xref: /openbmc/qemu/hw/arm/virt.c (revision ac12b601)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/tpm.h"
51 #include "sysemu/kvm.h"
52 #include "hw/loader.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/virtio/virtio-pci.h"
58 #include "hw/arm/sysbus-fdt.h"
59 #include "hw/platform-bus.h"
60 #include "hw/qdev-properties.h"
61 #include "hw/arm/fdt.h"
62 #include "hw/intc/arm_gic.h"
63 #include "hw/intc/arm_gicv3_common.h"
64 #include "hw/irq.h"
65 #include "kvm_arm.h"
66 #include "hw/firmware/smbios.h"
67 #include "qapi/visitor.h"
68 #include "qapi/qapi-visit-common.h"
69 #include "standard-headers/linux/input.h"
70 #include "hw/arm/smmuv3.h"
71 #include "hw/acpi/acpi.h"
72 #include "target/arm/internals.h"
73 #include "hw/mem/pc-dimm.h"
74 #include "hw/mem/nvdimm.h"
75 #include "hw/acpi/generic_event_device.h"
76 #include "hw/virtio/virtio-iommu.h"
77 #include "hw/char/pl011.h"
78 #include "qemu/guest-random.h"
79 
80 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
81     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
82                                                     void *data) \
83     { \
84         MachineClass *mc = MACHINE_CLASS(oc); \
85         virt_machine_##major##_##minor##_options(mc); \
86         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
87         if (latest) { \
88             mc->alias = "virt"; \
89         } \
90     } \
91     static const TypeInfo machvirt_##major##_##minor##_info = { \
92         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
93         .parent = TYPE_VIRT_MACHINE, \
94         .class_init = virt_##major##_##minor##_class_init, \
95     }; \
96     static void machvirt_machine_##major##_##minor##_init(void) \
97     { \
98         type_register_static(&machvirt_##major##_##minor##_info); \
99     } \
100     type_init(machvirt_machine_##major##_##minor##_init);
101 
102 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
103     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
104 #define DEFINE_VIRT_MACHINE(major, minor) \
105     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
106 
107 
108 /* Number of external interrupt lines to configure the GIC with */
109 #define NUM_IRQS 256
110 
111 #define PLATFORM_BUS_NUM_IRQS 64
112 
113 /* Legacy RAM limit in GB (< version 4.0) */
114 #define LEGACY_RAMLIMIT_GB 255
115 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
116 
117 /* Addresses and sizes of our components.
118  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
119  * 128MB..256MB is used for miscellaneous device I/O.
120  * 256MB..1GB is reserved for possible future PCI support (ie where the
121  * PCI memory window will go if we add a PCI host controller).
122  * 1GB and up is RAM (which may happily spill over into the
123  * high memory region beyond 4GB).
124  * This represents a compromise between how much RAM can be given to
125  * a 32 bit VM and leaving space for expansion and in particular for PCI.
126  * Note that devices should generally be placed at multiples of 0x10000,
127  * to accommodate guests using 64K pages.
128  */
129 static const MemMapEntry base_memmap[] = {
130     /* Space up to 0x8000000 is reserved for a boot ROM */
131     [VIRT_FLASH] =              {          0, 0x08000000 },
132     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
133     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
134     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
135     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
136     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
137     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
138     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
139     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
140     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
141     /* This redistributor space allows up to 2*64kB*123 CPUs */
142     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
143     [VIRT_UART] =               { 0x09000000, 0x00001000 },
144     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
145     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
146     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
147     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
148     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
149     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
150     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
151     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
152     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
153     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
154     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
155     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
156     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
157     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
158     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
159     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
160     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
161     /* Actual RAM size depends on initial RAM and device memory settings */
162     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
163 };
164 
165 /*
166  * Highmem IO Regions: This memory map is floating, located after the RAM.
167  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
168  * top of the RAM, so that its base get the same alignment as the size,
169  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
170  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
171  * Note the extended_memmap is sized so that it eventually also includes the
172  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
173  * index of base_memmap).
174  */
175 static MemMapEntry extended_memmap[] = {
176     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
177     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
178     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
179     /* Second PCIe window */
180     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
181 };
182 
183 static const int a15irqmap[] = {
184     [VIRT_UART] = 1,
185     [VIRT_RTC] = 2,
186     [VIRT_PCIE] = 3, /* ... to 6 */
187     [VIRT_GPIO] = 7,
188     [VIRT_SECURE_UART] = 8,
189     [VIRT_ACPI_GED] = 9,
190     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
191     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
192     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
193     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
194 };
195 
196 static const char *valid_cpus[] = {
197     ARM_CPU_TYPE_NAME("cortex-a7"),
198     ARM_CPU_TYPE_NAME("cortex-a15"),
199     ARM_CPU_TYPE_NAME("cortex-a53"),
200     ARM_CPU_TYPE_NAME("cortex-a57"),
201     ARM_CPU_TYPE_NAME("cortex-a72"),
202     ARM_CPU_TYPE_NAME("host"),
203     ARM_CPU_TYPE_NAME("max"),
204 };
205 
206 static bool cpu_type_valid(const char *cpu)
207 {
208     int i;
209 
210     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
211         if (strcmp(cpu, valid_cpus[i]) == 0) {
212             return true;
213         }
214     }
215     return false;
216 }
217 
218 static void create_kaslr_seed(MachineState *ms, const char *node)
219 {
220     uint64_t seed;
221 
222     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
223         return;
224     }
225     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
226 }
227 
228 static void create_fdt(VirtMachineState *vms)
229 {
230     MachineState *ms = MACHINE(vms);
231     int nb_numa_nodes = ms->numa_state->num_nodes;
232     void *fdt = create_device_tree(&vms->fdt_size);
233 
234     if (!fdt) {
235         error_report("create_device_tree() failed");
236         exit(1);
237     }
238 
239     ms->fdt = fdt;
240 
241     /* Header */
242     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
243     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
244     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
245 
246     /* /chosen must exist for load_dtb to fill in necessary properties later */
247     qemu_fdt_add_subnode(fdt, "/chosen");
248     create_kaslr_seed(ms, "/chosen");
249 
250     if (vms->secure) {
251         qemu_fdt_add_subnode(fdt, "/secure-chosen");
252         create_kaslr_seed(ms, "/secure-chosen");
253     }
254 
255     /* Clock node, for the benefit of the UART. The kernel device tree
256      * binding documentation claims the PL011 node clock properties are
257      * optional but in practice if you omit them the kernel refuses to
258      * probe for the device.
259      */
260     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
261     qemu_fdt_add_subnode(fdt, "/apb-pclk");
262     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
263     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
264     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
265     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
266                                 "clk24mhz");
267     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
268 
269     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
270         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
271         uint32_t *matrix = g_malloc0(size);
272         int idx, i, j;
273 
274         for (i = 0; i < nb_numa_nodes; i++) {
275             for (j = 0; j < nb_numa_nodes; j++) {
276                 idx = (i * nb_numa_nodes + j) * 3;
277                 matrix[idx + 0] = cpu_to_be32(i);
278                 matrix[idx + 1] = cpu_to_be32(j);
279                 matrix[idx + 2] =
280                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
281             }
282         }
283 
284         qemu_fdt_add_subnode(fdt, "/distance-map");
285         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
286                                 "numa-distance-map-v1");
287         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
288                          matrix, size);
289         g_free(matrix);
290     }
291 }
292 
293 static void fdt_add_timer_nodes(const VirtMachineState *vms)
294 {
295     /* On real hardware these interrupts are level-triggered.
296      * On KVM they were edge-triggered before host kernel version 4.4,
297      * and level-triggered afterwards.
298      * On emulated QEMU they are level-triggered.
299      *
300      * Getting the DTB info about them wrong is awkward for some
301      * guest kernels:
302      *  pre-4.8 ignore the DT and leave the interrupt configured
303      *   with whatever the GIC reset value (or the bootloader) left it at
304      *  4.8 before rc6 honour the incorrect data by programming it back
305      *   into the GIC, causing problems
306      *  4.8rc6 and later ignore the DT and always write "level triggered"
307      *   into the GIC
308      *
309      * For backwards-compatibility, virt-2.8 and earlier will continue
310      * to say these are edge-triggered, but later machines will report
311      * the correct information.
312      */
313     ARMCPU *armcpu;
314     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
315     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
316     MachineState *ms = MACHINE(vms);
317 
318     if (vmc->claim_edge_triggered_timers) {
319         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
320     }
321 
322     if (vms->gic_version == VIRT_GIC_VERSION_2) {
323         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
324                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
325                              (1 << MACHINE(vms)->smp.cpus) - 1);
326     }
327 
328     qemu_fdt_add_subnode(ms->fdt, "/timer");
329 
330     armcpu = ARM_CPU(qemu_get_cpu(0));
331     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
332         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
333         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
334                          compat, sizeof(compat));
335     } else {
336         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
337                                 "arm,armv7-timer");
338     }
339     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
340     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
341                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
342                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
343                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
344                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
345 }
346 
347 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
348 {
349     int cpu;
350     int addr_cells = 1;
351     const MachineState *ms = MACHINE(vms);
352     int smp_cpus = ms->smp.cpus;
353 
354     /*
355      * From Documentation/devicetree/bindings/arm/cpus.txt
356      *  On ARM v8 64-bit systems value should be set to 2,
357      *  that corresponds to the MPIDR_EL1 register size.
358      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
359      *  in the system, #address-cells can be set to 1, since
360      *  MPIDR_EL1[63:32] bits are not used for CPUs
361      *  identification.
362      *
363      *  Here we actually don't know whether our system is 32- or 64-bit one.
364      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
365      *  at least one of them has Aff3 populated, we set #address-cells to 2.
366      */
367     for (cpu = 0; cpu < smp_cpus; cpu++) {
368         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
369 
370         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
371             addr_cells = 2;
372             break;
373         }
374     }
375 
376     qemu_fdt_add_subnode(ms->fdt, "/cpus");
377     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
378     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
379 
380     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
381         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
382         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
383         CPUState *cs = CPU(armcpu);
384 
385         qemu_fdt_add_subnode(ms->fdt, nodename);
386         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
387         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
388                                     armcpu->dtb_compatible);
389 
390         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
391             qemu_fdt_setprop_string(ms->fdt, nodename,
392                                         "enable-method", "psci");
393         }
394 
395         if (addr_cells == 2) {
396             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
397                                  armcpu->mp_affinity);
398         } else {
399             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
400                                   armcpu->mp_affinity);
401         }
402 
403         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
404             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
405                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
406         }
407 
408         g_free(nodename);
409     }
410 }
411 
412 static void fdt_add_its_gic_node(VirtMachineState *vms)
413 {
414     char *nodename;
415     MachineState *ms = MACHINE(vms);
416 
417     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
418     nodename = g_strdup_printf("/intc/its@%" PRIx64,
419                                vms->memmap[VIRT_GIC_ITS].base);
420     qemu_fdt_add_subnode(ms->fdt, nodename);
421     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
422                             "arm,gic-v3-its");
423     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
424     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
425                                  2, vms->memmap[VIRT_GIC_ITS].base,
426                                  2, vms->memmap[VIRT_GIC_ITS].size);
427     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
428     g_free(nodename);
429 }
430 
431 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
432 {
433     MachineState *ms = MACHINE(vms);
434     char *nodename;
435 
436     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
437                                vms->memmap[VIRT_GIC_V2M].base);
438     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
439     qemu_fdt_add_subnode(ms->fdt, nodename);
440     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
441                             "arm,gic-v2m-frame");
442     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
443     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
444                                  2, vms->memmap[VIRT_GIC_V2M].base,
445                                  2, vms->memmap[VIRT_GIC_V2M].size);
446     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
447     g_free(nodename);
448 }
449 
450 static void fdt_add_gic_node(VirtMachineState *vms)
451 {
452     MachineState *ms = MACHINE(vms);
453     char *nodename;
454 
455     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
456     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
457 
458     nodename = g_strdup_printf("/intc@%" PRIx64,
459                                vms->memmap[VIRT_GIC_DIST].base);
460     qemu_fdt_add_subnode(ms->fdt, nodename);
461     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
462     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
463     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
464     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
465     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
466     if (vms->gic_version == VIRT_GIC_VERSION_3) {
467         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
468 
469         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
470                                 "arm,gic-v3");
471 
472         qemu_fdt_setprop_cell(ms->fdt, nodename,
473                               "#redistributor-regions", nb_redist_regions);
474 
475         if (nb_redist_regions == 1) {
476             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
477                                          2, vms->memmap[VIRT_GIC_DIST].base,
478                                          2, vms->memmap[VIRT_GIC_DIST].size,
479                                          2, vms->memmap[VIRT_GIC_REDIST].base,
480                                          2, vms->memmap[VIRT_GIC_REDIST].size);
481         } else {
482             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
483                                  2, vms->memmap[VIRT_GIC_DIST].base,
484                                  2, vms->memmap[VIRT_GIC_DIST].size,
485                                  2, vms->memmap[VIRT_GIC_REDIST].base,
486                                  2, vms->memmap[VIRT_GIC_REDIST].size,
487                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
488                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
489         }
490 
491         if (vms->virt) {
492             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
493                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
494                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
495         }
496     } else {
497         /* 'cortex-a15-gic' means 'GIC v2' */
498         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
499                                 "arm,cortex-a15-gic");
500         if (!vms->virt) {
501             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
502                                          2, vms->memmap[VIRT_GIC_DIST].base,
503                                          2, vms->memmap[VIRT_GIC_DIST].size,
504                                          2, vms->memmap[VIRT_GIC_CPU].base,
505                                          2, vms->memmap[VIRT_GIC_CPU].size);
506         } else {
507             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
508                                          2, vms->memmap[VIRT_GIC_DIST].base,
509                                          2, vms->memmap[VIRT_GIC_DIST].size,
510                                          2, vms->memmap[VIRT_GIC_CPU].base,
511                                          2, vms->memmap[VIRT_GIC_CPU].size,
512                                          2, vms->memmap[VIRT_GIC_HYP].base,
513                                          2, vms->memmap[VIRT_GIC_HYP].size,
514                                          2, vms->memmap[VIRT_GIC_VCPU].base,
515                                          2, vms->memmap[VIRT_GIC_VCPU].size);
516             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
517                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
518                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
519         }
520     }
521 
522     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
523     g_free(nodename);
524 }
525 
526 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
527 {
528     ARMCPU *armcpu = ARM_CPU(first_cpu);
529     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
530     MachineState *ms = MACHINE(vms);
531 
532     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
533         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
534         return;
535     }
536 
537     if (vms->gic_version == VIRT_GIC_VERSION_2) {
538         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
539                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
540                              (1 << MACHINE(vms)->smp.cpus) - 1);
541     }
542 
543     qemu_fdt_add_subnode(ms->fdt, "/pmu");
544     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
545         const char compat[] = "arm,armv8-pmuv3";
546         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
547                          compat, sizeof(compat));
548         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
549                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
550     }
551 }
552 
553 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
554 {
555     DeviceState *dev;
556     MachineState *ms = MACHINE(vms);
557     int irq = vms->irqmap[VIRT_ACPI_GED];
558     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
559 
560     if (ms->ram_slots) {
561         event |= ACPI_GED_MEM_HOTPLUG_EVT;
562     }
563 
564     if (ms->nvdimms_state->is_enabled) {
565         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
566     }
567 
568     dev = qdev_new(TYPE_ACPI_GED);
569     qdev_prop_set_uint32(dev, "ged-event", event);
570 
571     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
572     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
573     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
574 
575     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
576 
577     return dev;
578 }
579 
580 static void create_its(VirtMachineState *vms)
581 {
582     const char *itsclass = its_class_name();
583     DeviceState *dev;
584 
585     if (!itsclass) {
586         /* Do nothing if not supported */
587         return;
588     }
589 
590     dev = qdev_new(itsclass);
591 
592     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
593                              &error_abort);
594     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
595     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
596 
597     fdt_add_its_gic_node(vms);
598     vms->msi_controller = VIRT_MSI_CTRL_ITS;
599 }
600 
601 static void create_v2m(VirtMachineState *vms)
602 {
603     int i;
604     int irq = vms->irqmap[VIRT_GIC_V2M];
605     DeviceState *dev;
606 
607     dev = qdev_new("arm-gicv2m");
608     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
609     qdev_prop_set_uint32(dev, "base-spi", irq);
610     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
611     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
612 
613     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
614         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
615                            qdev_get_gpio_in(vms->gic, irq + i));
616     }
617 
618     fdt_add_v2m_gic_node(vms);
619     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
620 }
621 
622 static void create_gic(VirtMachineState *vms)
623 {
624     MachineState *ms = MACHINE(vms);
625     /* We create a standalone GIC */
626     SysBusDevice *gicbusdev;
627     const char *gictype;
628     int type = vms->gic_version, i;
629     unsigned int smp_cpus = ms->smp.cpus;
630     uint32_t nb_redist_regions = 0;
631 
632     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
633 
634     vms->gic = qdev_new(gictype);
635     qdev_prop_set_uint32(vms->gic, "revision", type);
636     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
637     /* Note that the num-irq property counts both internal and external
638      * interrupts; there are always 32 of the former (mandated by GIC spec).
639      */
640     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
641     if (!kvm_irqchip_in_kernel()) {
642         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
643     }
644 
645     if (type == 3) {
646         uint32_t redist0_capacity =
647                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
648         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
649 
650         nb_redist_regions = virt_gicv3_redist_region_count(vms);
651 
652         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
653                              nb_redist_regions);
654         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
655 
656         if (nb_redist_regions == 2) {
657             uint32_t redist1_capacity =
658                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
659 
660             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
661                 MIN(smp_cpus - redist0_count, redist1_capacity));
662         }
663     } else {
664         if (!kvm_irqchip_in_kernel()) {
665             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
666                               vms->virt);
667         }
668     }
669     gicbusdev = SYS_BUS_DEVICE(vms->gic);
670     sysbus_realize_and_unref(gicbusdev, &error_fatal);
671     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
672     if (type == 3) {
673         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
674         if (nb_redist_regions == 2) {
675             sysbus_mmio_map(gicbusdev, 2,
676                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
677         }
678     } else {
679         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
680         if (vms->virt) {
681             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
682             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
683         }
684     }
685 
686     /* Wire the outputs from each CPU's generic timer and the GICv3
687      * maintenance interrupt signal to the appropriate GIC PPI inputs,
688      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
689      */
690     for (i = 0; i < smp_cpus; i++) {
691         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
692         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
693         int irq;
694         /* Mapping from the output timer irq lines from the CPU to the
695          * GIC PPI inputs we use for the virt board.
696          */
697         const int timer_irq[] = {
698             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
699             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
700             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
701             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
702         };
703 
704         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
705             qdev_connect_gpio_out(cpudev, irq,
706                                   qdev_get_gpio_in(vms->gic,
707                                                    ppibase + timer_irq[irq]));
708         }
709 
710         if (type == 3) {
711             qemu_irq irq = qdev_get_gpio_in(vms->gic,
712                                             ppibase + ARCH_GIC_MAINT_IRQ);
713             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
714                                         0, irq);
715         } else if (vms->virt) {
716             qemu_irq irq = qdev_get_gpio_in(vms->gic,
717                                             ppibase + ARCH_GIC_MAINT_IRQ);
718             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
719         }
720 
721         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
722                                     qdev_get_gpio_in(vms->gic, ppibase
723                                                      + VIRTUAL_PMU_IRQ));
724 
725         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
726         sysbus_connect_irq(gicbusdev, i + smp_cpus,
727                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
728         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
729                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
730         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
731                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
732     }
733 
734     fdt_add_gic_node(vms);
735 
736     if (type == 3 && vms->its) {
737         create_its(vms);
738     } else if (type == 2) {
739         create_v2m(vms);
740     }
741 }
742 
743 static void create_uart(const VirtMachineState *vms, int uart,
744                         MemoryRegion *mem, Chardev *chr)
745 {
746     char *nodename;
747     hwaddr base = vms->memmap[uart].base;
748     hwaddr size = vms->memmap[uart].size;
749     int irq = vms->irqmap[uart];
750     const char compat[] = "arm,pl011\0arm,primecell";
751     const char clocknames[] = "uartclk\0apb_pclk";
752     DeviceState *dev = qdev_new(TYPE_PL011);
753     SysBusDevice *s = SYS_BUS_DEVICE(dev);
754     MachineState *ms = MACHINE(vms);
755 
756     qdev_prop_set_chr(dev, "chardev", chr);
757     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
758     memory_region_add_subregion(mem, base,
759                                 sysbus_mmio_get_region(s, 0));
760     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
761 
762     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
763     qemu_fdt_add_subnode(ms->fdt, nodename);
764     /* Note that we can't use setprop_string because of the embedded NUL */
765     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
766                          compat, sizeof(compat));
767     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
768                                      2, base, 2, size);
769     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
770                                GIC_FDT_IRQ_TYPE_SPI, irq,
771                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
772     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
773                                vms->clock_phandle, vms->clock_phandle);
774     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
775                          clocknames, sizeof(clocknames));
776 
777     if (uart == VIRT_UART) {
778         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
779     } else {
780         /* Mark as not usable by the normal world */
781         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
782         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
783 
784         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
785                                 nodename);
786     }
787 
788     g_free(nodename);
789 }
790 
791 static void create_rtc(const VirtMachineState *vms)
792 {
793     char *nodename;
794     hwaddr base = vms->memmap[VIRT_RTC].base;
795     hwaddr size = vms->memmap[VIRT_RTC].size;
796     int irq = vms->irqmap[VIRT_RTC];
797     const char compat[] = "arm,pl031\0arm,primecell";
798     MachineState *ms = MACHINE(vms);
799 
800     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
801 
802     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
803     qemu_fdt_add_subnode(ms->fdt, nodename);
804     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
805     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
806                                  2, base, 2, size);
807     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
808                            GIC_FDT_IRQ_TYPE_SPI, irq,
809                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
810     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
811     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
812     g_free(nodename);
813 }
814 
815 static DeviceState *gpio_key_dev;
816 static void virt_powerdown_req(Notifier *n, void *opaque)
817 {
818     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
819 
820     if (s->acpi_dev) {
821         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
822     } else {
823         /* use gpio Pin 3 for power button event */
824         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
825     }
826 }
827 
828 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
829                              uint32_t phandle)
830 {
831     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
832                                         qdev_get_gpio_in(pl061_dev, 3));
833 
834     qemu_fdt_add_subnode(fdt, "/gpio-keys");
835     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
836     qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
837     qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
838 
839     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
840     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
841                             "label", "GPIO Key Poweroff");
842     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
843                           KEY_POWER);
844     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
845                            "gpios", phandle, 3, 0);
846 }
847 
848 #define SECURE_GPIO_POWEROFF 0
849 #define SECURE_GPIO_RESET    1
850 
851 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
852                                    uint32_t phandle)
853 {
854     DeviceState *gpio_pwr_dev;
855 
856     /* gpio-pwr */
857     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
858 
859     /* connect secure pl061 to gpio-pwr */
860     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
861                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
862     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
863                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
864 
865     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
866     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
867                             "gpio-poweroff");
868     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
869                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
870     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
871     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
872                             "okay");
873 
874     qemu_fdt_add_subnode(fdt, "/gpio-restart");
875     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
876                             "gpio-restart");
877     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
878                            "gpios", phandle, SECURE_GPIO_RESET, 0);
879     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
880     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
881                             "okay");
882 }
883 
884 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
885                                 MemoryRegion *mem)
886 {
887     char *nodename;
888     DeviceState *pl061_dev;
889     hwaddr base = vms->memmap[gpio].base;
890     hwaddr size = vms->memmap[gpio].size;
891     int irq = vms->irqmap[gpio];
892     const char compat[] = "arm,pl061\0arm,primecell";
893     SysBusDevice *s;
894     MachineState *ms = MACHINE(vms);
895 
896     pl061_dev = qdev_new("pl061");
897     s = SYS_BUS_DEVICE(pl061_dev);
898     sysbus_realize_and_unref(s, &error_fatal);
899     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
900     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
901 
902     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
903     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
904     qemu_fdt_add_subnode(ms->fdt, nodename);
905     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
906                                  2, base, 2, size);
907     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
908     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
909     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
910     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
911                            GIC_FDT_IRQ_TYPE_SPI, irq,
912                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
913     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
914     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
915     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
916 
917     if (gpio != VIRT_GPIO) {
918         /* Mark as not usable by the normal world */
919         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
920         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
921     }
922     g_free(nodename);
923 
924     /* Child gpio devices */
925     if (gpio == VIRT_GPIO) {
926         create_gpio_keys(ms->fdt, pl061_dev, phandle);
927     } else {
928         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
929     }
930 }
931 
932 static void create_virtio_devices(const VirtMachineState *vms)
933 {
934     int i;
935     hwaddr size = vms->memmap[VIRT_MMIO].size;
936     MachineState *ms = MACHINE(vms);
937 
938     /* We create the transports in forwards order. Since qbus_realize()
939      * prepends (not appends) new child buses, the incrementing loop below will
940      * create a list of virtio-mmio buses with decreasing base addresses.
941      *
942      * When a -device option is processed from the command line,
943      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
944      * order. The upshot is that -device options in increasing command line
945      * order are mapped to virtio-mmio buses with decreasing base addresses.
946      *
947      * When this code was originally written, that arrangement ensured that the
948      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
949      * the first -device on the command line. (The end-to-end order is a
950      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
951      * guest kernel's name-to-address assignment strategy.)
952      *
953      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
954      * the message, if not necessarily the code, of commit 70161ff336.
955      * Therefore the loop now establishes the inverse of the original intent.
956      *
957      * Unfortunately, we can't counteract the kernel change by reversing the
958      * loop; it would break existing command lines.
959      *
960      * In any case, the kernel makes no guarantee about the stability of
961      * enumeration order of virtio devices (as demonstrated by it changing
962      * between kernel versions). For reliable and stable identification
963      * of disks users must use UUIDs or similar mechanisms.
964      */
965     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
966         int irq = vms->irqmap[VIRT_MMIO] + i;
967         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
968 
969         sysbus_create_simple("virtio-mmio", base,
970                              qdev_get_gpio_in(vms->gic, irq));
971     }
972 
973     /* We add dtb nodes in reverse order so that they appear in the finished
974      * device tree lowest address first.
975      *
976      * Note that this mapping is independent of the loop above. The previous
977      * loop influences virtio device to virtio transport assignment, whereas
978      * this loop controls how virtio transports are laid out in the dtb.
979      */
980     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
981         char *nodename;
982         int irq = vms->irqmap[VIRT_MMIO] + i;
983         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
984 
985         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
986         qemu_fdt_add_subnode(ms->fdt, nodename);
987         qemu_fdt_setprop_string(ms->fdt, nodename,
988                                 "compatible", "virtio,mmio");
989         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
990                                      2, base, 2, size);
991         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
992                                GIC_FDT_IRQ_TYPE_SPI, irq,
993                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
994         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
995         g_free(nodename);
996     }
997 }
998 
999 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1000 
1001 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1002                                         const char *name,
1003                                         const char *alias_prop_name)
1004 {
1005     /*
1006      * Create a single flash device.  We use the same parameters as
1007      * the flash devices on the Versatile Express board.
1008      */
1009     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1010 
1011     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1012     qdev_prop_set_uint8(dev, "width", 4);
1013     qdev_prop_set_uint8(dev, "device-width", 2);
1014     qdev_prop_set_bit(dev, "big-endian", false);
1015     qdev_prop_set_uint16(dev, "id0", 0x89);
1016     qdev_prop_set_uint16(dev, "id1", 0x18);
1017     qdev_prop_set_uint16(dev, "id2", 0x00);
1018     qdev_prop_set_uint16(dev, "id3", 0x00);
1019     qdev_prop_set_string(dev, "name", name);
1020     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1021     object_property_add_alias(OBJECT(vms), alias_prop_name,
1022                               OBJECT(dev), "drive");
1023     return PFLASH_CFI01(dev);
1024 }
1025 
1026 static void virt_flash_create(VirtMachineState *vms)
1027 {
1028     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1029     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1030 }
1031 
1032 static void virt_flash_map1(PFlashCFI01 *flash,
1033                             hwaddr base, hwaddr size,
1034                             MemoryRegion *sysmem)
1035 {
1036     DeviceState *dev = DEVICE(flash);
1037 
1038     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1039     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1040     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1041     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1042 
1043     memory_region_add_subregion(sysmem, base,
1044                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1045                                                        0));
1046 }
1047 
1048 static void virt_flash_map(VirtMachineState *vms,
1049                            MemoryRegion *sysmem,
1050                            MemoryRegion *secure_sysmem)
1051 {
1052     /*
1053      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1054      * sysmem is the system memory space. secure_sysmem is the secure view
1055      * of the system, and the first flash device should be made visible only
1056      * there. The second flash device is visible to both secure and nonsecure.
1057      * If sysmem == secure_sysmem this means there is no separate Secure
1058      * address space and both flash devices are generally visible.
1059      */
1060     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1061     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1062 
1063     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1064                     secure_sysmem);
1065     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1066                     sysmem);
1067 }
1068 
1069 static void virt_flash_fdt(VirtMachineState *vms,
1070                            MemoryRegion *sysmem,
1071                            MemoryRegion *secure_sysmem)
1072 {
1073     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1074     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1075     MachineState *ms = MACHINE(vms);
1076     char *nodename;
1077 
1078     if (sysmem == secure_sysmem) {
1079         /* Report both flash devices as a single node in the DT */
1080         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1081         qemu_fdt_add_subnode(ms->fdt, nodename);
1082         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1083         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1084                                      2, flashbase, 2, flashsize,
1085                                      2, flashbase + flashsize, 2, flashsize);
1086         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1087         g_free(nodename);
1088     } else {
1089         /*
1090          * Report the devices as separate nodes so we can mark one as
1091          * only visible to the secure world.
1092          */
1093         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1094         qemu_fdt_add_subnode(ms->fdt, nodename);
1095         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1096         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1097                                      2, flashbase, 2, flashsize);
1098         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1099         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1100         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1101         g_free(nodename);
1102 
1103         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1104         qemu_fdt_add_subnode(ms->fdt, nodename);
1105         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1106         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1107                                      2, flashbase + flashsize, 2, flashsize);
1108         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1109         g_free(nodename);
1110     }
1111 }
1112 
1113 static bool virt_firmware_init(VirtMachineState *vms,
1114                                MemoryRegion *sysmem,
1115                                MemoryRegion *secure_sysmem)
1116 {
1117     int i;
1118     const char *bios_name;
1119     BlockBackend *pflash_blk0;
1120 
1121     /* Map legacy -drive if=pflash to machine properties */
1122     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1123         pflash_cfi01_legacy_drive(vms->flash[i],
1124                                   drive_get(IF_PFLASH, 0, i));
1125     }
1126 
1127     virt_flash_map(vms, sysmem, secure_sysmem);
1128 
1129     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1130 
1131     bios_name = MACHINE(vms)->firmware;
1132     if (bios_name) {
1133         char *fname;
1134         MemoryRegion *mr;
1135         int image_size;
1136 
1137         if (pflash_blk0) {
1138             error_report("The contents of the first flash device may be "
1139                          "specified with -bios or with -drive if=pflash... "
1140                          "but you cannot use both options at once");
1141             exit(1);
1142         }
1143 
1144         /* Fall back to -bios */
1145 
1146         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1147         if (!fname) {
1148             error_report("Could not find ROM image '%s'", bios_name);
1149             exit(1);
1150         }
1151         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1152         image_size = load_image_mr(fname, mr);
1153         g_free(fname);
1154         if (image_size < 0) {
1155             error_report("Could not load ROM image '%s'", bios_name);
1156             exit(1);
1157         }
1158     }
1159 
1160     return pflash_blk0 || bios_name;
1161 }
1162 
1163 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1164 {
1165     MachineState *ms = MACHINE(vms);
1166     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1167     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1168     FWCfgState *fw_cfg;
1169     char *nodename;
1170 
1171     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1172     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1173 
1174     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1175     qemu_fdt_add_subnode(ms->fdt, nodename);
1176     qemu_fdt_setprop_string(ms->fdt, nodename,
1177                             "compatible", "qemu,fw-cfg-mmio");
1178     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1179                                  2, base, 2, size);
1180     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1181     g_free(nodename);
1182     return fw_cfg;
1183 }
1184 
1185 static void create_pcie_irq_map(const MachineState *ms,
1186                                 uint32_t gic_phandle,
1187                                 int first_irq, const char *nodename)
1188 {
1189     int devfn, pin;
1190     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1191     uint32_t *irq_map = full_irq_map;
1192 
1193     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1194         for (pin = 0; pin < 4; pin++) {
1195             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1196             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1197             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1198             int i;
1199 
1200             uint32_t map[] = {
1201                 devfn << 8, 0, 0,                           /* devfn */
1202                 pin + 1,                                    /* PCI pin */
1203                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1204 
1205             /* Convert map to big endian */
1206             for (i = 0; i < 10; i++) {
1207                 irq_map[i] = cpu_to_be32(map[i]);
1208             }
1209             irq_map += 10;
1210         }
1211     }
1212 
1213     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1214                      full_irq_map, sizeof(full_irq_map));
1215 
1216     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1217                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1218                            0, 0,
1219                            0x7           /* PCI irq */);
1220 }
1221 
1222 static void create_smmu(const VirtMachineState *vms,
1223                         PCIBus *bus)
1224 {
1225     char *node;
1226     const char compat[] = "arm,smmu-v3";
1227     int irq =  vms->irqmap[VIRT_SMMU];
1228     int i;
1229     hwaddr base = vms->memmap[VIRT_SMMU].base;
1230     hwaddr size = vms->memmap[VIRT_SMMU].size;
1231     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1232     DeviceState *dev;
1233     MachineState *ms = MACHINE(vms);
1234 
1235     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1236         return;
1237     }
1238 
1239     dev = qdev_new("arm-smmuv3");
1240 
1241     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1242                              &error_abort);
1243     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1244     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1245     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1246         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1247                            qdev_get_gpio_in(vms->gic, irq + i));
1248     }
1249 
1250     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1251     qemu_fdt_add_subnode(ms->fdt, node);
1252     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1253     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1254 
1255     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1256             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1257             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1258             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1259             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1260 
1261     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1262                      sizeof(irq_names));
1263 
1264     qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1265     qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1266     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1267 
1268     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1269 
1270     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1271     g_free(node);
1272 }
1273 
1274 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1275 {
1276     const char compat[] = "virtio,pci-iommu";
1277     uint16_t bdf = vms->virtio_iommu_bdf;
1278     MachineState *ms = MACHINE(vms);
1279     char *node;
1280 
1281     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1282 
1283     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1284     qemu_fdt_add_subnode(ms->fdt, node);
1285     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1286     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1287                                  1, bdf << 8, 1, 0, 1, 0,
1288                                  1, 0, 1, 0);
1289 
1290     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1291     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1292     g_free(node);
1293 
1294     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1295                            0x0, vms->iommu_phandle, 0x0, bdf,
1296                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1297 }
1298 
1299 static void create_pcie(VirtMachineState *vms)
1300 {
1301     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1302     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1303     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1304     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1305     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1306     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1307     hwaddr base_ecam, size_ecam;
1308     hwaddr base = base_mmio;
1309     int nr_pcie_buses;
1310     int irq = vms->irqmap[VIRT_PCIE];
1311     MemoryRegion *mmio_alias;
1312     MemoryRegion *mmio_reg;
1313     MemoryRegion *ecam_alias;
1314     MemoryRegion *ecam_reg;
1315     DeviceState *dev;
1316     char *nodename;
1317     int i, ecam_id;
1318     PCIHostState *pci;
1319     MachineState *ms = MACHINE(vms);
1320 
1321     dev = qdev_new(TYPE_GPEX_HOST);
1322     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1323 
1324     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1325     base_ecam = vms->memmap[ecam_id].base;
1326     size_ecam = vms->memmap[ecam_id].size;
1327     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1328     /* Map only the first size_ecam bytes of ECAM space */
1329     ecam_alias = g_new0(MemoryRegion, 1);
1330     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1331     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1332                              ecam_reg, 0, size_ecam);
1333     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1334 
1335     /* Map the MMIO window into system address space so as to expose
1336      * the section of PCI MMIO space which starts at the same base address
1337      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1338      * the window).
1339      */
1340     mmio_alias = g_new0(MemoryRegion, 1);
1341     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1342     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1343                              mmio_reg, base_mmio, size_mmio);
1344     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1345 
1346     if (vms->highmem) {
1347         /* Map high MMIO space */
1348         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1349 
1350         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1351                                  mmio_reg, base_mmio_high, size_mmio_high);
1352         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1353                                     high_mmio_alias);
1354     }
1355 
1356     /* Map IO port space */
1357     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1358 
1359     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1360         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1361                            qdev_get_gpio_in(vms->gic, irq + i));
1362         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1363     }
1364 
1365     pci = PCI_HOST_BRIDGE(dev);
1366     vms->bus = pci->bus;
1367     if (vms->bus) {
1368         for (i = 0; i < nb_nics; i++) {
1369             NICInfo *nd = &nd_table[i];
1370 
1371             if (!nd->model) {
1372                 nd->model = g_strdup("virtio");
1373             }
1374 
1375             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1376         }
1377     }
1378 
1379     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1380     qemu_fdt_add_subnode(ms->fdt, nodename);
1381     qemu_fdt_setprop_string(ms->fdt, nodename,
1382                             "compatible", "pci-host-ecam-generic");
1383     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1384     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1385     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1386     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1387     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1388                            nr_pcie_buses - 1);
1389     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1390 
1391     if (vms->msi_phandle) {
1392         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1393                                vms->msi_phandle);
1394     }
1395 
1396     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1397                                  2, base_ecam, 2, size_ecam);
1398 
1399     if (vms->highmem) {
1400         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1401                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1402                                      2, base_pio, 2, size_pio,
1403                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1404                                      2, base_mmio, 2, size_mmio,
1405                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1406                                      2, base_mmio_high,
1407                                      2, base_mmio_high, 2, size_mmio_high);
1408     } else {
1409         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1410                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1411                                      2, base_pio, 2, size_pio,
1412                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1413                                      2, base_mmio, 2, size_mmio);
1414     }
1415 
1416     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1417     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1418 
1419     if (vms->iommu) {
1420         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1421 
1422         switch (vms->iommu) {
1423         case VIRT_IOMMU_SMMUV3:
1424             create_smmu(vms, vms->bus);
1425             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1426                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1427             break;
1428         default:
1429             g_assert_not_reached();
1430         }
1431     }
1432 }
1433 
1434 static void create_platform_bus(VirtMachineState *vms)
1435 {
1436     DeviceState *dev;
1437     SysBusDevice *s;
1438     int i;
1439     MemoryRegion *sysmem = get_system_memory();
1440 
1441     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1442     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1443     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1444     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1445     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1446     vms->platform_bus_dev = dev;
1447 
1448     s = SYS_BUS_DEVICE(dev);
1449     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1450         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1451         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1452     }
1453 
1454     memory_region_add_subregion(sysmem,
1455                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1456                                 sysbus_mmio_get_region(s, 0));
1457 }
1458 
1459 static void create_tag_ram(MemoryRegion *tag_sysmem,
1460                            hwaddr base, hwaddr size,
1461                            const char *name)
1462 {
1463     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1464 
1465     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1466     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1467 }
1468 
1469 static void create_secure_ram(VirtMachineState *vms,
1470                               MemoryRegion *secure_sysmem,
1471                               MemoryRegion *secure_tag_sysmem)
1472 {
1473     MemoryRegion *secram = g_new(MemoryRegion, 1);
1474     char *nodename;
1475     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1476     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1477     MachineState *ms = MACHINE(vms);
1478 
1479     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1480                            &error_fatal);
1481     memory_region_add_subregion(secure_sysmem, base, secram);
1482 
1483     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1484     qemu_fdt_add_subnode(ms->fdt, nodename);
1485     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1486     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1487     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1488     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1489 
1490     if (secure_tag_sysmem) {
1491         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1492     }
1493 
1494     g_free(nodename);
1495 }
1496 
1497 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1498 {
1499     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1500                                                  bootinfo);
1501     MachineState *ms = MACHINE(board);
1502 
1503 
1504     *fdt_size = board->fdt_size;
1505     return ms->fdt;
1506 }
1507 
1508 static void virt_build_smbios(VirtMachineState *vms)
1509 {
1510     MachineClass *mc = MACHINE_GET_CLASS(vms);
1511     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1512     uint8_t *smbios_tables, *smbios_anchor;
1513     size_t smbios_tables_len, smbios_anchor_len;
1514     const char *product = "QEMU Virtual Machine";
1515 
1516     if (kvm_enabled()) {
1517         product = "KVM Virtual Machine";
1518     }
1519 
1520     smbios_set_defaults("QEMU", product,
1521                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1522                         true, SMBIOS_ENTRY_POINT_30);
1523 
1524     smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1525                       &smbios_anchor, &smbios_anchor_len);
1526 
1527     if (smbios_anchor) {
1528         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1529                         smbios_tables, smbios_tables_len);
1530         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1531                         smbios_anchor, smbios_anchor_len);
1532     }
1533 }
1534 
1535 static
1536 void virt_machine_done(Notifier *notifier, void *data)
1537 {
1538     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1539                                          machine_done);
1540     MachineState *ms = MACHINE(vms);
1541     ARMCPU *cpu = ARM_CPU(first_cpu);
1542     struct arm_boot_info *info = &vms->bootinfo;
1543     AddressSpace *as = arm_boot_address_space(cpu, info);
1544 
1545     /*
1546      * If the user provided a dtb, we assume the dynamic sysbus nodes
1547      * already are integrated there. This corresponds to a use case where
1548      * the dynamic sysbus nodes are complex and their generation is not yet
1549      * supported. In that case the user can take charge of the guest dt
1550      * while qemu takes charge of the qom stuff.
1551      */
1552     if (info->dtb_filename == NULL) {
1553         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1554                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1555                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1556                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1557     }
1558     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1559         exit(1);
1560     }
1561 
1562     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1563 
1564     virt_acpi_setup(vms);
1565     virt_build_smbios(vms);
1566 }
1567 
1568 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1569 {
1570     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1571     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1572 
1573     if (!vmc->disallow_affinity_adjustment) {
1574         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1575          * GIC's target-list limitations. 32-bit KVM hosts currently
1576          * always create clusters of 4 CPUs, but that is expected to
1577          * change when they gain support for gicv3. When KVM is enabled
1578          * it will override the changes we make here, therefore our
1579          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1580          * and to improve SGI efficiency.
1581          */
1582         if (vms->gic_version == VIRT_GIC_VERSION_3) {
1583             clustersz = GICV3_TARGETLIST_BITS;
1584         } else {
1585             clustersz = GIC_TARGETLIST_BITS;
1586         }
1587     }
1588     return arm_cpu_mp_affinity(idx, clustersz);
1589 }
1590 
1591 static void virt_set_memmap(VirtMachineState *vms)
1592 {
1593     MachineState *ms = MACHINE(vms);
1594     hwaddr base, device_memory_base, device_memory_size;
1595     int i;
1596 
1597     vms->memmap = extended_memmap;
1598 
1599     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1600         vms->memmap[i] = base_memmap[i];
1601     }
1602 
1603     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1604         error_report("unsupported number of memory slots: %"PRIu64,
1605                      ms->ram_slots);
1606         exit(EXIT_FAILURE);
1607     }
1608 
1609     /*
1610      * We compute the base of the high IO region depending on the
1611      * amount of initial and device memory. The device memory start/size
1612      * is aligned on 1GiB. We never put the high IO region below 256GiB
1613      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1614      * The device region size assumes 1GiB page max alignment per slot.
1615      */
1616     device_memory_base =
1617         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1618     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1619 
1620     /* Base address of the high IO region */
1621     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1622     if (base < device_memory_base) {
1623         error_report("maxmem/slots too huge");
1624         exit(EXIT_FAILURE);
1625     }
1626     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1627         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1628     }
1629 
1630     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1631         hwaddr size = extended_memmap[i].size;
1632 
1633         base = ROUND_UP(base, size);
1634         vms->memmap[i].base = base;
1635         vms->memmap[i].size = size;
1636         base += size;
1637     }
1638     vms->highest_gpa = base - 1;
1639     if (device_memory_size > 0) {
1640         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1641         ms->device_memory->base = device_memory_base;
1642         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1643                            "device-memory", device_memory_size);
1644     }
1645 }
1646 
1647 /*
1648  * finalize_gic_version - Determines the final gic_version
1649  * according to the gic-version property
1650  *
1651  * Default GIC type is v2
1652  */
1653 static void finalize_gic_version(VirtMachineState *vms)
1654 {
1655     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1656 
1657     if (kvm_enabled()) {
1658         int probe_bitmap;
1659 
1660         if (!kvm_irqchip_in_kernel()) {
1661             switch (vms->gic_version) {
1662             case VIRT_GIC_VERSION_HOST:
1663                 warn_report(
1664                     "gic-version=host not relevant with kernel-irqchip=off "
1665                      "as only userspace GICv2 is supported. Using v2 ...");
1666                 return;
1667             case VIRT_GIC_VERSION_MAX:
1668             case VIRT_GIC_VERSION_NOSEL:
1669                 vms->gic_version = VIRT_GIC_VERSION_2;
1670                 return;
1671             case VIRT_GIC_VERSION_2:
1672                 return;
1673             case VIRT_GIC_VERSION_3:
1674                 error_report(
1675                     "gic-version=3 is not supported with kernel-irqchip=off");
1676                 exit(1);
1677             }
1678         }
1679 
1680         probe_bitmap = kvm_arm_vgic_probe();
1681         if (!probe_bitmap) {
1682             error_report("Unable to determine GIC version supported by host");
1683             exit(1);
1684         }
1685 
1686         switch (vms->gic_version) {
1687         case VIRT_GIC_VERSION_HOST:
1688         case VIRT_GIC_VERSION_MAX:
1689             if (probe_bitmap & KVM_ARM_VGIC_V3) {
1690                 vms->gic_version = VIRT_GIC_VERSION_3;
1691             } else {
1692                 vms->gic_version = VIRT_GIC_VERSION_2;
1693             }
1694             return;
1695         case VIRT_GIC_VERSION_NOSEL:
1696             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1697                 vms->gic_version = VIRT_GIC_VERSION_2;
1698             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1699                 /*
1700                  * in case the host does not support v2 in-kernel emulation or
1701                  * the end-user requested more than 8 VCPUs we now default
1702                  * to v3. In any case defaulting to v2 would be broken.
1703                  */
1704                 vms->gic_version = VIRT_GIC_VERSION_3;
1705             } else if (max_cpus > GIC_NCPU) {
1706                 error_report("host only supports in-kernel GICv2 emulation "
1707                              "but more than 8 vcpus are requested");
1708                 exit(1);
1709             }
1710             break;
1711         case VIRT_GIC_VERSION_2:
1712         case VIRT_GIC_VERSION_3:
1713             break;
1714         }
1715 
1716         /* Check chosen version is effectively supported by the host */
1717         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1718             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1719             error_report("host does not support in-kernel GICv2 emulation");
1720             exit(1);
1721         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1722                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1723             error_report("host does not support in-kernel GICv3 emulation");
1724             exit(1);
1725         }
1726         return;
1727     }
1728 
1729     /* TCG mode */
1730     switch (vms->gic_version) {
1731     case VIRT_GIC_VERSION_NOSEL:
1732         vms->gic_version = VIRT_GIC_VERSION_2;
1733         break;
1734     case VIRT_GIC_VERSION_MAX:
1735         vms->gic_version = VIRT_GIC_VERSION_3;
1736         break;
1737     case VIRT_GIC_VERSION_HOST:
1738         error_report("gic-version=host requires KVM");
1739         exit(1);
1740     case VIRT_GIC_VERSION_2:
1741     case VIRT_GIC_VERSION_3:
1742         break;
1743     }
1744 }
1745 
1746 /*
1747  * virt_cpu_post_init() must be called after the CPUs have
1748  * been realized and the GIC has been created.
1749  */
1750 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1751 {
1752     int max_cpus = MACHINE(vms)->smp.max_cpus;
1753     bool aarch64, pmu, steal_time;
1754     CPUState *cpu;
1755 
1756     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1757     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1758     steal_time = object_property_get_bool(OBJECT(first_cpu),
1759                                           "kvm-steal-time", NULL);
1760 
1761     if (kvm_enabled()) {
1762         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1763         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1764 
1765         if (steal_time) {
1766             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1767             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1768 
1769             /* The memory region size must be a multiple of host page size. */
1770             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1771 
1772             if (pvtime_size > pvtime_reg_size) {
1773                 error_report("pvtime requires a %" HWADDR_PRId
1774                              " byte memory region for %d CPUs,"
1775                              " but only %" HWADDR_PRId " has been reserved",
1776                              pvtime_size, max_cpus, pvtime_reg_size);
1777                 exit(1);
1778             }
1779 
1780             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1781             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1782         }
1783 
1784         CPU_FOREACH(cpu) {
1785             if (pmu) {
1786                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1787                 if (kvm_irqchip_in_kernel()) {
1788                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1789                 }
1790                 kvm_arm_pmu_init(cpu);
1791             }
1792             if (steal_time) {
1793                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1794                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1795             }
1796         }
1797     } else {
1798         if (aarch64 && vms->highmem) {
1799             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1800             int pamax = arm_pamax(ARM_CPU(first_cpu));
1801 
1802             if (pamax < requested_pa_size) {
1803                 error_report("VCPU supports less PA bits (%d) than "
1804                              "requested by the memory map (%d)",
1805                              pamax, requested_pa_size);
1806                 exit(1);
1807             }
1808         }
1809     }
1810 }
1811 
1812 static void machvirt_init(MachineState *machine)
1813 {
1814     VirtMachineState *vms = VIRT_MACHINE(machine);
1815     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1816     MachineClass *mc = MACHINE_GET_CLASS(machine);
1817     const CPUArchIdList *possible_cpus;
1818     MemoryRegion *sysmem = get_system_memory();
1819     MemoryRegion *secure_sysmem = NULL;
1820     MemoryRegion *tag_sysmem = NULL;
1821     MemoryRegion *secure_tag_sysmem = NULL;
1822     int n, virt_max_cpus;
1823     bool firmware_loaded;
1824     bool aarch64 = true;
1825     bool has_ged = !vmc->no_ged;
1826     unsigned int smp_cpus = machine->smp.cpus;
1827     unsigned int max_cpus = machine->smp.max_cpus;
1828 
1829     /*
1830      * In accelerated mode, the memory map is computed earlier in kvm_type()
1831      * to create a VM with the right number of IPA bits.
1832      */
1833     if (!vms->memmap) {
1834         virt_set_memmap(vms);
1835     }
1836 
1837     /* We can probe only here because during property set
1838      * KVM is not available yet
1839      */
1840     finalize_gic_version(vms);
1841 
1842     if (!cpu_type_valid(machine->cpu_type)) {
1843         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1844         exit(1);
1845     }
1846 
1847     if (vms->secure) {
1848         if (kvm_enabled()) {
1849             error_report("mach-virt: KVM does not support Security extensions");
1850             exit(1);
1851         }
1852 
1853         /*
1854          * The Secure view of the world is the same as the NonSecure,
1855          * but with a few extra devices. Create it as a container region
1856          * containing the system memory at low priority; any secure-only
1857          * devices go in at higher priority and take precedence.
1858          */
1859         secure_sysmem = g_new(MemoryRegion, 1);
1860         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1861                            UINT64_MAX);
1862         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1863     }
1864 
1865     firmware_loaded = virt_firmware_init(vms, sysmem,
1866                                          secure_sysmem ?: sysmem);
1867 
1868     /* If we have an EL3 boot ROM then the assumption is that it will
1869      * implement PSCI itself, so disable QEMU's internal implementation
1870      * so it doesn't get in the way. Instead of starting secondary
1871      * CPUs in PSCI powerdown state we will start them all running and
1872      * let the boot ROM sort them out.
1873      * The usual case is that we do use QEMU's PSCI implementation;
1874      * if the guest has EL2 then we will use SMC as the conduit,
1875      * and otherwise we will use HVC (for backwards compatibility and
1876      * because if we're using KVM then we must use HVC).
1877      */
1878     if (vms->secure && firmware_loaded) {
1879         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1880     } else if (vms->virt) {
1881         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1882     } else {
1883         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1884     }
1885 
1886     /* The maximum number of CPUs depends on the GIC version, or on how
1887      * many redistributors we can fit into the memory map.
1888      */
1889     if (vms->gic_version == VIRT_GIC_VERSION_3) {
1890         virt_max_cpus =
1891             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1892         virt_max_cpus +=
1893             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1894     } else {
1895         virt_max_cpus = GIC_NCPU;
1896     }
1897 
1898     if (max_cpus > virt_max_cpus) {
1899         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1900                      "supported by machine 'mach-virt' (%d)",
1901                      max_cpus, virt_max_cpus);
1902         exit(1);
1903     }
1904 
1905     if (vms->virt && kvm_enabled()) {
1906         error_report("mach-virt: KVM does not support providing "
1907                      "Virtualization extensions to the guest CPU");
1908         exit(1);
1909     }
1910 
1911     if (vms->mte && kvm_enabled()) {
1912         error_report("mach-virt: KVM does not support providing "
1913                      "MTE to the guest CPU");
1914         exit(1);
1915     }
1916 
1917     create_fdt(vms);
1918 
1919     possible_cpus = mc->possible_cpu_arch_ids(machine);
1920     assert(possible_cpus->len == max_cpus);
1921     for (n = 0; n < possible_cpus->len; n++) {
1922         Object *cpuobj;
1923         CPUState *cs;
1924 
1925         if (n >= smp_cpus) {
1926             break;
1927         }
1928 
1929         cpuobj = object_new(possible_cpus->cpus[n].type);
1930         object_property_set_int(cpuobj, "mp-affinity",
1931                                 possible_cpus->cpus[n].arch_id, NULL);
1932 
1933         cs = CPU(cpuobj);
1934         cs->cpu_index = n;
1935 
1936         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1937                           &error_fatal);
1938 
1939         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1940 
1941         if (!vms->secure) {
1942             object_property_set_bool(cpuobj, "has_el3", false, NULL);
1943         }
1944 
1945         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1946             object_property_set_bool(cpuobj, "has_el2", false, NULL);
1947         }
1948 
1949         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1950             object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1951                                     NULL);
1952 
1953             /* Secondary CPUs start in PSCI powered-down state */
1954             if (n > 0) {
1955                 object_property_set_bool(cpuobj, "start-powered-off", true,
1956                                          NULL);
1957             }
1958         }
1959 
1960         if (vmc->kvm_no_adjvtime &&
1961             object_property_find(cpuobj, "kvm-no-adjvtime")) {
1962             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1963         }
1964 
1965         if (vmc->no_kvm_steal_time &&
1966             object_property_find(cpuobj, "kvm-steal-time")) {
1967             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1968         }
1969 
1970         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1971             object_property_set_bool(cpuobj, "pmu", false, NULL);
1972         }
1973 
1974         if (object_property_find(cpuobj, "reset-cbar")) {
1975             object_property_set_int(cpuobj, "reset-cbar",
1976                                     vms->memmap[VIRT_CPUPERIPHS].base,
1977                                     &error_abort);
1978         }
1979 
1980         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1981                                  &error_abort);
1982         if (vms->secure) {
1983             object_property_set_link(cpuobj, "secure-memory",
1984                                      OBJECT(secure_sysmem), &error_abort);
1985         }
1986 
1987         if (vms->mte) {
1988             /* Create the memory region only once, but link to all cpus. */
1989             if (!tag_sysmem) {
1990                 /*
1991                  * The property exists only if MemTag is supported.
1992                  * If it is, we must allocate the ram to back that up.
1993                  */
1994                 if (!object_property_find(cpuobj, "tag-memory")) {
1995                     error_report("MTE requested, but not supported "
1996                                  "by the guest CPU");
1997                     exit(1);
1998                 }
1999 
2000                 tag_sysmem = g_new(MemoryRegion, 1);
2001                 memory_region_init(tag_sysmem, OBJECT(machine),
2002                                    "tag-memory", UINT64_MAX / 32);
2003 
2004                 if (vms->secure) {
2005                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2006                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2007                                        "secure-tag-memory", UINT64_MAX / 32);
2008 
2009                     /* As with ram, secure-tag takes precedence over tag.  */
2010                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2011                                                         tag_sysmem, -1);
2012                 }
2013             }
2014 
2015             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2016                                      &error_abort);
2017             if (vms->secure) {
2018                 object_property_set_link(cpuobj, "secure-tag-memory",
2019                                          OBJECT(secure_tag_sysmem),
2020                                          &error_abort);
2021             }
2022         }
2023 
2024         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2025         object_unref(cpuobj);
2026     }
2027     fdt_add_timer_nodes(vms);
2028     fdt_add_cpu_nodes(vms);
2029 
2030     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2031                                 machine->ram);
2032     if (machine->device_memory) {
2033         memory_region_add_subregion(sysmem, machine->device_memory->base,
2034                                     &machine->device_memory->mr);
2035     }
2036 
2037     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2038 
2039     create_gic(vms);
2040 
2041     virt_cpu_post_init(vms, sysmem);
2042 
2043     fdt_add_pmu_nodes(vms);
2044 
2045     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2046 
2047     if (vms->secure) {
2048         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2049         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2050     }
2051 
2052     if (tag_sysmem) {
2053         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2054                        machine->ram_size, "mach-virt.tag");
2055     }
2056 
2057     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2058 
2059     create_rtc(vms);
2060 
2061     create_pcie(vms);
2062 
2063     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2064         vms->acpi_dev = create_acpi_ged(vms);
2065     } else {
2066         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2067     }
2068 
2069     if (vms->secure && !vmc->no_secure_gpio) {
2070         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2071     }
2072 
2073      /* connect powerdown request */
2074      vms->powerdown_notifier.notify = virt_powerdown_req;
2075      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2076 
2077     /* Create mmio transports, so the user can create virtio backends
2078      * (which will be automatically plugged in to the transports). If
2079      * no backend is created the transport will just sit harmlessly idle.
2080      */
2081     create_virtio_devices(vms);
2082 
2083     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2084     rom_set_fw(vms->fw_cfg);
2085 
2086     create_platform_bus(vms);
2087 
2088     if (machine->nvdimms_state->is_enabled) {
2089         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2090             .space_id = AML_AS_SYSTEM_MEMORY,
2091             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2092             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2093         };
2094 
2095         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2096                                arm_virt_nvdimm_acpi_dsmio,
2097                                vms->fw_cfg, OBJECT(vms));
2098     }
2099 
2100     vms->bootinfo.ram_size = machine->ram_size;
2101     vms->bootinfo.nb_cpus = smp_cpus;
2102     vms->bootinfo.board_id = -1;
2103     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2104     vms->bootinfo.get_dtb = machvirt_dtb;
2105     vms->bootinfo.skip_dtb_autoload = true;
2106     vms->bootinfo.firmware_loaded = firmware_loaded;
2107     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2108 
2109     vms->machine_done.notify = virt_machine_done;
2110     qemu_add_machine_init_done_notifier(&vms->machine_done);
2111 }
2112 
2113 static bool virt_get_secure(Object *obj, Error **errp)
2114 {
2115     VirtMachineState *vms = VIRT_MACHINE(obj);
2116 
2117     return vms->secure;
2118 }
2119 
2120 static void virt_set_secure(Object *obj, bool value, Error **errp)
2121 {
2122     VirtMachineState *vms = VIRT_MACHINE(obj);
2123 
2124     vms->secure = value;
2125 }
2126 
2127 static bool virt_get_virt(Object *obj, Error **errp)
2128 {
2129     VirtMachineState *vms = VIRT_MACHINE(obj);
2130 
2131     return vms->virt;
2132 }
2133 
2134 static void virt_set_virt(Object *obj, bool value, Error **errp)
2135 {
2136     VirtMachineState *vms = VIRT_MACHINE(obj);
2137 
2138     vms->virt = value;
2139 }
2140 
2141 static bool virt_get_highmem(Object *obj, Error **errp)
2142 {
2143     VirtMachineState *vms = VIRT_MACHINE(obj);
2144 
2145     return vms->highmem;
2146 }
2147 
2148 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2149 {
2150     VirtMachineState *vms = VIRT_MACHINE(obj);
2151 
2152     vms->highmem = value;
2153 }
2154 
2155 static bool virt_get_its(Object *obj, Error **errp)
2156 {
2157     VirtMachineState *vms = VIRT_MACHINE(obj);
2158 
2159     return vms->its;
2160 }
2161 
2162 static void virt_set_its(Object *obj, bool value, Error **errp)
2163 {
2164     VirtMachineState *vms = VIRT_MACHINE(obj);
2165 
2166     vms->its = value;
2167 }
2168 
2169 static char *virt_get_oem_id(Object *obj, Error **errp)
2170 {
2171     VirtMachineState *vms = VIRT_MACHINE(obj);
2172 
2173     return g_strdup(vms->oem_id);
2174 }
2175 
2176 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2177 {
2178     VirtMachineState *vms = VIRT_MACHINE(obj);
2179     size_t len = strlen(value);
2180 
2181     if (len > 6) {
2182         error_setg(errp,
2183                    "User specified oem-id value is bigger than 6 bytes in size");
2184         return;
2185     }
2186 
2187     strncpy(vms->oem_id, value, 6);
2188 }
2189 
2190 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2191 {
2192     VirtMachineState *vms = VIRT_MACHINE(obj);
2193 
2194     return g_strdup(vms->oem_table_id);
2195 }
2196 
2197 static void virt_set_oem_table_id(Object *obj, const char *value,
2198                                   Error **errp)
2199 {
2200     VirtMachineState *vms = VIRT_MACHINE(obj);
2201     size_t len = strlen(value);
2202 
2203     if (len > 8) {
2204         error_setg(errp,
2205                    "User specified oem-table-id value is bigger than 8 bytes in size");
2206         return;
2207     }
2208     strncpy(vms->oem_table_id, value, 8);
2209 }
2210 
2211 
2212 bool virt_is_acpi_enabled(VirtMachineState *vms)
2213 {
2214     if (vms->acpi == ON_OFF_AUTO_OFF) {
2215         return false;
2216     }
2217     return true;
2218 }
2219 
2220 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2221                           void *opaque, Error **errp)
2222 {
2223     VirtMachineState *vms = VIRT_MACHINE(obj);
2224     OnOffAuto acpi = vms->acpi;
2225 
2226     visit_type_OnOffAuto(v, name, &acpi, errp);
2227 }
2228 
2229 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2230                           void *opaque, Error **errp)
2231 {
2232     VirtMachineState *vms = VIRT_MACHINE(obj);
2233 
2234     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2235 }
2236 
2237 static bool virt_get_ras(Object *obj, Error **errp)
2238 {
2239     VirtMachineState *vms = VIRT_MACHINE(obj);
2240 
2241     return vms->ras;
2242 }
2243 
2244 static void virt_set_ras(Object *obj, bool value, Error **errp)
2245 {
2246     VirtMachineState *vms = VIRT_MACHINE(obj);
2247 
2248     vms->ras = value;
2249 }
2250 
2251 static bool virt_get_mte(Object *obj, Error **errp)
2252 {
2253     VirtMachineState *vms = VIRT_MACHINE(obj);
2254 
2255     return vms->mte;
2256 }
2257 
2258 static void virt_set_mte(Object *obj, bool value, Error **errp)
2259 {
2260     VirtMachineState *vms = VIRT_MACHINE(obj);
2261 
2262     vms->mte = value;
2263 }
2264 
2265 static char *virt_get_gic_version(Object *obj, Error **errp)
2266 {
2267     VirtMachineState *vms = VIRT_MACHINE(obj);
2268     const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2269 
2270     return g_strdup(val);
2271 }
2272 
2273 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2274 {
2275     VirtMachineState *vms = VIRT_MACHINE(obj);
2276 
2277     if (!strcmp(value, "3")) {
2278         vms->gic_version = VIRT_GIC_VERSION_3;
2279     } else if (!strcmp(value, "2")) {
2280         vms->gic_version = VIRT_GIC_VERSION_2;
2281     } else if (!strcmp(value, "host")) {
2282         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2283     } else if (!strcmp(value, "max")) {
2284         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2285     } else {
2286         error_setg(errp, "Invalid gic-version value");
2287         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2288     }
2289 }
2290 
2291 static char *virt_get_iommu(Object *obj, Error **errp)
2292 {
2293     VirtMachineState *vms = VIRT_MACHINE(obj);
2294 
2295     switch (vms->iommu) {
2296     case VIRT_IOMMU_NONE:
2297         return g_strdup("none");
2298     case VIRT_IOMMU_SMMUV3:
2299         return g_strdup("smmuv3");
2300     default:
2301         g_assert_not_reached();
2302     }
2303 }
2304 
2305 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2306 {
2307     VirtMachineState *vms = VIRT_MACHINE(obj);
2308 
2309     if (!strcmp(value, "smmuv3")) {
2310         vms->iommu = VIRT_IOMMU_SMMUV3;
2311     } else if (!strcmp(value, "none")) {
2312         vms->iommu = VIRT_IOMMU_NONE;
2313     } else {
2314         error_setg(errp, "Invalid iommu value");
2315         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2316     }
2317 }
2318 
2319 static CpuInstanceProperties
2320 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2321 {
2322     MachineClass *mc = MACHINE_GET_CLASS(ms);
2323     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2324 
2325     assert(cpu_index < possible_cpus->len);
2326     return possible_cpus->cpus[cpu_index].props;
2327 }
2328 
2329 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2330 {
2331     return idx % ms->numa_state->num_nodes;
2332 }
2333 
2334 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2335 {
2336     int n;
2337     unsigned int max_cpus = ms->smp.max_cpus;
2338     VirtMachineState *vms = VIRT_MACHINE(ms);
2339 
2340     if (ms->possible_cpus) {
2341         assert(ms->possible_cpus->len == max_cpus);
2342         return ms->possible_cpus;
2343     }
2344 
2345     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2346                                   sizeof(CPUArchId) * max_cpus);
2347     ms->possible_cpus->len = max_cpus;
2348     for (n = 0; n < ms->possible_cpus->len; n++) {
2349         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2350         ms->possible_cpus->cpus[n].arch_id =
2351             virt_cpu_mp_affinity(vms, n);
2352         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2353         ms->possible_cpus->cpus[n].props.thread_id = n;
2354     }
2355     return ms->possible_cpus;
2356 }
2357 
2358 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2359                                  Error **errp)
2360 {
2361     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2362     const MachineState *ms = MACHINE(hotplug_dev);
2363     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2364 
2365     if (!vms->acpi_dev) {
2366         error_setg(errp,
2367                    "memory hotplug is not enabled: missing acpi-ged device");
2368         return;
2369     }
2370 
2371     if (vms->mte) {
2372         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2373         return;
2374     }
2375 
2376     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2377         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2378         return;
2379     }
2380 
2381     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2382 }
2383 
2384 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2385                              DeviceState *dev, Error **errp)
2386 {
2387     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2388     MachineState *ms = MACHINE(hotplug_dev);
2389     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2390 
2391     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2392 
2393     if (is_nvdimm) {
2394         nvdimm_plug(ms->nvdimms_state);
2395     }
2396 
2397     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2398                          dev, &error_abort);
2399 }
2400 
2401 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2402                                             DeviceState *dev, Error **errp)
2403 {
2404     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2405 
2406     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2407         virt_memory_pre_plug(hotplug_dev, dev, errp);
2408     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2409         hwaddr db_start = 0, db_end = 0;
2410         char *resv_prop_str;
2411 
2412         switch (vms->msi_controller) {
2413         case VIRT_MSI_CTRL_NONE:
2414             return;
2415         case VIRT_MSI_CTRL_ITS:
2416             /* GITS_TRANSLATER page */
2417             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2418             db_end = base_memmap[VIRT_GIC_ITS].base +
2419                      base_memmap[VIRT_GIC_ITS].size - 1;
2420             break;
2421         case VIRT_MSI_CTRL_GICV2M:
2422             /* MSI_SETSPI_NS page */
2423             db_start = base_memmap[VIRT_GIC_V2M].base;
2424             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2425             break;
2426         }
2427         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2428                                         db_start, db_end,
2429                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2430 
2431         qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2432         qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2433         g_free(resv_prop_str);
2434     }
2435 }
2436 
2437 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2438                                         DeviceState *dev, Error **errp)
2439 {
2440     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2441 
2442     if (vms->platform_bus_dev) {
2443         MachineClass *mc = MACHINE_GET_CLASS(vms);
2444 
2445         if (device_is_dynamic_sysbus(mc, dev)) {
2446             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2447                                      SYS_BUS_DEVICE(dev));
2448         }
2449     }
2450     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2451         virt_memory_plug(hotplug_dev, dev, errp);
2452     }
2453     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2454         PCIDevice *pdev = PCI_DEVICE(dev);
2455 
2456         vms->iommu = VIRT_IOMMU_VIRTIO;
2457         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2458         create_virtio_iommu_dt_bindings(vms);
2459     }
2460 }
2461 
2462 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2463                                      DeviceState *dev, Error **errp)
2464 {
2465     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2466     Error *local_err = NULL;
2467 
2468     if (!vms->acpi_dev) {
2469         error_setg(&local_err,
2470                    "memory hotplug is not enabled: missing acpi-ged device");
2471         goto out;
2472     }
2473 
2474     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2475         error_setg(&local_err,
2476                    "nvdimm device hot unplug is not supported yet.");
2477         goto out;
2478     }
2479 
2480     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2481                                    &local_err);
2482 out:
2483     error_propagate(errp, local_err);
2484 }
2485 
2486 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2487                              DeviceState *dev, Error **errp)
2488 {
2489     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2490     Error *local_err = NULL;
2491 
2492     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2493     if (local_err) {
2494         goto out;
2495     }
2496 
2497     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2498     qdev_unrealize(dev);
2499 
2500 out:
2501     error_propagate(errp, local_err);
2502 }
2503 
2504 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2505                                           DeviceState *dev, Error **errp)
2506 {
2507     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2508         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2509     } else {
2510         error_setg(errp, "device unplug request for unsupported device"
2511                    " type: %s", object_get_typename(OBJECT(dev)));
2512     }
2513 }
2514 
2515 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2516                                           DeviceState *dev, Error **errp)
2517 {
2518     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2519         virt_dimm_unplug(hotplug_dev, dev, errp);
2520     } else {
2521         error_setg(errp, "virt: device unplug for unsupported device"
2522                    " type: %s", object_get_typename(OBJECT(dev)));
2523     }
2524 }
2525 
2526 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2527                                                         DeviceState *dev)
2528 {
2529     MachineClass *mc = MACHINE_GET_CLASS(machine);
2530 
2531     if (device_is_dynamic_sysbus(mc, dev) ||
2532        (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2533         return HOTPLUG_HANDLER(machine);
2534     }
2535     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2536         VirtMachineState *vms = VIRT_MACHINE(machine);
2537 
2538         if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2539             return HOTPLUG_HANDLER(machine);
2540         }
2541     }
2542     return NULL;
2543 }
2544 
2545 /*
2546  * for arm64 kvm_type [7-0] encodes the requested number of bits
2547  * in the IPA address space
2548  */
2549 static int virt_kvm_type(MachineState *ms, const char *type_str)
2550 {
2551     VirtMachineState *vms = VIRT_MACHINE(ms);
2552     int max_vm_pa_size, requested_pa_size;
2553     bool fixed_ipa;
2554 
2555     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2556 
2557     /* we freeze the memory map to compute the highest gpa */
2558     virt_set_memmap(vms);
2559 
2560     requested_pa_size = 64 - clz64(vms->highest_gpa);
2561 
2562     /*
2563      * KVM requires the IPA size to be at least 32 bits.
2564      */
2565     if (requested_pa_size < 32) {
2566         requested_pa_size = 32;
2567     }
2568 
2569     if (requested_pa_size > max_vm_pa_size) {
2570         error_report("-m and ,maxmem option values "
2571                      "require an IPA range (%d bits) larger than "
2572                      "the one supported by the host (%d bits)",
2573                      requested_pa_size, max_vm_pa_size);
2574         exit(1);
2575     }
2576     /*
2577      * We return the requested PA log size, unless KVM only supports
2578      * the implicit legacy 40b IPA setting, in which case the kvm_type
2579      * must be 0.
2580      */
2581     return fixed_ipa ? 0 : requested_pa_size;
2582 }
2583 
2584 static void virt_machine_class_init(ObjectClass *oc, void *data)
2585 {
2586     MachineClass *mc = MACHINE_CLASS(oc);
2587     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2588 
2589     mc->init = machvirt_init;
2590     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2591      * The value may be reduced later when we have more information about the
2592      * configuration of the particular instance.
2593      */
2594     mc->max_cpus = 512;
2595     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2596     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2597     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2598     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2599     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2600     mc->block_default_type = IF_VIRTIO;
2601     mc->no_cdrom = 1;
2602     mc->pci_allow_0_address = true;
2603     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2604     mc->minimum_page_bits = 12;
2605     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2606     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2607     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2608     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2609     mc->kvm_type = virt_kvm_type;
2610     assert(!mc->get_hotplug_handler);
2611     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2612     hc->pre_plug = virt_machine_device_pre_plug_cb;
2613     hc->plug = virt_machine_device_plug_cb;
2614     hc->unplug_request = virt_machine_device_unplug_request_cb;
2615     hc->unplug = virt_machine_device_unplug_cb;
2616     mc->nvdimm_supported = true;
2617     mc->auto_enable_numa_with_memhp = true;
2618     mc->auto_enable_numa_with_memdev = true;
2619     mc->default_ram_id = "mach-virt.ram";
2620 
2621     object_class_property_add(oc, "acpi", "OnOffAuto",
2622         virt_get_acpi, virt_set_acpi,
2623         NULL, NULL);
2624     object_class_property_set_description(oc, "acpi",
2625         "Enable ACPI");
2626     object_class_property_add_bool(oc, "secure", virt_get_secure,
2627                                    virt_set_secure);
2628     object_class_property_set_description(oc, "secure",
2629                                                 "Set on/off to enable/disable the ARM "
2630                                                 "Security Extensions (TrustZone)");
2631 
2632     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2633                                    virt_set_virt);
2634     object_class_property_set_description(oc, "virtualization",
2635                                           "Set on/off to enable/disable emulating a "
2636                                           "guest CPU which implements the ARM "
2637                                           "Virtualization Extensions");
2638 
2639     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2640                                    virt_set_highmem);
2641     object_class_property_set_description(oc, "highmem",
2642                                           "Set on/off to enable/disable using "
2643                                           "physical address space above 32 bits");
2644 
2645     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2646                                   virt_set_gic_version);
2647     object_class_property_set_description(oc, "gic-version",
2648                                           "Set GIC version. "
2649                                           "Valid values are 2, 3, host and max");
2650 
2651     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2652     object_class_property_set_description(oc, "iommu",
2653                                           "Set the IOMMU type. "
2654                                           "Valid values are none and smmuv3");
2655 
2656     object_class_property_add_bool(oc, "ras", virt_get_ras,
2657                                    virt_set_ras);
2658     object_class_property_set_description(oc, "ras",
2659                                           "Set on/off to enable/disable reporting host memory errors "
2660                                           "to a KVM guest using ACPI and guest external abort exceptions");
2661 
2662     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2663     object_class_property_set_description(oc, "mte",
2664                                           "Set on/off to enable/disable emulating a "
2665                                           "guest CPU which implements the ARM "
2666                                           "Memory Tagging Extension");
2667 
2668     object_class_property_add_bool(oc, "its", virt_get_its,
2669                                    virt_set_its);
2670     object_class_property_set_description(oc, "its",
2671                                           "Set on/off to enable/disable "
2672                                           "ITS instantiation");
2673 
2674     object_class_property_add_str(oc, "x-oem-id",
2675                                   virt_get_oem_id,
2676                                   virt_set_oem_id);
2677     object_class_property_set_description(oc, "x-oem-id",
2678                                           "Override the default value of field OEMID "
2679                                           "in ACPI table header."
2680                                           "The string may be up to 6 bytes in size");
2681 
2682 
2683     object_class_property_add_str(oc, "x-oem-table-id",
2684                                   virt_get_oem_table_id,
2685                                   virt_set_oem_table_id);
2686     object_class_property_set_description(oc, "x-oem-table-id",
2687                                           "Override the default value of field OEM Table ID "
2688                                           "in ACPI table header."
2689                                           "The string may be up to 8 bytes in size");
2690 
2691 }
2692 
2693 static void virt_instance_init(Object *obj)
2694 {
2695     VirtMachineState *vms = VIRT_MACHINE(obj);
2696     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2697 
2698     /* EL3 is disabled by default on virt: this makes us consistent
2699      * between KVM and TCG for this board, and it also allows us to
2700      * boot UEFI blobs which assume no TrustZone support.
2701      */
2702     vms->secure = false;
2703 
2704     /* EL2 is also disabled by default, for similar reasons */
2705     vms->virt = false;
2706 
2707     /* High memory is enabled by default */
2708     vms->highmem = true;
2709     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2710 
2711     vms->highmem_ecam = !vmc->no_highmem_ecam;
2712 
2713     if (vmc->no_its) {
2714         vms->its = false;
2715     } else {
2716         /* Default allows ITS instantiation */
2717         vms->its = true;
2718     }
2719 
2720     /* Default disallows iommu instantiation */
2721     vms->iommu = VIRT_IOMMU_NONE;
2722 
2723     /* Default disallows RAS instantiation */
2724     vms->ras = false;
2725 
2726     /* MTE is disabled by default.  */
2727     vms->mte = false;
2728 
2729     vms->irqmap = a15irqmap;
2730 
2731     virt_flash_create(vms);
2732 
2733     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2734     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2735 }
2736 
2737 static const TypeInfo virt_machine_info = {
2738     .name          = TYPE_VIRT_MACHINE,
2739     .parent        = TYPE_MACHINE,
2740     .abstract      = true,
2741     .instance_size = sizeof(VirtMachineState),
2742     .class_size    = sizeof(VirtMachineClass),
2743     .class_init    = virt_machine_class_init,
2744     .instance_init = virt_instance_init,
2745     .interfaces = (InterfaceInfo[]) {
2746          { TYPE_HOTPLUG_HANDLER },
2747          { }
2748     },
2749 };
2750 
2751 static void machvirt_machine_init(void)
2752 {
2753     type_register_static(&virt_machine_info);
2754 }
2755 type_init(machvirt_machine_init);
2756 
2757 static void virt_machine_6_1_options(MachineClass *mc)
2758 {
2759 }
2760 DEFINE_VIRT_MACHINE_AS_LATEST(6, 1)
2761 
2762 static void virt_machine_6_0_options(MachineClass *mc)
2763 {
2764 }
2765 DEFINE_VIRT_MACHINE(6, 0)
2766 
2767 static void virt_machine_5_2_options(MachineClass *mc)
2768 {
2769     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2770 
2771     virt_machine_6_0_options(mc);
2772     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2773     vmc->no_secure_gpio = true;
2774 }
2775 DEFINE_VIRT_MACHINE(5, 2)
2776 
2777 static void virt_machine_5_1_options(MachineClass *mc)
2778 {
2779     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2780 
2781     virt_machine_5_2_options(mc);
2782     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2783     vmc->no_kvm_steal_time = true;
2784 }
2785 DEFINE_VIRT_MACHINE(5, 1)
2786 
2787 static void virt_machine_5_0_options(MachineClass *mc)
2788 {
2789     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2790 
2791     virt_machine_5_1_options(mc);
2792     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2793     mc->numa_mem_supported = true;
2794     vmc->acpi_expose_flash = true;
2795     mc->auto_enable_numa_with_memdev = false;
2796 }
2797 DEFINE_VIRT_MACHINE(5, 0)
2798 
2799 static void virt_machine_4_2_options(MachineClass *mc)
2800 {
2801     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2802 
2803     virt_machine_5_0_options(mc);
2804     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2805     vmc->kvm_no_adjvtime = true;
2806 }
2807 DEFINE_VIRT_MACHINE(4, 2)
2808 
2809 static void virt_machine_4_1_options(MachineClass *mc)
2810 {
2811     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2812 
2813     virt_machine_4_2_options(mc);
2814     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2815     vmc->no_ged = true;
2816     mc->auto_enable_numa_with_memhp = false;
2817 }
2818 DEFINE_VIRT_MACHINE(4, 1)
2819 
2820 static void virt_machine_4_0_options(MachineClass *mc)
2821 {
2822     virt_machine_4_1_options(mc);
2823     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2824 }
2825 DEFINE_VIRT_MACHINE(4, 0)
2826 
2827 static void virt_machine_3_1_options(MachineClass *mc)
2828 {
2829     virt_machine_4_0_options(mc);
2830     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2831 }
2832 DEFINE_VIRT_MACHINE(3, 1)
2833 
2834 static void virt_machine_3_0_options(MachineClass *mc)
2835 {
2836     virt_machine_3_1_options(mc);
2837     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2838 }
2839 DEFINE_VIRT_MACHINE(3, 0)
2840 
2841 static void virt_machine_2_12_options(MachineClass *mc)
2842 {
2843     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2844 
2845     virt_machine_3_0_options(mc);
2846     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2847     vmc->no_highmem_ecam = true;
2848     mc->max_cpus = 255;
2849 }
2850 DEFINE_VIRT_MACHINE(2, 12)
2851 
2852 static void virt_machine_2_11_options(MachineClass *mc)
2853 {
2854     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2855 
2856     virt_machine_2_12_options(mc);
2857     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2858     vmc->smbios_old_sys_ver = true;
2859 }
2860 DEFINE_VIRT_MACHINE(2, 11)
2861 
2862 static void virt_machine_2_10_options(MachineClass *mc)
2863 {
2864     virt_machine_2_11_options(mc);
2865     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2866     /* before 2.11 we never faulted accesses to bad addresses */
2867     mc->ignore_memory_transaction_failures = true;
2868 }
2869 DEFINE_VIRT_MACHINE(2, 10)
2870 
2871 static void virt_machine_2_9_options(MachineClass *mc)
2872 {
2873     virt_machine_2_10_options(mc);
2874     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2875 }
2876 DEFINE_VIRT_MACHINE(2, 9)
2877 
2878 static void virt_machine_2_8_options(MachineClass *mc)
2879 {
2880     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2881 
2882     virt_machine_2_9_options(mc);
2883     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2884     /* For 2.8 and earlier we falsely claimed in the DT that
2885      * our timers were edge-triggered, not level-triggered.
2886      */
2887     vmc->claim_edge_triggered_timers = true;
2888 }
2889 DEFINE_VIRT_MACHINE(2, 8)
2890 
2891 static void virt_machine_2_7_options(MachineClass *mc)
2892 {
2893     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2894 
2895     virt_machine_2_8_options(mc);
2896     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2897     /* ITS was introduced with 2.8 */
2898     vmc->no_its = true;
2899     /* Stick with 1K pages for migration compatibility */
2900     mc->minimum_page_bits = 0;
2901 }
2902 DEFINE_VIRT_MACHINE(2, 7)
2903 
2904 static void virt_machine_2_6_options(MachineClass *mc)
2905 {
2906     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2907 
2908     virt_machine_2_7_options(mc);
2909     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2910     vmc->disallow_affinity_adjustment = true;
2911     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2912     vmc->no_pmu = true;
2913 }
2914 DEFINE_VIRT_MACHINE(2, 6)
2915