1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "hw/sysbus.h" 34 #include "hw/arm/arm.h" 35 #include "hw/arm/primecell.h" 36 #include "hw/arm/virt.h" 37 #include "hw/vfio/vfio-calxeda-xgmac.h" 38 #include "hw/vfio/vfio-amd-xgbe.h" 39 #include "hw/devices.h" 40 #include "net/net.h" 41 #include "sysemu/block-backend.h" 42 #include "sysemu/device_tree.h" 43 #include "sysemu/numa.h" 44 #include "sysemu/sysemu.h" 45 #include "sysemu/kvm.h" 46 #include "hw/compat.h" 47 #include "hw/loader.h" 48 #include "exec/address-spaces.h" 49 #include "qemu/bitops.h" 50 #include "qemu/error-report.h" 51 #include "hw/pci-host/gpex.h" 52 #include "hw/arm/sysbus-fdt.h" 53 #include "hw/platform-bus.h" 54 #include "hw/arm/fdt.h" 55 #include "hw/intc/arm_gic.h" 56 #include "hw/intc/arm_gicv3_common.h" 57 #include "kvm_arm.h" 58 #include "hw/smbios/smbios.h" 59 #include "qapi/visitor.h" 60 #include "standard-headers/linux/input.h" 61 #include "hw/arm/smmuv3.h" 62 63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 65 void *data) \ 66 { \ 67 MachineClass *mc = MACHINE_CLASS(oc); \ 68 virt_machine_##major##_##minor##_options(mc); \ 69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 70 if (latest) { \ 71 mc->alias = "virt"; \ 72 } \ 73 } \ 74 static const TypeInfo machvirt_##major##_##minor##_info = { \ 75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 76 .parent = TYPE_VIRT_MACHINE, \ 77 .instance_init = virt_##major##_##minor##_instance_init, \ 78 .class_init = virt_##major##_##minor##_class_init, \ 79 }; \ 80 static void machvirt_machine_##major##_##minor##_init(void) \ 81 { \ 82 type_register_static(&machvirt_##major##_##minor##_info); \ 83 } \ 84 type_init(machvirt_machine_##major##_##minor##_init); 85 86 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 88 #define DEFINE_VIRT_MACHINE(major, minor) \ 89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 90 91 92 /* Number of external interrupt lines to configure the GIC with */ 93 #define NUM_IRQS 256 94 95 #define PLATFORM_BUS_NUM_IRQS 64 96 97 static ARMPlatformBusSystemParams platform_bus_params; 98 99 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 100 * RAM can go up to the 256GB mark, leaving 256GB of the physical 101 * address space unallocated and free for future use between 256G and 512G. 102 * If we need to provide more RAM to VMs in the future then we need to: 103 * * allocate a second bank of RAM starting at 2TB and working up 104 * * fix the DT and ACPI table generation code in QEMU to correctly 105 * report two split lumps of RAM to the guest 106 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 107 * (We don't want to fill all the way up to 512GB with RAM because 108 * we might want it for non-RAM purposes later. Conversely it seems 109 * reasonable to assume that anybody configuring a VM with a quarter 110 * of a terabyte of RAM will be doing it on a host with more than a 111 * terabyte of physical address space.) 112 */ 113 #define RAMLIMIT_GB 255 114 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 115 116 /* Addresses and sizes of our components. 117 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 118 * 128MB..256MB is used for miscellaneous device I/O. 119 * 256MB..1GB is reserved for possible future PCI support (ie where the 120 * PCI memory window will go if we add a PCI host controller). 121 * 1GB and up is RAM (which may happily spill over into the 122 * high memory region beyond 4GB). 123 * This represents a compromise between how much RAM can be given to 124 * a 32 bit VM and leaving space for expansion and in particular for PCI. 125 * Note that devices should generally be placed at multiples of 0x10000, 126 * to accommodate guests using 64K pages. 127 */ 128 static const MemMapEntry a15memmap[] = { 129 /* Space up to 0x8000000 is reserved for a boot ROM */ 130 [VIRT_FLASH] = { 0, 0x08000000 }, 131 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 132 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 133 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 134 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 135 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 136 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 137 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 138 /* This redistributor space allows up to 2*64kB*123 CPUs */ 139 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 140 [VIRT_UART] = { 0x09000000, 0x00001000 }, 141 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 142 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 143 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 144 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 145 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 153 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 154 /* Second PCIe window, 512GB wide at the 512GB boundary */ 155 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 156 }; 157 158 static const int a15irqmap[] = { 159 [VIRT_UART] = 1, 160 [VIRT_RTC] = 2, 161 [VIRT_PCIE] = 3, /* ... to 6 */ 162 [VIRT_GPIO] = 7, 163 [VIRT_SECURE_UART] = 8, 164 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 165 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 166 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 167 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 168 }; 169 170 static const char *valid_cpus[] = { 171 ARM_CPU_TYPE_NAME("cortex-a15"), 172 ARM_CPU_TYPE_NAME("cortex-a53"), 173 ARM_CPU_TYPE_NAME("cortex-a57"), 174 ARM_CPU_TYPE_NAME("host"), 175 ARM_CPU_TYPE_NAME("max"), 176 }; 177 178 static bool cpu_type_valid(const char *cpu) 179 { 180 int i; 181 182 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 183 if (strcmp(cpu, valid_cpus[i]) == 0) { 184 return true; 185 } 186 } 187 return false; 188 } 189 190 static void create_fdt(VirtMachineState *vms) 191 { 192 void *fdt = create_device_tree(&vms->fdt_size); 193 194 if (!fdt) { 195 error_report("create_device_tree() failed"); 196 exit(1); 197 } 198 199 vms->fdt = fdt; 200 201 /* Header */ 202 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 203 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 204 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 205 206 /* 207 * /chosen and /memory nodes must exist for load_dtb 208 * to fill in necessary properties later 209 */ 210 qemu_fdt_add_subnode(fdt, "/chosen"); 211 qemu_fdt_add_subnode(fdt, "/memory"); 212 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 213 214 /* Clock node, for the benefit of the UART. The kernel device tree 215 * binding documentation claims the PL011 node clock properties are 216 * optional but in practice if you omit them the kernel refuses to 217 * probe for the device. 218 */ 219 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 220 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 221 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 222 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 223 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 224 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 225 "clk24mhz"); 226 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 227 228 if (have_numa_distance) { 229 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 230 uint32_t *matrix = g_malloc0(size); 231 int idx, i, j; 232 233 for (i = 0; i < nb_numa_nodes; i++) { 234 for (j = 0; j < nb_numa_nodes; j++) { 235 idx = (i * nb_numa_nodes + j) * 3; 236 matrix[idx + 0] = cpu_to_be32(i); 237 matrix[idx + 1] = cpu_to_be32(j); 238 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); 239 } 240 } 241 242 qemu_fdt_add_subnode(fdt, "/distance-map"); 243 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 244 "numa-distance-map-v1"); 245 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 246 matrix, size); 247 g_free(matrix); 248 } 249 } 250 251 static void fdt_add_timer_nodes(const VirtMachineState *vms) 252 { 253 /* On real hardware these interrupts are level-triggered. 254 * On KVM they were edge-triggered before host kernel version 4.4, 255 * and level-triggered afterwards. 256 * On emulated QEMU they are level-triggered. 257 * 258 * Getting the DTB info about them wrong is awkward for some 259 * guest kernels: 260 * pre-4.8 ignore the DT and leave the interrupt configured 261 * with whatever the GIC reset value (or the bootloader) left it at 262 * 4.8 before rc6 honour the incorrect data by programming it back 263 * into the GIC, causing problems 264 * 4.8rc6 and later ignore the DT and always write "level triggered" 265 * into the GIC 266 * 267 * For backwards-compatibility, virt-2.8 and earlier will continue 268 * to say these are edge-triggered, but later machines will report 269 * the correct information. 270 */ 271 ARMCPU *armcpu; 272 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 273 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 274 275 if (vmc->claim_edge_triggered_timers) { 276 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 277 } 278 279 if (vms->gic_version == 2) { 280 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 281 GIC_FDT_IRQ_PPI_CPU_WIDTH, 282 (1 << vms->smp_cpus) - 1); 283 } 284 285 qemu_fdt_add_subnode(vms->fdt, "/timer"); 286 287 armcpu = ARM_CPU(qemu_get_cpu(0)); 288 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 289 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 290 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 291 compat, sizeof(compat)); 292 } else { 293 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 294 "arm,armv7-timer"); 295 } 296 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 297 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 300 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 301 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 302 } 303 304 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 305 { 306 int cpu; 307 int addr_cells = 1; 308 const MachineState *ms = MACHINE(vms); 309 310 /* 311 * From Documentation/devicetree/bindings/arm/cpus.txt 312 * On ARM v8 64-bit systems value should be set to 2, 313 * that corresponds to the MPIDR_EL1 register size. 314 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 315 * in the system, #address-cells can be set to 1, since 316 * MPIDR_EL1[63:32] bits are not used for CPUs 317 * identification. 318 * 319 * Here we actually don't know whether our system is 32- or 64-bit one. 320 * The simplest way to go is to examine affinity IDs of all our CPUs. If 321 * at least one of them has Aff3 populated, we set #address-cells to 2. 322 */ 323 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 324 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 325 326 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 327 addr_cells = 2; 328 break; 329 } 330 } 331 332 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 333 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 334 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 335 336 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 337 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 338 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 339 CPUState *cs = CPU(armcpu); 340 341 qemu_fdt_add_subnode(vms->fdt, nodename); 342 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 343 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 344 armcpu->dtb_compatible); 345 346 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 347 && vms->smp_cpus > 1) { 348 qemu_fdt_setprop_string(vms->fdt, nodename, 349 "enable-method", "psci"); 350 } 351 352 if (addr_cells == 2) { 353 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 354 armcpu->mp_affinity); 355 } else { 356 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 357 armcpu->mp_affinity); 358 } 359 360 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 361 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 362 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 363 } 364 365 g_free(nodename); 366 } 367 } 368 369 static void fdt_add_its_gic_node(VirtMachineState *vms) 370 { 371 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 372 qemu_fdt_add_subnode(vms->fdt, "/intc/its"); 373 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible", 374 "arm,gic-v3-its"); 375 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0); 376 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg", 377 2, vms->memmap[VIRT_GIC_ITS].base, 378 2, vms->memmap[VIRT_GIC_ITS].size); 379 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle); 380 } 381 382 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 383 { 384 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 385 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m"); 386 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible", 387 "arm,gic-v2m-frame"); 388 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0); 389 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg", 390 2, vms->memmap[VIRT_GIC_V2M].base, 391 2, vms->memmap[VIRT_GIC_V2M].size); 392 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle); 393 } 394 395 static void fdt_add_gic_node(VirtMachineState *vms) 396 { 397 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 398 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 399 400 qemu_fdt_add_subnode(vms->fdt, "/intc"); 401 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3); 402 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0); 403 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2); 404 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2); 405 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0); 406 if (vms->gic_version == 3) { 407 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible", 408 "arm,gic-v3"); 409 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg", 410 2, vms->memmap[VIRT_GIC_DIST].base, 411 2, vms->memmap[VIRT_GIC_DIST].size, 412 2, vms->memmap[VIRT_GIC_REDIST].base, 413 2, vms->memmap[VIRT_GIC_REDIST].size); 414 if (vms->virt) { 415 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts", 416 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ, 417 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 418 } 419 } else { 420 /* 'cortex-a15-gic' means 'GIC v2' */ 421 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible", 422 "arm,cortex-a15-gic"); 423 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg", 424 2, vms->memmap[VIRT_GIC_DIST].base, 425 2, vms->memmap[VIRT_GIC_DIST].size, 426 2, vms->memmap[VIRT_GIC_CPU].base, 427 2, vms->memmap[VIRT_GIC_CPU].size); 428 } 429 430 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle); 431 } 432 433 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 434 { 435 CPUState *cpu; 436 ARMCPU *armcpu; 437 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 438 439 CPU_FOREACH(cpu) { 440 armcpu = ARM_CPU(cpu); 441 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 442 return; 443 } 444 if (kvm_enabled()) { 445 if (kvm_irqchip_in_kernel()) { 446 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 447 } 448 kvm_arm_pmu_init(cpu); 449 } 450 } 451 452 if (vms->gic_version == 2) { 453 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 454 GIC_FDT_IRQ_PPI_CPU_WIDTH, 455 (1 << vms->smp_cpus) - 1); 456 } 457 458 armcpu = ARM_CPU(qemu_get_cpu(0)); 459 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 460 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 461 const char compat[] = "arm,armv8-pmuv3"; 462 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 463 compat, sizeof(compat)); 464 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 465 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 466 } 467 } 468 469 static void create_its(VirtMachineState *vms, DeviceState *gicdev) 470 { 471 const char *itsclass = its_class_name(); 472 DeviceState *dev; 473 474 if (!itsclass) { 475 /* Do nothing if not supported */ 476 return; 477 } 478 479 dev = qdev_create(NULL, itsclass); 480 481 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 482 &error_abort); 483 qdev_init_nofail(dev); 484 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 485 486 fdt_add_its_gic_node(vms); 487 } 488 489 static void create_v2m(VirtMachineState *vms, qemu_irq *pic) 490 { 491 int i; 492 int irq = vms->irqmap[VIRT_GIC_V2M]; 493 DeviceState *dev; 494 495 dev = qdev_create(NULL, "arm-gicv2m"); 496 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 497 qdev_prop_set_uint32(dev, "base-spi", irq); 498 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 499 qdev_init_nofail(dev); 500 501 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 502 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 503 } 504 505 fdt_add_v2m_gic_node(vms); 506 } 507 508 static void create_gic(VirtMachineState *vms, qemu_irq *pic) 509 { 510 /* We create a standalone GIC */ 511 DeviceState *gicdev; 512 SysBusDevice *gicbusdev; 513 const char *gictype; 514 int type = vms->gic_version, i; 515 516 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 517 518 gicdev = qdev_create(NULL, gictype); 519 qdev_prop_set_uint32(gicdev, "revision", type); 520 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 521 /* Note that the num-irq property counts both internal and external 522 * interrupts; there are always 32 of the former (mandated by GIC spec). 523 */ 524 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 525 if (!kvm_irqchip_in_kernel()) { 526 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); 527 } 528 qdev_init_nofail(gicdev); 529 gicbusdev = SYS_BUS_DEVICE(gicdev); 530 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 531 if (type == 3) { 532 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 533 } else { 534 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 535 } 536 537 /* Wire the outputs from each CPU's generic timer and the GICv3 538 * maintenance interrupt signal to the appropriate GIC PPI inputs, 539 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 540 */ 541 for (i = 0; i < smp_cpus; i++) { 542 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 543 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 544 int irq; 545 /* Mapping from the output timer irq lines from the CPU to the 546 * GIC PPI inputs we use for the virt board. 547 */ 548 const int timer_irq[] = { 549 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 550 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 551 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 552 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 553 }; 554 555 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 556 qdev_connect_gpio_out(cpudev, irq, 557 qdev_get_gpio_in(gicdev, 558 ppibase + timer_irq[irq])); 559 } 560 561 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, 562 qdev_get_gpio_in(gicdev, ppibase 563 + ARCH_GICV3_MAINT_IRQ)); 564 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 565 qdev_get_gpio_in(gicdev, ppibase 566 + VIRTUAL_PMU_IRQ)); 567 568 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 569 sysbus_connect_irq(gicbusdev, i + smp_cpus, 570 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 571 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 572 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 573 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 574 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 575 } 576 577 for (i = 0; i < NUM_IRQS; i++) { 578 pic[i] = qdev_get_gpio_in(gicdev, i); 579 } 580 581 fdt_add_gic_node(vms); 582 583 if (type == 3 && vms->its) { 584 create_its(vms, gicdev); 585 } else if (type == 2) { 586 create_v2m(vms, pic); 587 } 588 } 589 590 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, 591 MemoryRegion *mem, Chardev *chr) 592 { 593 char *nodename; 594 hwaddr base = vms->memmap[uart].base; 595 hwaddr size = vms->memmap[uart].size; 596 int irq = vms->irqmap[uart]; 597 const char compat[] = "arm,pl011\0arm,primecell"; 598 const char clocknames[] = "uartclk\0apb_pclk"; 599 DeviceState *dev = qdev_create(NULL, "pl011"); 600 SysBusDevice *s = SYS_BUS_DEVICE(dev); 601 602 qdev_prop_set_chr(dev, "chardev", chr); 603 qdev_init_nofail(dev); 604 memory_region_add_subregion(mem, base, 605 sysbus_mmio_get_region(s, 0)); 606 sysbus_connect_irq(s, 0, pic[irq]); 607 608 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 609 qemu_fdt_add_subnode(vms->fdt, nodename); 610 /* Note that we can't use setprop_string because of the embedded NUL */ 611 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 612 compat, sizeof(compat)); 613 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 614 2, base, 2, size); 615 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 616 GIC_FDT_IRQ_TYPE_SPI, irq, 617 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 618 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 619 vms->clock_phandle, vms->clock_phandle); 620 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 621 clocknames, sizeof(clocknames)); 622 623 if (uart == VIRT_UART) { 624 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 625 } else { 626 /* Mark as not usable by the normal world */ 627 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 628 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 629 } 630 631 g_free(nodename); 632 } 633 634 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) 635 { 636 char *nodename; 637 hwaddr base = vms->memmap[VIRT_RTC].base; 638 hwaddr size = vms->memmap[VIRT_RTC].size; 639 int irq = vms->irqmap[VIRT_RTC]; 640 const char compat[] = "arm,pl031\0arm,primecell"; 641 642 sysbus_create_simple("pl031", base, pic[irq]); 643 644 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 645 qemu_fdt_add_subnode(vms->fdt, nodename); 646 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 647 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 648 2, base, 2, size); 649 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 650 GIC_FDT_IRQ_TYPE_SPI, irq, 651 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 652 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 653 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 654 g_free(nodename); 655 } 656 657 static DeviceState *gpio_key_dev; 658 static void virt_powerdown_req(Notifier *n, void *opaque) 659 { 660 /* use gpio Pin 3 for power button event */ 661 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 662 } 663 664 static Notifier virt_system_powerdown_notifier = { 665 .notify = virt_powerdown_req 666 }; 667 668 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) 669 { 670 char *nodename; 671 DeviceState *pl061_dev; 672 hwaddr base = vms->memmap[VIRT_GPIO].base; 673 hwaddr size = vms->memmap[VIRT_GPIO].size; 674 int irq = vms->irqmap[VIRT_GPIO]; 675 const char compat[] = "arm,pl061\0arm,primecell"; 676 677 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 678 679 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 680 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 681 qemu_fdt_add_subnode(vms->fdt, nodename); 682 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 683 2, base, 2, size); 684 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 685 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 686 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 687 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 688 GIC_FDT_IRQ_TYPE_SPI, irq, 689 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 690 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 691 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 692 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 693 694 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 695 qdev_get_gpio_in(pl061_dev, 3)); 696 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 697 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 698 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 699 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 700 701 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 702 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 703 "label", "GPIO Key Poweroff"); 704 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 705 KEY_POWER); 706 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 707 "gpios", phandle, 3, 0); 708 709 /* connect powerdown request */ 710 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 711 712 g_free(nodename); 713 } 714 715 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) 716 { 717 int i; 718 hwaddr size = vms->memmap[VIRT_MMIO].size; 719 720 /* We create the transports in forwards order. Since qbus_realize() 721 * prepends (not appends) new child buses, the incrementing loop below will 722 * create a list of virtio-mmio buses with decreasing base addresses. 723 * 724 * When a -device option is processed from the command line, 725 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 726 * order. The upshot is that -device options in increasing command line 727 * order are mapped to virtio-mmio buses with decreasing base addresses. 728 * 729 * When this code was originally written, that arrangement ensured that the 730 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 731 * the first -device on the command line. (The end-to-end order is a 732 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 733 * guest kernel's name-to-address assignment strategy.) 734 * 735 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 736 * the message, if not necessarily the code, of commit 70161ff336. 737 * Therefore the loop now establishes the inverse of the original intent. 738 * 739 * Unfortunately, we can't counteract the kernel change by reversing the 740 * loop; it would break existing command lines. 741 * 742 * In any case, the kernel makes no guarantee about the stability of 743 * enumeration order of virtio devices (as demonstrated by it changing 744 * between kernel versions). For reliable and stable identification 745 * of disks users must use UUIDs or similar mechanisms. 746 */ 747 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 748 int irq = vms->irqmap[VIRT_MMIO] + i; 749 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 750 751 sysbus_create_simple("virtio-mmio", base, pic[irq]); 752 } 753 754 /* We add dtb nodes in reverse order so that they appear in the finished 755 * device tree lowest address first. 756 * 757 * Note that this mapping is independent of the loop above. The previous 758 * loop influences virtio device to virtio transport assignment, whereas 759 * this loop controls how virtio transports are laid out in the dtb. 760 */ 761 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 762 char *nodename; 763 int irq = vms->irqmap[VIRT_MMIO] + i; 764 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 765 766 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 767 qemu_fdt_add_subnode(vms->fdt, nodename); 768 qemu_fdt_setprop_string(vms->fdt, nodename, 769 "compatible", "virtio,mmio"); 770 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 771 2, base, 2, size); 772 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 773 GIC_FDT_IRQ_TYPE_SPI, irq, 774 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 775 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 776 g_free(nodename); 777 } 778 } 779 780 static void create_one_flash(const char *name, hwaddr flashbase, 781 hwaddr flashsize, const char *file, 782 MemoryRegion *sysmem) 783 { 784 /* Create and map a single flash device. We use the same 785 * parameters as the flash devices on the Versatile Express board. 786 */ 787 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 788 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 789 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 790 const uint64_t sectorlength = 256 * 1024; 791 792 if (dinfo) { 793 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 794 &error_abort); 795 } 796 797 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 798 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 799 qdev_prop_set_uint8(dev, "width", 4); 800 qdev_prop_set_uint8(dev, "device-width", 2); 801 qdev_prop_set_bit(dev, "big-endian", false); 802 qdev_prop_set_uint16(dev, "id0", 0x89); 803 qdev_prop_set_uint16(dev, "id1", 0x18); 804 qdev_prop_set_uint16(dev, "id2", 0x00); 805 qdev_prop_set_uint16(dev, "id3", 0x00); 806 qdev_prop_set_string(dev, "name", name); 807 qdev_init_nofail(dev); 808 809 memory_region_add_subregion(sysmem, flashbase, 810 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 811 812 if (file) { 813 char *fn; 814 int image_size; 815 816 if (drive_get(IF_PFLASH, 0, 0)) { 817 error_report("The contents of the first flash device may be " 818 "specified with -bios or with -drive if=pflash... " 819 "but you cannot use both options at once"); 820 exit(1); 821 } 822 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 823 if (!fn) { 824 error_report("Could not find ROM image '%s'", file); 825 exit(1); 826 } 827 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 828 g_free(fn); 829 if (image_size < 0) { 830 error_report("Could not load ROM image '%s'", file); 831 exit(1); 832 } 833 } 834 } 835 836 static void create_flash(const VirtMachineState *vms, 837 MemoryRegion *sysmem, 838 MemoryRegion *secure_sysmem) 839 { 840 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 841 * Any file passed via -bios goes in the first of these. 842 * sysmem is the system memory space. secure_sysmem is the secure view 843 * of the system, and the first flash device should be made visible only 844 * there. The second flash device is visible to both secure and nonsecure. 845 * If sysmem == secure_sysmem this means there is no separate Secure 846 * address space and both flash devices are generally visible. 847 */ 848 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 849 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 850 char *nodename; 851 852 create_one_flash("virt.flash0", flashbase, flashsize, 853 bios_name, secure_sysmem); 854 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 855 NULL, sysmem); 856 857 if (sysmem == secure_sysmem) { 858 /* Report both flash devices as a single node in the DT */ 859 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 860 qemu_fdt_add_subnode(vms->fdt, nodename); 861 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 862 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 863 2, flashbase, 2, flashsize, 864 2, flashbase + flashsize, 2, flashsize); 865 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 866 g_free(nodename); 867 } else { 868 /* Report the devices as separate nodes so we can mark one as 869 * only visible to the secure world. 870 */ 871 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 872 qemu_fdt_add_subnode(vms->fdt, nodename); 873 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 874 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 875 2, flashbase, 2, flashsize); 876 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 877 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 878 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 879 g_free(nodename); 880 881 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 882 qemu_fdt_add_subnode(vms->fdt, nodename); 883 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 884 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 885 2, flashbase + flashsize, 2, flashsize); 886 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 887 g_free(nodename); 888 } 889 } 890 891 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 892 { 893 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 894 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 895 FWCfgState *fw_cfg; 896 char *nodename; 897 898 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 899 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 900 901 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 902 qemu_fdt_add_subnode(vms->fdt, nodename); 903 qemu_fdt_setprop_string(vms->fdt, nodename, 904 "compatible", "qemu,fw-cfg-mmio"); 905 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 906 2, base, 2, size); 907 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 908 g_free(nodename); 909 return fw_cfg; 910 } 911 912 static void create_pcie_irq_map(const VirtMachineState *vms, 913 uint32_t gic_phandle, 914 int first_irq, const char *nodename) 915 { 916 int devfn, pin; 917 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 918 uint32_t *irq_map = full_irq_map; 919 920 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 921 for (pin = 0; pin < 4; pin++) { 922 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 923 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 924 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 925 int i; 926 927 uint32_t map[] = { 928 devfn << 8, 0, 0, /* devfn */ 929 pin + 1, /* PCI pin */ 930 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 931 932 /* Convert map to big endian */ 933 for (i = 0; i < 10; i++) { 934 irq_map[i] = cpu_to_be32(map[i]); 935 } 936 irq_map += 10; 937 } 938 } 939 940 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 941 full_irq_map, sizeof(full_irq_map)); 942 943 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 944 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 945 0x7 /* PCI irq */); 946 } 947 948 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, 949 PCIBus *bus) 950 { 951 char *node; 952 const char compat[] = "arm,smmu-v3"; 953 int irq = vms->irqmap[VIRT_SMMU]; 954 int i; 955 hwaddr base = vms->memmap[VIRT_SMMU].base; 956 hwaddr size = vms->memmap[VIRT_SMMU].size; 957 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 958 DeviceState *dev; 959 960 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 961 return; 962 } 963 964 dev = qdev_create(NULL, "arm-smmuv3"); 965 966 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 967 &error_abort); 968 qdev_init_nofail(dev); 969 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 970 for (i = 0; i < NUM_SMMU_IRQS; i++) { 971 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 972 } 973 974 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 975 qemu_fdt_add_subnode(vms->fdt, node); 976 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 977 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 978 979 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 980 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 981 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 982 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 983 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 984 985 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 986 sizeof(irq_names)); 987 988 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 989 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 990 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 991 992 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 993 994 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 995 g_free(node); 996 } 997 998 static void create_pcie(VirtMachineState *vms, qemu_irq *pic) 999 { 1000 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1001 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1002 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base; 1003 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size; 1004 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1005 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1006 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base; 1007 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size; 1008 hwaddr base = base_mmio; 1009 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1010 int irq = vms->irqmap[VIRT_PCIE]; 1011 MemoryRegion *mmio_alias; 1012 MemoryRegion *mmio_reg; 1013 MemoryRegion *ecam_alias; 1014 MemoryRegion *ecam_reg; 1015 DeviceState *dev; 1016 char *nodename; 1017 int i; 1018 PCIHostState *pci; 1019 1020 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1021 qdev_init_nofail(dev); 1022 1023 /* Map only the first size_ecam bytes of ECAM space */ 1024 ecam_alias = g_new0(MemoryRegion, 1); 1025 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1026 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1027 ecam_reg, 0, size_ecam); 1028 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1029 1030 /* Map the MMIO window into system address space so as to expose 1031 * the section of PCI MMIO space which starts at the same base address 1032 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1033 * the window). 1034 */ 1035 mmio_alias = g_new0(MemoryRegion, 1); 1036 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1037 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1038 mmio_reg, base_mmio, size_mmio); 1039 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1040 1041 if (vms->highmem) { 1042 /* Map high MMIO space */ 1043 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1044 1045 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1046 mmio_reg, base_mmio_high, size_mmio_high); 1047 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1048 high_mmio_alias); 1049 } 1050 1051 /* Map IO port space */ 1052 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1053 1054 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1055 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1056 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1057 } 1058 1059 pci = PCI_HOST_BRIDGE(dev); 1060 if (pci->bus) { 1061 for (i = 0; i < nb_nics; i++) { 1062 NICInfo *nd = &nd_table[i]; 1063 1064 if (!nd->model) { 1065 nd->model = g_strdup("virtio"); 1066 } 1067 1068 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1069 } 1070 } 1071 1072 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1073 qemu_fdt_add_subnode(vms->fdt, nodename); 1074 qemu_fdt_setprop_string(vms->fdt, nodename, 1075 "compatible", "pci-host-ecam-generic"); 1076 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1077 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1078 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1079 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1080 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1081 nr_pcie_buses - 1); 1082 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1083 1084 if (vms->msi_phandle) { 1085 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1086 vms->msi_phandle); 1087 } 1088 1089 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1090 2, base_ecam, 2, size_ecam); 1091 1092 if (vms->highmem) { 1093 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1094 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1095 2, base_pio, 2, size_pio, 1096 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1097 2, base_mmio, 2, size_mmio, 1098 1, FDT_PCI_RANGE_MMIO_64BIT, 1099 2, base_mmio_high, 1100 2, base_mmio_high, 2, size_mmio_high); 1101 } else { 1102 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1103 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1104 2, base_pio, 2, size_pio, 1105 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1106 2, base_mmio, 2, size_mmio); 1107 } 1108 1109 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1110 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1111 1112 if (vms->iommu) { 1113 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1114 1115 create_smmu(vms, pic, pci->bus); 1116 1117 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1118 0x0, vms->iommu_phandle, 0x0, 0x10000); 1119 } 1120 1121 g_free(nodename); 1122 } 1123 1124 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) 1125 { 1126 DeviceState *dev; 1127 SysBusDevice *s; 1128 int i; 1129 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 1130 MemoryRegion *sysmem = get_system_memory(); 1131 1132 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base; 1133 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size; 1134 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS]; 1135 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 1136 1137 fdt_params->system_params = &platform_bus_params; 1138 fdt_params->binfo = &vms->bootinfo; 1139 fdt_params->intc = "/intc"; 1140 /* 1141 * register a machine init done notifier that creates the device tree 1142 * nodes of the platform bus and its children dynamic sysbus devices 1143 */ 1144 arm_register_platform_bus_fdt_creator(fdt_params); 1145 1146 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1147 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1148 qdev_prop_set_uint32(dev, "num_irqs", 1149 platform_bus_params.platform_bus_num_irqs); 1150 qdev_prop_set_uint32(dev, "mmio_size", 1151 platform_bus_params.platform_bus_size); 1152 qdev_init_nofail(dev); 1153 vms->platform_bus_dev = dev; 1154 s = SYS_BUS_DEVICE(dev); 1155 1156 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 1157 int irqn = platform_bus_params.platform_bus_first_irq + i; 1158 sysbus_connect_irq(s, i, pic[irqn]); 1159 } 1160 1161 memory_region_add_subregion(sysmem, 1162 platform_bus_params.platform_bus_base, 1163 sysbus_mmio_get_region(s, 0)); 1164 } 1165 1166 static void create_secure_ram(VirtMachineState *vms, 1167 MemoryRegion *secure_sysmem) 1168 { 1169 MemoryRegion *secram = g_new(MemoryRegion, 1); 1170 char *nodename; 1171 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1172 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1173 1174 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1175 &error_fatal); 1176 memory_region_add_subregion(secure_sysmem, base, secram); 1177 1178 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1179 qemu_fdt_add_subnode(vms->fdt, nodename); 1180 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1181 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1182 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1183 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1184 1185 g_free(nodename); 1186 } 1187 1188 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1189 { 1190 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1191 bootinfo); 1192 1193 *fdt_size = board->fdt_size; 1194 return board->fdt; 1195 } 1196 1197 static void virt_build_smbios(VirtMachineState *vms) 1198 { 1199 MachineClass *mc = MACHINE_GET_CLASS(vms); 1200 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1201 uint8_t *smbios_tables, *smbios_anchor; 1202 size_t smbios_tables_len, smbios_anchor_len; 1203 const char *product = "QEMU Virtual Machine"; 1204 1205 if (!vms->fw_cfg) { 1206 return; 1207 } 1208 1209 if (kvm_enabled()) { 1210 product = "KVM Virtual Machine"; 1211 } 1212 1213 smbios_set_defaults("QEMU", product, 1214 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1215 true, SMBIOS_ENTRY_POINT_30); 1216 1217 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1218 &smbios_anchor, &smbios_anchor_len); 1219 1220 if (smbios_anchor) { 1221 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1222 smbios_tables, smbios_tables_len); 1223 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1224 smbios_anchor, smbios_anchor_len); 1225 } 1226 } 1227 1228 static 1229 void virt_machine_done(Notifier *notifier, void *data) 1230 { 1231 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1232 machine_done); 1233 1234 virt_acpi_setup(vms); 1235 virt_build_smbios(vms); 1236 } 1237 1238 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1239 { 1240 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1241 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1242 1243 if (!vmc->disallow_affinity_adjustment) { 1244 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1245 * GIC's target-list limitations. 32-bit KVM hosts currently 1246 * always create clusters of 4 CPUs, but that is expected to 1247 * change when they gain support for gicv3. When KVM is enabled 1248 * it will override the changes we make here, therefore our 1249 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1250 * and to improve SGI efficiency. 1251 */ 1252 if (vms->gic_version == 3) { 1253 clustersz = GICV3_TARGETLIST_BITS; 1254 } else { 1255 clustersz = GIC_TARGETLIST_BITS; 1256 } 1257 } 1258 return arm_cpu_mp_affinity(idx, clustersz); 1259 } 1260 1261 static void machvirt_init(MachineState *machine) 1262 { 1263 VirtMachineState *vms = VIRT_MACHINE(machine); 1264 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1265 MachineClass *mc = MACHINE_GET_CLASS(machine); 1266 const CPUArchIdList *possible_cpus; 1267 qemu_irq pic[NUM_IRQS]; 1268 MemoryRegion *sysmem = get_system_memory(); 1269 MemoryRegion *secure_sysmem = NULL; 1270 int n, virt_max_cpus; 1271 MemoryRegion *ram = g_new(MemoryRegion, 1); 1272 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1273 1274 /* We can probe only here because during property set 1275 * KVM is not available yet 1276 */ 1277 if (vms->gic_version <= 0) { 1278 /* "host" or "max" */ 1279 if (!kvm_enabled()) { 1280 if (vms->gic_version == 0) { 1281 error_report("gic-version=host requires KVM"); 1282 exit(1); 1283 } else { 1284 /* "max": currently means 3 for TCG */ 1285 vms->gic_version = 3; 1286 } 1287 } else { 1288 vms->gic_version = kvm_arm_vgic_probe(); 1289 if (!vms->gic_version) { 1290 error_report( 1291 "Unable to determine GIC version supported by host"); 1292 exit(1); 1293 } 1294 } 1295 } 1296 1297 if (!cpu_type_valid(machine->cpu_type)) { 1298 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1299 exit(1); 1300 } 1301 1302 /* If we have an EL3 boot ROM then the assumption is that it will 1303 * implement PSCI itself, so disable QEMU's internal implementation 1304 * so it doesn't get in the way. Instead of starting secondary 1305 * CPUs in PSCI powerdown state we will start them all running and 1306 * let the boot ROM sort them out. 1307 * The usual case is that we do use QEMU's PSCI implementation; 1308 * if the guest has EL2 then we will use SMC as the conduit, 1309 * and otherwise we will use HVC (for backwards compatibility and 1310 * because if we're using KVM then we must use HVC). 1311 */ 1312 if (vms->secure && firmware_loaded) { 1313 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1314 } else if (vms->virt) { 1315 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1316 } else { 1317 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1318 } 1319 1320 /* The maximum number of CPUs depends on the GIC version, or on how 1321 * many redistributors we can fit into the memory map. 1322 */ 1323 if (vms->gic_version == 3) { 1324 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000; 1325 } else { 1326 virt_max_cpus = GIC_NCPU; 1327 } 1328 1329 if (max_cpus > virt_max_cpus) { 1330 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1331 "supported by machine 'mach-virt' (%d)", 1332 max_cpus, virt_max_cpus); 1333 exit(1); 1334 } 1335 1336 vms->smp_cpus = smp_cpus; 1337 1338 if (machine->ram_size > vms->memmap[VIRT_MEM].size) { 1339 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1340 exit(1); 1341 } 1342 1343 if (vms->virt && kvm_enabled()) { 1344 error_report("mach-virt: KVM does not support providing " 1345 "Virtualization extensions to the guest CPU"); 1346 exit(1); 1347 } 1348 1349 if (vms->secure) { 1350 if (kvm_enabled()) { 1351 error_report("mach-virt: KVM does not support Security extensions"); 1352 exit(1); 1353 } 1354 1355 /* The Secure view of the world is the same as the NonSecure, 1356 * but with a few extra devices. Create it as a container region 1357 * containing the system memory at low priority; any secure-only 1358 * devices go in at higher priority and take precedence. 1359 */ 1360 secure_sysmem = g_new(MemoryRegion, 1); 1361 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1362 UINT64_MAX); 1363 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1364 } 1365 1366 create_fdt(vms); 1367 1368 possible_cpus = mc->possible_cpu_arch_ids(machine); 1369 for (n = 0; n < possible_cpus->len; n++) { 1370 Object *cpuobj; 1371 CPUState *cs; 1372 1373 if (n >= smp_cpus) { 1374 break; 1375 } 1376 1377 cpuobj = object_new(possible_cpus->cpus[n].type); 1378 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1379 "mp-affinity", NULL); 1380 1381 cs = CPU(cpuobj); 1382 cs->cpu_index = n; 1383 1384 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1385 &error_fatal); 1386 1387 if (!vms->secure) { 1388 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1389 } 1390 1391 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1392 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1393 } 1394 1395 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1396 object_property_set_int(cpuobj, vms->psci_conduit, 1397 "psci-conduit", NULL); 1398 1399 /* Secondary CPUs start in PSCI powered-down state */ 1400 if (n > 0) { 1401 object_property_set_bool(cpuobj, true, 1402 "start-powered-off", NULL); 1403 } 1404 } 1405 1406 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1407 object_property_set_bool(cpuobj, false, "pmu", NULL); 1408 } 1409 1410 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1411 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1412 "reset-cbar", &error_abort); 1413 } 1414 1415 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1416 &error_abort); 1417 if (vms->secure) { 1418 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1419 "secure-memory", &error_abort); 1420 } 1421 1422 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1423 object_unref(cpuobj); 1424 } 1425 fdt_add_timer_nodes(vms); 1426 fdt_add_cpu_nodes(vms); 1427 1428 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1429 machine->ram_size); 1430 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1431 1432 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1433 1434 create_gic(vms, pic); 1435 1436 fdt_add_pmu_nodes(vms); 1437 1438 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); 1439 1440 if (vms->secure) { 1441 create_secure_ram(vms, secure_sysmem); 1442 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1443 } 1444 1445 create_rtc(vms, pic); 1446 1447 create_pcie(vms, pic); 1448 1449 create_gpio(vms, pic); 1450 1451 /* Create mmio transports, so the user can create virtio backends 1452 * (which will be automatically plugged in to the transports). If 1453 * no backend is created the transport will just sit harmlessly idle. 1454 */ 1455 create_virtio_devices(vms, pic); 1456 1457 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1458 rom_set_fw(vms->fw_cfg); 1459 1460 vms->machine_done.notify = virt_machine_done; 1461 qemu_add_machine_init_done_notifier(&vms->machine_done); 1462 1463 vms->bootinfo.ram_size = machine->ram_size; 1464 vms->bootinfo.kernel_filename = machine->kernel_filename; 1465 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1466 vms->bootinfo.initrd_filename = machine->initrd_filename; 1467 vms->bootinfo.nb_cpus = smp_cpus; 1468 vms->bootinfo.board_id = -1; 1469 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1470 vms->bootinfo.get_dtb = machvirt_dtb; 1471 vms->bootinfo.firmware_loaded = firmware_loaded; 1472 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); 1473 1474 /* 1475 * arm_load_kernel machine init done notifier registration must 1476 * happen before the platform_bus_create call. In this latter, 1477 * another notifier is registered which adds platform bus nodes. 1478 * Notifiers are executed in registration reverse order. 1479 */ 1480 create_platform_bus(vms, pic); 1481 } 1482 1483 static bool virt_get_secure(Object *obj, Error **errp) 1484 { 1485 VirtMachineState *vms = VIRT_MACHINE(obj); 1486 1487 return vms->secure; 1488 } 1489 1490 static void virt_set_secure(Object *obj, bool value, Error **errp) 1491 { 1492 VirtMachineState *vms = VIRT_MACHINE(obj); 1493 1494 vms->secure = value; 1495 } 1496 1497 static bool virt_get_virt(Object *obj, Error **errp) 1498 { 1499 VirtMachineState *vms = VIRT_MACHINE(obj); 1500 1501 return vms->virt; 1502 } 1503 1504 static void virt_set_virt(Object *obj, bool value, Error **errp) 1505 { 1506 VirtMachineState *vms = VIRT_MACHINE(obj); 1507 1508 vms->virt = value; 1509 } 1510 1511 static bool virt_get_highmem(Object *obj, Error **errp) 1512 { 1513 VirtMachineState *vms = VIRT_MACHINE(obj); 1514 1515 return vms->highmem; 1516 } 1517 1518 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1519 { 1520 VirtMachineState *vms = VIRT_MACHINE(obj); 1521 1522 vms->highmem = value; 1523 } 1524 1525 static bool virt_get_its(Object *obj, Error **errp) 1526 { 1527 VirtMachineState *vms = VIRT_MACHINE(obj); 1528 1529 return vms->its; 1530 } 1531 1532 static void virt_set_its(Object *obj, bool value, Error **errp) 1533 { 1534 VirtMachineState *vms = VIRT_MACHINE(obj); 1535 1536 vms->its = value; 1537 } 1538 1539 static char *virt_get_gic_version(Object *obj, Error **errp) 1540 { 1541 VirtMachineState *vms = VIRT_MACHINE(obj); 1542 const char *val = vms->gic_version == 3 ? "3" : "2"; 1543 1544 return g_strdup(val); 1545 } 1546 1547 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1548 { 1549 VirtMachineState *vms = VIRT_MACHINE(obj); 1550 1551 if (!strcmp(value, "3")) { 1552 vms->gic_version = 3; 1553 } else if (!strcmp(value, "2")) { 1554 vms->gic_version = 2; 1555 } else if (!strcmp(value, "host")) { 1556 vms->gic_version = 0; /* Will probe later */ 1557 } else if (!strcmp(value, "max")) { 1558 vms->gic_version = -1; /* Will probe later */ 1559 } else { 1560 error_setg(errp, "Invalid gic-version value"); 1561 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1562 } 1563 } 1564 1565 static char *virt_get_iommu(Object *obj, Error **errp) 1566 { 1567 VirtMachineState *vms = VIRT_MACHINE(obj); 1568 1569 switch (vms->iommu) { 1570 case VIRT_IOMMU_NONE: 1571 return g_strdup("none"); 1572 case VIRT_IOMMU_SMMUV3: 1573 return g_strdup("smmuv3"); 1574 default: 1575 g_assert_not_reached(); 1576 } 1577 } 1578 1579 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1580 { 1581 VirtMachineState *vms = VIRT_MACHINE(obj); 1582 1583 if (!strcmp(value, "smmuv3")) { 1584 vms->iommu = VIRT_IOMMU_SMMUV3; 1585 } else if (!strcmp(value, "none")) { 1586 vms->iommu = VIRT_IOMMU_NONE; 1587 } else { 1588 error_setg(errp, "Invalid iommu value"); 1589 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1590 } 1591 } 1592 1593 static CpuInstanceProperties 1594 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1595 { 1596 MachineClass *mc = MACHINE_GET_CLASS(ms); 1597 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1598 1599 assert(cpu_index < possible_cpus->len); 1600 return possible_cpus->cpus[cpu_index].props; 1601 } 1602 1603 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1604 { 1605 return idx % nb_numa_nodes; 1606 } 1607 1608 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1609 { 1610 int n; 1611 VirtMachineState *vms = VIRT_MACHINE(ms); 1612 1613 if (ms->possible_cpus) { 1614 assert(ms->possible_cpus->len == max_cpus); 1615 return ms->possible_cpus; 1616 } 1617 1618 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1619 sizeof(CPUArchId) * max_cpus); 1620 ms->possible_cpus->len = max_cpus; 1621 for (n = 0; n < ms->possible_cpus->len; n++) { 1622 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1623 ms->possible_cpus->cpus[n].arch_id = 1624 virt_cpu_mp_affinity(vms, n); 1625 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1626 ms->possible_cpus->cpus[n].props.thread_id = n; 1627 } 1628 return ms->possible_cpus; 1629 } 1630 1631 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1632 DeviceState *dev, Error **errp) 1633 { 1634 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1635 1636 if (vms->platform_bus_dev) { 1637 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1638 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1639 SYS_BUS_DEVICE(dev)); 1640 } 1641 } 1642 } 1643 1644 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1645 DeviceState *dev) 1646 { 1647 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1648 return HOTPLUG_HANDLER(machine); 1649 } 1650 1651 return NULL; 1652 } 1653 1654 static void virt_machine_class_init(ObjectClass *oc, void *data) 1655 { 1656 MachineClass *mc = MACHINE_CLASS(oc); 1657 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 1658 1659 mc->init = machvirt_init; 1660 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1661 * it later in machvirt_init, where we have more information about the 1662 * configuration of the particular instance. 1663 */ 1664 mc->max_cpus = 255; 1665 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 1666 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 1667 mc->block_default_type = IF_VIRTIO; 1668 mc->no_cdrom = 1; 1669 mc->pci_allow_0_address = true; 1670 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 1671 mc->minimum_page_bits = 12; 1672 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 1673 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 1674 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 1675 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 1676 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 1677 hc->plug = virt_machine_device_plug_cb; 1678 } 1679 1680 static const TypeInfo virt_machine_info = { 1681 .name = TYPE_VIRT_MACHINE, 1682 .parent = TYPE_MACHINE, 1683 .abstract = true, 1684 .instance_size = sizeof(VirtMachineState), 1685 .class_size = sizeof(VirtMachineClass), 1686 .class_init = virt_machine_class_init, 1687 .interfaces = (InterfaceInfo[]) { 1688 { TYPE_HOTPLUG_HANDLER }, 1689 { } 1690 }, 1691 }; 1692 1693 static void machvirt_machine_init(void) 1694 { 1695 type_register_static(&virt_machine_info); 1696 } 1697 type_init(machvirt_machine_init); 1698 1699 static void virt_2_12_instance_init(Object *obj) 1700 { 1701 VirtMachineState *vms = VIRT_MACHINE(obj); 1702 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1703 1704 /* EL3 is disabled by default on virt: this makes us consistent 1705 * between KVM and TCG for this board, and it also allows us to 1706 * boot UEFI blobs which assume no TrustZone support. 1707 */ 1708 vms->secure = false; 1709 object_property_add_bool(obj, "secure", virt_get_secure, 1710 virt_set_secure, NULL); 1711 object_property_set_description(obj, "secure", 1712 "Set on/off to enable/disable the ARM " 1713 "Security Extensions (TrustZone)", 1714 NULL); 1715 1716 /* EL2 is also disabled by default, for similar reasons */ 1717 vms->virt = false; 1718 object_property_add_bool(obj, "virtualization", virt_get_virt, 1719 virt_set_virt, NULL); 1720 object_property_set_description(obj, "virtualization", 1721 "Set on/off to enable/disable emulating a " 1722 "guest CPU which implements the ARM " 1723 "Virtualization Extensions", 1724 NULL); 1725 1726 /* High memory is enabled by default */ 1727 vms->highmem = true; 1728 object_property_add_bool(obj, "highmem", virt_get_highmem, 1729 virt_set_highmem, NULL); 1730 object_property_set_description(obj, "highmem", 1731 "Set on/off to enable/disable using " 1732 "physical address space above 32 bits", 1733 NULL); 1734 /* Default GIC type is v2 */ 1735 vms->gic_version = 2; 1736 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1737 virt_set_gic_version, NULL); 1738 object_property_set_description(obj, "gic-version", 1739 "Set GIC version. " 1740 "Valid values are 2, 3 and host", NULL); 1741 1742 if (vmc->no_its) { 1743 vms->its = false; 1744 } else { 1745 /* Default allows ITS instantiation */ 1746 vms->its = true; 1747 object_property_add_bool(obj, "its", virt_get_its, 1748 virt_set_its, NULL); 1749 object_property_set_description(obj, "its", 1750 "Set on/off to enable/disable " 1751 "ITS instantiation", 1752 NULL); 1753 } 1754 1755 /* Default disallows iommu instantiation */ 1756 vms->iommu = VIRT_IOMMU_NONE; 1757 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 1758 object_property_set_description(obj, "iommu", 1759 "Set the IOMMU type. " 1760 "Valid values are none and smmuv3", 1761 NULL); 1762 1763 vms->memmap = a15memmap; 1764 vms->irqmap = a15irqmap; 1765 } 1766 1767 static void virt_machine_2_12_options(MachineClass *mc) 1768 { 1769 } 1770 DEFINE_VIRT_MACHINE_AS_LATEST(2, 12) 1771 1772 #define VIRT_COMPAT_2_11 \ 1773 HW_COMPAT_2_11 1774 1775 static void virt_2_11_instance_init(Object *obj) 1776 { 1777 virt_2_12_instance_init(obj); 1778 } 1779 1780 static void virt_machine_2_11_options(MachineClass *mc) 1781 { 1782 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1783 1784 virt_machine_2_12_options(mc); 1785 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11); 1786 vmc->smbios_old_sys_ver = true; 1787 } 1788 DEFINE_VIRT_MACHINE(2, 11) 1789 1790 #define VIRT_COMPAT_2_10 \ 1791 HW_COMPAT_2_10 1792 1793 static void virt_2_10_instance_init(Object *obj) 1794 { 1795 virt_2_11_instance_init(obj); 1796 } 1797 1798 static void virt_machine_2_10_options(MachineClass *mc) 1799 { 1800 virt_machine_2_11_options(mc); 1801 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10); 1802 } 1803 DEFINE_VIRT_MACHINE(2, 10) 1804 1805 #define VIRT_COMPAT_2_9 \ 1806 HW_COMPAT_2_9 1807 1808 static void virt_2_9_instance_init(Object *obj) 1809 { 1810 virt_2_10_instance_init(obj); 1811 } 1812 1813 static void virt_machine_2_9_options(MachineClass *mc) 1814 { 1815 virt_machine_2_10_options(mc); 1816 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9); 1817 } 1818 DEFINE_VIRT_MACHINE(2, 9) 1819 1820 #define VIRT_COMPAT_2_8 \ 1821 HW_COMPAT_2_8 1822 1823 static void virt_2_8_instance_init(Object *obj) 1824 { 1825 virt_2_9_instance_init(obj); 1826 } 1827 1828 static void virt_machine_2_8_options(MachineClass *mc) 1829 { 1830 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1831 1832 virt_machine_2_9_options(mc); 1833 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8); 1834 /* For 2.8 and earlier we falsely claimed in the DT that 1835 * our timers were edge-triggered, not level-triggered. 1836 */ 1837 vmc->claim_edge_triggered_timers = true; 1838 } 1839 DEFINE_VIRT_MACHINE(2, 8) 1840 1841 #define VIRT_COMPAT_2_7 \ 1842 HW_COMPAT_2_7 1843 1844 static void virt_2_7_instance_init(Object *obj) 1845 { 1846 virt_2_8_instance_init(obj); 1847 } 1848 1849 static void virt_machine_2_7_options(MachineClass *mc) 1850 { 1851 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1852 1853 virt_machine_2_8_options(mc); 1854 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7); 1855 /* ITS was introduced with 2.8 */ 1856 vmc->no_its = true; 1857 /* Stick with 1K pages for migration compatibility */ 1858 mc->minimum_page_bits = 0; 1859 } 1860 DEFINE_VIRT_MACHINE(2, 7) 1861 1862 #define VIRT_COMPAT_2_6 \ 1863 HW_COMPAT_2_6 1864 1865 static void virt_2_6_instance_init(Object *obj) 1866 { 1867 virt_2_7_instance_init(obj); 1868 } 1869 1870 static void virt_machine_2_6_options(MachineClass *mc) 1871 { 1872 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1873 1874 virt_machine_2_7_options(mc); 1875 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6); 1876 vmc->disallow_affinity_adjustment = true; 1877 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 1878 vmc->no_pmu = true; 1879 } 1880 DEFINE_VIRT_MACHINE(2, 6) 1881