xref: /openbmc/qemu/hw/arm/virt.c (revision ab938ae4)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
59 
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62                                                     void *data) \
63     { \
64         MachineClass *mc = MACHINE_CLASS(oc); \
65         virt_machine_##major##_##minor##_options(mc); \
66         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67         if (latest) { \
68             mc->alias = "virt"; \
69         } \
70     } \
71     static const TypeInfo machvirt_##major##_##minor##_info = { \
72         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73         .parent = TYPE_VIRT_MACHINE, \
74         .instance_init = virt_##major##_##minor##_instance_init, \
75         .class_init = virt_##major##_##minor##_class_init, \
76     }; \
77     static void machvirt_machine_##major##_##minor##_init(void) \
78     { \
79         type_register_static(&machvirt_##major##_##minor##_info); \
80     } \
81     type_init(machvirt_machine_##major##_##minor##_init);
82 
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
87 
88 
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
91 
92 #define PLATFORM_BUS_NUM_IRQS 64
93 
94 static ARMPlatformBusSystemParams platform_bus_params;
95 
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97  * RAM can go up to the 256GB mark, leaving 256GB of the physical
98  * address space unallocated and free for future use between 256G and 512G.
99  * If we need to provide more RAM to VMs in the future then we need to:
100  *  * allocate a second bank of RAM starting at 2TB and working up
101  *  * fix the DT and ACPI table generation code in QEMU to correctly
102  *    report two split lumps of RAM to the guest
103  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
104  * (We don't want to fill all the way up to 512GB with RAM because
105  * we might want it for non-RAM purposes later. Conversely it seems
106  * reasonable to assume that anybody configuring a VM with a quarter
107  * of a terabyte of RAM will be doing it on a host with more than a
108  * terabyte of physical address space.)
109  */
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112 
113 /* Addresses and sizes of our components.
114  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115  * 128MB..256MB is used for miscellaneous device I/O.
116  * 256MB..1GB is reserved for possible future PCI support (ie where the
117  * PCI memory window will go if we add a PCI host controller).
118  * 1GB and up is RAM (which may happily spill over into the
119  * high memory region beyond 4GB).
120  * This represents a compromise between how much RAM can be given to
121  * a 32 bit VM and leaving space for expansion and in particular for PCI.
122  * Note that devices should generally be placed at multiples of 0x10000,
123  * to accommodate guests using 64K pages.
124  */
125 static const MemMapEntry a15memmap[] = {
126     /* Space up to 0x8000000 is reserved for a boot ROM */
127     [VIRT_FLASH] =              {          0, 0x08000000 },
128     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
129     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
131     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
132     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
133     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
135     /* This redistributor space allows up to 2*64kB*123 CPUs */
136     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
137     [VIRT_UART] =               { 0x09000000, 0x00001000 },
138     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
139     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
140     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
141     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
142     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
143     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
145     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
146     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
147     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
148     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
149     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
150     /* Second PCIe window, 512GB wide at the 512GB boundary */
151     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
152 };
153 
154 static const int a15irqmap[] = {
155     [VIRT_UART] = 1,
156     [VIRT_RTC] = 2,
157     [VIRT_PCIE] = 3, /* ... to 6 */
158     [VIRT_GPIO] = 7,
159     [VIRT_SECURE_UART] = 8,
160     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
163 };
164 
165 static const char *valid_cpus[] = {
166     "cortex-a15",
167     "cortex-a53",
168     "cortex-a57",
169     "host",
170 };
171 
172 static bool cpuname_valid(const char *cpu)
173 {
174     int i;
175 
176     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177         if (strcmp(cpu, valid_cpus[i]) == 0) {
178             return true;
179         }
180     }
181     return false;
182 }
183 
184 static void create_fdt(VirtMachineState *vms)
185 {
186     void *fdt = create_device_tree(&vms->fdt_size);
187 
188     if (!fdt) {
189         error_report("create_device_tree() failed");
190         exit(1);
191     }
192 
193     vms->fdt = fdt;
194 
195     /* Header */
196     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
199 
200     /*
201      * /chosen and /memory nodes must exist for load_dtb
202      * to fill in necessary properties later
203      */
204     qemu_fdt_add_subnode(fdt, "/chosen");
205     qemu_fdt_add_subnode(fdt, "/memory");
206     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
207 
208     /* Clock node, for the benefit of the UART. The kernel device tree
209      * binding documentation claims the PL011 node clock properties are
210      * optional but in practice if you omit them the kernel refuses to
211      * probe for the device.
212      */
213     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214     qemu_fdt_add_subnode(fdt, "/apb-pclk");
215     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219                                 "clk24mhz");
220     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
221 
222     if (have_numa_distance) {
223         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
224         uint32_t *matrix = g_malloc0(size);
225         int idx, i, j;
226 
227         for (i = 0; i < nb_numa_nodes; i++) {
228             for (j = 0; j < nb_numa_nodes; j++) {
229                 idx = (i * nb_numa_nodes + j) * 3;
230                 matrix[idx + 0] = cpu_to_be32(i);
231                 matrix[idx + 1] = cpu_to_be32(j);
232                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
233             }
234         }
235 
236         qemu_fdt_add_subnode(fdt, "/distance-map");
237         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
238                                 "numa-distance-map-v1");
239         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
240                          matrix, size);
241         g_free(matrix);
242     }
243 }
244 
245 static void fdt_add_psci_node(const VirtMachineState *vms)
246 {
247     uint32_t cpu_suspend_fn;
248     uint32_t cpu_off_fn;
249     uint32_t cpu_on_fn;
250     uint32_t migrate_fn;
251     void *fdt = vms->fdt;
252     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
253     const char *psci_method;
254 
255     switch (vms->psci_conduit) {
256     case QEMU_PSCI_CONDUIT_DISABLED:
257         return;
258     case QEMU_PSCI_CONDUIT_HVC:
259         psci_method = "hvc";
260         break;
261     case QEMU_PSCI_CONDUIT_SMC:
262         psci_method = "smc";
263         break;
264     default:
265         g_assert_not_reached();
266     }
267 
268     qemu_fdt_add_subnode(fdt, "/psci");
269     if (armcpu->psci_version == 2) {
270         const char comp[] = "arm,psci-0.2\0arm,psci";
271         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
272 
273         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
274         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
275             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
276             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
277             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
278         } else {
279             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
280             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
281             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
282         }
283     } else {
284         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
285 
286         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
287         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
288         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
289         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
290     }
291 
292     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
293      * to the instruction that should be used to invoke PSCI functions.
294      * However, the device tree binding uses 'method' instead, so that is
295      * what we should use here.
296      */
297     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
298 
299     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
300     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
301     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
302     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
303 }
304 
305 static void fdt_add_timer_nodes(const VirtMachineState *vms)
306 {
307     /* On real hardware these interrupts are level-triggered.
308      * On KVM they were edge-triggered before host kernel version 4.4,
309      * and level-triggered afterwards.
310      * On emulated QEMU they are level-triggered.
311      *
312      * Getting the DTB info about them wrong is awkward for some
313      * guest kernels:
314      *  pre-4.8 ignore the DT and leave the interrupt configured
315      *   with whatever the GIC reset value (or the bootloader) left it at
316      *  4.8 before rc6 honour the incorrect data by programming it back
317      *   into the GIC, causing problems
318      *  4.8rc6 and later ignore the DT and always write "level triggered"
319      *   into the GIC
320      *
321      * For backwards-compatibility, virt-2.8 and earlier will continue
322      * to say these are edge-triggered, but later machines will report
323      * the correct information.
324      */
325     ARMCPU *armcpu;
326     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
327     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
328 
329     if (vmc->claim_edge_triggered_timers) {
330         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
331     }
332 
333     if (vms->gic_version == 2) {
334         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
335                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
336                              (1 << vms->smp_cpus) - 1);
337     }
338 
339     qemu_fdt_add_subnode(vms->fdt, "/timer");
340 
341     armcpu = ARM_CPU(qemu_get_cpu(0));
342     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
343         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
344         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
345                          compat, sizeof(compat));
346     } else {
347         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
348                                 "arm,armv7-timer");
349     }
350     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
351     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
352                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
353                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
354                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
355                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
356 }
357 
358 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
359 {
360     int cpu;
361     int addr_cells = 1;
362     const MachineState *ms = MACHINE(vms);
363 
364     /*
365      * From Documentation/devicetree/bindings/arm/cpus.txt
366      *  On ARM v8 64-bit systems value should be set to 2,
367      *  that corresponds to the MPIDR_EL1 register size.
368      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
369      *  in the system, #address-cells can be set to 1, since
370      *  MPIDR_EL1[63:32] bits are not used for CPUs
371      *  identification.
372      *
373      *  Here we actually don't know whether our system is 32- or 64-bit one.
374      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
375      *  at least one of them has Aff3 populated, we set #address-cells to 2.
376      */
377     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
378         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
379 
380         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
381             addr_cells = 2;
382             break;
383         }
384     }
385 
386     qemu_fdt_add_subnode(vms->fdt, "/cpus");
387     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
388     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
389 
390     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
391         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
392         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
393         CPUState *cs = CPU(armcpu);
394 
395         qemu_fdt_add_subnode(vms->fdt, nodename);
396         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
397         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
398                                     armcpu->dtb_compatible);
399 
400         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
401             && vms->smp_cpus > 1) {
402             qemu_fdt_setprop_string(vms->fdt, nodename,
403                                         "enable-method", "psci");
404         }
405 
406         if (addr_cells == 2) {
407             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
408                                  armcpu->mp_affinity);
409         } else {
410             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
411                                   armcpu->mp_affinity);
412         }
413 
414         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
415             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
416                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
417         }
418 
419         g_free(nodename);
420     }
421 }
422 
423 static void fdt_add_its_gic_node(VirtMachineState *vms)
424 {
425     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
426     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
427     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
428                             "arm,gic-v3-its");
429     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
430     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
431                                  2, vms->memmap[VIRT_GIC_ITS].base,
432                                  2, vms->memmap[VIRT_GIC_ITS].size);
433     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
434 }
435 
436 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
437 {
438     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
439     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
440     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
441                             "arm,gic-v2m-frame");
442     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
443     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
444                                  2, vms->memmap[VIRT_GIC_V2M].base,
445                                  2, vms->memmap[VIRT_GIC_V2M].size);
446     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
447 }
448 
449 static void fdt_add_gic_node(VirtMachineState *vms)
450 {
451     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
452     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
453 
454     qemu_fdt_add_subnode(vms->fdt, "/intc");
455     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
456     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
457     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
458     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
459     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
460     if (vms->gic_version == 3) {
461         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
462                                 "arm,gic-v3");
463         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
464                                      2, vms->memmap[VIRT_GIC_DIST].base,
465                                      2, vms->memmap[VIRT_GIC_DIST].size,
466                                      2, vms->memmap[VIRT_GIC_REDIST].base,
467                                      2, vms->memmap[VIRT_GIC_REDIST].size);
468         if (vms->virt) {
469             qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
470                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
471                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
472         }
473     } else {
474         /* 'cortex-a15-gic' means 'GIC v2' */
475         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
476                                 "arm,cortex-a15-gic");
477         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
478                                       2, vms->memmap[VIRT_GIC_DIST].base,
479                                       2, vms->memmap[VIRT_GIC_DIST].size,
480                                       2, vms->memmap[VIRT_GIC_CPU].base,
481                                       2, vms->memmap[VIRT_GIC_CPU].size);
482     }
483 
484     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
485 }
486 
487 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
488 {
489     CPUState *cpu;
490     ARMCPU *armcpu;
491     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
492 
493     CPU_FOREACH(cpu) {
494         armcpu = ARM_CPU(cpu);
495         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
496             return;
497         }
498         if (kvm_enabled()) {
499             if (kvm_irqchip_in_kernel()) {
500                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
501             }
502             kvm_arm_pmu_init(cpu);
503         }
504     }
505 
506     if (vms->gic_version == 2) {
507         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
508                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
509                              (1 << vms->smp_cpus) - 1);
510     }
511 
512     armcpu = ARM_CPU(qemu_get_cpu(0));
513     qemu_fdt_add_subnode(vms->fdt, "/pmu");
514     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
515         const char compat[] = "arm,armv8-pmuv3";
516         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
517                          compat, sizeof(compat));
518         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
519                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
520     }
521 }
522 
523 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
524 {
525     const char *itsclass = its_class_name();
526     DeviceState *dev;
527 
528     if (!itsclass) {
529         /* Do nothing if not supported */
530         return;
531     }
532 
533     dev = qdev_create(NULL, itsclass);
534 
535     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
536                              &error_abort);
537     qdev_init_nofail(dev);
538     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
539 
540     fdt_add_its_gic_node(vms);
541 }
542 
543 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
544 {
545     int i;
546     int irq = vms->irqmap[VIRT_GIC_V2M];
547     DeviceState *dev;
548 
549     dev = qdev_create(NULL, "arm-gicv2m");
550     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
551     qdev_prop_set_uint32(dev, "base-spi", irq);
552     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
553     qdev_init_nofail(dev);
554 
555     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
556         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
557     }
558 
559     fdt_add_v2m_gic_node(vms);
560 }
561 
562 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
563 {
564     /* We create a standalone GIC */
565     DeviceState *gicdev;
566     SysBusDevice *gicbusdev;
567     const char *gictype;
568     int type = vms->gic_version, i;
569 
570     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
571 
572     gicdev = qdev_create(NULL, gictype);
573     qdev_prop_set_uint32(gicdev, "revision", type);
574     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
575     /* Note that the num-irq property counts both internal and external
576      * interrupts; there are always 32 of the former (mandated by GIC spec).
577      */
578     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
579     if (!kvm_irqchip_in_kernel()) {
580         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
581     }
582     qdev_init_nofail(gicdev);
583     gicbusdev = SYS_BUS_DEVICE(gicdev);
584     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
585     if (type == 3) {
586         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
587     } else {
588         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
589     }
590 
591     /* Wire the outputs from each CPU's generic timer and the GICv3
592      * maintenance interrupt signal to the appropriate GIC PPI inputs,
593      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
594      */
595     for (i = 0; i < smp_cpus; i++) {
596         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
597         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
598         int irq;
599         /* Mapping from the output timer irq lines from the CPU to the
600          * GIC PPI inputs we use for the virt board.
601          */
602         const int timer_irq[] = {
603             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
604             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
605             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
606             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
607         };
608 
609         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
610             qdev_connect_gpio_out(cpudev, irq,
611                                   qdev_get_gpio_in(gicdev,
612                                                    ppibase + timer_irq[irq]));
613         }
614 
615         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
616                                     qdev_get_gpio_in(gicdev, ppibase
617                                                      + ARCH_GICV3_MAINT_IRQ));
618         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
619                                     qdev_get_gpio_in(gicdev, ppibase
620                                                      + VIRTUAL_PMU_IRQ));
621 
622         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
623         sysbus_connect_irq(gicbusdev, i + smp_cpus,
624                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
625         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
626                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
627         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
628                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
629     }
630 
631     for (i = 0; i < NUM_IRQS; i++) {
632         pic[i] = qdev_get_gpio_in(gicdev, i);
633     }
634 
635     fdt_add_gic_node(vms);
636 
637     if (type == 3 && vms->its) {
638         create_its(vms, gicdev);
639     } else if (type == 2) {
640         create_v2m(vms, pic);
641     }
642 }
643 
644 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
645                         MemoryRegion *mem, Chardev *chr)
646 {
647     char *nodename;
648     hwaddr base = vms->memmap[uart].base;
649     hwaddr size = vms->memmap[uart].size;
650     int irq = vms->irqmap[uart];
651     const char compat[] = "arm,pl011\0arm,primecell";
652     const char clocknames[] = "uartclk\0apb_pclk";
653     DeviceState *dev = qdev_create(NULL, "pl011");
654     SysBusDevice *s = SYS_BUS_DEVICE(dev);
655 
656     qdev_prop_set_chr(dev, "chardev", chr);
657     qdev_init_nofail(dev);
658     memory_region_add_subregion(mem, base,
659                                 sysbus_mmio_get_region(s, 0));
660     sysbus_connect_irq(s, 0, pic[irq]);
661 
662     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
663     qemu_fdt_add_subnode(vms->fdt, nodename);
664     /* Note that we can't use setprop_string because of the embedded NUL */
665     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
666                          compat, sizeof(compat));
667     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
668                                      2, base, 2, size);
669     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
670                                GIC_FDT_IRQ_TYPE_SPI, irq,
671                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
672     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
673                                vms->clock_phandle, vms->clock_phandle);
674     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
675                          clocknames, sizeof(clocknames));
676 
677     if (uart == VIRT_UART) {
678         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
679     } else {
680         /* Mark as not usable by the normal world */
681         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
682         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
683     }
684 
685     g_free(nodename);
686 }
687 
688 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
689 {
690     char *nodename;
691     hwaddr base = vms->memmap[VIRT_RTC].base;
692     hwaddr size = vms->memmap[VIRT_RTC].size;
693     int irq = vms->irqmap[VIRT_RTC];
694     const char compat[] = "arm,pl031\0arm,primecell";
695 
696     sysbus_create_simple("pl031", base, pic[irq]);
697 
698     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
699     qemu_fdt_add_subnode(vms->fdt, nodename);
700     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
701     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
702                                  2, base, 2, size);
703     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
704                            GIC_FDT_IRQ_TYPE_SPI, irq,
705                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
706     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
707     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
708     g_free(nodename);
709 }
710 
711 static DeviceState *gpio_key_dev;
712 static void virt_powerdown_req(Notifier *n, void *opaque)
713 {
714     /* use gpio Pin 3 for power button event */
715     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
716 }
717 
718 static Notifier virt_system_powerdown_notifier = {
719     .notify = virt_powerdown_req
720 };
721 
722 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
723 {
724     char *nodename;
725     DeviceState *pl061_dev;
726     hwaddr base = vms->memmap[VIRT_GPIO].base;
727     hwaddr size = vms->memmap[VIRT_GPIO].size;
728     int irq = vms->irqmap[VIRT_GPIO];
729     const char compat[] = "arm,pl061\0arm,primecell";
730 
731     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
732 
733     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
734     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
735     qemu_fdt_add_subnode(vms->fdt, nodename);
736     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
737                                  2, base, 2, size);
738     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
739     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
740     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
741     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
742                            GIC_FDT_IRQ_TYPE_SPI, irq,
743                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
744     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
745     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
746     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
747 
748     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
749                                         qdev_get_gpio_in(pl061_dev, 3));
750     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
751     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
752     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
753     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
754 
755     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
756     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
757                             "label", "GPIO Key Poweroff");
758     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
759                           KEY_POWER);
760     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
761                            "gpios", phandle, 3, 0);
762 
763     /* connect powerdown request */
764     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
765 
766     g_free(nodename);
767 }
768 
769 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
770 {
771     int i;
772     hwaddr size = vms->memmap[VIRT_MMIO].size;
773 
774     /* We create the transports in forwards order. Since qbus_realize()
775      * prepends (not appends) new child buses, the incrementing loop below will
776      * create a list of virtio-mmio buses with decreasing base addresses.
777      *
778      * When a -device option is processed from the command line,
779      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
780      * order. The upshot is that -device options in increasing command line
781      * order are mapped to virtio-mmio buses with decreasing base addresses.
782      *
783      * When this code was originally written, that arrangement ensured that the
784      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
785      * the first -device on the command line. (The end-to-end order is a
786      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
787      * guest kernel's name-to-address assignment strategy.)
788      *
789      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
790      * the message, if not necessarily the code, of commit 70161ff336.
791      * Therefore the loop now establishes the inverse of the original intent.
792      *
793      * Unfortunately, we can't counteract the kernel change by reversing the
794      * loop; it would break existing command lines.
795      *
796      * In any case, the kernel makes no guarantee about the stability of
797      * enumeration order of virtio devices (as demonstrated by it changing
798      * between kernel versions). For reliable and stable identification
799      * of disks users must use UUIDs or similar mechanisms.
800      */
801     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
802         int irq = vms->irqmap[VIRT_MMIO] + i;
803         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
804 
805         sysbus_create_simple("virtio-mmio", base, pic[irq]);
806     }
807 
808     /* We add dtb nodes in reverse order so that they appear in the finished
809      * device tree lowest address first.
810      *
811      * Note that this mapping is independent of the loop above. The previous
812      * loop influences virtio device to virtio transport assignment, whereas
813      * this loop controls how virtio transports are laid out in the dtb.
814      */
815     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
816         char *nodename;
817         int irq = vms->irqmap[VIRT_MMIO] + i;
818         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
819 
820         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
821         qemu_fdt_add_subnode(vms->fdt, nodename);
822         qemu_fdt_setprop_string(vms->fdt, nodename,
823                                 "compatible", "virtio,mmio");
824         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
825                                      2, base, 2, size);
826         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
827                                GIC_FDT_IRQ_TYPE_SPI, irq,
828                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
829         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
830         g_free(nodename);
831     }
832 }
833 
834 static void create_one_flash(const char *name, hwaddr flashbase,
835                              hwaddr flashsize, const char *file,
836                              MemoryRegion *sysmem)
837 {
838     /* Create and map a single flash device. We use the same
839      * parameters as the flash devices on the Versatile Express board.
840      */
841     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
842     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
843     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
844     const uint64_t sectorlength = 256 * 1024;
845 
846     if (dinfo) {
847         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
848                             &error_abort);
849     }
850 
851     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
852     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
853     qdev_prop_set_uint8(dev, "width", 4);
854     qdev_prop_set_uint8(dev, "device-width", 2);
855     qdev_prop_set_bit(dev, "big-endian", false);
856     qdev_prop_set_uint16(dev, "id0", 0x89);
857     qdev_prop_set_uint16(dev, "id1", 0x18);
858     qdev_prop_set_uint16(dev, "id2", 0x00);
859     qdev_prop_set_uint16(dev, "id3", 0x00);
860     qdev_prop_set_string(dev, "name", name);
861     qdev_init_nofail(dev);
862 
863     memory_region_add_subregion(sysmem, flashbase,
864                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
865 
866     if (file) {
867         char *fn;
868         int image_size;
869 
870         if (drive_get(IF_PFLASH, 0, 0)) {
871             error_report("The contents of the first flash device may be "
872                          "specified with -bios or with -drive if=pflash... "
873                          "but you cannot use both options at once");
874             exit(1);
875         }
876         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
877         if (!fn) {
878             error_report("Could not find ROM image '%s'", file);
879             exit(1);
880         }
881         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
882         g_free(fn);
883         if (image_size < 0) {
884             error_report("Could not load ROM image '%s'", file);
885             exit(1);
886         }
887     }
888 }
889 
890 static void create_flash(const VirtMachineState *vms,
891                          MemoryRegion *sysmem,
892                          MemoryRegion *secure_sysmem)
893 {
894     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
895      * Any file passed via -bios goes in the first of these.
896      * sysmem is the system memory space. secure_sysmem is the secure view
897      * of the system, and the first flash device should be made visible only
898      * there. The second flash device is visible to both secure and nonsecure.
899      * If sysmem == secure_sysmem this means there is no separate Secure
900      * address space and both flash devices are generally visible.
901      */
902     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
903     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
904     char *nodename;
905 
906     create_one_flash("virt.flash0", flashbase, flashsize,
907                      bios_name, secure_sysmem);
908     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
909                      NULL, sysmem);
910 
911     if (sysmem == secure_sysmem) {
912         /* Report both flash devices as a single node in the DT */
913         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
914         qemu_fdt_add_subnode(vms->fdt, nodename);
915         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
916         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
917                                      2, flashbase, 2, flashsize,
918                                      2, flashbase + flashsize, 2, flashsize);
919         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
920         g_free(nodename);
921     } else {
922         /* Report the devices as separate nodes so we can mark one as
923          * only visible to the secure world.
924          */
925         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
926         qemu_fdt_add_subnode(vms->fdt, nodename);
927         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
928         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
929                                      2, flashbase, 2, flashsize);
930         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
931         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
932         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
933         g_free(nodename);
934 
935         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
936         qemu_fdt_add_subnode(vms->fdt, nodename);
937         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
938         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
939                                      2, flashbase + flashsize, 2, flashsize);
940         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
941         g_free(nodename);
942     }
943 }
944 
945 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
946 {
947     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
948     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
949     FWCfgState *fw_cfg;
950     char *nodename;
951 
952     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
953     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
954 
955     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
956     qemu_fdt_add_subnode(vms->fdt, nodename);
957     qemu_fdt_setprop_string(vms->fdt, nodename,
958                             "compatible", "qemu,fw-cfg-mmio");
959     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
960                                  2, base, 2, size);
961     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
962     g_free(nodename);
963     return fw_cfg;
964 }
965 
966 static void create_pcie_irq_map(const VirtMachineState *vms,
967                                 uint32_t gic_phandle,
968                                 int first_irq, const char *nodename)
969 {
970     int devfn, pin;
971     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
972     uint32_t *irq_map = full_irq_map;
973 
974     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
975         for (pin = 0; pin < 4; pin++) {
976             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
977             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
978             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
979             int i;
980 
981             uint32_t map[] = {
982                 devfn << 8, 0, 0,                           /* devfn */
983                 pin + 1,                                    /* PCI pin */
984                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
985 
986             /* Convert map to big endian */
987             for (i = 0; i < 10; i++) {
988                 irq_map[i] = cpu_to_be32(map[i]);
989             }
990             irq_map += 10;
991         }
992     }
993 
994     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
995                      full_irq_map, sizeof(full_irq_map));
996 
997     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
998                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
999                            0x7           /* PCI irq */);
1000 }
1001 
1002 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
1003 {
1004     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1005     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1006     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1007     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1008     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1009     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1010     hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
1011     hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
1012     hwaddr base = base_mmio;
1013     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1014     int irq = vms->irqmap[VIRT_PCIE];
1015     MemoryRegion *mmio_alias;
1016     MemoryRegion *mmio_reg;
1017     MemoryRegion *ecam_alias;
1018     MemoryRegion *ecam_reg;
1019     DeviceState *dev;
1020     char *nodename;
1021     int i;
1022     PCIHostState *pci;
1023 
1024     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1025     qdev_init_nofail(dev);
1026 
1027     /* Map only the first size_ecam bytes of ECAM space */
1028     ecam_alias = g_new0(MemoryRegion, 1);
1029     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1030     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1031                              ecam_reg, 0, size_ecam);
1032     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1033 
1034     /* Map the MMIO window into system address space so as to expose
1035      * the section of PCI MMIO space which starts at the same base address
1036      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1037      * the window).
1038      */
1039     mmio_alias = g_new0(MemoryRegion, 1);
1040     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1041     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1042                              mmio_reg, base_mmio, size_mmio);
1043     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1044 
1045     if (vms->highmem) {
1046         /* Map high MMIO space */
1047         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1048 
1049         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1050                                  mmio_reg, base_mmio_high, size_mmio_high);
1051         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1052                                     high_mmio_alias);
1053     }
1054 
1055     /* Map IO port space */
1056     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1057 
1058     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1059         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1060     }
1061 
1062     pci = PCI_HOST_BRIDGE(dev);
1063     if (pci->bus) {
1064         for (i = 0; i < nb_nics; i++) {
1065             NICInfo *nd = &nd_table[i];
1066 
1067             if (!nd->model) {
1068                 nd->model = g_strdup("virtio");
1069             }
1070 
1071             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1072         }
1073     }
1074 
1075     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1076     qemu_fdt_add_subnode(vms->fdt, nodename);
1077     qemu_fdt_setprop_string(vms->fdt, nodename,
1078                             "compatible", "pci-host-ecam-generic");
1079     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1080     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1081     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1082     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1083                            nr_pcie_buses - 1);
1084     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1085 
1086     if (vms->msi_phandle) {
1087         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1088                                vms->msi_phandle);
1089     }
1090 
1091     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1092                                  2, base_ecam, 2, size_ecam);
1093 
1094     if (vms->highmem) {
1095         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1096                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1097                                      2, base_pio, 2, size_pio,
1098                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1099                                      2, base_mmio, 2, size_mmio,
1100                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1101                                      2, base_mmio_high,
1102                                      2, base_mmio_high, 2, size_mmio_high);
1103     } else {
1104         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1105                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1106                                      2, base_pio, 2, size_pio,
1107                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1108                                      2, base_mmio, 2, size_mmio);
1109     }
1110 
1111     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1112     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1113 
1114     g_free(nodename);
1115 }
1116 
1117 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1118 {
1119     DeviceState *dev;
1120     SysBusDevice *s;
1121     int i;
1122     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1123     MemoryRegion *sysmem = get_system_memory();
1124 
1125     platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1126     platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1127     platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1128     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1129 
1130     fdt_params->system_params = &platform_bus_params;
1131     fdt_params->binfo = &vms->bootinfo;
1132     fdt_params->intc = "/intc";
1133     /*
1134      * register a machine init done notifier that creates the device tree
1135      * nodes of the platform bus and its children dynamic sysbus devices
1136      */
1137     arm_register_platform_bus_fdt_creator(fdt_params);
1138 
1139     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1140     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1141     qdev_prop_set_uint32(dev, "num_irqs",
1142         platform_bus_params.platform_bus_num_irqs);
1143     qdev_prop_set_uint32(dev, "mmio_size",
1144         platform_bus_params.platform_bus_size);
1145     qdev_init_nofail(dev);
1146     s = SYS_BUS_DEVICE(dev);
1147 
1148     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1149         int irqn = platform_bus_params.platform_bus_first_irq + i;
1150         sysbus_connect_irq(s, i, pic[irqn]);
1151     }
1152 
1153     memory_region_add_subregion(sysmem,
1154                                 platform_bus_params.platform_bus_base,
1155                                 sysbus_mmio_get_region(s, 0));
1156 }
1157 
1158 static void create_secure_ram(VirtMachineState *vms,
1159                               MemoryRegion *secure_sysmem)
1160 {
1161     MemoryRegion *secram = g_new(MemoryRegion, 1);
1162     char *nodename;
1163     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1164     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1165 
1166     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1167                            &error_fatal);
1168     memory_region_add_subregion(secure_sysmem, base, secram);
1169 
1170     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1171     qemu_fdt_add_subnode(vms->fdt, nodename);
1172     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1173     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1174     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1175     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1176 
1177     g_free(nodename);
1178 }
1179 
1180 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1181 {
1182     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1183                                                  bootinfo);
1184 
1185     *fdt_size = board->fdt_size;
1186     return board->fdt;
1187 }
1188 
1189 static void virt_build_smbios(VirtMachineState *vms)
1190 {
1191     uint8_t *smbios_tables, *smbios_anchor;
1192     size_t smbios_tables_len, smbios_anchor_len;
1193     const char *product = "QEMU Virtual Machine";
1194 
1195     if (!vms->fw_cfg) {
1196         return;
1197     }
1198 
1199     if (kvm_enabled()) {
1200         product = "KVM Virtual Machine";
1201     }
1202 
1203     smbios_set_defaults("QEMU", product,
1204                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1205 
1206     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1207                       &smbios_anchor, &smbios_anchor_len);
1208 
1209     if (smbios_anchor) {
1210         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1211                         smbios_tables, smbios_tables_len);
1212         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1213                         smbios_anchor, smbios_anchor_len);
1214     }
1215 }
1216 
1217 static
1218 void virt_machine_done(Notifier *notifier, void *data)
1219 {
1220     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1221                                          machine_done);
1222 
1223     virt_acpi_setup(vms);
1224     virt_build_smbios(vms);
1225 }
1226 
1227 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1228 {
1229     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1230     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1231 
1232     if (!vmc->disallow_affinity_adjustment) {
1233         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1234          * GIC's target-list limitations. 32-bit KVM hosts currently
1235          * always create clusters of 4 CPUs, but that is expected to
1236          * change when they gain support for gicv3. When KVM is enabled
1237          * it will override the changes we make here, therefore our
1238          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1239          * and to improve SGI efficiency.
1240          */
1241         if (vms->gic_version == 3) {
1242             clustersz = GICV3_TARGETLIST_BITS;
1243         } else {
1244             clustersz = GIC_TARGETLIST_BITS;
1245         }
1246     }
1247     return arm_cpu_mp_affinity(idx, clustersz);
1248 }
1249 
1250 static void machvirt_init(MachineState *machine)
1251 {
1252     VirtMachineState *vms = VIRT_MACHINE(machine);
1253     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1254     MachineClass *mc = MACHINE_GET_CLASS(machine);
1255     const CPUArchIdList *possible_cpus;
1256     qemu_irq pic[NUM_IRQS];
1257     MemoryRegion *sysmem = get_system_memory();
1258     MemoryRegion *secure_sysmem = NULL;
1259     int n, virt_max_cpus;
1260     MemoryRegion *ram = g_new(MemoryRegion, 1);
1261     const char *cpu_model = machine->cpu_model;
1262     char **cpustr;
1263     ObjectClass *oc;
1264     const char *typename;
1265     CPUClass *cc;
1266     Error *err = NULL;
1267     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1268 
1269     if (!cpu_model) {
1270         cpu_model = "cortex-a15";
1271     }
1272 
1273     /* We can probe only here because during property set
1274      * KVM is not available yet
1275      */
1276     if (!vms->gic_version) {
1277         if (!kvm_enabled()) {
1278             error_report("gic-version=host requires KVM");
1279             exit(1);
1280         }
1281 
1282         vms->gic_version = kvm_arm_vgic_probe();
1283         if (!vms->gic_version) {
1284             error_report("Unable to determine GIC version supported by host");
1285             exit(1);
1286         }
1287     }
1288 
1289     /* Separate the actual CPU model name from any appended features */
1290     cpustr = g_strsplit(cpu_model, ",", 2);
1291 
1292     if (!cpuname_valid(cpustr[0])) {
1293         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1294         exit(1);
1295     }
1296 
1297     /* If we have an EL3 boot ROM then the assumption is that it will
1298      * implement PSCI itself, so disable QEMU's internal implementation
1299      * so it doesn't get in the way. Instead of starting secondary
1300      * CPUs in PSCI powerdown state we will start them all running and
1301      * let the boot ROM sort them out.
1302      * The usual case is that we do use QEMU's PSCI implementation;
1303      * if the guest has EL2 then we will use SMC as the conduit,
1304      * and otherwise we will use HVC (for backwards compatibility and
1305      * because if we're using KVM then we must use HVC).
1306      */
1307     if (vms->secure && firmware_loaded) {
1308         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1309     } else if (vms->virt) {
1310         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1311     } else {
1312         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1313     }
1314 
1315     /* The maximum number of CPUs depends on the GIC version, or on how
1316      * many redistributors we can fit into the memory map.
1317      */
1318     if (vms->gic_version == 3) {
1319         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1320     } else {
1321         virt_max_cpus = GIC_NCPU;
1322     }
1323 
1324     if (max_cpus > virt_max_cpus) {
1325         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1326                      "supported by machine 'mach-virt' (%d)",
1327                      max_cpus, virt_max_cpus);
1328         exit(1);
1329     }
1330 
1331     vms->smp_cpus = smp_cpus;
1332 
1333     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1334         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1335         exit(1);
1336     }
1337 
1338     if (vms->virt && kvm_enabled()) {
1339         error_report("mach-virt: KVM does not support providing "
1340                      "Virtualization extensions to the guest CPU");
1341         exit(1);
1342     }
1343 
1344     if (vms->secure) {
1345         if (kvm_enabled()) {
1346             error_report("mach-virt: KVM does not support Security extensions");
1347             exit(1);
1348         }
1349 
1350         /* The Secure view of the world is the same as the NonSecure,
1351          * but with a few extra devices. Create it as a container region
1352          * containing the system memory at low priority; any secure-only
1353          * devices go in at higher priority and take precedence.
1354          */
1355         secure_sysmem = g_new(MemoryRegion, 1);
1356         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1357                            UINT64_MAX);
1358         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1359     }
1360 
1361     create_fdt(vms);
1362 
1363     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1364     if (!oc) {
1365         error_report("Unable to find CPU definition");
1366         exit(1);
1367     }
1368     typename = object_class_get_name(oc);
1369 
1370     /* convert -smp CPU options specified by the user into global props */
1371     cc = CPU_CLASS(oc);
1372     cc->parse_features(typename, cpustr[1], &err);
1373     g_strfreev(cpustr);
1374     if (err) {
1375         error_report_err(err);
1376         exit(1);
1377     }
1378 
1379     possible_cpus = mc->possible_cpu_arch_ids(machine);
1380     for (n = 0; n < possible_cpus->len; n++) {
1381         Object *cpuobj;
1382         CPUState *cs;
1383 
1384         if (n >= smp_cpus) {
1385             break;
1386         }
1387 
1388         cpuobj = object_new(typename);
1389         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1390                                 "mp-affinity", NULL);
1391 
1392         cs = CPU(cpuobj);
1393         cs->cpu_index = n;
1394 
1395         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1396                           &error_fatal);
1397 
1398         if (!vms->secure) {
1399             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1400         }
1401 
1402         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1403             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1404         }
1405 
1406         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1407             object_property_set_int(cpuobj, vms->psci_conduit,
1408                                     "psci-conduit", NULL);
1409 
1410             /* Secondary CPUs start in PSCI powered-down state */
1411             if (n > 0) {
1412                 object_property_set_bool(cpuobj, true,
1413                                          "start-powered-off", NULL);
1414             }
1415         }
1416 
1417         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1418             object_property_set_bool(cpuobj, false, "pmu", NULL);
1419         }
1420 
1421         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1422             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1423                                     "reset-cbar", &error_abort);
1424         }
1425 
1426         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1427                                  &error_abort);
1428         if (vms->secure) {
1429             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1430                                      "secure-memory", &error_abort);
1431         }
1432 
1433         object_property_set_bool(cpuobj, true, "realized", NULL);
1434         object_unref(cpuobj);
1435     }
1436     fdt_add_timer_nodes(vms);
1437     fdt_add_cpu_nodes(vms);
1438     fdt_add_psci_node(vms);
1439 
1440     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1441                                          machine->ram_size);
1442     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1443 
1444     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1445 
1446     create_gic(vms, pic);
1447 
1448     fdt_add_pmu_nodes(vms);
1449 
1450     create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1451 
1452     if (vms->secure) {
1453         create_secure_ram(vms, secure_sysmem);
1454         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1455     }
1456 
1457     create_rtc(vms, pic);
1458 
1459     create_pcie(vms, pic);
1460 
1461     create_gpio(vms, pic);
1462 
1463     /* Create mmio transports, so the user can create virtio backends
1464      * (which will be automatically plugged in to the transports). If
1465      * no backend is created the transport will just sit harmlessly idle.
1466      */
1467     create_virtio_devices(vms, pic);
1468 
1469     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1470     rom_set_fw(vms->fw_cfg);
1471 
1472     vms->machine_done.notify = virt_machine_done;
1473     qemu_add_machine_init_done_notifier(&vms->machine_done);
1474 
1475     vms->bootinfo.ram_size = machine->ram_size;
1476     vms->bootinfo.kernel_filename = machine->kernel_filename;
1477     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1478     vms->bootinfo.initrd_filename = machine->initrd_filename;
1479     vms->bootinfo.nb_cpus = smp_cpus;
1480     vms->bootinfo.board_id = -1;
1481     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1482     vms->bootinfo.get_dtb = machvirt_dtb;
1483     vms->bootinfo.firmware_loaded = firmware_loaded;
1484     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1485 
1486     /*
1487      * arm_load_kernel machine init done notifier registration must
1488      * happen before the platform_bus_create call. In this latter,
1489      * another notifier is registered which adds platform bus nodes.
1490      * Notifiers are executed in registration reverse order.
1491      */
1492     create_platform_bus(vms, pic);
1493 }
1494 
1495 static bool virt_get_secure(Object *obj, Error **errp)
1496 {
1497     VirtMachineState *vms = VIRT_MACHINE(obj);
1498 
1499     return vms->secure;
1500 }
1501 
1502 static void virt_set_secure(Object *obj, bool value, Error **errp)
1503 {
1504     VirtMachineState *vms = VIRT_MACHINE(obj);
1505 
1506     vms->secure = value;
1507 }
1508 
1509 static bool virt_get_virt(Object *obj, Error **errp)
1510 {
1511     VirtMachineState *vms = VIRT_MACHINE(obj);
1512 
1513     return vms->virt;
1514 }
1515 
1516 static void virt_set_virt(Object *obj, bool value, Error **errp)
1517 {
1518     VirtMachineState *vms = VIRT_MACHINE(obj);
1519 
1520     vms->virt = value;
1521 }
1522 
1523 static bool virt_get_highmem(Object *obj, Error **errp)
1524 {
1525     VirtMachineState *vms = VIRT_MACHINE(obj);
1526 
1527     return vms->highmem;
1528 }
1529 
1530 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1531 {
1532     VirtMachineState *vms = VIRT_MACHINE(obj);
1533 
1534     vms->highmem = value;
1535 }
1536 
1537 static bool virt_get_its(Object *obj, Error **errp)
1538 {
1539     VirtMachineState *vms = VIRT_MACHINE(obj);
1540 
1541     return vms->its;
1542 }
1543 
1544 static void virt_set_its(Object *obj, bool value, Error **errp)
1545 {
1546     VirtMachineState *vms = VIRT_MACHINE(obj);
1547 
1548     vms->its = value;
1549 }
1550 
1551 static char *virt_get_gic_version(Object *obj, Error **errp)
1552 {
1553     VirtMachineState *vms = VIRT_MACHINE(obj);
1554     const char *val = vms->gic_version == 3 ? "3" : "2";
1555 
1556     return g_strdup(val);
1557 }
1558 
1559 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1560 {
1561     VirtMachineState *vms = VIRT_MACHINE(obj);
1562 
1563     if (!strcmp(value, "3")) {
1564         vms->gic_version = 3;
1565     } else if (!strcmp(value, "2")) {
1566         vms->gic_version = 2;
1567     } else if (!strcmp(value, "host")) {
1568         vms->gic_version = 0; /* Will probe later */
1569     } else {
1570         error_setg(errp, "Invalid gic-version value");
1571         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1572     }
1573 }
1574 
1575 static CpuInstanceProperties
1576 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1577 {
1578     MachineClass *mc = MACHINE_GET_CLASS(ms);
1579     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1580 
1581     assert(cpu_index < possible_cpus->len);
1582     return possible_cpus->cpus[cpu_index].props;
1583 }
1584 
1585 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1586 {
1587     int n;
1588     VirtMachineState *vms = VIRT_MACHINE(ms);
1589 
1590     if (ms->possible_cpus) {
1591         assert(ms->possible_cpus->len == max_cpus);
1592         return ms->possible_cpus;
1593     }
1594 
1595     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1596                                   sizeof(CPUArchId) * max_cpus);
1597     ms->possible_cpus->len = max_cpus;
1598     for (n = 0; n < ms->possible_cpus->len; n++) {
1599         ms->possible_cpus->cpus[n].arch_id =
1600             virt_cpu_mp_affinity(vms, n);
1601         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1602         ms->possible_cpus->cpus[n].props.thread_id = n;
1603 
1604         /* default distribution of CPUs over NUMA nodes */
1605         if (nb_numa_nodes) {
1606             /* preset values but do not enable them i.e. 'has_node_id = false',
1607              * numa init code will enable them later if manual mapping wasn't
1608              * present on CLI */
1609             ms->possible_cpus->cpus[n].props.node_id = n % nb_numa_nodes;
1610         }
1611     }
1612     return ms->possible_cpus;
1613 }
1614 
1615 static void virt_machine_class_init(ObjectClass *oc, void *data)
1616 {
1617     MachineClass *mc = MACHINE_CLASS(oc);
1618 
1619     mc->init = machvirt_init;
1620     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1621      * it later in machvirt_init, where we have more information about the
1622      * configuration of the particular instance.
1623      */
1624     mc->max_cpus = 255;
1625     mc->has_dynamic_sysbus = true;
1626     mc->block_default_type = IF_VIRTIO;
1627     mc->no_cdrom = 1;
1628     mc->pci_allow_0_address = true;
1629     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1630     mc->minimum_page_bits = 12;
1631     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1632     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1633 }
1634 
1635 static const TypeInfo virt_machine_info = {
1636     .name          = TYPE_VIRT_MACHINE,
1637     .parent        = TYPE_MACHINE,
1638     .abstract      = true,
1639     .instance_size = sizeof(VirtMachineState),
1640     .class_size    = sizeof(VirtMachineClass),
1641     .class_init    = virt_machine_class_init,
1642 };
1643 
1644 static void machvirt_machine_init(void)
1645 {
1646     type_register_static(&virt_machine_info);
1647 }
1648 type_init(machvirt_machine_init);
1649 
1650 static void virt_2_10_instance_init(Object *obj)
1651 {
1652     VirtMachineState *vms = VIRT_MACHINE(obj);
1653     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1654 
1655     /* EL3 is disabled by default on virt: this makes us consistent
1656      * between KVM and TCG for this board, and it also allows us to
1657      * boot UEFI blobs which assume no TrustZone support.
1658      */
1659     vms->secure = false;
1660     object_property_add_bool(obj, "secure", virt_get_secure,
1661                              virt_set_secure, NULL);
1662     object_property_set_description(obj, "secure",
1663                                     "Set on/off to enable/disable the ARM "
1664                                     "Security Extensions (TrustZone)",
1665                                     NULL);
1666 
1667     /* EL2 is also disabled by default, for similar reasons */
1668     vms->virt = false;
1669     object_property_add_bool(obj, "virtualization", virt_get_virt,
1670                              virt_set_virt, NULL);
1671     object_property_set_description(obj, "virtualization",
1672                                     "Set on/off to enable/disable emulating a "
1673                                     "guest CPU which implements the ARM "
1674                                     "Virtualization Extensions",
1675                                     NULL);
1676 
1677     /* High memory is enabled by default */
1678     vms->highmem = true;
1679     object_property_add_bool(obj, "highmem", virt_get_highmem,
1680                              virt_set_highmem, NULL);
1681     object_property_set_description(obj, "highmem",
1682                                     "Set on/off to enable/disable using "
1683                                     "physical address space above 32 bits",
1684                                     NULL);
1685     /* Default GIC type is v2 */
1686     vms->gic_version = 2;
1687     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1688                         virt_set_gic_version, NULL);
1689     object_property_set_description(obj, "gic-version",
1690                                     "Set GIC version. "
1691                                     "Valid values are 2, 3 and host", NULL);
1692 
1693     if (vmc->no_its) {
1694         vms->its = false;
1695     } else {
1696         /* Default allows ITS instantiation */
1697         vms->its = true;
1698         object_property_add_bool(obj, "its", virt_get_its,
1699                                  virt_set_its, NULL);
1700         object_property_set_description(obj, "its",
1701                                         "Set on/off to enable/disable "
1702                                         "ITS instantiation",
1703                                         NULL);
1704     }
1705 
1706     vms->memmap = a15memmap;
1707     vms->irqmap = a15irqmap;
1708 }
1709 
1710 static void virt_machine_2_10_options(MachineClass *mc)
1711 {
1712 }
1713 DEFINE_VIRT_MACHINE_AS_LATEST(2, 10)
1714 
1715 #define VIRT_COMPAT_2_9 \
1716     HW_COMPAT_2_9
1717 
1718 static void virt_2_9_instance_init(Object *obj)
1719 {
1720     virt_2_10_instance_init(obj);
1721 }
1722 
1723 static void virt_machine_2_9_options(MachineClass *mc)
1724 {
1725     virt_machine_2_10_options(mc);
1726     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1727 }
1728 DEFINE_VIRT_MACHINE(2, 9)
1729 
1730 #define VIRT_COMPAT_2_8 \
1731     HW_COMPAT_2_8
1732 
1733 static void virt_2_8_instance_init(Object *obj)
1734 {
1735     virt_2_9_instance_init(obj);
1736 }
1737 
1738 static void virt_machine_2_8_options(MachineClass *mc)
1739 {
1740     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1741 
1742     virt_machine_2_9_options(mc);
1743     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1744     /* For 2.8 and earlier we falsely claimed in the DT that
1745      * our timers were edge-triggered, not level-triggered.
1746      */
1747     vmc->claim_edge_triggered_timers = true;
1748 }
1749 DEFINE_VIRT_MACHINE(2, 8)
1750 
1751 #define VIRT_COMPAT_2_7 \
1752     HW_COMPAT_2_7
1753 
1754 static void virt_2_7_instance_init(Object *obj)
1755 {
1756     virt_2_8_instance_init(obj);
1757 }
1758 
1759 static void virt_machine_2_7_options(MachineClass *mc)
1760 {
1761     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1762 
1763     virt_machine_2_8_options(mc);
1764     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1765     /* ITS was introduced with 2.8 */
1766     vmc->no_its = true;
1767     /* Stick with 1K pages for migration compatibility */
1768     mc->minimum_page_bits = 0;
1769 }
1770 DEFINE_VIRT_MACHINE(2, 7)
1771 
1772 #define VIRT_COMPAT_2_6 \
1773     HW_COMPAT_2_6
1774 
1775 static void virt_2_6_instance_init(Object *obj)
1776 {
1777     virt_2_7_instance_init(obj);
1778 }
1779 
1780 static void virt_machine_2_6_options(MachineClass *mc)
1781 {
1782     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1783 
1784     virt_machine_2_7_options(mc);
1785     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1786     vmc->disallow_affinity_adjustment = true;
1787     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1788     vmc->no_pmu = true;
1789 }
1790 DEFINE_VIRT_MACHINE(2, 6)
1791