1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/datadir.h" 34 #include "qemu/units.h" 35 #include "qemu/option.h" 36 #include "monitor/qdev.h" 37 #include "qapi/error.h" 38 #include "hw/sysbus.h" 39 #include "hw/arm/boot.h" 40 #include "hw/arm/primecell.h" 41 #include "hw/arm/virt.h" 42 #include "hw/block/flash.h" 43 #include "hw/vfio/vfio-calxeda-xgmac.h" 44 #include "hw/vfio/vfio-amd-xgbe.h" 45 #include "hw/display/ramfb.h" 46 #include "net/net.h" 47 #include "sysemu/device_tree.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/runstate.h" 50 #include "sysemu/tpm.h" 51 #include "sysemu/kvm.h" 52 #include "hw/loader.h" 53 #include "qemu/bitops.h" 54 #include "qemu/error-report.h" 55 #include "qemu/module.h" 56 #include "hw/pci-host/gpex.h" 57 #include "hw/virtio/virtio-pci.h" 58 #include "hw/arm/sysbus-fdt.h" 59 #include "hw/platform-bus.h" 60 #include "hw/qdev-properties.h" 61 #include "hw/arm/fdt.h" 62 #include "hw/intc/arm_gic.h" 63 #include "hw/intc/arm_gicv3_common.h" 64 #include "hw/irq.h" 65 #include "kvm_arm.h" 66 #include "hw/firmware/smbios.h" 67 #include "qapi/visitor.h" 68 #include "qapi/qapi-visit-common.h" 69 #include "standard-headers/linux/input.h" 70 #include "hw/arm/smmuv3.h" 71 #include "hw/acpi/acpi.h" 72 #include "target/arm/internals.h" 73 #include "hw/mem/pc-dimm.h" 74 #include "hw/mem/nvdimm.h" 75 #include "hw/acpi/generic_event_device.h" 76 #include "hw/virtio/virtio-iommu.h" 77 #include "hw/char/pl011.h" 78 #include "qemu/guest-random.h" 79 80 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 81 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 82 void *data) \ 83 { \ 84 MachineClass *mc = MACHINE_CLASS(oc); \ 85 virt_machine_##major##_##minor##_options(mc); \ 86 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 87 if (latest) { \ 88 mc->alias = "virt"; \ 89 } \ 90 } \ 91 static const TypeInfo machvirt_##major##_##minor##_info = { \ 92 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 93 .parent = TYPE_VIRT_MACHINE, \ 94 .class_init = virt_##major##_##minor##_class_init, \ 95 }; \ 96 static void machvirt_machine_##major##_##minor##_init(void) \ 97 { \ 98 type_register_static(&machvirt_##major##_##minor##_info); \ 99 } \ 100 type_init(machvirt_machine_##major##_##minor##_init); 101 102 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 103 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 104 #define DEFINE_VIRT_MACHINE(major, minor) \ 105 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 106 107 108 /* Number of external interrupt lines to configure the GIC with */ 109 #define NUM_IRQS 256 110 111 #define PLATFORM_BUS_NUM_IRQS 64 112 113 /* Legacy RAM limit in GB (< version 4.0) */ 114 #define LEGACY_RAMLIMIT_GB 255 115 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 116 117 /* Addresses and sizes of our components. 118 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 119 * 128MB..256MB is used for miscellaneous device I/O. 120 * 256MB..1GB is reserved for possible future PCI support (ie where the 121 * PCI memory window will go if we add a PCI host controller). 122 * 1GB and up is RAM (which may happily spill over into the 123 * high memory region beyond 4GB). 124 * This represents a compromise between how much RAM can be given to 125 * a 32 bit VM and leaving space for expansion and in particular for PCI. 126 * Note that devices should generally be placed at multiples of 0x10000, 127 * to accommodate guests using 64K pages. 128 */ 129 static const MemMapEntry base_memmap[] = { 130 /* Space up to 0x8000000 is reserved for a boot ROM */ 131 [VIRT_FLASH] = { 0, 0x08000000 }, 132 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 133 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 134 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 135 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 136 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 137 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 138 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 139 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 140 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 141 /* This redistributor space allows up to 2*64kB*123 CPUs */ 142 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 143 [VIRT_UART] = { 0x09000000, 0x00001000 }, 144 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 145 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 146 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 147 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 148 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 149 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 150 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 151 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 152 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 153 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 154 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 155 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 156 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 157 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 158 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 159 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 160 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 161 /* Actual RAM size depends on initial RAM and device memory settings */ 162 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 163 }; 164 165 /* 166 * Highmem IO Regions: This memory map is floating, located after the RAM. 167 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 168 * top of the RAM, so that its base get the same alignment as the size, 169 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 170 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 171 * Note the extended_memmap is sized so that it eventually also includes the 172 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 173 * index of base_memmap). 174 */ 175 static MemMapEntry extended_memmap[] = { 176 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 177 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 178 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 179 /* Second PCIe window */ 180 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 181 }; 182 183 static const int a15irqmap[] = { 184 [VIRT_UART] = 1, 185 [VIRT_RTC] = 2, 186 [VIRT_PCIE] = 3, /* ... to 6 */ 187 [VIRT_GPIO] = 7, 188 [VIRT_SECURE_UART] = 8, 189 [VIRT_ACPI_GED] = 9, 190 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 191 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 192 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 193 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 194 }; 195 196 static const char *valid_cpus[] = { 197 ARM_CPU_TYPE_NAME("cortex-a7"), 198 ARM_CPU_TYPE_NAME("cortex-a15"), 199 ARM_CPU_TYPE_NAME("cortex-a53"), 200 ARM_CPU_TYPE_NAME("cortex-a57"), 201 ARM_CPU_TYPE_NAME("cortex-a72"), 202 ARM_CPU_TYPE_NAME("host"), 203 ARM_CPU_TYPE_NAME("max"), 204 }; 205 206 static bool cpu_type_valid(const char *cpu) 207 { 208 int i; 209 210 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 211 if (strcmp(cpu, valid_cpus[i]) == 0) { 212 return true; 213 } 214 } 215 return false; 216 } 217 218 static void create_kaslr_seed(MachineState *ms, const char *node) 219 { 220 uint64_t seed; 221 222 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 223 return; 224 } 225 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed); 226 } 227 228 static void create_fdt(VirtMachineState *vms) 229 { 230 MachineState *ms = MACHINE(vms); 231 int nb_numa_nodes = ms->numa_state->num_nodes; 232 void *fdt = create_device_tree(&vms->fdt_size); 233 234 if (!fdt) { 235 error_report("create_device_tree() failed"); 236 exit(1); 237 } 238 239 ms->fdt = fdt; 240 241 /* Header */ 242 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 243 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 244 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 245 246 /* /chosen must exist for load_dtb to fill in necessary properties later */ 247 qemu_fdt_add_subnode(fdt, "/chosen"); 248 create_kaslr_seed(ms, "/chosen"); 249 250 if (vms->secure) { 251 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 252 create_kaslr_seed(ms, "/secure-chosen"); 253 } 254 255 /* Clock node, for the benefit of the UART. The kernel device tree 256 * binding documentation claims the PL011 node clock properties are 257 * optional but in practice if you omit them the kernel refuses to 258 * probe for the device. 259 */ 260 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 261 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 262 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 263 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 264 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 265 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 266 "clk24mhz"); 267 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 268 269 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 270 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 271 uint32_t *matrix = g_malloc0(size); 272 int idx, i, j; 273 274 for (i = 0; i < nb_numa_nodes; i++) { 275 for (j = 0; j < nb_numa_nodes; j++) { 276 idx = (i * nb_numa_nodes + j) * 3; 277 matrix[idx + 0] = cpu_to_be32(i); 278 matrix[idx + 1] = cpu_to_be32(j); 279 matrix[idx + 2] = 280 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 281 } 282 } 283 284 qemu_fdt_add_subnode(fdt, "/distance-map"); 285 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 286 "numa-distance-map-v1"); 287 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 288 matrix, size); 289 g_free(matrix); 290 } 291 } 292 293 static void fdt_add_timer_nodes(const VirtMachineState *vms) 294 { 295 /* On real hardware these interrupts are level-triggered. 296 * On KVM they were edge-triggered before host kernel version 4.4, 297 * and level-triggered afterwards. 298 * On emulated QEMU they are level-triggered. 299 * 300 * Getting the DTB info about them wrong is awkward for some 301 * guest kernels: 302 * pre-4.8 ignore the DT and leave the interrupt configured 303 * with whatever the GIC reset value (or the bootloader) left it at 304 * 4.8 before rc6 honour the incorrect data by programming it back 305 * into the GIC, causing problems 306 * 4.8rc6 and later ignore the DT and always write "level triggered" 307 * into the GIC 308 * 309 * For backwards-compatibility, virt-2.8 and earlier will continue 310 * to say these are edge-triggered, but later machines will report 311 * the correct information. 312 */ 313 ARMCPU *armcpu; 314 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 315 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 316 MachineState *ms = MACHINE(vms); 317 318 if (vmc->claim_edge_triggered_timers) { 319 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 320 } 321 322 if (vms->gic_version == VIRT_GIC_VERSION_2) { 323 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 324 GIC_FDT_IRQ_PPI_CPU_WIDTH, 325 (1 << MACHINE(vms)->smp.cpus) - 1); 326 } 327 328 qemu_fdt_add_subnode(ms->fdt, "/timer"); 329 330 armcpu = ARM_CPU(qemu_get_cpu(0)); 331 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 332 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 333 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 334 compat, sizeof(compat)); 335 } else { 336 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 337 "arm,armv7-timer"); 338 } 339 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 340 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 341 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 345 } 346 347 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 348 { 349 int cpu; 350 int addr_cells = 1; 351 const MachineState *ms = MACHINE(vms); 352 int smp_cpus = ms->smp.cpus; 353 354 /* 355 * From Documentation/devicetree/bindings/arm/cpus.txt 356 * On ARM v8 64-bit systems value should be set to 2, 357 * that corresponds to the MPIDR_EL1 register size. 358 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 359 * in the system, #address-cells can be set to 1, since 360 * MPIDR_EL1[63:32] bits are not used for CPUs 361 * identification. 362 * 363 * Here we actually don't know whether our system is 32- or 64-bit one. 364 * The simplest way to go is to examine affinity IDs of all our CPUs. If 365 * at least one of them has Aff3 populated, we set #address-cells to 2. 366 */ 367 for (cpu = 0; cpu < smp_cpus; cpu++) { 368 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 369 370 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 371 addr_cells = 2; 372 break; 373 } 374 } 375 376 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 377 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 378 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 379 380 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 381 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 382 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 383 CPUState *cs = CPU(armcpu); 384 385 qemu_fdt_add_subnode(ms->fdt, nodename); 386 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 387 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 388 armcpu->dtb_compatible); 389 390 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 391 qemu_fdt_setprop_string(ms->fdt, nodename, 392 "enable-method", "psci"); 393 } 394 395 if (addr_cells == 2) { 396 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 397 armcpu->mp_affinity); 398 } else { 399 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 400 armcpu->mp_affinity); 401 } 402 403 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 404 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 405 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 406 } 407 408 g_free(nodename); 409 } 410 } 411 412 static void fdt_add_its_gic_node(VirtMachineState *vms) 413 { 414 char *nodename; 415 MachineState *ms = MACHINE(vms); 416 417 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 418 nodename = g_strdup_printf("/intc/its@%" PRIx64, 419 vms->memmap[VIRT_GIC_ITS].base); 420 qemu_fdt_add_subnode(ms->fdt, nodename); 421 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 422 "arm,gic-v3-its"); 423 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 424 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 425 2, vms->memmap[VIRT_GIC_ITS].base, 426 2, vms->memmap[VIRT_GIC_ITS].size); 427 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 428 g_free(nodename); 429 } 430 431 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 432 { 433 MachineState *ms = MACHINE(vms); 434 char *nodename; 435 436 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 437 vms->memmap[VIRT_GIC_V2M].base); 438 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 439 qemu_fdt_add_subnode(ms->fdt, nodename); 440 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 441 "arm,gic-v2m-frame"); 442 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 443 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 444 2, vms->memmap[VIRT_GIC_V2M].base, 445 2, vms->memmap[VIRT_GIC_V2M].size); 446 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 447 g_free(nodename); 448 } 449 450 static void fdt_add_gic_node(VirtMachineState *vms) 451 { 452 MachineState *ms = MACHINE(vms); 453 char *nodename; 454 455 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 456 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 457 458 nodename = g_strdup_printf("/intc@%" PRIx64, 459 vms->memmap[VIRT_GIC_DIST].base); 460 qemu_fdt_add_subnode(ms->fdt, nodename); 461 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 462 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 463 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 464 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 465 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 466 if (vms->gic_version == VIRT_GIC_VERSION_3) { 467 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 468 469 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 470 "arm,gic-v3"); 471 472 qemu_fdt_setprop_cell(ms->fdt, nodename, 473 "#redistributor-regions", nb_redist_regions); 474 475 if (nb_redist_regions == 1) { 476 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 477 2, vms->memmap[VIRT_GIC_DIST].base, 478 2, vms->memmap[VIRT_GIC_DIST].size, 479 2, vms->memmap[VIRT_GIC_REDIST].base, 480 2, vms->memmap[VIRT_GIC_REDIST].size); 481 } else { 482 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 483 2, vms->memmap[VIRT_GIC_DIST].base, 484 2, vms->memmap[VIRT_GIC_DIST].size, 485 2, vms->memmap[VIRT_GIC_REDIST].base, 486 2, vms->memmap[VIRT_GIC_REDIST].size, 487 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 488 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 489 } 490 491 if (vms->virt) { 492 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 493 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 494 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 495 } 496 } else { 497 /* 'cortex-a15-gic' means 'GIC v2' */ 498 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 499 "arm,cortex-a15-gic"); 500 if (!vms->virt) { 501 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 502 2, vms->memmap[VIRT_GIC_DIST].base, 503 2, vms->memmap[VIRT_GIC_DIST].size, 504 2, vms->memmap[VIRT_GIC_CPU].base, 505 2, vms->memmap[VIRT_GIC_CPU].size); 506 } else { 507 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 508 2, vms->memmap[VIRT_GIC_DIST].base, 509 2, vms->memmap[VIRT_GIC_DIST].size, 510 2, vms->memmap[VIRT_GIC_CPU].base, 511 2, vms->memmap[VIRT_GIC_CPU].size, 512 2, vms->memmap[VIRT_GIC_HYP].base, 513 2, vms->memmap[VIRT_GIC_HYP].size, 514 2, vms->memmap[VIRT_GIC_VCPU].base, 515 2, vms->memmap[VIRT_GIC_VCPU].size); 516 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 517 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 518 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 519 } 520 } 521 522 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 523 g_free(nodename); 524 } 525 526 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 527 { 528 ARMCPU *armcpu = ARM_CPU(first_cpu); 529 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 530 MachineState *ms = MACHINE(vms); 531 532 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 533 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 534 return; 535 } 536 537 if (vms->gic_version == VIRT_GIC_VERSION_2) { 538 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 539 GIC_FDT_IRQ_PPI_CPU_WIDTH, 540 (1 << MACHINE(vms)->smp.cpus) - 1); 541 } 542 543 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 544 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 545 const char compat[] = "arm,armv8-pmuv3"; 546 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 547 compat, sizeof(compat)); 548 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 549 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 550 } 551 } 552 553 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 554 { 555 DeviceState *dev; 556 MachineState *ms = MACHINE(vms); 557 int irq = vms->irqmap[VIRT_ACPI_GED]; 558 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 559 560 if (ms->ram_slots) { 561 event |= ACPI_GED_MEM_HOTPLUG_EVT; 562 } 563 564 if (ms->nvdimms_state->is_enabled) { 565 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 566 } 567 568 dev = qdev_new(TYPE_ACPI_GED); 569 qdev_prop_set_uint32(dev, "ged-event", event); 570 571 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 572 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 573 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 574 575 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 576 577 return dev; 578 } 579 580 static void create_its(VirtMachineState *vms) 581 { 582 const char *itsclass = its_class_name(); 583 DeviceState *dev; 584 585 if (!itsclass) { 586 /* Do nothing if not supported */ 587 return; 588 } 589 590 dev = qdev_new(itsclass); 591 592 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 593 &error_abort); 594 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 595 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 596 597 fdt_add_its_gic_node(vms); 598 vms->msi_controller = VIRT_MSI_CTRL_ITS; 599 } 600 601 static void create_v2m(VirtMachineState *vms) 602 { 603 int i; 604 int irq = vms->irqmap[VIRT_GIC_V2M]; 605 DeviceState *dev; 606 607 dev = qdev_new("arm-gicv2m"); 608 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 609 qdev_prop_set_uint32(dev, "base-spi", irq); 610 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 611 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 612 613 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 614 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 615 qdev_get_gpio_in(vms->gic, irq + i)); 616 } 617 618 fdt_add_v2m_gic_node(vms); 619 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 620 } 621 622 static void create_gic(VirtMachineState *vms) 623 { 624 MachineState *ms = MACHINE(vms); 625 /* We create a standalone GIC */ 626 SysBusDevice *gicbusdev; 627 const char *gictype; 628 int type = vms->gic_version, i; 629 unsigned int smp_cpus = ms->smp.cpus; 630 uint32_t nb_redist_regions = 0; 631 632 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 633 634 vms->gic = qdev_new(gictype); 635 qdev_prop_set_uint32(vms->gic, "revision", type); 636 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 637 /* Note that the num-irq property counts both internal and external 638 * interrupts; there are always 32 of the former (mandated by GIC spec). 639 */ 640 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 641 if (!kvm_irqchip_in_kernel()) { 642 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 643 } 644 645 if (type == 3) { 646 uint32_t redist0_capacity = 647 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 648 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 649 650 nb_redist_regions = virt_gicv3_redist_region_count(vms); 651 652 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 653 nb_redist_regions); 654 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 655 656 if (nb_redist_regions == 2) { 657 uint32_t redist1_capacity = 658 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 659 660 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 661 MIN(smp_cpus - redist0_count, redist1_capacity)); 662 } 663 } else { 664 if (!kvm_irqchip_in_kernel()) { 665 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 666 vms->virt); 667 } 668 } 669 gicbusdev = SYS_BUS_DEVICE(vms->gic); 670 sysbus_realize_and_unref(gicbusdev, &error_fatal); 671 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 672 if (type == 3) { 673 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 674 if (nb_redist_regions == 2) { 675 sysbus_mmio_map(gicbusdev, 2, 676 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 677 } 678 } else { 679 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 680 if (vms->virt) { 681 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 682 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 683 } 684 } 685 686 /* Wire the outputs from each CPU's generic timer and the GICv3 687 * maintenance interrupt signal to the appropriate GIC PPI inputs, 688 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 689 */ 690 for (i = 0; i < smp_cpus; i++) { 691 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 692 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 693 int irq; 694 /* Mapping from the output timer irq lines from the CPU to the 695 * GIC PPI inputs we use for the virt board. 696 */ 697 const int timer_irq[] = { 698 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 699 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 700 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 701 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 702 }; 703 704 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 705 qdev_connect_gpio_out(cpudev, irq, 706 qdev_get_gpio_in(vms->gic, 707 ppibase + timer_irq[irq])); 708 } 709 710 if (type == 3) { 711 qemu_irq irq = qdev_get_gpio_in(vms->gic, 712 ppibase + ARCH_GIC_MAINT_IRQ); 713 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 714 0, irq); 715 } else if (vms->virt) { 716 qemu_irq irq = qdev_get_gpio_in(vms->gic, 717 ppibase + ARCH_GIC_MAINT_IRQ); 718 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 719 } 720 721 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 722 qdev_get_gpio_in(vms->gic, ppibase 723 + VIRTUAL_PMU_IRQ)); 724 725 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 726 sysbus_connect_irq(gicbusdev, i + smp_cpus, 727 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 728 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 729 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 730 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 731 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 732 } 733 734 fdt_add_gic_node(vms); 735 736 if (type == 3 && vms->its) { 737 create_its(vms); 738 } else if (type == 2) { 739 create_v2m(vms); 740 } 741 } 742 743 static void create_uart(const VirtMachineState *vms, int uart, 744 MemoryRegion *mem, Chardev *chr) 745 { 746 char *nodename; 747 hwaddr base = vms->memmap[uart].base; 748 hwaddr size = vms->memmap[uart].size; 749 int irq = vms->irqmap[uart]; 750 const char compat[] = "arm,pl011\0arm,primecell"; 751 const char clocknames[] = "uartclk\0apb_pclk"; 752 DeviceState *dev = qdev_new(TYPE_PL011); 753 SysBusDevice *s = SYS_BUS_DEVICE(dev); 754 MachineState *ms = MACHINE(vms); 755 756 qdev_prop_set_chr(dev, "chardev", chr); 757 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 758 memory_region_add_subregion(mem, base, 759 sysbus_mmio_get_region(s, 0)); 760 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 761 762 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 763 qemu_fdt_add_subnode(ms->fdt, nodename); 764 /* Note that we can't use setprop_string because of the embedded NUL */ 765 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 766 compat, sizeof(compat)); 767 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 768 2, base, 2, size); 769 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 770 GIC_FDT_IRQ_TYPE_SPI, irq, 771 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 772 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 773 vms->clock_phandle, vms->clock_phandle); 774 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 775 clocknames, sizeof(clocknames)); 776 777 if (uart == VIRT_UART) { 778 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 779 } else { 780 /* Mark as not usable by the normal world */ 781 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 782 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 783 784 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 785 nodename); 786 } 787 788 g_free(nodename); 789 } 790 791 static void create_rtc(const VirtMachineState *vms) 792 { 793 char *nodename; 794 hwaddr base = vms->memmap[VIRT_RTC].base; 795 hwaddr size = vms->memmap[VIRT_RTC].size; 796 int irq = vms->irqmap[VIRT_RTC]; 797 const char compat[] = "arm,pl031\0arm,primecell"; 798 MachineState *ms = MACHINE(vms); 799 800 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 801 802 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 803 qemu_fdt_add_subnode(ms->fdt, nodename); 804 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 805 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 806 2, base, 2, size); 807 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 808 GIC_FDT_IRQ_TYPE_SPI, irq, 809 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 810 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 811 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 812 g_free(nodename); 813 } 814 815 static DeviceState *gpio_key_dev; 816 static void virt_powerdown_req(Notifier *n, void *opaque) 817 { 818 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 819 820 if (s->acpi_dev) { 821 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 822 } else { 823 /* use gpio Pin 3 for power button event */ 824 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 825 } 826 } 827 828 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 829 uint32_t phandle) 830 { 831 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 832 qdev_get_gpio_in(pl061_dev, 3)); 833 834 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 835 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 836 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0); 837 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1); 838 839 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 840 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 841 "label", "GPIO Key Poweroff"); 842 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 843 KEY_POWER); 844 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 845 "gpios", phandle, 3, 0); 846 } 847 848 #define SECURE_GPIO_POWEROFF 0 849 #define SECURE_GPIO_RESET 1 850 851 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 852 uint32_t phandle) 853 { 854 DeviceState *gpio_pwr_dev; 855 856 /* gpio-pwr */ 857 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 858 859 /* connect secure pl061 to gpio-pwr */ 860 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 861 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 862 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 863 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 864 865 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 866 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 867 "gpio-poweroff"); 868 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 869 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 870 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 871 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 872 "okay"); 873 874 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 875 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 876 "gpio-restart"); 877 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 878 "gpios", phandle, SECURE_GPIO_RESET, 0); 879 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 880 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 881 "okay"); 882 } 883 884 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 885 MemoryRegion *mem) 886 { 887 char *nodename; 888 DeviceState *pl061_dev; 889 hwaddr base = vms->memmap[gpio].base; 890 hwaddr size = vms->memmap[gpio].size; 891 int irq = vms->irqmap[gpio]; 892 const char compat[] = "arm,pl061\0arm,primecell"; 893 SysBusDevice *s; 894 MachineState *ms = MACHINE(vms); 895 896 pl061_dev = qdev_new("pl061"); 897 s = SYS_BUS_DEVICE(pl061_dev); 898 sysbus_realize_and_unref(s, &error_fatal); 899 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 900 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 901 902 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 903 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 904 qemu_fdt_add_subnode(ms->fdt, nodename); 905 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 906 2, base, 2, size); 907 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 908 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 909 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 910 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 911 GIC_FDT_IRQ_TYPE_SPI, irq, 912 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 913 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 914 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 915 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 916 917 if (gpio != VIRT_GPIO) { 918 /* Mark as not usable by the normal world */ 919 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 920 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 921 } 922 g_free(nodename); 923 924 /* Child gpio devices */ 925 if (gpio == VIRT_GPIO) { 926 create_gpio_keys(ms->fdt, pl061_dev, phandle); 927 } else { 928 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 929 } 930 } 931 932 static void create_virtio_devices(const VirtMachineState *vms) 933 { 934 int i; 935 hwaddr size = vms->memmap[VIRT_MMIO].size; 936 MachineState *ms = MACHINE(vms); 937 938 /* We create the transports in forwards order. Since qbus_realize() 939 * prepends (not appends) new child buses, the incrementing loop below will 940 * create a list of virtio-mmio buses with decreasing base addresses. 941 * 942 * When a -device option is processed from the command line, 943 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 944 * order. The upshot is that -device options in increasing command line 945 * order are mapped to virtio-mmio buses with decreasing base addresses. 946 * 947 * When this code was originally written, that arrangement ensured that the 948 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 949 * the first -device on the command line. (The end-to-end order is a 950 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 951 * guest kernel's name-to-address assignment strategy.) 952 * 953 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 954 * the message, if not necessarily the code, of commit 70161ff336. 955 * Therefore the loop now establishes the inverse of the original intent. 956 * 957 * Unfortunately, we can't counteract the kernel change by reversing the 958 * loop; it would break existing command lines. 959 * 960 * In any case, the kernel makes no guarantee about the stability of 961 * enumeration order of virtio devices (as demonstrated by it changing 962 * between kernel versions). For reliable and stable identification 963 * of disks users must use UUIDs or similar mechanisms. 964 */ 965 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 966 int irq = vms->irqmap[VIRT_MMIO] + i; 967 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 968 969 sysbus_create_simple("virtio-mmio", base, 970 qdev_get_gpio_in(vms->gic, irq)); 971 } 972 973 /* We add dtb nodes in reverse order so that they appear in the finished 974 * device tree lowest address first. 975 * 976 * Note that this mapping is independent of the loop above. The previous 977 * loop influences virtio device to virtio transport assignment, whereas 978 * this loop controls how virtio transports are laid out in the dtb. 979 */ 980 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 981 char *nodename; 982 int irq = vms->irqmap[VIRT_MMIO] + i; 983 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 984 985 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 986 qemu_fdt_add_subnode(ms->fdt, nodename); 987 qemu_fdt_setprop_string(ms->fdt, nodename, 988 "compatible", "virtio,mmio"); 989 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 990 2, base, 2, size); 991 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 992 GIC_FDT_IRQ_TYPE_SPI, irq, 993 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 994 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 995 g_free(nodename); 996 } 997 } 998 999 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1000 1001 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1002 const char *name, 1003 const char *alias_prop_name) 1004 { 1005 /* 1006 * Create a single flash device. We use the same parameters as 1007 * the flash devices on the Versatile Express board. 1008 */ 1009 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1010 1011 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1012 qdev_prop_set_uint8(dev, "width", 4); 1013 qdev_prop_set_uint8(dev, "device-width", 2); 1014 qdev_prop_set_bit(dev, "big-endian", false); 1015 qdev_prop_set_uint16(dev, "id0", 0x89); 1016 qdev_prop_set_uint16(dev, "id1", 0x18); 1017 qdev_prop_set_uint16(dev, "id2", 0x00); 1018 qdev_prop_set_uint16(dev, "id3", 0x00); 1019 qdev_prop_set_string(dev, "name", name); 1020 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1021 object_property_add_alias(OBJECT(vms), alias_prop_name, 1022 OBJECT(dev), "drive"); 1023 return PFLASH_CFI01(dev); 1024 } 1025 1026 static void virt_flash_create(VirtMachineState *vms) 1027 { 1028 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1029 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1030 } 1031 1032 static void virt_flash_map1(PFlashCFI01 *flash, 1033 hwaddr base, hwaddr size, 1034 MemoryRegion *sysmem) 1035 { 1036 DeviceState *dev = DEVICE(flash); 1037 1038 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1039 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1040 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1041 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1042 1043 memory_region_add_subregion(sysmem, base, 1044 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1045 0)); 1046 } 1047 1048 static void virt_flash_map(VirtMachineState *vms, 1049 MemoryRegion *sysmem, 1050 MemoryRegion *secure_sysmem) 1051 { 1052 /* 1053 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1054 * sysmem is the system memory space. secure_sysmem is the secure view 1055 * of the system, and the first flash device should be made visible only 1056 * there. The second flash device is visible to both secure and nonsecure. 1057 * If sysmem == secure_sysmem this means there is no separate Secure 1058 * address space and both flash devices are generally visible. 1059 */ 1060 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1061 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1062 1063 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1064 secure_sysmem); 1065 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1066 sysmem); 1067 } 1068 1069 static void virt_flash_fdt(VirtMachineState *vms, 1070 MemoryRegion *sysmem, 1071 MemoryRegion *secure_sysmem) 1072 { 1073 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1074 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1075 MachineState *ms = MACHINE(vms); 1076 char *nodename; 1077 1078 if (sysmem == secure_sysmem) { 1079 /* Report both flash devices as a single node in the DT */ 1080 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1081 qemu_fdt_add_subnode(ms->fdt, nodename); 1082 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1083 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1084 2, flashbase, 2, flashsize, 1085 2, flashbase + flashsize, 2, flashsize); 1086 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1087 g_free(nodename); 1088 } else { 1089 /* 1090 * Report the devices as separate nodes so we can mark one as 1091 * only visible to the secure world. 1092 */ 1093 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1094 qemu_fdt_add_subnode(ms->fdt, nodename); 1095 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1096 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1097 2, flashbase, 2, flashsize); 1098 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1099 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1100 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1101 g_free(nodename); 1102 1103 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1104 qemu_fdt_add_subnode(ms->fdt, nodename); 1105 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1106 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1107 2, flashbase + flashsize, 2, flashsize); 1108 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1109 g_free(nodename); 1110 } 1111 } 1112 1113 static bool virt_firmware_init(VirtMachineState *vms, 1114 MemoryRegion *sysmem, 1115 MemoryRegion *secure_sysmem) 1116 { 1117 int i; 1118 const char *bios_name; 1119 BlockBackend *pflash_blk0; 1120 1121 /* Map legacy -drive if=pflash to machine properties */ 1122 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1123 pflash_cfi01_legacy_drive(vms->flash[i], 1124 drive_get(IF_PFLASH, 0, i)); 1125 } 1126 1127 virt_flash_map(vms, sysmem, secure_sysmem); 1128 1129 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1130 1131 bios_name = MACHINE(vms)->firmware; 1132 if (bios_name) { 1133 char *fname; 1134 MemoryRegion *mr; 1135 int image_size; 1136 1137 if (pflash_blk0) { 1138 error_report("The contents of the first flash device may be " 1139 "specified with -bios or with -drive if=pflash... " 1140 "but you cannot use both options at once"); 1141 exit(1); 1142 } 1143 1144 /* Fall back to -bios */ 1145 1146 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1147 if (!fname) { 1148 error_report("Could not find ROM image '%s'", bios_name); 1149 exit(1); 1150 } 1151 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1152 image_size = load_image_mr(fname, mr); 1153 g_free(fname); 1154 if (image_size < 0) { 1155 error_report("Could not load ROM image '%s'", bios_name); 1156 exit(1); 1157 } 1158 } 1159 1160 return pflash_blk0 || bios_name; 1161 } 1162 1163 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1164 { 1165 MachineState *ms = MACHINE(vms); 1166 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1167 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1168 FWCfgState *fw_cfg; 1169 char *nodename; 1170 1171 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1172 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1173 1174 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1175 qemu_fdt_add_subnode(ms->fdt, nodename); 1176 qemu_fdt_setprop_string(ms->fdt, nodename, 1177 "compatible", "qemu,fw-cfg-mmio"); 1178 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1179 2, base, 2, size); 1180 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1181 g_free(nodename); 1182 return fw_cfg; 1183 } 1184 1185 static void create_pcie_irq_map(const MachineState *ms, 1186 uint32_t gic_phandle, 1187 int first_irq, const char *nodename) 1188 { 1189 int devfn, pin; 1190 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1191 uint32_t *irq_map = full_irq_map; 1192 1193 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1194 for (pin = 0; pin < 4; pin++) { 1195 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1196 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1197 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1198 int i; 1199 1200 uint32_t map[] = { 1201 devfn << 8, 0, 0, /* devfn */ 1202 pin + 1, /* PCI pin */ 1203 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1204 1205 /* Convert map to big endian */ 1206 for (i = 0; i < 10; i++) { 1207 irq_map[i] = cpu_to_be32(map[i]); 1208 } 1209 irq_map += 10; 1210 } 1211 } 1212 1213 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1214 full_irq_map, sizeof(full_irq_map)); 1215 1216 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1217 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1218 0, 0, 1219 0x7 /* PCI irq */); 1220 } 1221 1222 static void create_smmu(const VirtMachineState *vms, 1223 PCIBus *bus) 1224 { 1225 char *node; 1226 const char compat[] = "arm,smmu-v3"; 1227 int irq = vms->irqmap[VIRT_SMMU]; 1228 int i; 1229 hwaddr base = vms->memmap[VIRT_SMMU].base; 1230 hwaddr size = vms->memmap[VIRT_SMMU].size; 1231 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1232 DeviceState *dev; 1233 MachineState *ms = MACHINE(vms); 1234 1235 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1236 return; 1237 } 1238 1239 dev = qdev_new("arm-smmuv3"); 1240 1241 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1242 &error_abort); 1243 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1244 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1245 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1246 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1247 qdev_get_gpio_in(vms->gic, irq + i)); 1248 } 1249 1250 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1251 qemu_fdt_add_subnode(ms->fdt, node); 1252 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1253 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1254 1255 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1256 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1257 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1258 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1259 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1260 1261 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1262 sizeof(irq_names)); 1263 1264 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle); 1265 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk"); 1266 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1267 1268 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1269 1270 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1271 g_free(node); 1272 } 1273 1274 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1275 { 1276 const char compat[] = "virtio,pci-iommu"; 1277 uint16_t bdf = vms->virtio_iommu_bdf; 1278 MachineState *ms = MACHINE(vms); 1279 char *node; 1280 1281 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1282 1283 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1284 qemu_fdt_add_subnode(ms->fdt, node); 1285 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1286 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1287 1, bdf << 8, 1, 0, 1, 0, 1288 1, 0, 1, 0); 1289 1290 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1291 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1292 g_free(node); 1293 1294 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1295 0x0, vms->iommu_phandle, 0x0, bdf, 1296 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1297 } 1298 1299 static void create_pcie(VirtMachineState *vms) 1300 { 1301 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1302 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1303 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1304 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1305 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1306 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1307 hwaddr base_ecam, size_ecam; 1308 hwaddr base = base_mmio; 1309 int nr_pcie_buses; 1310 int irq = vms->irqmap[VIRT_PCIE]; 1311 MemoryRegion *mmio_alias; 1312 MemoryRegion *mmio_reg; 1313 MemoryRegion *ecam_alias; 1314 MemoryRegion *ecam_reg; 1315 DeviceState *dev; 1316 char *nodename; 1317 int i, ecam_id; 1318 PCIHostState *pci; 1319 MachineState *ms = MACHINE(vms); 1320 1321 dev = qdev_new(TYPE_GPEX_HOST); 1322 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1323 1324 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1325 base_ecam = vms->memmap[ecam_id].base; 1326 size_ecam = vms->memmap[ecam_id].size; 1327 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1328 /* Map only the first size_ecam bytes of ECAM space */ 1329 ecam_alias = g_new0(MemoryRegion, 1); 1330 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1331 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1332 ecam_reg, 0, size_ecam); 1333 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1334 1335 /* Map the MMIO window into system address space so as to expose 1336 * the section of PCI MMIO space which starts at the same base address 1337 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1338 * the window). 1339 */ 1340 mmio_alias = g_new0(MemoryRegion, 1); 1341 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1342 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1343 mmio_reg, base_mmio, size_mmio); 1344 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1345 1346 if (vms->highmem) { 1347 /* Map high MMIO space */ 1348 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1349 1350 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1351 mmio_reg, base_mmio_high, size_mmio_high); 1352 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1353 high_mmio_alias); 1354 } 1355 1356 /* Map IO port space */ 1357 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1358 1359 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1360 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1361 qdev_get_gpio_in(vms->gic, irq + i)); 1362 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1363 } 1364 1365 pci = PCI_HOST_BRIDGE(dev); 1366 vms->bus = pci->bus; 1367 if (vms->bus) { 1368 for (i = 0; i < nb_nics; i++) { 1369 NICInfo *nd = &nd_table[i]; 1370 1371 if (!nd->model) { 1372 nd->model = g_strdup("virtio"); 1373 } 1374 1375 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1376 } 1377 } 1378 1379 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1380 qemu_fdt_add_subnode(ms->fdt, nodename); 1381 qemu_fdt_setprop_string(ms->fdt, nodename, 1382 "compatible", "pci-host-ecam-generic"); 1383 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1384 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1385 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1386 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1387 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1388 nr_pcie_buses - 1); 1389 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1390 1391 if (vms->msi_phandle) { 1392 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent", 1393 vms->msi_phandle); 1394 } 1395 1396 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1397 2, base_ecam, 2, size_ecam); 1398 1399 if (vms->highmem) { 1400 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1401 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1402 2, base_pio, 2, size_pio, 1403 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1404 2, base_mmio, 2, size_mmio, 1405 1, FDT_PCI_RANGE_MMIO_64BIT, 1406 2, base_mmio_high, 1407 2, base_mmio_high, 2, size_mmio_high); 1408 } else { 1409 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1410 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1411 2, base_pio, 2, size_pio, 1412 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1413 2, base_mmio, 2, size_mmio); 1414 } 1415 1416 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1417 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1418 1419 if (vms->iommu) { 1420 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1421 1422 switch (vms->iommu) { 1423 case VIRT_IOMMU_SMMUV3: 1424 create_smmu(vms, vms->bus); 1425 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1426 0x0, vms->iommu_phandle, 0x0, 0x10000); 1427 break; 1428 default: 1429 g_assert_not_reached(); 1430 } 1431 } 1432 } 1433 1434 static void create_platform_bus(VirtMachineState *vms) 1435 { 1436 DeviceState *dev; 1437 SysBusDevice *s; 1438 int i; 1439 MemoryRegion *sysmem = get_system_memory(); 1440 1441 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1442 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1443 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1444 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1445 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1446 vms->platform_bus_dev = dev; 1447 1448 s = SYS_BUS_DEVICE(dev); 1449 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1450 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1451 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1452 } 1453 1454 memory_region_add_subregion(sysmem, 1455 vms->memmap[VIRT_PLATFORM_BUS].base, 1456 sysbus_mmio_get_region(s, 0)); 1457 } 1458 1459 static void create_tag_ram(MemoryRegion *tag_sysmem, 1460 hwaddr base, hwaddr size, 1461 const char *name) 1462 { 1463 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1464 1465 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1466 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1467 } 1468 1469 static void create_secure_ram(VirtMachineState *vms, 1470 MemoryRegion *secure_sysmem, 1471 MemoryRegion *secure_tag_sysmem) 1472 { 1473 MemoryRegion *secram = g_new(MemoryRegion, 1); 1474 char *nodename; 1475 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1476 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1477 MachineState *ms = MACHINE(vms); 1478 1479 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1480 &error_fatal); 1481 memory_region_add_subregion(secure_sysmem, base, secram); 1482 1483 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1484 qemu_fdt_add_subnode(ms->fdt, nodename); 1485 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1486 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1487 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1488 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1489 1490 if (secure_tag_sysmem) { 1491 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1492 } 1493 1494 g_free(nodename); 1495 } 1496 1497 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1498 { 1499 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1500 bootinfo); 1501 MachineState *ms = MACHINE(board); 1502 1503 1504 *fdt_size = board->fdt_size; 1505 return ms->fdt; 1506 } 1507 1508 static void virt_build_smbios(VirtMachineState *vms) 1509 { 1510 MachineClass *mc = MACHINE_GET_CLASS(vms); 1511 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1512 uint8_t *smbios_tables, *smbios_anchor; 1513 size_t smbios_tables_len, smbios_anchor_len; 1514 const char *product = "QEMU Virtual Machine"; 1515 1516 if (kvm_enabled()) { 1517 product = "KVM Virtual Machine"; 1518 } 1519 1520 smbios_set_defaults("QEMU", product, 1521 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1522 true, SMBIOS_ENTRY_POINT_30); 1523 1524 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1525 &smbios_anchor, &smbios_anchor_len); 1526 1527 if (smbios_anchor) { 1528 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1529 smbios_tables, smbios_tables_len); 1530 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1531 smbios_anchor, smbios_anchor_len); 1532 } 1533 } 1534 1535 static 1536 void virt_machine_done(Notifier *notifier, void *data) 1537 { 1538 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1539 machine_done); 1540 MachineState *ms = MACHINE(vms); 1541 ARMCPU *cpu = ARM_CPU(first_cpu); 1542 struct arm_boot_info *info = &vms->bootinfo; 1543 AddressSpace *as = arm_boot_address_space(cpu, info); 1544 1545 /* 1546 * If the user provided a dtb, we assume the dynamic sysbus nodes 1547 * already are integrated there. This corresponds to a use case where 1548 * the dynamic sysbus nodes are complex and their generation is not yet 1549 * supported. In that case the user can take charge of the guest dt 1550 * while qemu takes charge of the qom stuff. 1551 */ 1552 if (info->dtb_filename == NULL) { 1553 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1554 vms->memmap[VIRT_PLATFORM_BUS].base, 1555 vms->memmap[VIRT_PLATFORM_BUS].size, 1556 vms->irqmap[VIRT_PLATFORM_BUS]); 1557 } 1558 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1559 exit(1); 1560 } 1561 1562 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1563 1564 virt_acpi_setup(vms); 1565 virt_build_smbios(vms); 1566 } 1567 1568 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1569 { 1570 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1571 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1572 1573 if (!vmc->disallow_affinity_adjustment) { 1574 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1575 * GIC's target-list limitations. 32-bit KVM hosts currently 1576 * always create clusters of 4 CPUs, but that is expected to 1577 * change when they gain support for gicv3. When KVM is enabled 1578 * it will override the changes we make here, therefore our 1579 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1580 * and to improve SGI efficiency. 1581 */ 1582 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1583 clustersz = GICV3_TARGETLIST_BITS; 1584 } else { 1585 clustersz = GIC_TARGETLIST_BITS; 1586 } 1587 } 1588 return arm_cpu_mp_affinity(idx, clustersz); 1589 } 1590 1591 static void virt_set_memmap(VirtMachineState *vms) 1592 { 1593 MachineState *ms = MACHINE(vms); 1594 hwaddr base, device_memory_base, device_memory_size; 1595 int i; 1596 1597 vms->memmap = extended_memmap; 1598 1599 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1600 vms->memmap[i] = base_memmap[i]; 1601 } 1602 1603 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1604 error_report("unsupported number of memory slots: %"PRIu64, 1605 ms->ram_slots); 1606 exit(EXIT_FAILURE); 1607 } 1608 1609 /* 1610 * We compute the base of the high IO region depending on the 1611 * amount of initial and device memory. The device memory start/size 1612 * is aligned on 1GiB. We never put the high IO region below 256GiB 1613 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1614 * The device region size assumes 1GiB page max alignment per slot. 1615 */ 1616 device_memory_base = 1617 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1618 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1619 1620 /* Base address of the high IO region */ 1621 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1622 if (base < device_memory_base) { 1623 error_report("maxmem/slots too huge"); 1624 exit(EXIT_FAILURE); 1625 } 1626 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1627 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1628 } 1629 1630 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1631 hwaddr size = extended_memmap[i].size; 1632 1633 base = ROUND_UP(base, size); 1634 vms->memmap[i].base = base; 1635 vms->memmap[i].size = size; 1636 base += size; 1637 } 1638 vms->highest_gpa = base - 1; 1639 if (device_memory_size > 0) { 1640 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1641 ms->device_memory->base = device_memory_base; 1642 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1643 "device-memory", device_memory_size); 1644 } 1645 } 1646 1647 /* 1648 * finalize_gic_version - Determines the final gic_version 1649 * according to the gic-version property 1650 * 1651 * Default GIC type is v2 1652 */ 1653 static void finalize_gic_version(VirtMachineState *vms) 1654 { 1655 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1656 1657 if (kvm_enabled()) { 1658 int probe_bitmap; 1659 1660 if (!kvm_irqchip_in_kernel()) { 1661 switch (vms->gic_version) { 1662 case VIRT_GIC_VERSION_HOST: 1663 warn_report( 1664 "gic-version=host not relevant with kernel-irqchip=off " 1665 "as only userspace GICv2 is supported. Using v2 ..."); 1666 return; 1667 case VIRT_GIC_VERSION_MAX: 1668 case VIRT_GIC_VERSION_NOSEL: 1669 vms->gic_version = VIRT_GIC_VERSION_2; 1670 return; 1671 case VIRT_GIC_VERSION_2: 1672 return; 1673 case VIRT_GIC_VERSION_3: 1674 error_report( 1675 "gic-version=3 is not supported with kernel-irqchip=off"); 1676 exit(1); 1677 } 1678 } 1679 1680 probe_bitmap = kvm_arm_vgic_probe(); 1681 if (!probe_bitmap) { 1682 error_report("Unable to determine GIC version supported by host"); 1683 exit(1); 1684 } 1685 1686 switch (vms->gic_version) { 1687 case VIRT_GIC_VERSION_HOST: 1688 case VIRT_GIC_VERSION_MAX: 1689 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1690 vms->gic_version = VIRT_GIC_VERSION_3; 1691 } else { 1692 vms->gic_version = VIRT_GIC_VERSION_2; 1693 } 1694 return; 1695 case VIRT_GIC_VERSION_NOSEL: 1696 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1697 vms->gic_version = VIRT_GIC_VERSION_2; 1698 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1699 /* 1700 * in case the host does not support v2 in-kernel emulation or 1701 * the end-user requested more than 8 VCPUs we now default 1702 * to v3. In any case defaulting to v2 would be broken. 1703 */ 1704 vms->gic_version = VIRT_GIC_VERSION_3; 1705 } else if (max_cpus > GIC_NCPU) { 1706 error_report("host only supports in-kernel GICv2 emulation " 1707 "but more than 8 vcpus are requested"); 1708 exit(1); 1709 } 1710 break; 1711 case VIRT_GIC_VERSION_2: 1712 case VIRT_GIC_VERSION_3: 1713 break; 1714 } 1715 1716 /* Check chosen version is effectively supported by the host */ 1717 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1718 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1719 error_report("host does not support in-kernel GICv2 emulation"); 1720 exit(1); 1721 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1722 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1723 error_report("host does not support in-kernel GICv3 emulation"); 1724 exit(1); 1725 } 1726 return; 1727 } 1728 1729 /* TCG mode */ 1730 switch (vms->gic_version) { 1731 case VIRT_GIC_VERSION_NOSEL: 1732 vms->gic_version = VIRT_GIC_VERSION_2; 1733 break; 1734 case VIRT_GIC_VERSION_MAX: 1735 vms->gic_version = VIRT_GIC_VERSION_3; 1736 break; 1737 case VIRT_GIC_VERSION_HOST: 1738 error_report("gic-version=host requires KVM"); 1739 exit(1); 1740 case VIRT_GIC_VERSION_2: 1741 case VIRT_GIC_VERSION_3: 1742 break; 1743 } 1744 } 1745 1746 /* 1747 * virt_cpu_post_init() must be called after the CPUs have 1748 * been realized and the GIC has been created. 1749 */ 1750 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1751 { 1752 int max_cpus = MACHINE(vms)->smp.max_cpus; 1753 bool aarch64, pmu, steal_time; 1754 CPUState *cpu; 1755 1756 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1757 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1758 steal_time = object_property_get_bool(OBJECT(first_cpu), 1759 "kvm-steal-time", NULL); 1760 1761 if (kvm_enabled()) { 1762 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1763 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1764 1765 if (steal_time) { 1766 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1767 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1768 1769 /* The memory region size must be a multiple of host page size. */ 1770 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1771 1772 if (pvtime_size > pvtime_reg_size) { 1773 error_report("pvtime requires a %" HWADDR_PRId 1774 " byte memory region for %d CPUs," 1775 " but only %" HWADDR_PRId " has been reserved", 1776 pvtime_size, max_cpus, pvtime_reg_size); 1777 exit(1); 1778 } 1779 1780 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1781 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1782 } 1783 1784 CPU_FOREACH(cpu) { 1785 if (pmu) { 1786 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1787 if (kvm_irqchip_in_kernel()) { 1788 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 1789 } 1790 kvm_arm_pmu_init(cpu); 1791 } 1792 if (steal_time) { 1793 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 1794 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 1795 } 1796 } 1797 } else { 1798 if (aarch64 && vms->highmem) { 1799 int requested_pa_size = 64 - clz64(vms->highest_gpa); 1800 int pamax = arm_pamax(ARM_CPU(first_cpu)); 1801 1802 if (pamax < requested_pa_size) { 1803 error_report("VCPU supports less PA bits (%d) than " 1804 "requested by the memory map (%d)", 1805 pamax, requested_pa_size); 1806 exit(1); 1807 } 1808 } 1809 } 1810 } 1811 1812 static void machvirt_init(MachineState *machine) 1813 { 1814 VirtMachineState *vms = VIRT_MACHINE(machine); 1815 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1816 MachineClass *mc = MACHINE_GET_CLASS(machine); 1817 const CPUArchIdList *possible_cpus; 1818 MemoryRegion *sysmem = get_system_memory(); 1819 MemoryRegion *secure_sysmem = NULL; 1820 MemoryRegion *tag_sysmem = NULL; 1821 MemoryRegion *secure_tag_sysmem = NULL; 1822 int n, virt_max_cpus; 1823 bool firmware_loaded; 1824 bool aarch64 = true; 1825 bool has_ged = !vmc->no_ged; 1826 unsigned int smp_cpus = machine->smp.cpus; 1827 unsigned int max_cpus = machine->smp.max_cpus; 1828 1829 /* 1830 * In accelerated mode, the memory map is computed earlier in kvm_type() 1831 * to create a VM with the right number of IPA bits. 1832 */ 1833 if (!vms->memmap) { 1834 virt_set_memmap(vms); 1835 } 1836 1837 /* We can probe only here because during property set 1838 * KVM is not available yet 1839 */ 1840 finalize_gic_version(vms); 1841 1842 if (!cpu_type_valid(machine->cpu_type)) { 1843 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1844 exit(1); 1845 } 1846 1847 if (vms->secure) { 1848 if (kvm_enabled()) { 1849 error_report("mach-virt: KVM does not support Security extensions"); 1850 exit(1); 1851 } 1852 1853 /* 1854 * The Secure view of the world is the same as the NonSecure, 1855 * but with a few extra devices. Create it as a container region 1856 * containing the system memory at low priority; any secure-only 1857 * devices go in at higher priority and take precedence. 1858 */ 1859 secure_sysmem = g_new(MemoryRegion, 1); 1860 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1861 UINT64_MAX); 1862 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1863 } 1864 1865 firmware_loaded = virt_firmware_init(vms, sysmem, 1866 secure_sysmem ?: sysmem); 1867 1868 /* If we have an EL3 boot ROM then the assumption is that it will 1869 * implement PSCI itself, so disable QEMU's internal implementation 1870 * so it doesn't get in the way. Instead of starting secondary 1871 * CPUs in PSCI powerdown state we will start them all running and 1872 * let the boot ROM sort them out. 1873 * The usual case is that we do use QEMU's PSCI implementation; 1874 * if the guest has EL2 then we will use SMC as the conduit, 1875 * and otherwise we will use HVC (for backwards compatibility and 1876 * because if we're using KVM then we must use HVC). 1877 */ 1878 if (vms->secure && firmware_loaded) { 1879 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1880 } else if (vms->virt) { 1881 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1882 } else { 1883 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1884 } 1885 1886 /* The maximum number of CPUs depends on the GIC version, or on how 1887 * many redistributors we can fit into the memory map. 1888 */ 1889 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1890 virt_max_cpus = 1891 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1892 virt_max_cpus += 1893 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1894 } else { 1895 virt_max_cpus = GIC_NCPU; 1896 } 1897 1898 if (max_cpus > virt_max_cpus) { 1899 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1900 "supported by machine 'mach-virt' (%d)", 1901 max_cpus, virt_max_cpus); 1902 exit(1); 1903 } 1904 1905 if (vms->virt && kvm_enabled()) { 1906 error_report("mach-virt: KVM does not support providing " 1907 "Virtualization extensions to the guest CPU"); 1908 exit(1); 1909 } 1910 1911 if (vms->mte && kvm_enabled()) { 1912 error_report("mach-virt: KVM does not support providing " 1913 "MTE to the guest CPU"); 1914 exit(1); 1915 } 1916 1917 create_fdt(vms); 1918 1919 possible_cpus = mc->possible_cpu_arch_ids(machine); 1920 assert(possible_cpus->len == max_cpus); 1921 for (n = 0; n < possible_cpus->len; n++) { 1922 Object *cpuobj; 1923 CPUState *cs; 1924 1925 if (n >= smp_cpus) { 1926 break; 1927 } 1928 1929 cpuobj = object_new(possible_cpus->cpus[n].type); 1930 object_property_set_int(cpuobj, "mp-affinity", 1931 possible_cpus->cpus[n].arch_id, NULL); 1932 1933 cs = CPU(cpuobj); 1934 cs->cpu_index = n; 1935 1936 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1937 &error_fatal); 1938 1939 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1940 1941 if (!vms->secure) { 1942 object_property_set_bool(cpuobj, "has_el3", false, NULL); 1943 } 1944 1945 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 1946 object_property_set_bool(cpuobj, "has_el2", false, NULL); 1947 } 1948 1949 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1950 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, 1951 NULL); 1952 1953 /* Secondary CPUs start in PSCI powered-down state */ 1954 if (n > 0) { 1955 object_property_set_bool(cpuobj, "start-powered-off", true, 1956 NULL); 1957 } 1958 } 1959 1960 if (vmc->kvm_no_adjvtime && 1961 object_property_find(cpuobj, "kvm-no-adjvtime")) { 1962 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 1963 } 1964 1965 if (vmc->no_kvm_steal_time && 1966 object_property_find(cpuobj, "kvm-steal-time")) { 1967 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 1968 } 1969 1970 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 1971 object_property_set_bool(cpuobj, "pmu", false, NULL); 1972 } 1973 1974 if (object_property_find(cpuobj, "reset-cbar")) { 1975 object_property_set_int(cpuobj, "reset-cbar", 1976 vms->memmap[VIRT_CPUPERIPHS].base, 1977 &error_abort); 1978 } 1979 1980 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 1981 &error_abort); 1982 if (vms->secure) { 1983 object_property_set_link(cpuobj, "secure-memory", 1984 OBJECT(secure_sysmem), &error_abort); 1985 } 1986 1987 if (vms->mte) { 1988 /* Create the memory region only once, but link to all cpus. */ 1989 if (!tag_sysmem) { 1990 /* 1991 * The property exists only if MemTag is supported. 1992 * If it is, we must allocate the ram to back that up. 1993 */ 1994 if (!object_property_find(cpuobj, "tag-memory")) { 1995 error_report("MTE requested, but not supported " 1996 "by the guest CPU"); 1997 exit(1); 1998 } 1999 2000 tag_sysmem = g_new(MemoryRegion, 1); 2001 memory_region_init(tag_sysmem, OBJECT(machine), 2002 "tag-memory", UINT64_MAX / 32); 2003 2004 if (vms->secure) { 2005 secure_tag_sysmem = g_new(MemoryRegion, 1); 2006 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2007 "secure-tag-memory", UINT64_MAX / 32); 2008 2009 /* As with ram, secure-tag takes precedence over tag. */ 2010 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2011 tag_sysmem, -1); 2012 } 2013 } 2014 2015 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2016 &error_abort); 2017 if (vms->secure) { 2018 object_property_set_link(cpuobj, "secure-tag-memory", 2019 OBJECT(secure_tag_sysmem), 2020 &error_abort); 2021 } 2022 } 2023 2024 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2025 object_unref(cpuobj); 2026 } 2027 fdt_add_timer_nodes(vms); 2028 fdt_add_cpu_nodes(vms); 2029 2030 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2031 machine->ram); 2032 if (machine->device_memory) { 2033 memory_region_add_subregion(sysmem, machine->device_memory->base, 2034 &machine->device_memory->mr); 2035 } 2036 2037 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2038 2039 create_gic(vms); 2040 2041 virt_cpu_post_init(vms, sysmem); 2042 2043 fdt_add_pmu_nodes(vms); 2044 2045 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2046 2047 if (vms->secure) { 2048 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2049 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2050 } 2051 2052 if (tag_sysmem) { 2053 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2054 machine->ram_size, "mach-virt.tag"); 2055 } 2056 2057 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 2058 2059 create_rtc(vms); 2060 2061 create_pcie(vms); 2062 2063 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2064 vms->acpi_dev = create_acpi_ged(vms); 2065 } else { 2066 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2067 } 2068 2069 if (vms->secure && !vmc->no_secure_gpio) { 2070 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2071 } 2072 2073 /* connect powerdown request */ 2074 vms->powerdown_notifier.notify = virt_powerdown_req; 2075 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2076 2077 /* Create mmio transports, so the user can create virtio backends 2078 * (which will be automatically plugged in to the transports). If 2079 * no backend is created the transport will just sit harmlessly idle. 2080 */ 2081 create_virtio_devices(vms); 2082 2083 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2084 rom_set_fw(vms->fw_cfg); 2085 2086 create_platform_bus(vms); 2087 2088 if (machine->nvdimms_state->is_enabled) { 2089 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2090 .space_id = AML_AS_SYSTEM_MEMORY, 2091 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2092 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2093 }; 2094 2095 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2096 arm_virt_nvdimm_acpi_dsmio, 2097 vms->fw_cfg, OBJECT(vms)); 2098 } 2099 2100 vms->bootinfo.ram_size = machine->ram_size; 2101 vms->bootinfo.nb_cpus = smp_cpus; 2102 vms->bootinfo.board_id = -1; 2103 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2104 vms->bootinfo.get_dtb = machvirt_dtb; 2105 vms->bootinfo.skip_dtb_autoload = true; 2106 vms->bootinfo.firmware_loaded = firmware_loaded; 2107 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2108 2109 vms->machine_done.notify = virt_machine_done; 2110 qemu_add_machine_init_done_notifier(&vms->machine_done); 2111 } 2112 2113 static bool virt_get_secure(Object *obj, Error **errp) 2114 { 2115 VirtMachineState *vms = VIRT_MACHINE(obj); 2116 2117 return vms->secure; 2118 } 2119 2120 static void virt_set_secure(Object *obj, bool value, Error **errp) 2121 { 2122 VirtMachineState *vms = VIRT_MACHINE(obj); 2123 2124 vms->secure = value; 2125 } 2126 2127 static bool virt_get_virt(Object *obj, Error **errp) 2128 { 2129 VirtMachineState *vms = VIRT_MACHINE(obj); 2130 2131 return vms->virt; 2132 } 2133 2134 static void virt_set_virt(Object *obj, bool value, Error **errp) 2135 { 2136 VirtMachineState *vms = VIRT_MACHINE(obj); 2137 2138 vms->virt = value; 2139 } 2140 2141 static bool virt_get_highmem(Object *obj, Error **errp) 2142 { 2143 VirtMachineState *vms = VIRT_MACHINE(obj); 2144 2145 return vms->highmem; 2146 } 2147 2148 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2149 { 2150 VirtMachineState *vms = VIRT_MACHINE(obj); 2151 2152 vms->highmem = value; 2153 } 2154 2155 static bool virt_get_its(Object *obj, Error **errp) 2156 { 2157 VirtMachineState *vms = VIRT_MACHINE(obj); 2158 2159 return vms->its; 2160 } 2161 2162 static void virt_set_its(Object *obj, bool value, Error **errp) 2163 { 2164 VirtMachineState *vms = VIRT_MACHINE(obj); 2165 2166 vms->its = value; 2167 } 2168 2169 static char *virt_get_oem_id(Object *obj, Error **errp) 2170 { 2171 VirtMachineState *vms = VIRT_MACHINE(obj); 2172 2173 return g_strdup(vms->oem_id); 2174 } 2175 2176 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2177 { 2178 VirtMachineState *vms = VIRT_MACHINE(obj); 2179 size_t len = strlen(value); 2180 2181 if (len > 6) { 2182 error_setg(errp, 2183 "User specified oem-id value is bigger than 6 bytes in size"); 2184 return; 2185 } 2186 2187 strncpy(vms->oem_id, value, 6); 2188 } 2189 2190 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2191 { 2192 VirtMachineState *vms = VIRT_MACHINE(obj); 2193 2194 return g_strdup(vms->oem_table_id); 2195 } 2196 2197 static void virt_set_oem_table_id(Object *obj, const char *value, 2198 Error **errp) 2199 { 2200 VirtMachineState *vms = VIRT_MACHINE(obj); 2201 size_t len = strlen(value); 2202 2203 if (len > 8) { 2204 error_setg(errp, 2205 "User specified oem-table-id value is bigger than 8 bytes in size"); 2206 return; 2207 } 2208 strncpy(vms->oem_table_id, value, 8); 2209 } 2210 2211 2212 bool virt_is_acpi_enabled(VirtMachineState *vms) 2213 { 2214 if (vms->acpi == ON_OFF_AUTO_OFF) { 2215 return false; 2216 } 2217 return true; 2218 } 2219 2220 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2221 void *opaque, Error **errp) 2222 { 2223 VirtMachineState *vms = VIRT_MACHINE(obj); 2224 OnOffAuto acpi = vms->acpi; 2225 2226 visit_type_OnOffAuto(v, name, &acpi, errp); 2227 } 2228 2229 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2230 void *opaque, Error **errp) 2231 { 2232 VirtMachineState *vms = VIRT_MACHINE(obj); 2233 2234 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2235 } 2236 2237 static bool virt_get_ras(Object *obj, Error **errp) 2238 { 2239 VirtMachineState *vms = VIRT_MACHINE(obj); 2240 2241 return vms->ras; 2242 } 2243 2244 static void virt_set_ras(Object *obj, bool value, Error **errp) 2245 { 2246 VirtMachineState *vms = VIRT_MACHINE(obj); 2247 2248 vms->ras = value; 2249 } 2250 2251 static bool virt_get_mte(Object *obj, Error **errp) 2252 { 2253 VirtMachineState *vms = VIRT_MACHINE(obj); 2254 2255 return vms->mte; 2256 } 2257 2258 static void virt_set_mte(Object *obj, bool value, Error **errp) 2259 { 2260 VirtMachineState *vms = VIRT_MACHINE(obj); 2261 2262 vms->mte = value; 2263 } 2264 2265 static char *virt_get_gic_version(Object *obj, Error **errp) 2266 { 2267 VirtMachineState *vms = VIRT_MACHINE(obj); 2268 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2269 2270 return g_strdup(val); 2271 } 2272 2273 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2274 { 2275 VirtMachineState *vms = VIRT_MACHINE(obj); 2276 2277 if (!strcmp(value, "3")) { 2278 vms->gic_version = VIRT_GIC_VERSION_3; 2279 } else if (!strcmp(value, "2")) { 2280 vms->gic_version = VIRT_GIC_VERSION_2; 2281 } else if (!strcmp(value, "host")) { 2282 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2283 } else if (!strcmp(value, "max")) { 2284 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2285 } else { 2286 error_setg(errp, "Invalid gic-version value"); 2287 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2288 } 2289 } 2290 2291 static char *virt_get_iommu(Object *obj, Error **errp) 2292 { 2293 VirtMachineState *vms = VIRT_MACHINE(obj); 2294 2295 switch (vms->iommu) { 2296 case VIRT_IOMMU_NONE: 2297 return g_strdup("none"); 2298 case VIRT_IOMMU_SMMUV3: 2299 return g_strdup("smmuv3"); 2300 default: 2301 g_assert_not_reached(); 2302 } 2303 } 2304 2305 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2306 { 2307 VirtMachineState *vms = VIRT_MACHINE(obj); 2308 2309 if (!strcmp(value, "smmuv3")) { 2310 vms->iommu = VIRT_IOMMU_SMMUV3; 2311 } else if (!strcmp(value, "none")) { 2312 vms->iommu = VIRT_IOMMU_NONE; 2313 } else { 2314 error_setg(errp, "Invalid iommu value"); 2315 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2316 } 2317 } 2318 2319 static CpuInstanceProperties 2320 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2321 { 2322 MachineClass *mc = MACHINE_GET_CLASS(ms); 2323 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2324 2325 assert(cpu_index < possible_cpus->len); 2326 return possible_cpus->cpus[cpu_index].props; 2327 } 2328 2329 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2330 { 2331 return idx % ms->numa_state->num_nodes; 2332 } 2333 2334 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2335 { 2336 int n; 2337 unsigned int max_cpus = ms->smp.max_cpus; 2338 VirtMachineState *vms = VIRT_MACHINE(ms); 2339 2340 if (ms->possible_cpus) { 2341 assert(ms->possible_cpus->len == max_cpus); 2342 return ms->possible_cpus; 2343 } 2344 2345 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2346 sizeof(CPUArchId) * max_cpus); 2347 ms->possible_cpus->len = max_cpus; 2348 for (n = 0; n < ms->possible_cpus->len; n++) { 2349 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2350 ms->possible_cpus->cpus[n].arch_id = 2351 virt_cpu_mp_affinity(vms, n); 2352 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2353 ms->possible_cpus->cpus[n].props.thread_id = n; 2354 } 2355 return ms->possible_cpus; 2356 } 2357 2358 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2359 Error **errp) 2360 { 2361 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2362 const MachineState *ms = MACHINE(hotplug_dev); 2363 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2364 2365 if (!vms->acpi_dev) { 2366 error_setg(errp, 2367 "memory hotplug is not enabled: missing acpi-ged device"); 2368 return; 2369 } 2370 2371 if (vms->mte) { 2372 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2373 return; 2374 } 2375 2376 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2377 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2378 return; 2379 } 2380 2381 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2382 } 2383 2384 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2385 DeviceState *dev, Error **errp) 2386 { 2387 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2388 MachineState *ms = MACHINE(hotplug_dev); 2389 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2390 2391 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2392 2393 if (is_nvdimm) { 2394 nvdimm_plug(ms->nvdimms_state); 2395 } 2396 2397 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2398 dev, &error_abort); 2399 } 2400 2401 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2402 DeviceState *dev, Error **errp) 2403 { 2404 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2405 2406 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2407 virt_memory_pre_plug(hotplug_dev, dev, errp); 2408 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2409 hwaddr db_start = 0, db_end = 0; 2410 char *resv_prop_str; 2411 2412 switch (vms->msi_controller) { 2413 case VIRT_MSI_CTRL_NONE: 2414 return; 2415 case VIRT_MSI_CTRL_ITS: 2416 /* GITS_TRANSLATER page */ 2417 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2418 db_end = base_memmap[VIRT_GIC_ITS].base + 2419 base_memmap[VIRT_GIC_ITS].size - 1; 2420 break; 2421 case VIRT_MSI_CTRL_GICV2M: 2422 /* MSI_SETSPI_NS page */ 2423 db_start = base_memmap[VIRT_GIC_V2M].base; 2424 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2425 break; 2426 } 2427 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2428 db_start, db_end, 2429 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2430 2431 qdev_prop_set_uint32(dev, "len-reserved-regions", 1); 2432 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); 2433 g_free(resv_prop_str); 2434 } 2435 } 2436 2437 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2438 DeviceState *dev, Error **errp) 2439 { 2440 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2441 2442 if (vms->platform_bus_dev) { 2443 MachineClass *mc = MACHINE_GET_CLASS(vms); 2444 2445 if (device_is_dynamic_sysbus(mc, dev)) { 2446 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2447 SYS_BUS_DEVICE(dev)); 2448 } 2449 } 2450 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2451 virt_memory_plug(hotplug_dev, dev, errp); 2452 } 2453 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2454 PCIDevice *pdev = PCI_DEVICE(dev); 2455 2456 vms->iommu = VIRT_IOMMU_VIRTIO; 2457 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2458 create_virtio_iommu_dt_bindings(vms); 2459 } 2460 } 2461 2462 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2463 DeviceState *dev, Error **errp) 2464 { 2465 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2466 Error *local_err = NULL; 2467 2468 if (!vms->acpi_dev) { 2469 error_setg(&local_err, 2470 "memory hotplug is not enabled: missing acpi-ged device"); 2471 goto out; 2472 } 2473 2474 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2475 error_setg(&local_err, 2476 "nvdimm device hot unplug is not supported yet."); 2477 goto out; 2478 } 2479 2480 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2481 &local_err); 2482 out: 2483 error_propagate(errp, local_err); 2484 } 2485 2486 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2487 DeviceState *dev, Error **errp) 2488 { 2489 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2490 Error *local_err = NULL; 2491 2492 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2493 if (local_err) { 2494 goto out; 2495 } 2496 2497 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2498 qdev_unrealize(dev); 2499 2500 out: 2501 error_propagate(errp, local_err); 2502 } 2503 2504 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2505 DeviceState *dev, Error **errp) 2506 { 2507 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2508 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2509 } else { 2510 error_setg(errp, "device unplug request for unsupported device" 2511 " type: %s", object_get_typename(OBJECT(dev))); 2512 } 2513 } 2514 2515 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2516 DeviceState *dev, Error **errp) 2517 { 2518 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2519 virt_dimm_unplug(hotplug_dev, dev, errp); 2520 } else { 2521 error_setg(errp, "virt: device unplug for unsupported device" 2522 " type: %s", object_get_typename(OBJECT(dev))); 2523 } 2524 } 2525 2526 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2527 DeviceState *dev) 2528 { 2529 MachineClass *mc = MACHINE_GET_CLASS(machine); 2530 2531 if (device_is_dynamic_sysbus(mc, dev) || 2532 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2533 return HOTPLUG_HANDLER(machine); 2534 } 2535 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2536 VirtMachineState *vms = VIRT_MACHINE(machine); 2537 2538 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2539 return HOTPLUG_HANDLER(machine); 2540 } 2541 } 2542 return NULL; 2543 } 2544 2545 /* 2546 * for arm64 kvm_type [7-0] encodes the requested number of bits 2547 * in the IPA address space 2548 */ 2549 static int virt_kvm_type(MachineState *ms, const char *type_str) 2550 { 2551 VirtMachineState *vms = VIRT_MACHINE(ms); 2552 int max_vm_pa_size, requested_pa_size; 2553 bool fixed_ipa; 2554 2555 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2556 2557 /* we freeze the memory map to compute the highest gpa */ 2558 virt_set_memmap(vms); 2559 2560 requested_pa_size = 64 - clz64(vms->highest_gpa); 2561 2562 /* 2563 * KVM requires the IPA size to be at least 32 bits. 2564 */ 2565 if (requested_pa_size < 32) { 2566 requested_pa_size = 32; 2567 } 2568 2569 if (requested_pa_size > max_vm_pa_size) { 2570 error_report("-m and ,maxmem option values " 2571 "require an IPA range (%d bits) larger than " 2572 "the one supported by the host (%d bits)", 2573 requested_pa_size, max_vm_pa_size); 2574 exit(1); 2575 } 2576 /* 2577 * We return the requested PA log size, unless KVM only supports 2578 * the implicit legacy 40b IPA setting, in which case the kvm_type 2579 * must be 0. 2580 */ 2581 return fixed_ipa ? 0 : requested_pa_size; 2582 } 2583 2584 static void virt_machine_class_init(ObjectClass *oc, void *data) 2585 { 2586 MachineClass *mc = MACHINE_CLASS(oc); 2587 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2588 2589 mc->init = machvirt_init; 2590 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2591 * The value may be reduced later when we have more information about the 2592 * configuration of the particular instance. 2593 */ 2594 mc->max_cpus = 512; 2595 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2596 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2597 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2598 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2599 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2600 mc->block_default_type = IF_VIRTIO; 2601 mc->no_cdrom = 1; 2602 mc->pci_allow_0_address = true; 2603 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2604 mc->minimum_page_bits = 12; 2605 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2606 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2607 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2608 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2609 mc->kvm_type = virt_kvm_type; 2610 assert(!mc->get_hotplug_handler); 2611 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2612 hc->pre_plug = virt_machine_device_pre_plug_cb; 2613 hc->plug = virt_machine_device_plug_cb; 2614 hc->unplug_request = virt_machine_device_unplug_request_cb; 2615 hc->unplug = virt_machine_device_unplug_cb; 2616 mc->nvdimm_supported = true; 2617 mc->auto_enable_numa_with_memhp = true; 2618 mc->auto_enable_numa_with_memdev = true; 2619 mc->default_ram_id = "mach-virt.ram"; 2620 2621 object_class_property_add(oc, "acpi", "OnOffAuto", 2622 virt_get_acpi, virt_set_acpi, 2623 NULL, NULL); 2624 object_class_property_set_description(oc, "acpi", 2625 "Enable ACPI"); 2626 object_class_property_add_bool(oc, "secure", virt_get_secure, 2627 virt_set_secure); 2628 object_class_property_set_description(oc, "secure", 2629 "Set on/off to enable/disable the ARM " 2630 "Security Extensions (TrustZone)"); 2631 2632 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2633 virt_set_virt); 2634 object_class_property_set_description(oc, "virtualization", 2635 "Set on/off to enable/disable emulating a " 2636 "guest CPU which implements the ARM " 2637 "Virtualization Extensions"); 2638 2639 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2640 virt_set_highmem); 2641 object_class_property_set_description(oc, "highmem", 2642 "Set on/off to enable/disable using " 2643 "physical address space above 32 bits"); 2644 2645 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 2646 virt_set_gic_version); 2647 object_class_property_set_description(oc, "gic-version", 2648 "Set GIC version. " 2649 "Valid values are 2, 3, host and max"); 2650 2651 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 2652 object_class_property_set_description(oc, "iommu", 2653 "Set the IOMMU type. " 2654 "Valid values are none and smmuv3"); 2655 2656 object_class_property_add_bool(oc, "ras", virt_get_ras, 2657 virt_set_ras); 2658 object_class_property_set_description(oc, "ras", 2659 "Set on/off to enable/disable reporting host memory errors " 2660 "to a KVM guest using ACPI and guest external abort exceptions"); 2661 2662 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 2663 object_class_property_set_description(oc, "mte", 2664 "Set on/off to enable/disable emulating a " 2665 "guest CPU which implements the ARM " 2666 "Memory Tagging Extension"); 2667 2668 object_class_property_add_bool(oc, "its", virt_get_its, 2669 virt_set_its); 2670 object_class_property_set_description(oc, "its", 2671 "Set on/off to enable/disable " 2672 "ITS instantiation"); 2673 2674 object_class_property_add_str(oc, "x-oem-id", 2675 virt_get_oem_id, 2676 virt_set_oem_id); 2677 object_class_property_set_description(oc, "x-oem-id", 2678 "Override the default value of field OEMID " 2679 "in ACPI table header." 2680 "The string may be up to 6 bytes in size"); 2681 2682 2683 object_class_property_add_str(oc, "x-oem-table-id", 2684 virt_get_oem_table_id, 2685 virt_set_oem_table_id); 2686 object_class_property_set_description(oc, "x-oem-table-id", 2687 "Override the default value of field OEM Table ID " 2688 "in ACPI table header." 2689 "The string may be up to 8 bytes in size"); 2690 2691 } 2692 2693 static void virt_instance_init(Object *obj) 2694 { 2695 VirtMachineState *vms = VIRT_MACHINE(obj); 2696 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2697 2698 /* EL3 is disabled by default on virt: this makes us consistent 2699 * between KVM and TCG for this board, and it also allows us to 2700 * boot UEFI blobs which assume no TrustZone support. 2701 */ 2702 vms->secure = false; 2703 2704 /* EL2 is also disabled by default, for similar reasons */ 2705 vms->virt = false; 2706 2707 /* High memory is enabled by default */ 2708 vms->highmem = true; 2709 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2710 2711 vms->highmem_ecam = !vmc->no_highmem_ecam; 2712 2713 if (vmc->no_its) { 2714 vms->its = false; 2715 } else { 2716 /* Default allows ITS instantiation */ 2717 vms->its = true; 2718 } 2719 2720 /* Default disallows iommu instantiation */ 2721 vms->iommu = VIRT_IOMMU_NONE; 2722 2723 /* Default disallows RAS instantiation */ 2724 vms->ras = false; 2725 2726 /* MTE is disabled by default. */ 2727 vms->mte = false; 2728 2729 vms->irqmap = a15irqmap; 2730 2731 virt_flash_create(vms); 2732 2733 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 2734 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 2735 } 2736 2737 static const TypeInfo virt_machine_info = { 2738 .name = TYPE_VIRT_MACHINE, 2739 .parent = TYPE_MACHINE, 2740 .abstract = true, 2741 .instance_size = sizeof(VirtMachineState), 2742 .class_size = sizeof(VirtMachineClass), 2743 .class_init = virt_machine_class_init, 2744 .instance_init = virt_instance_init, 2745 .interfaces = (InterfaceInfo[]) { 2746 { TYPE_HOTPLUG_HANDLER }, 2747 { } 2748 }, 2749 }; 2750 2751 static void machvirt_machine_init(void) 2752 { 2753 type_register_static(&virt_machine_info); 2754 } 2755 type_init(machvirt_machine_init); 2756 2757 static void virt_machine_6_1_options(MachineClass *mc) 2758 { 2759 } 2760 DEFINE_VIRT_MACHINE_AS_LATEST(6, 1) 2761 2762 static void virt_machine_6_0_options(MachineClass *mc) 2763 { 2764 } 2765 DEFINE_VIRT_MACHINE(6, 0) 2766 2767 static void virt_machine_5_2_options(MachineClass *mc) 2768 { 2769 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2770 2771 virt_machine_6_0_options(mc); 2772 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 2773 vmc->no_secure_gpio = true; 2774 } 2775 DEFINE_VIRT_MACHINE(5, 2) 2776 2777 static void virt_machine_5_1_options(MachineClass *mc) 2778 { 2779 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2780 2781 virt_machine_5_2_options(mc); 2782 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 2783 vmc->no_kvm_steal_time = true; 2784 } 2785 DEFINE_VIRT_MACHINE(5, 1) 2786 2787 static void virt_machine_5_0_options(MachineClass *mc) 2788 { 2789 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2790 2791 virt_machine_5_1_options(mc); 2792 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 2793 mc->numa_mem_supported = true; 2794 vmc->acpi_expose_flash = true; 2795 mc->auto_enable_numa_with_memdev = false; 2796 } 2797 DEFINE_VIRT_MACHINE(5, 0) 2798 2799 static void virt_machine_4_2_options(MachineClass *mc) 2800 { 2801 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2802 2803 virt_machine_5_0_options(mc); 2804 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2805 vmc->kvm_no_adjvtime = true; 2806 } 2807 DEFINE_VIRT_MACHINE(4, 2) 2808 2809 static void virt_machine_4_1_options(MachineClass *mc) 2810 { 2811 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2812 2813 virt_machine_4_2_options(mc); 2814 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2815 vmc->no_ged = true; 2816 mc->auto_enable_numa_with_memhp = false; 2817 } 2818 DEFINE_VIRT_MACHINE(4, 1) 2819 2820 static void virt_machine_4_0_options(MachineClass *mc) 2821 { 2822 virt_machine_4_1_options(mc); 2823 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2824 } 2825 DEFINE_VIRT_MACHINE(4, 0) 2826 2827 static void virt_machine_3_1_options(MachineClass *mc) 2828 { 2829 virt_machine_4_0_options(mc); 2830 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2831 } 2832 DEFINE_VIRT_MACHINE(3, 1) 2833 2834 static void virt_machine_3_0_options(MachineClass *mc) 2835 { 2836 virt_machine_3_1_options(mc); 2837 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2838 } 2839 DEFINE_VIRT_MACHINE(3, 0) 2840 2841 static void virt_machine_2_12_options(MachineClass *mc) 2842 { 2843 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2844 2845 virt_machine_3_0_options(mc); 2846 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2847 vmc->no_highmem_ecam = true; 2848 mc->max_cpus = 255; 2849 } 2850 DEFINE_VIRT_MACHINE(2, 12) 2851 2852 static void virt_machine_2_11_options(MachineClass *mc) 2853 { 2854 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2855 2856 virt_machine_2_12_options(mc); 2857 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2858 vmc->smbios_old_sys_ver = true; 2859 } 2860 DEFINE_VIRT_MACHINE(2, 11) 2861 2862 static void virt_machine_2_10_options(MachineClass *mc) 2863 { 2864 virt_machine_2_11_options(mc); 2865 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2866 /* before 2.11 we never faulted accesses to bad addresses */ 2867 mc->ignore_memory_transaction_failures = true; 2868 } 2869 DEFINE_VIRT_MACHINE(2, 10) 2870 2871 static void virt_machine_2_9_options(MachineClass *mc) 2872 { 2873 virt_machine_2_10_options(mc); 2874 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2875 } 2876 DEFINE_VIRT_MACHINE(2, 9) 2877 2878 static void virt_machine_2_8_options(MachineClass *mc) 2879 { 2880 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2881 2882 virt_machine_2_9_options(mc); 2883 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2884 /* For 2.8 and earlier we falsely claimed in the DT that 2885 * our timers were edge-triggered, not level-triggered. 2886 */ 2887 vmc->claim_edge_triggered_timers = true; 2888 } 2889 DEFINE_VIRT_MACHINE(2, 8) 2890 2891 static void virt_machine_2_7_options(MachineClass *mc) 2892 { 2893 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2894 2895 virt_machine_2_8_options(mc); 2896 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2897 /* ITS was introduced with 2.8 */ 2898 vmc->no_its = true; 2899 /* Stick with 1K pages for migration compatibility */ 2900 mc->minimum_page_bits = 0; 2901 } 2902 DEFINE_VIRT_MACHINE(2, 7) 2903 2904 static void virt_machine_2_6_options(MachineClass *mc) 2905 { 2906 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2907 2908 virt_machine_2_7_options(mc); 2909 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2910 vmc->disallow_affinity_adjustment = true; 2911 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2912 vmc->no_pmu = true; 2913 } 2914 DEFINE_VIRT_MACHINE(2, 6) 2915