachineState *vms = VIRT_MACHINE(obj); 1173 const char *val = vms->gic_version == 3 ? "3" : "2"; 1174 1175 return g_strdup(val); 1176 } 1177 1178 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1179 { 1180 VirtMachineState *vms = VIRT_MACHINE(obj); 1181 1182 if (!strcmp(value, "3")) { 1183 vms->gic_version = 3; 1184 } else if (!strcmp(value, "2")) { 1185 vms->gic_version = 2; 1186 } else if (!strcmp(value, "host")) { 1187 vms->gic_version = 0; /* Will probe later */ 1188 } else { 1189 error_report("Invalid gic-version option value"); 1190 error_printf("Allowed gic-version values are: 3, 2, host\n"); 1191 exit(1); 1192 } 1193 } 1194 1195 static void virt_instance_init(Object *obj) 1196 { 1197 VirtMachineState *vms = VIRT_MACHINE(obj); 1198 1199 /* EL3 is disabled by default on virt: this makes us consistent 1200 * between KVM and TCG for this board, and it also allows us to 1201 * boot UEFI blobs which assume no TrustZone support. 1202 */ 1203 vms->secure = false; 1204 object_property_add_bool(obj, "secure", virt_get_secure, 1205 virt_set_secure, NULL); 1206 object_property_set_description(obj, "secure", 1207 "Set on/off to enable/disable the ARM " 1208 "Security Extensions (TrustZone)", 1209 NULL); 1210 1211 /* High memory is enabled by default */ 1212 vms->highmem = true; 1213 object_property_add_bool(obj, "highmem", virt_get_highmem, 1214 virt_set_highmem, NULL); 1215 object_property_set_description(obj, "highmem", 1216 "Set on/off to enable/disable using " 1217 "physical address space above 32 bits", 1218 NULL); 1219 /* Default GIC type is v2 */ 1220 vms->gic_version = 2; 1221 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1222 virt_set_gic_version, NULL); 1223 object_property_set_description(obj, "gic-version", 1224 "Set GIC version. " 1225 "Valid values are 2, 3 and host", NULL); 1226 } 1227 1228 static void virt_class_init(ObjectClass *oc, void *data) 1229 { 1230 MachineClass *mc = MACHINE_CLASS(oc); 1231 1232 mc->desc = "ARM Virtual Machine", 1233 mc->init = machvirt_init; 1234 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1235 * it later in machvirt_init, where we have more information about the 1236 * configuration of the particular instance. 1237 */ 1238 mc->max_cpus = MAX_CPUMASK_BITS; 1239 mc->has_dynamic_sysbus = true; 1240 mc->block_default_type = IF_VIRTIO; 1241 mc->no_cdrom = 1; 1242 mc->pci_allow_0_address = true; 1243 } 1244 1245 static const TypeInfo machvirt_info = { 1246 .name = TYPE_VIRT_MACHINE, 1247 .parent = TYPE_MACHINE, 1248 .instance_size = sizeof(VirtMachineState), 1249 .instance_init = virt_instance_init, 1250 .class_size = sizeof(VirtMachineClass), 1251 .class_init = virt_class_init, 1252 }; 1253 1254 static void machvirt_machine_init(void) 1255 { 1256 type_register_static(&machvirt_info); 1257 } 1258 1259 machine_init(machvirt_machine_init); 1260