1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/datadir.h" 34 #include "qemu/units.h" 35 #include "qemu/option.h" 36 #include "monitor/qdev.h" 37 #include "qapi/error.h" 38 #include "hw/sysbus.h" 39 #include "hw/arm/boot.h" 40 #include "hw/arm/primecell.h" 41 #include "hw/arm/virt.h" 42 #include "hw/block/flash.h" 43 #include "hw/vfio/vfio-calxeda-xgmac.h" 44 #include "hw/vfio/vfio-amd-xgbe.h" 45 #include "hw/display/ramfb.h" 46 #include "net/net.h" 47 #include "sysemu/device_tree.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/runstate.h" 50 #include "sysemu/tpm.h" 51 #include "sysemu/kvm.h" 52 #include "hw/loader.h" 53 #include "qapi/error.h" 54 #include "qemu/bitops.h" 55 #include "qemu/error-report.h" 56 #include "qemu/module.h" 57 #include "hw/pci-host/gpex.h" 58 #include "hw/virtio/virtio-pci.h" 59 #include "hw/arm/sysbus-fdt.h" 60 #include "hw/platform-bus.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/arm/fdt.h" 63 #include "hw/intc/arm_gic.h" 64 #include "hw/intc/arm_gicv3_common.h" 65 #include "hw/irq.h" 66 #include "kvm_arm.h" 67 #include "hw/firmware/smbios.h" 68 #include "qapi/visitor.h" 69 #include "qapi/qapi-visit-common.h" 70 #include "standard-headers/linux/input.h" 71 #include "hw/arm/smmuv3.h" 72 #include "hw/acpi/acpi.h" 73 #include "target/arm/internals.h" 74 #include "hw/mem/pc-dimm.h" 75 #include "hw/mem/nvdimm.h" 76 #include "hw/acpi/generic_event_device.h" 77 #include "hw/virtio/virtio-iommu.h" 78 #include "hw/char/pl011.h" 79 #include "qemu/guest-random.h" 80 81 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 82 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 83 void *data) \ 84 { \ 85 MachineClass *mc = MACHINE_CLASS(oc); \ 86 virt_machine_##major##_##minor##_options(mc); \ 87 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 88 if (latest) { \ 89 mc->alias = "virt"; \ 90 } \ 91 } \ 92 static const TypeInfo machvirt_##major##_##minor##_info = { \ 93 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 94 .parent = TYPE_VIRT_MACHINE, \ 95 .class_init = virt_##major##_##minor##_class_init, \ 96 }; \ 97 static void machvirt_machine_##major##_##minor##_init(void) \ 98 { \ 99 type_register_static(&machvirt_##major##_##minor##_info); \ 100 } \ 101 type_init(machvirt_machine_##major##_##minor##_init); 102 103 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 104 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 105 #define DEFINE_VIRT_MACHINE(major, minor) \ 106 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 107 108 109 /* Number of external interrupt lines to configure the GIC with */ 110 #define NUM_IRQS 256 111 112 #define PLATFORM_BUS_NUM_IRQS 64 113 114 /* Legacy RAM limit in GB (< version 4.0) */ 115 #define LEGACY_RAMLIMIT_GB 255 116 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 117 118 /* Addresses and sizes of our components. 119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 120 * 128MB..256MB is used for miscellaneous device I/O. 121 * 256MB..1GB is reserved for possible future PCI support (ie where the 122 * PCI memory window will go if we add a PCI host controller). 123 * 1GB and up is RAM (which may happily spill over into the 124 * high memory region beyond 4GB). 125 * This represents a compromise between how much RAM can be given to 126 * a 32 bit VM and leaving space for expansion and in particular for PCI. 127 * Note that devices should generally be placed at multiples of 0x10000, 128 * to accommodate guests using 64K pages. 129 */ 130 static const MemMapEntry base_memmap[] = { 131 /* Space up to 0x8000000 is reserved for a boot ROM */ 132 [VIRT_FLASH] = { 0, 0x08000000 }, 133 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 135 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 136 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 137 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 138 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 139 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 140 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 141 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 142 /* This redistributor space allows up to 2*64kB*123 CPUs */ 143 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 144 [VIRT_UART] = { 0x09000000, 0x00001000 }, 145 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 146 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 147 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 148 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 149 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 150 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 151 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 152 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 153 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 154 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 155 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 156 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 157 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 158 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 159 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 160 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 161 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 162 /* Actual RAM size depends on initial RAM and device memory settings */ 163 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 164 }; 165 166 /* 167 * Highmem IO Regions: This memory map is floating, located after the RAM. 168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 169 * top of the RAM, so that its base get the same alignment as the size, 170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 172 * Note the extended_memmap is sized so that it eventually also includes the 173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 174 * index of base_memmap). 175 */ 176 static MemMapEntry extended_memmap[] = { 177 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 178 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 179 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 180 /* Second PCIe window */ 181 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 182 }; 183 184 static const int a15irqmap[] = { 185 [VIRT_UART] = 1, 186 [VIRT_RTC] = 2, 187 [VIRT_PCIE] = 3, /* ... to 6 */ 188 [VIRT_GPIO] = 7, 189 [VIRT_SECURE_UART] = 8, 190 [VIRT_ACPI_GED] = 9, 191 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 192 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 193 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 194 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 195 }; 196 197 static const char *valid_cpus[] = { 198 ARM_CPU_TYPE_NAME("cortex-a7"), 199 ARM_CPU_TYPE_NAME("cortex-a15"), 200 ARM_CPU_TYPE_NAME("cortex-a53"), 201 ARM_CPU_TYPE_NAME("cortex-a57"), 202 ARM_CPU_TYPE_NAME("cortex-a72"), 203 ARM_CPU_TYPE_NAME("a64fx"), 204 ARM_CPU_TYPE_NAME("host"), 205 ARM_CPU_TYPE_NAME("max"), 206 }; 207 208 static bool cpu_type_valid(const char *cpu) 209 { 210 int i; 211 212 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 213 if (strcmp(cpu, valid_cpus[i]) == 0) { 214 return true; 215 } 216 } 217 return false; 218 } 219 220 static void create_kaslr_seed(MachineState *ms, const char *node) 221 { 222 uint64_t seed; 223 224 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 225 return; 226 } 227 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed); 228 } 229 230 static void create_fdt(VirtMachineState *vms) 231 { 232 MachineState *ms = MACHINE(vms); 233 int nb_numa_nodes = ms->numa_state->num_nodes; 234 void *fdt = create_device_tree(&vms->fdt_size); 235 236 if (!fdt) { 237 error_report("create_device_tree() failed"); 238 exit(1); 239 } 240 241 ms->fdt = fdt; 242 243 /* Header */ 244 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 245 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 246 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 247 248 /* /chosen must exist for load_dtb to fill in necessary properties later */ 249 qemu_fdt_add_subnode(fdt, "/chosen"); 250 create_kaslr_seed(ms, "/chosen"); 251 252 if (vms->secure) { 253 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 254 create_kaslr_seed(ms, "/secure-chosen"); 255 } 256 257 /* Clock node, for the benefit of the UART. The kernel device tree 258 * binding documentation claims the PL011 node clock properties are 259 * optional but in practice if you omit them the kernel refuses to 260 * probe for the device. 261 */ 262 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 263 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 264 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 268 "clk24mhz"); 269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 270 271 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 272 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 273 uint32_t *matrix = g_malloc0(size); 274 int idx, i, j; 275 276 for (i = 0; i < nb_numa_nodes; i++) { 277 for (j = 0; j < nb_numa_nodes; j++) { 278 idx = (i * nb_numa_nodes + j) * 3; 279 matrix[idx + 0] = cpu_to_be32(i); 280 matrix[idx + 1] = cpu_to_be32(j); 281 matrix[idx + 2] = 282 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 283 } 284 } 285 286 qemu_fdt_add_subnode(fdt, "/distance-map"); 287 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 288 "numa-distance-map-v1"); 289 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 290 matrix, size); 291 g_free(matrix); 292 } 293 } 294 295 static void fdt_add_timer_nodes(const VirtMachineState *vms) 296 { 297 /* On real hardware these interrupts are level-triggered. 298 * On KVM they were edge-triggered before host kernel version 4.4, 299 * and level-triggered afterwards. 300 * On emulated QEMU they are level-triggered. 301 * 302 * Getting the DTB info about them wrong is awkward for some 303 * guest kernels: 304 * pre-4.8 ignore the DT and leave the interrupt configured 305 * with whatever the GIC reset value (or the bootloader) left it at 306 * 4.8 before rc6 honour the incorrect data by programming it back 307 * into the GIC, causing problems 308 * 4.8rc6 and later ignore the DT and always write "level triggered" 309 * into the GIC 310 * 311 * For backwards-compatibility, virt-2.8 and earlier will continue 312 * to say these are edge-triggered, but later machines will report 313 * the correct information. 314 */ 315 ARMCPU *armcpu; 316 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 318 MachineState *ms = MACHINE(vms); 319 320 if (vmc->claim_edge_triggered_timers) { 321 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 322 } 323 324 if (vms->gic_version == VIRT_GIC_VERSION_2) { 325 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 326 GIC_FDT_IRQ_PPI_CPU_WIDTH, 327 (1 << MACHINE(vms)->smp.cpus) - 1); 328 } 329 330 qemu_fdt_add_subnode(ms->fdt, "/timer"); 331 332 armcpu = ARM_CPU(qemu_get_cpu(0)); 333 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 334 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 335 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 336 compat, sizeof(compat)); 337 } else { 338 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 339 "arm,armv7-timer"); 340 } 341 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 342 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 347 } 348 349 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 350 { 351 int cpu; 352 int addr_cells = 1; 353 const MachineState *ms = MACHINE(vms); 354 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 355 int smp_cpus = ms->smp.cpus; 356 357 /* 358 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 359 * On ARM v8 64-bit systems value should be set to 2, 360 * that corresponds to the MPIDR_EL1 register size. 361 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 362 * in the system, #address-cells can be set to 1, since 363 * MPIDR_EL1[63:32] bits are not used for CPUs 364 * identification. 365 * 366 * Here we actually don't know whether our system is 32- or 64-bit one. 367 * The simplest way to go is to examine affinity IDs of all our CPUs. If 368 * at least one of them has Aff3 populated, we set #address-cells to 2. 369 */ 370 for (cpu = 0; cpu < smp_cpus; cpu++) { 371 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 372 373 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 374 addr_cells = 2; 375 break; 376 } 377 } 378 379 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 380 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 381 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 382 383 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 384 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 385 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 386 CPUState *cs = CPU(armcpu); 387 388 qemu_fdt_add_subnode(ms->fdt, nodename); 389 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 390 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 391 armcpu->dtb_compatible); 392 393 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 394 qemu_fdt_setprop_string(ms->fdt, nodename, 395 "enable-method", "psci"); 396 } 397 398 if (addr_cells == 2) { 399 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 400 armcpu->mp_affinity); 401 } else { 402 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 403 armcpu->mp_affinity); 404 } 405 406 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 407 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 408 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 409 } 410 411 if (!vmc->no_cpu_topology) { 412 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 413 qemu_fdt_alloc_phandle(ms->fdt)); 414 } 415 416 g_free(nodename); 417 } 418 419 if (!vmc->no_cpu_topology) { 420 /* 421 * Add vCPU topology description through fdt node cpu-map. 422 * 423 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 424 * In a SMP system, the hierarchy of CPUs can be defined through 425 * four entities that are used to describe the layout of CPUs in 426 * the system: socket/cluster/core/thread. 427 * 428 * A socket node represents the boundary of system physical package 429 * and its child nodes must be one or more cluster nodes. A system 430 * can contain several layers of clustering within a single physical 431 * package and cluster nodes can be contained in parent cluster nodes. 432 * 433 * Given that cluster is not yet supported in the vCPU topology, 434 * we currently generate one cluster node within each socket node 435 * by default. 436 */ 437 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 438 439 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 440 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 441 char *map_path; 442 443 if (ms->smp.threads > 1) { 444 map_path = g_strdup_printf( 445 "/cpus/cpu-map/socket%d/cluster0/core%d/thread%d", 446 cpu / (ms->smp.cores * ms->smp.threads), 447 (cpu / ms->smp.threads) % ms->smp.cores, 448 cpu % ms->smp.threads); 449 } else { 450 map_path = g_strdup_printf( 451 "/cpus/cpu-map/socket%d/cluster0/core%d", 452 cpu / ms->smp.cores, 453 cpu % ms->smp.cores); 454 } 455 qemu_fdt_add_path(ms->fdt, map_path); 456 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 457 458 g_free(map_path); 459 g_free(cpu_path); 460 } 461 } 462 } 463 464 static void fdt_add_its_gic_node(VirtMachineState *vms) 465 { 466 char *nodename; 467 MachineState *ms = MACHINE(vms); 468 469 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 470 nodename = g_strdup_printf("/intc/its@%" PRIx64, 471 vms->memmap[VIRT_GIC_ITS].base); 472 qemu_fdt_add_subnode(ms->fdt, nodename); 473 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 474 "arm,gic-v3-its"); 475 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 476 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 477 2, vms->memmap[VIRT_GIC_ITS].base, 478 2, vms->memmap[VIRT_GIC_ITS].size); 479 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 480 g_free(nodename); 481 } 482 483 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 484 { 485 MachineState *ms = MACHINE(vms); 486 char *nodename; 487 488 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 489 vms->memmap[VIRT_GIC_V2M].base); 490 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 491 qemu_fdt_add_subnode(ms->fdt, nodename); 492 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 493 "arm,gic-v2m-frame"); 494 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 495 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 496 2, vms->memmap[VIRT_GIC_V2M].base, 497 2, vms->memmap[VIRT_GIC_V2M].size); 498 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 499 g_free(nodename); 500 } 501 502 static void fdt_add_gic_node(VirtMachineState *vms) 503 { 504 MachineState *ms = MACHINE(vms); 505 char *nodename; 506 507 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 508 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 509 510 nodename = g_strdup_printf("/intc@%" PRIx64, 511 vms->memmap[VIRT_GIC_DIST].base); 512 qemu_fdt_add_subnode(ms->fdt, nodename); 513 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 514 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 515 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 516 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 517 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 518 if (vms->gic_version == VIRT_GIC_VERSION_3) { 519 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 520 521 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 522 "arm,gic-v3"); 523 524 qemu_fdt_setprop_cell(ms->fdt, nodename, 525 "#redistributor-regions", nb_redist_regions); 526 527 if (nb_redist_regions == 1) { 528 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 529 2, vms->memmap[VIRT_GIC_DIST].base, 530 2, vms->memmap[VIRT_GIC_DIST].size, 531 2, vms->memmap[VIRT_GIC_REDIST].base, 532 2, vms->memmap[VIRT_GIC_REDIST].size); 533 } else { 534 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 535 2, vms->memmap[VIRT_GIC_DIST].base, 536 2, vms->memmap[VIRT_GIC_DIST].size, 537 2, vms->memmap[VIRT_GIC_REDIST].base, 538 2, vms->memmap[VIRT_GIC_REDIST].size, 539 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 540 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 541 } 542 543 if (vms->virt) { 544 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 545 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 546 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 547 } 548 } else { 549 /* 'cortex-a15-gic' means 'GIC v2' */ 550 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 551 "arm,cortex-a15-gic"); 552 if (!vms->virt) { 553 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 554 2, vms->memmap[VIRT_GIC_DIST].base, 555 2, vms->memmap[VIRT_GIC_DIST].size, 556 2, vms->memmap[VIRT_GIC_CPU].base, 557 2, vms->memmap[VIRT_GIC_CPU].size); 558 } else { 559 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 560 2, vms->memmap[VIRT_GIC_DIST].base, 561 2, vms->memmap[VIRT_GIC_DIST].size, 562 2, vms->memmap[VIRT_GIC_CPU].base, 563 2, vms->memmap[VIRT_GIC_CPU].size, 564 2, vms->memmap[VIRT_GIC_HYP].base, 565 2, vms->memmap[VIRT_GIC_HYP].size, 566 2, vms->memmap[VIRT_GIC_VCPU].base, 567 2, vms->memmap[VIRT_GIC_VCPU].size); 568 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 569 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 570 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 571 } 572 } 573 574 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 575 g_free(nodename); 576 } 577 578 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 579 { 580 ARMCPU *armcpu = ARM_CPU(first_cpu); 581 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 582 MachineState *ms = MACHINE(vms); 583 584 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 585 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 586 return; 587 } 588 589 if (vms->gic_version == VIRT_GIC_VERSION_2) { 590 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 591 GIC_FDT_IRQ_PPI_CPU_WIDTH, 592 (1 << MACHINE(vms)->smp.cpus) - 1); 593 } 594 595 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 596 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 597 const char compat[] = "arm,armv8-pmuv3"; 598 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 599 compat, sizeof(compat)); 600 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 601 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 602 } 603 } 604 605 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 606 { 607 DeviceState *dev; 608 MachineState *ms = MACHINE(vms); 609 int irq = vms->irqmap[VIRT_ACPI_GED]; 610 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 611 612 if (ms->ram_slots) { 613 event |= ACPI_GED_MEM_HOTPLUG_EVT; 614 } 615 616 if (ms->nvdimms_state->is_enabled) { 617 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 618 } 619 620 dev = qdev_new(TYPE_ACPI_GED); 621 qdev_prop_set_uint32(dev, "ged-event", event); 622 623 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 624 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 625 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 626 627 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 628 629 return dev; 630 } 631 632 static void create_its(VirtMachineState *vms) 633 { 634 const char *itsclass = its_class_name(); 635 DeviceState *dev; 636 637 if (!strcmp(itsclass, "arm-gicv3-its")) { 638 if (!vms->tcg_its) { 639 itsclass = NULL; 640 } 641 } 642 643 if (!itsclass) { 644 /* Do nothing if not supported */ 645 return; 646 } 647 648 dev = qdev_new(itsclass); 649 650 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 651 &error_abort); 652 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 653 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 654 655 fdt_add_its_gic_node(vms); 656 vms->msi_controller = VIRT_MSI_CTRL_ITS; 657 } 658 659 static void create_v2m(VirtMachineState *vms) 660 { 661 int i; 662 int irq = vms->irqmap[VIRT_GIC_V2M]; 663 DeviceState *dev; 664 665 dev = qdev_new("arm-gicv2m"); 666 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 667 qdev_prop_set_uint32(dev, "base-spi", irq); 668 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 669 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 670 671 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 672 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 673 qdev_get_gpio_in(vms->gic, irq + i)); 674 } 675 676 fdt_add_v2m_gic_node(vms); 677 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 678 } 679 680 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 681 { 682 MachineState *ms = MACHINE(vms); 683 /* We create a standalone GIC */ 684 SysBusDevice *gicbusdev; 685 const char *gictype; 686 int type = vms->gic_version, i; 687 unsigned int smp_cpus = ms->smp.cpus; 688 uint32_t nb_redist_regions = 0; 689 690 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 691 692 vms->gic = qdev_new(gictype); 693 qdev_prop_set_uint32(vms->gic, "revision", type); 694 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 695 /* Note that the num-irq property counts both internal and external 696 * interrupts; there are always 32 of the former (mandated by GIC spec). 697 */ 698 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 699 if (!kvm_irqchip_in_kernel()) { 700 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 701 } 702 703 if (type == 3) { 704 uint32_t redist0_capacity = 705 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 706 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 707 708 nb_redist_regions = virt_gicv3_redist_region_count(vms); 709 710 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 711 nb_redist_regions); 712 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 713 714 if (!kvm_irqchip_in_kernel()) { 715 if (vms->tcg_its) { 716 object_property_set_link(OBJECT(vms->gic), "sysmem", 717 OBJECT(mem), &error_fatal); 718 qdev_prop_set_bit(vms->gic, "has-lpi", true); 719 } 720 } 721 722 if (nb_redist_regions == 2) { 723 uint32_t redist1_capacity = 724 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 725 726 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 727 MIN(smp_cpus - redist0_count, redist1_capacity)); 728 } 729 } else { 730 if (!kvm_irqchip_in_kernel()) { 731 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 732 vms->virt); 733 } 734 } 735 gicbusdev = SYS_BUS_DEVICE(vms->gic); 736 sysbus_realize_and_unref(gicbusdev, &error_fatal); 737 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 738 if (type == 3) { 739 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 740 if (nb_redist_regions == 2) { 741 sysbus_mmio_map(gicbusdev, 2, 742 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 743 } 744 } else { 745 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 746 if (vms->virt) { 747 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 748 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 749 } 750 } 751 752 /* Wire the outputs from each CPU's generic timer and the GICv3 753 * maintenance interrupt signal to the appropriate GIC PPI inputs, 754 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 755 */ 756 for (i = 0; i < smp_cpus; i++) { 757 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 758 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 759 int irq; 760 /* Mapping from the output timer irq lines from the CPU to the 761 * GIC PPI inputs we use for the virt board. 762 */ 763 const int timer_irq[] = { 764 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 765 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 766 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 767 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 768 }; 769 770 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 771 qdev_connect_gpio_out(cpudev, irq, 772 qdev_get_gpio_in(vms->gic, 773 ppibase + timer_irq[irq])); 774 } 775 776 if (type == 3) { 777 qemu_irq irq = qdev_get_gpio_in(vms->gic, 778 ppibase + ARCH_GIC_MAINT_IRQ); 779 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 780 0, irq); 781 } else if (vms->virt) { 782 qemu_irq irq = qdev_get_gpio_in(vms->gic, 783 ppibase + ARCH_GIC_MAINT_IRQ); 784 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 785 } 786 787 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 788 qdev_get_gpio_in(vms->gic, ppibase 789 + VIRTUAL_PMU_IRQ)); 790 791 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 792 sysbus_connect_irq(gicbusdev, i + smp_cpus, 793 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 794 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 795 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 796 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 797 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 798 } 799 800 fdt_add_gic_node(vms); 801 802 if (type == 3 && vms->its) { 803 create_its(vms); 804 } else if (type == 2) { 805 create_v2m(vms); 806 } 807 } 808 809 static void create_uart(const VirtMachineState *vms, int uart, 810 MemoryRegion *mem, Chardev *chr) 811 { 812 char *nodename; 813 hwaddr base = vms->memmap[uart].base; 814 hwaddr size = vms->memmap[uart].size; 815 int irq = vms->irqmap[uart]; 816 const char compat[] = "arm,pl011\0arm,primecell"; 817 const char clocknames[] = "uartclk\0apb_pclk"; 818 DeviceState *dev = qdev_new(TYPE_PL011); 819 SysBusDevice *s = SYS_BUS_DEVICE(dev); 820 MachineState *ms = MACHINE(vms); 821 822 qdev_prop_set_chr(dev, "chardev", chr); 823 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 824 memory_region_add_subregion(mem, base, 825 sysbus_mmio_get_region(s, 0)); 826 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 827 828 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 829 qemu_fdt_add_subnode(ms->fdt, nodename); 830 /* Note that we can't use setprop_string because of the embedded NUL */ 831 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 832 compat, sizeof(compat)); 833 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 834 2, base, 2, size); 835 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 836 GIC_FDT_IRQ_TYPE_SPI, irq, 837 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 838 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 839 vms->clock_phandle, vms->clock_phandle); 840 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 841 clocknames, sizeof(clocknames)); 842 843 if (uart == VIRT_UART) { 844 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 845 } else { 846 /* Mark as not usable by the normal world */ 847 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 848 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 849 850 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 851 nodename); 852 } 853 854 g_free(nodename); 855 } 856 857 static void create_rtc(const VirtMachineState *vms) 858 { 859 char *nodename; 860 hwaddr base = vms->memmap[VIRT_RTC].base; 861 hwaddr size = vms->memmap[VIRT_RTC].size; 862 int irq = vms->irqmap[VIRT_RTC]; 863 const char compat[] = "arm,pl031\0arm,primecell"; 864 MachineState *ms = MACHINE(vms); 865 866 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 867 868 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 869 qemu_fdt_add_subnode(ms->fdt, nodename); 870 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 871 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 872 2, base, 2, size); 873 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 874 GIC_FDT_IRQ_TYPE_SPI, irq, 875 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 876 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 877 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 878 g_free(nodename); 879 } 880 881 static DeviceState *gpio_key_dev; 882 static void virt_powerdown_req(Notifier *n, void *opaque) 883 { 884 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 885 886 if (s->acpi_dev) { 887 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 888 } else { 889 /* use gpio Pin 3 for power button event */ 890 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 891 } 892 } 893 894 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 895 uint32_t phandle) 896 { 897 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 898 qdev_get_gpio_in(pl061_dev, 3)); 899 900 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 901 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 902 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0); 903 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1); 904 905 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 906 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 907 "label", "GPIO Key Poweroff"); 908 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 909 KEY_POWER); 910 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 911 "gpios", phandle, 3, 0); 912 } 913 914 #define SECURE_GPIO_POWEROFF 0 915 #define SECURE_GPIO_RESET 1 916 917 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 918 uint32_t phandle) 919 { 920 DeviceState *gpio_pwr_dev; 921 922 /* gpio-pwr */ 923 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 924 925 /* connect secure pl061 to gpio-pwr */ 926 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 927 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 928 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 929 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 930 931 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 932 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 933 "gpio-poweroff"); 934 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 935 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 936 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 937 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 938 "okay"); 939 940 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 941 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 942 "gpio-restart"); 943 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 944 "gpios", phandle, SECURE_GPIO_RESET, 0); 945 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 946 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 947 "okay"); 948 } 949 950 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 951 MemoryRegion *mem) 952 { 953 char *nodename; 954 DeviceState *pl061_dev; 955 hwaddr base = vms->memmap[gpio].base; 956 hwaddr size = vms->memmap[gpio].size; 957 int irq = vms->irqmap[gpio]; 958 const char compat[] = "arm,pl061\0arm,primecell"; 959 SysBusDevice *s; 960 MachineState *ms = MACHINE(vms); 961 962 pl061_dev = qdev_new("pl061"); 963 /* Pull lines down to 0 if not driven by the PL061 */ 964 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 965 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 966 s = SYS_BUS_DEVICE(pl061_dev); 967 sysbus_realize_and_unref(s, &error_fatal); 968 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 969 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 970 971 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 972 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 973 qemu_fdt_add_subnode(ms->fdt, nodename); 974 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 975 2, base, 2, size); 976 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 977 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 978 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 979 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 980 GIC_FDT_IRQ_TYPE_SPI, irq, 981 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 982 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 983 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 984 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 985 986 if (gpio != VIRT_GPIO) { 987 /* Mark as not usable by the normal world */ 988 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 989 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 990 } 991 g_free(nodename); 992 993 /* Child gpio devices */ 994 if (gpio == VIRT_GPIO) { 995 create_gpio_keys(ms->fdt, pl061_dev, phandle); 996 } else { 997 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 998 } 999 } 1000 1001 static void create_virtio_devices(const VirtMachineState *vms) 1002 { 1003 int i; 1004 hwaddr size = vms->memmap[VIRT_MMIO].size; 1005 MachineState *ms = MACHINE(vms); 1006 1007 /* We create the transports in forwards order. Since qbus_realize() 1008 * prepends (not appends) new child buses, the incrementing loop below will 1009 * create a list of virtio-mmio buses with decreasing base addresses. 1010 * 1011 * When a -device option is processed from the command line, 1012 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1013 * order. The upshot is that -device options in increasing command line 1014 * order are mapped to virtio-mmio buses with decreasing base addresses. 1015 * 1016 * When this code was originally written, that arrangement ensured that the 1017 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1018 * the first -device on the command line. (The end-to-end order is a 1019 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1020 * guest kernel's name-to-address assignment strategy.) 1021 * 1022 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1023 * the message, if not necessarily the code, of commit 70161ff336. 1024 * Therefore the loop now establishes the inverse of the original intent. 1025 * 1026 * Unfortunately, we can't counteract the kernel change by reversing the 1027 * loop; it would break existing command lines. 1028 * 1029 * In any case, the kernel makes no guarantee about the stability of 1030 * enumeration order of virtio devices (as demonstrated by it changing 1031 * between kernel versions). For reliable and stable identification 1032 * of disks users must use UUIDs or similar mechanisms. 1033 */ 1034 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1035 int irq = vms->irqmap[VIRT_MMIO] + i; 1036 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1037 1038 sysbus_create_simple("virtio-mmio", base, 1039 qdev_get_gpio_in(vms->gic, irq)); 1040 } 1041 1042 /* We add dtb nodes in reverse order so that they appear in the finished 1043 * device tree lowest address first. 1044 * 1045 * Note that this mapping is independent of the loop above. The previous 1046 * loop influences virtio device to virtio transport assignment, whereas 1047 * this loop controls how virtio transports are laid out in the dtb. 1048 */ 1049 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1050 char *nodename; 1051 int irq = vms->irqmap[VIRT_MMIO] + i; 1052 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1053 1054 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1055 qemu_fdt_add_subnode(ms->fdt, nodename); 1056 qemu_fdt_setprop_string(ms->fdt, nodename, 1057 "compatible", "virtio,mmio"); 1058 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1059 2, base, 2, size); 1060 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1061 GIC_FDT_IRQ_TYPE_SPI, irq, 1062 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1063 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1064 g_free(nodename); 1065 } 1066 } 1067 1068 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1069 1070 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1071 const char *name, 1072 const char *alias_prop_name) 1073 { 1074 /* 1075 * Create a single flash device. We use the same parameters as 1076 * the flash devices on the Versatile Express board. 1077 */ 1078 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1079 1080 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1081 qdev_prop_set_uint8(dev, "width", 4); 1082 qdev_prop_set_uint8(dev, "device-width", 2); 1083 qdev_prop_set_bit(dev, "big-endian", false); 1084 qdev_prop_set_uint16(dev, "id0", 0x89); 1085 qdev_prop_set_uint16(dev, "id1", 0x18); 1086 qdev_prop_set_uint16(dev, "id2", 0x00); 1087 qdev_prop_set_uint16(dev, "id3", 0x00); 1088 qdev_prop_set_string(dev, "name", name); 1089 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1090 object_property_add_alias(OBJECT(vms), alias_prop_name, 1091 OBJECT(dev), "drive"); 1092 return PFLASH_CFI01(dev); 1093 } 1094 1095 static void virt_flash_create(VirtMachineState *vms) 1096 { 1097 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1098 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1099 } 1100 1101 static void virt_flash_map1(PFlashCFI01 *flash, 1102 hwaddr base, hwaddr size, 1103 MemoryRegion *sysmem) 1104 { 1105 DeviceState *dev = DEVICE(flash); 1106 1107 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1108 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1109 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1110 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1111 1112 memory_region_add_subregion(sysmem, base, 1113 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1114 0)); 1115 } 1116 1117 static void virt_flash_map(VirtMachineState *vms, 1118 MemoryRegion *sysmem, 1119 MemoryRegion *secure_sysmem) 1120 { 1121 /* 1122 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1123 * sysmem is the system memory space. secure_sysmem is the secure view 1124 * of the system, and the first flash device should be made visible only 1125 * there. The second flash device is visible to both secure and nonsecure. 1126 * If sysmem == secure_sysmem this means there is no separate Secure 1127 * address space and both flash devices are generally visible. 1128 */ 1129 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1130 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1131 1132 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1133 secure_sysmem); 1134 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1135 sysmem); 1136 } 1137 1138 static void virt_flash_fdt(VirtMachineState *vms, 1139 MemoryRegion *sysmem, 1140 MemoryRegion *secure_sysmem) 1141 { 1142 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1143 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1144 MachineState *ms = MACHINE(vms); 1145 char *nodename; 1146 1147 if (sysmem == secure_sysmem) { 1148 /* Report both flash devices as a single node in the DT */ 1149 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1150 qemu_fdt_add_subnode(ms->fdt, nodename); 1151 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1152 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1153 2, flashbase, 2, flashsize, 1154 2, flashbase + flashsize, 2, flashsize); 1155 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1156 g_free(nodename); 1157 } else { 1158 /* 1159 * Report the devices as separate nodes so we can mark one as 1160 * only visible to the secure world. 1161 */ 1162 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1163 qemu_fdt_add_subnode(ms->fdt, nodename); 1164 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1165 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1166 2, flashbase, 2, flashsize); 1167 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1168 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1169 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1170 g_free(nodename); 1171 1172 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1173 qemu_fdt_add_subnode(ms->fdt, nodename); 1174 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1175 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1176 2, flashbase + flashsize, 2, flashsize); 1177 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1178 g_free(nodename); 1179 } 1180 } 1181 1182 static bool virt_firmware_init(VirtMachineState *vms, 1183 MemoryRegion *sysmem, 1184 MemoryRegion *secure_sysmem) 1185 { 1186 int i; 1187 const char *bios_name; 1188 BlockBackend *pflash_blk0; 1189 1190 /* Map legacy -drive if=pflash to machine properties */ 1191 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1192 pflash_cfi01_legacy_drive(vms->flash[i], 1193 drive_get(IF_PFLASH, 0, i)); 1194 } 1195 1196 virt_flash_map(vms, sysmem, secure_sysmem); 1197 1198 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1199 1200 bios_name = MACHINE(vms)->firmware; 1201 if (bios_name) { 1202 char *fname; 1203 MemoryRegion *mr; 1204 int image_size; 1205 1206 if (pflash_blk0) { 1207 error_report("The contents of the first flash device may be " 1208 "specified with -bios or with -drive if=pflash... " 1209 "but you cannot use both options at once"); 1210 exit(1); 1211 } 1212 1213 /* Fall back to -bios */ 1214 1215 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1216 if (!fname) { 1217 error_report("Could not find ROM image '%s'", bios_name); 1218 exit(1); 1219 } 1220 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1221 image_size = load_image_mr(fname, mr); 1222 g_free(fname); 1223 if (image_size < 0) { 1224 error_report("Could not load ROM image '%s'", bios_name); 1225 exit(1); 1226 } 1227 } 1228 1229 return pflash_blk0 || bios_name; 1230 } 1231 1232 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1233 { 1234 MachineState *ms = MACHINE(vms); 1235 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1236 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1237 FWCfgState *fw_cfg; 1238 char *nodename; 1239 1240 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1241 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1242 1243 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1244 qemu_fdt_add_subnode(ms->fdt, nodename); 1245 qemu_fdt_setprop_string(ms->fdt, nodename, 1246 "compatible", "qemu,fw-cfg-mmio"); 1247 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1248 2, base, 2, size); 1249 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1250 g_free(nodename); 1251 return fw_cfg; 1252 } 1253 1254 static void create_pcie_irq_map(const MachineState *ms, 1255 uint32_t gic_phandle, 1256 int first_irq, const char *nodename) 1257 { 1258 int devfn, pin; 1259 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1260 uint32_t *irq_map = full_irq_map; 1261 1262 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1263 for (pin = 0; pin < 4; pin++) { 1264 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1265 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1266 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1267 int i; 1268 1269 uint32_t map[] = { 1270 devfn << 8, 0, 0, /* devfn */ 1271 pin + 1, /* PCI pin */ 1272 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1273 1274 /* Convert map to big endian */ 1275 for (i = 0; i < 10; i++) { 1276 irq_map[i] = cpu_to_be32(map[i]); 1277 } 1278 irq_map += 10; 1279 } 1280 } 1281 1282 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1283 full_irq_map, sizeof(full_irq_map)); 1284 1285 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1286 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1287 0, 0, 1288 0x7 /* PCI irq */); 1289 } 1290 1291 static void create_smmu(const VirtMachineState *vms, 1292 PCIBus *bus) 1293 { 1294 char *node; 1295 const char compat[] = "arm,smmu-v3"; 1296 int irq = vms->irqmap[VIRT_SMMU]; 1297 int i; 1298 hwaddr base = vms->memmap[VIRT_SMMU].base; 1299 hwaddr size = vms->memmap[VIRT_SMMU].size; 1300 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1301 DeviceState *dev; 1302 MachineState *ms = MACHINE(vms); 1303 1304 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1305 return; 1306 } 1307 1308 dev = qdev_new("arm-smmuv3"); 1309 1310 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1311 &error_abort); 1312 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1313 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1314 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1315 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1316 qdev_get_gpio_in(vms->gic, irq + i)); 1317 } 1318 1319 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1320 qemu_fdt_add_subnode(ms->fdt, node); 1321 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1322 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1323 1324 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1325 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1326 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1327 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1328 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1329 1330 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1331 sizeof(irq_names)); 1332 1333 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle); 1334 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk"); 1335 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1336 1337 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1338 1339 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1340 g_free(node); 1341 } 1342 1343 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1344 { 1345 const char compat[] = "virtio,pci-iommu"; 1346 uint16_t bdf = vms->virtio_iommu_bdf; 1347 MachineState *ms = MACHINE(vms); 1348 char *node; 1349 1350 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1351 1352 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1353 qemu_fdt_add_subnode(ms->fdt, node); 1354 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1355 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1356 1, bdf << 8, 1, 0, 1, 0, 1357 1, 0, 1, 0); 1358 1359 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1360 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1361 g_free(node); 1362 1363 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1364 0x0, vms->iommu_phandle, 0x0, bdf, 1365 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1366 } 1367 1368 static void create_pcie(VirtMachineState *vms) 1369 { 1370 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1371 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1372 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1373 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1374 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1375 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1376 hwaddr base_ecam, size_ecam; 1377 hwaddr base = base_mmio; 1378 int nr_pcie_buses; 1379 int irq = vms->irqmap[VIRT_PCIE]; 1380 MemoryRegion *mmio_alias; 1381 MemoryRegion *mmio_reg; 1382 MemoryRegion *ecam_alias; 1383 MemoryRegion *ecam_reg; 1384 DeviceState *dev; 1385 char *nodename; 1386 int i, ecam_id; 1387 PCIHostState *pci; 1388 MachineState *ms = MACHINE(vms); 1389 1390 dev = qdev_new(TYPE_GPEX_HOST); 1391 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1392 1393 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1394 base_ecam = vms->memmap[ecam_id].base; 1395 size_ecam = vms->memmap[ecam_id].size; 1396 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1397 /* Map only the first size_ecam bytes of ECAM space */ 1398 ecam_alias = g_new0(MemoryRegion, 1); 1399 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1400 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1401 ecam_reg, 0, size_ecam); 1402 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1403 1404 /* Map the MMIO window into system address space so as to expose 1405 * the section of PCI MMIO space which starts at the same base address 1406 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1407 * the window). 1408 */ 1409 mmio_alias = g_new0(MemoryRegion, 1); 1410 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1411 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1412 mmio_reg, base_mmio, size_mmio); 1413 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1414 1415 if (vms->highmem) { 1416 /* Map high MMIO space */ 1417 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1418 1419 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1420 mmio_reg, base_mmio_high, size_mmio_high); 1421 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1422 high_mmio_alias); 1423 } 1424 1425 /* Map IO port space */ 1426 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1427 1428 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1429 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1430 qdev_get_gpio_in(vms->gic, irq + i)); 1431 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1432 } 1433 1434 pci = PCI_HOST_BRIDGE(dev); 1435 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1436 vms->bus = pci->bus; 1437 if (vms->bus) { 1438 for (i = 0; i < nb_nics; i++) { 1439 NICInfo *nd = &nd_table[i]; 1440 1441 if (!nd->model) { 1442 nd->model = g_strdup("virtio"); 1443 } 1444 1445 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1446 } 1447 } 1448 1449 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1450 qemu_fdt_add_subnode(ms->fdt, nodename); 1451 qemu_fdt_setprop_string(ms->fdt, nodename, 1452 "compatible", "pci-host-ecam-generic"); 1453 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1454 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1455 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1456 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1457 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1458 nr_pcie_buses - 1); 1459 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1460 1461 if (vms->msi_phandle) { 1462 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent", 1463 vms->msi_phandle); 1464 } 1465 1466 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1467 2, base_ecam, 2, size_ecam); 1468 1469 if (vms->highmem) { 1470 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1471 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1472 2, base_pio, 2, size_pio, 1473 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1474 2, base_mmio, 2, size_mmio, 1475 1, FDT_PCI_RANGE_MMIO_64BIT, 1476 2, base_mmio_high, 1477 2, base_mmio_high, 2, size_mmio_high); 1478 } else { 1479 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1480 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1481 2, base_pio, 2, size_pio, 1482 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1483 2, base_mmio, 2, size_mmio); 1484 } 1485 1486 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1487 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1488 1489 if (vms->iommu) { 1490 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1491 1492 switch (vms->iommu) { 1493 case VIRT_IOMMU_SMMUV3: 1494 create_smmu(vms, vms->bus); 1495 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1496 0x0, vms->iommu_phandle, 0x0, 0x10000); 1497 break; 1498 default: 1499 g_assert_not_reached(); 1500 } 1501 } 1502 } 1503 1504 static void create_platform_bus(VirtMachineState *vms) 1505 { 1506 DeviceState *dev; 1507 SysBusDevice *s; 1508 int i; 1509 MemoryRegion *sysmem = get_system_memory(); 1510 1511 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1512 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1513 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1514 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1515 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1516 vms->platform_bus_dev = dev; 1517 1518 s = SYS_BUS_DEVICE(dev); 1519 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1520 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1521 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1522 } 1523 1524 memory_region_add_subregion(sysmem, 1525 vms->memmap[VIRT_PLATFORM_BUS].base, 1526 sysbus_mmio_get_region(s, 0)); 1527 } 1528 1529 static void create_tag_ram(MemoryRegion *tag_sysmem, 1530 hwaddr base, hwaddr size, 1531 const char *name) 1532 { 1533 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1534 1535 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1536 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1537 } 1538 1539 static void create_secure_ram(VirtMachineState *vms, 1540 MemoryRegion *secure_sysmem, 1541 MemoryRegion *secure_tag_sysmem) 1542 { 1543 MemoryRegion *secram = g_new(MemoryRegion, 1); 1544 char *nodename; 1545 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1546 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1547 MachineState *ms = MACHINE(vms); 1548 1549 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1550 &error_fatal); 1551 memory_region_add_subregion(secure_sysmem, base, secram); 1552 1553 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1554 qemu_fdt_add_subnode(ms->fdt, nodename); 1555 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1556 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1557 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1558 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1559 1560 if (secure_tag_sysmem) { 1561 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1562 } 1563 1564 g_free(nodename); 1565 } 1566 1567 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1568 { 1569 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1570 bootinfo); 1571 MachineState *ms = MACHINE(board); 1572 1573 1574 *fdt_size = board->fdt_size; 1575 return ms->fdt; 1576 } 1577 1578 static void virt_build_smbios(VirtMachineState *vms) 1579 { 1580 MachineClass *mc = MACHINE_GET_CLASS(vms); 1581 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1582 uint8_t *smbios_tables, *smbios_anchor; 1583 size_t smbios_tables_len, smbios_anchor_len; 1584 const char *product = "QEMU Virtual Machine"; 1585 1586 if (kvm_enabled()) { 1587 product = "KVM Virtual Machine"; 1588 } 1589 1590 smbios_set_defaults("QEMU", product, 1591 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1592 true, SMBIOS_ENTRY_POINT_30); 1593 1594 smbios_get_tables(MACHINE(vms), NULL, 0, 1595 &smbios_tables, &smbios_tables_len, 1596 &smbios_anchor, &smbios_anchor_len, 1597 &error_fatal); 1598 1599 if (smbios_anchor) { 1600 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1601 smbios_tables, smbios_tables_len); 1602 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1603 smbios_anchor, smbios_anchor_len); 1604 } 1605 } 1606 1607 static 1608 void virt_machine_done(Notifier *notifier, void *data) 1609 { 1610 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1611 machine_done); 1612 MachineState *ms = MACHINE(vms); 1613 ARMCPU *cpu = ARM_CPU(first_cpu); 1614 struct arm_boot_info *info = &vms->bootinfo; 1615 AddressSpace *as = arm_boot_address_space(cpu, info); 1616 1617 /* 1618 * If the user provided a dtb, we assume the dynamic sysbus nodes 1619 * already are integrated there. This corresponds to a use case where 1620 * the dynamic sysbus nodes are complex and their generation is not yet 1621 * supported. In that case the user can take charge of the guest dt 1622 * while qemu takes charge of the qom stuff. 1623 */ 1624 if (info->dtb_filename == NULL) { 1625 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1626 vms->memmap[VIRT_PLATFORM_BUS].base, 1627 vms->memmap[VIRT_PLATFORM_BUS].size, 1628 vms->irqmap[VIRT_PLATFORM_BUS]); 1629 } 1630 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1631 exit(1); 1632 } 1633 1634 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1635 1636 virt_acpi_setup(vms); 1637 virt_build_smbios(vms); 1638 } 1639 1640 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1641 { 1642 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1643 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1644 1645 if (!vmc->disallow_affinity_adjustment) { 1646 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1647 * GIC's target-list limitations. 32-bit KVM hosts currently 1648 * always create clusters of 4 CPUs, but that is expected to 1649 * change when they gain support for gicv3. When KVM is enabled 1650 * it will override the changes we make here, therefore our 1651 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1652 * and to improve SGI efficiency. 1653 */ 1654 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1655 clustersz = GICV3_TARGETLIST_BITS; 1656 } else { 1657 clustersz = GIC_TARGETLIST_BITS; 1658 } 1659 } 1660 return arm_cpu_mp_affinity(idx, clustersz); 1661 } 1662 1663 static void virt_set_memmap(VirtMachineState *vms) 1664 { 1665 MachineState *ms = MACHINE(vms); 1666 hwaddr base, device_memory_base, device_memory_size; 1667 int i; 1668 1669 vms->memmap = extended_memmap; 1670 1671 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1672 vms->memmap[i] = base_memmap[i]; 1673 } 1674 1675 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1676 error_report("unsupported number of memory slots: %"PRIu64, 1677 ms->ram_slots); 1678 exit(EXIT_FAILURE); 1679 } 1680 1681 /* 1682 * We compute the base of the high IO region depending on the 1683 * amount of initial and device memory. The device memory start/size 1684 * is aligned on 1GiB. We never put the high IO region below 256GiB 1685 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1686 * The device region size assumes 1GiB page max alignment per slot. 1687 */ 1688 device_memory_base = 1689 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1690 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1691 1692 /* Base address of the high IO region */ 1693 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1694 if (base < device_memory_base) { 1695 error_report("maxmem/slots too huge"); 1696 exit(EXIT_FAILURE); 1697 } 1698 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1699 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1700 } 1701 1702 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1703 hwaddr size = extended_memmap[i].size; 1704 1705 base = ROUND_UP(base, size); 1706 vms->memmap[i].base = base; 1707 vms->memmap[i].size = size; 1708 base += size; 1709 } 1710 vms->highest_gpa = base - 1; 1711 if (device_memory_size > 0) { 1712 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1713 ms->device_memory->base = device_memory_base; 1714 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1715 "device-memory", device_memory_size); 1716 } 1717 } 1718 1719 /* 1720 * finalize_gic_version - Determines the final gic_version 1721 * according to the gic-version property 1722 * 1723 * Default GIC type is v2 1724 */ 1725 static void finalize_gic_version(VirtMachineState *vms) 1726 { 1727 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1728 1729 if (kvm_enabled()) { 1730 int probe_bitmap; 1731 1732 if (!kvm_irqchip_in_kernel()) { 1733 switch (vms->gic_version) { 1734 case VIRT_GIC_VERSION_HOST: 1735 warn_report( 1736 "gic-version=host not relevant with kernel-irqchip=off " 1737 "as only userspace GICv2 is supported. Using v2 ..."); 1738 return; 1739 case VIRT_GIC_VERSION_MAX: 1740 case VIRT_GIC_VERSION_NOSEL: 1741 vms->gic_version = VIRT_GIC_VERSION_2; 1742 return; 1743 case VIRT_GIC_VERSION_2: 1744 return; 1745 case VIRT_GIC_VERSION_3: 1746 error_report( 1747 "gic-version=3 is not supported with kernel-irqchip=off"); 1748 exit(1); 1749 } 1750 } 1751 1752 probe_bitmap = kvm_arm_vgic_probe(); 1753 if (!probe_bitmap) { 1754 error_report("Unable to determine GIC version supported by host"); 1755 exit(1); 1756 } 1757 1758 switch (vms->gic_version) { 1759 case VIRT_GIC_VERSION_HOST: 1760 case VIRT_GIC_VERSION_MAX: 1761 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1762 vms->gic_version = VIRT_GIC_VERSION_3; 1763 } else { 1764 vms->gic_version = VIRT_GIC_VERSION_2; 1765 } 1766 return; 1767 case VIRT_GIC_VERSION_NOSEL: 1768 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1769 vms->gic_version = VIRT_GIC_VERSION_2; 1770 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1771 /* 1772 * in case the host does not support v2 in-kernel emulation or 1773 * the end-user requested more than 8 VCPUs we now default 1774 * to v3. In any case defaulting to v2 would be broken. 1775 */ 1776 vms->gic_version = VIRT_GIC_VERSION_3; 1777 } else if (max_cpus > GIC_NCPU) { 1778 error_report("host only supports in-kernel GICv2 emulation " 1779 "but more than 8 vcpus are requested"); 1780 exit(1); 1781 } 1782 break; 1783 case VIRT_GIC_VERSION_2: 1784 case VIRT_GIC_VERSION_3: 1785 break; 1786 } 1787 1788 /* Check chosen version is effectively supported by the host */ 1789 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1790 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1791 error_report("host does not support in-kernel GICv2 emulation"); 1792 exit(1); 1793 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1794 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1795 error_report("host does not support in-kernel GICv3 emulation"); 1796 exit(1); 1797 } 1798 return; 1799 } 1800 1801 /* TCG mode */ 1802 switch (vms->gic_version) { 1803 case VIRT_GIC_VERSION_NOSEL: 1804 vms->gic_version = VIRT_GIC_VERSION_2; 1805 break; 1806 case VIRT_GIC_VERSION_MAX: 1807 vms->gic_version = VIRT_GIC_VERSION_3; 1808 break; 1809 case VIRT_GIC_VERSION_HOST: 1810 error_report("gic-version=host requires KVM"); 1811 exit(1); 1812 case VIRT_GIC_VERSION_2: 1813 case VIRT_GIC_VERSION_3: 1814 break; 1815 } 1816 } 1817 1818 /* 1819 * virt_cpu_post_init() must be called after the CPUs have 1820 * been realized and the GIC has been created. 1821 */ 1822 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1823 { 1824 int max_cpus = MACHINE(vms)->smp.max_cpus; 1825 bool aarch64, pmu, steal_time; 1826 CPUState *cpu; 1827 1828 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1829 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1830 steal_time = object_property_get_bool(OBJECT(first_cpu), 1831 "kvm-steal-time", NULL); 1832 1833 if (kvm_enabled()) { 1834 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1835 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1836 1837 if (steal_time) { 1838 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1839 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1840 1841 /* The memory region size must be a multiple of host page size. */ 1842 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1843 1844 if (pvtime_size > pvtime_reg_size) { 1845 error_report("pvtime requires a %" HWADDR_PRId 1846 " byte memory region for %d CPUs," 1847 " but only %" HWADDR_PRId " has been reserved", 1848 pvtime_size, max_cpus, pvtime_reg_size); 1849 exit(1); 1850 } 1851 1852 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1853 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1854 } 1855 1856 CPU_FOREACH(cpu) { 1857 if (pmu) { 1858 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1859 if (kvm_irqchip_in_kernel()) { 1860 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 1861 } 1862 kvm_arm_pmu_init(cpu); 1863 } 1864 if (steal_time) { 1865 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 1866 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 1867 } 1868 } 1869 } else { 1870 if (aarch64 && vms->highmem) { 1871 int requested_pa_size = 64 - clz64(vms->highest_gpa); 1872 int pamax = arm_pamax(ARM_CPU(first_cpu)); 1873 1874 if (pamax < requested_pa_size) { 1875 error_report("VCPU supports less PA bits (%d) than " 1876 "requested by the memory map (%d)", 1877 pamax, requested_pa_size); 1878 exit(1); 1879 } 1880 } 1881 } 1882 } 1883 1884 static void machvirt_init(MachineState *machine) 1885 { 1886 VirtMachineState *vms = VIRT_MACHINE(machine); 1887 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1888 MachineClass *mc = MACHINE_GET_CLASS(machine); 1889 const CPUArchIdList *possible_cpus; 1890 MemoryRegion *sysmem = get_system_memory(); 1891 MemoryRegion *secure_sysmem = NULL; 1892 MemoryRegion *tag_sysmem = NULL; 1893 MemoryRegion *secure_tag_sysmem = NULL; 1894 int n, virt_max_cpus; 1895 bool firmware_loaded; 1896 bool aarch64 = true; 1897 bool has_ged = !vmc->no_ged; 1898 unsigned int smp_cpus = machine->smp.cpus; 1899 unsigned int max_cpus = machine->smp.max_cpus; 1900 1901 /* 1902 * In accelerated mode, the memory map is computed earlier in kvm_type() 1903 * to create a VM with the right number of IPA bits. 1904 */ 1905 if (!vms->memmap) { 1906 virt_set_memmap(vms); 1907 } 1908 1909 /* We can probe only here because during property set 1910 * KVM is not available yet 1911 */ 1912 finalize_gic_version(vms); 1913 1914 if (!cpu_type_valid(machine->cpu_type)) { 1915 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1916 exit(1); 1917 } 1918 1919 if (vms->secure) { 1920 /* 1921 * The Secure view of the world is the same as the NonSecure, 1922 * but with a few extra devices. Create it as a container region 1923 * containing the system memory at low priority; any secure-only 1924 * devices go in at higher priority and take precedence. 1925 */ 1926 secure_sysmem = g_new(MemoryRegion, 1); 1927 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1928 UINT64_MAX); 1929 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1930 } 1931 1932 firmware_loaded = virt_firmware_init(vms, sysmem, 1933 secure_sysmem ?: sysmem); 1934 1935 /* If we have an EL3 boot ROM then the assumption is that it will 1936 * implement PSCI itself, so disable QEMU's internal implementation 1937 * so it doesn't get in the way. Instead of starting secondary 1938 * CPUs in PSCI powerdown state we will start them all running and 1939 * let the boot ROM sort them out. 1940 * The usual case is that we do use QEMU's PSCI implementation; 1941 * if the guest has EL2 then we will use SMC as the conduit, 1942 * and otherwise we will use HVC (for backwards compatibility and 1943 * because if we're using KVM then we must use HVC). 1944 */ 1945 if (vms->secure && firmware_loaded) { 1946 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1947 } else if (vms->virt) { 1948 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1949 } else { 1950 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1951 } 1952 1953 /* The maximum number of CPUs depends on the GIC version, or on how 1954 * many redistributors we can fit into the memory map. 1955 */ 1956 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1957 virt_max_cpus = 1958 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1959 virt_max_cpus += 1960 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1961 } else { 1962 virt_max_cpus = GIC_NCPU; 1963 } 1964 1965 if (max_cpus > virt_max_cpus) { 1966 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1967 "supported by machine 'mach-virt' (%d)", 1968 max_cpus, virt_max_cpus); 1969 exit(1); 1970 } 1971 1972 if (vms->virt && kvm_enabled()) { 1973 error_report("mach-virt: KVM does not support providing " 1974 "Virtualization extensions to the guest CPU"); 1975 exit(1); 1976 } 1977 1978 if (vms->mte && kvm_enabled()) { 1979 error_report("mach-virt: KVM does not support providing " 1980 "MTE to the guest CPU"); 1981 exit(1); 1982 } 1983 1984 create_fdt(vms); 1985 1986 possible_cpus = mc->possible_cpu_arch_ids(machine); 1987 assert(possible_cpus->len == max_cpus); 1988 for (n = 0; n < possible_cpus->len; n++) { 1989 Object *cpuobj; 1990 CPUState *cs; 1991 1992 if (n >= smp_cpus) { 1993 break; 1994 } 1995 1996 cpuobj = object_new(possible_cpus->cpus[n].type); 1997 object_property_set_int(cpuobj, "mp-affinity", 1998 possible_cpus->cpus[n].arch_id, NULL); 1999 2000 cs = CPU(cpuobj); 2001 cs->cpu_index = n; 2002 2003 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2004 &error_fatal); 2005 2006 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2007 2008 if (!vms->secure) { 2009 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2010 } 2011 2012 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2013 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2014 } 2015 2016 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 2017 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, 2018 NULL); 2019 2020 /* Secondary CPUs start in PSCI powered-down state */ 2021 if (n > 0) { 2022 object_property_set_bool(cpuobj, "start-powered-off", true, 2023 NULL); 2024 } 2025 } 2026 2027 if (vmc->kvm_no_adjvtime && 2028 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2029 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2030 } 2031 2032 if (vmc->no_kvm_steal_time && 2033 object_property_find(cpuobj, "kvm-steal-time")) { 2034 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2035 } 2036 2037 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2038 object_property_set_bool(cpuobj, "pmu", false, NULL); 2039 } 2040 2041 if (object_property_find(cpuobj, "reset-cbar")) { 2042 object_property_set_int(cpuobj, "reset-cbar", 2043 vms->memmap[VIRT_CPUPERIPHS].base, 2044 &error_abort); 2045 } 2046 2047 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2048 &error_abort); 2049 if (vms->secure) { 2050 object_property_set_link(cpuobj, "secure-memory", 2051 OBJECT(secure_sysmem), &error_abort); 2052 } 2053 2054 if (vms->mte) { 2055 /* Create the memory region only once, but link to all cpus. */ 2056 if (!tag_sysmem) { 2057 /* 2058 * The property exists only if MemTag is supported. 2059 * If it is, we must allocate the ram to back that up. 2060 */ 2061 if (!object_property_find(cpuobj, "tag-memory")) { 2062 error_report("MTE requested, but not supported " 2063 "by the guest CPU"); 2064 exit(1); 2065 } 2066 2067 tag_sysmem = g_new(MemoryRegion, 1); 2068 memory_region_init(tag_sysmem, OBJECT(machine), 2069 "tag-memory", UINT64_MAX / 32); 2070 2071 if (vms->secure) { 2072 secure_tag_sysmem = g_new(MemoryRegion, 1); 2073 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2074 "secure-tag-memory", UINT64_MAX / 32); 2075 2076 /* As with ram, secure-tag takes precedence over tag. */ 2077 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2078 tag_sysmem, -1); 2079 } 2080 } 2081 2082 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2083 &error_abort); 2084 if (vms->secure) { 2085 object_property_set_link(cpuobj, "secure-tag-memory", 2086 OBJECT(secure_tag_sysmem), 2087 &error_abort); 2088 } 2089 } 2090 2091 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2092 object_unref(cpuobj); 2093 } 2094 fdt_add_timer_nodes(vms); 2095 fdt_add_cpu_nodes(vms); 2096 2097 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2098 machine->ram); 2099 if (machine->device_memory) { 2100 memory_region_add_subregion(sysmem, machine->device_memory->base, 2101 &machine->device_memory->mr); 2102 } 2103 2104 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2105 2106 create_gic(vms, sysmem); 2107 2108 virt_cpu_post_init(vms, sysmem); 2109 2110 fdt_add_pmu_nodes(vms); 2111 2112 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2113 2114 if (vms->secure) { 2115 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2116 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2117 } 2118 2119 if (tag_sysmem) { 2120 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2121 machine->ram_size, "mach-virt.tag"); 2122 } 2123 2124 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 2125 2126 create_rtc(vms); 2127 2128 create_pcie(vms); 2129 2130 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2131 vms->acpi_dev = create_acpi_ged(vms); 2132 } else { 2133 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2134 } 2135 2136 if (vms->secure && !vmc->no_secure_gpio) { 2137 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2138 } 2139 2140 /* connect powerdown request */ 2141 vms->powerdown_notifier.notify = virt_powerdown_req; 2142 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2143 2144 /* Create mmio transports, so the user can create virtio backends 2145 * (which will be automatically plugged in to the transports). If 2146 * no backend is created the transport will just sit harmlessly idle. 2147 */ 2148 create_virtio_devices(vms); 2149 2150 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2151 rom_set_fw(vms->fw_cfg); 2152 2153 create_platform_bus(vms); 2154 2155 if (machine->nvdimms_state->is_enabled) { 2156 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2157 .space_id = AML_AS_SYSTEM_MEMORY, 2158 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2159 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2160 }; 2161 2162 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2163 arm_virt_nvdimm_acpi_dsmio, 2164 vms->fw_cfg, OBJECT(vms)); 2165 } 2166 2167 vms->bootinfo.ram_size = machine->ram_size; 2168 vms->bootinfo.nb_cpus = smp_cpus; 2169 vms->bootinfo.board_id = -1; 2170 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2171 vms->bootinfo.get_dtb = machvirt_dtb; 2172 vms->bootinfo.skip_dtb_autoload = true; 2173 vms->bootinfo.firmware_loaded = firmware_loaded; 2174 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2175 2176 vms->machine_done.notify = virt_machine_done; 2177 qemu_add_machine_init_done_notifier(&vms->machine_done); 2178 } 2179 2180 static bool virt_get_secure(Object *obj, Error **errp) 2181 { 2182 VirtMachineState *vms = VIRT_MACHINE(obj); 2183 2184 return vms->secure; 2185 } 2186 2187 static void virt_set_secure(Object *obj, bool value, Error **errp) 2188 { 2189 VirtMachineState *vms = VIRT_MACHINE(obj); 2190 2191 vms->secure = value; 2192 } 2193 2194 static bool virt_get_virt(Object *obj, Error **errp) 2195 { 2196 VirtMachineState *vms = VIRT_MACHINE(obj); 2197 2198 return vms->virt; 2199 } 2200 2201 static void virt_set_virt(Object *obj, bool value, Error **errp) 2202 { 2203 VirtMachineState *vms = VIRT_MACHINE(obj); 2204 2205 vms->virt = value; 2206 } 2207 2208 static bool virt_get_highmem(Object *obj, Error **errp) 2209 { 2210 VirtMachineState *vms = VIRT_MACHINE(obj); 2211 2212 return vms->highmem; 2213 } 2214 2215 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2216 { 2217 VirtMachineState *vms = VIRT_MACHINE(obj); 2218 2219 vms->highmem = value; 2220 } 2221 2222 static bool virt_get_its(Object *obj, Error **errp) 2223 { 2224 VirtMachineState *vms = VIRT_MACHINE(obj); 2225 2226 return vms->its; 2227 } 2228 2229 static void virt_set_its(Object *obj, bool value, Error **errp) 2230 { 2231 VirtMachineState *vms = VIRT_MACHINE(obj); 2232 2233 vms->its = value; 2234 } 2235 2236 static char *virt_get_oem_id(Object *obj, Error **errp) 2237 { 2238 VirtMachineState *vms = VIRT_MACHINE(obj); 2239 2240 return g_strdup(vms->oem_id); 2241 } 2242 2243 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2244 { 2245 VirtMachineState *vms = VIRT_MACHINE(obj); 2246 size_t len = strlen(value); 2247 2248 if (len > 6) { 2249 error_setg(errp, 2250 "User specified oem-id value is bigger than 6 bytes in size"); 2251 return; 2252 } 2253 2254 strncpy(vms->oem_id, value, 6); 2255 } 2256 2257 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2258 { 2259 VirtMachineState *vms = VIRT_MACHINE(obj); 2260 2261 return g_strdup(vms->oem_table_id); 2262 } 2263 2264 static void virt_set_oem_table_id(Object *obj, const char *value, 2265 Error **errp) 2266 { 2267 VirtMachineState *vms = VIRT_MACHINE(obj); 2268 size_t len = strlen(value); 2269 2270 if (len > 8) { 2271 error_setg(errp, 2272 "User specified oem-table-id value is bigger than 8 bytes in size"); 2273 return; 2274 } 2275 strncpy(vms->oem_table_id, value, 8); 2276 } 2277 2278 2279 bool virt_is_acpi_enabled(VirtMachineState *vms) 2280 { 2281 if (vms->acpi == ON_OFF_AUTO_OFF) { 2282 return false; 2283 } 2284 return true; 2285 } 2286 2287 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2288 void *opaque, Error **errp) 2289 { 2290 VirtMachineState *vms = VIRT_MACHINE(obj); 2291 OnOffAuto acpi = vms->acpi; 2292 2293 visit_type_OnOffAuto(v, name, &acpi, errp); 2294 } 2295 2296 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2297 void *opaque, Error **errp) 2298 { 2299 VirtMachineState *vms = VIRT_MACHINE(obj); 2300 2301 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2302 } 2303 2304 static bool virt_get_ras(Object *obj, Error **errp) 2305 { 2306 VirtMachineState *vms = VIRT_MACHINE(obj); 2307 2308 return vms->ras; 2309 } 2310 2311 static void virt_set_ras(Object *obj, bool value, Error **errp) 2312 { 2313 VirtMachineState *vms = VIRT_MACHINE(obj); 2314 2315 vms->ras = value; 2316 } 2317 2318 static bool virt_get_mte(Object *obj, Error **errp) 2319 { 2320 VirtMachineState *vms = VIRT_MACHINE(obj); 2321 2322 return vms->mte; 2323 } 2324 2325 static void virt_set_mte(Object *obj, bool value, Error **errp) 2326 { 2327 VirtMachineState *vms = VIRT_MACHINE(obj); 2328 2329 vms->mte = value; 2330 } 2331 2332 static char *virt_get_gic_version(Object *obj, Error **errp) 2333 { 2334 VirtMachineState *vms = VIRT_MACHINE(obj); 2335 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2336 2337 return g_strdup(val); 2338 } 2339 2340 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2341 { 2342 VirtMachineState *vms = VIRT_MACHINE(obj); 2343 2344 if (!strcmp(value, "3")) { 2345 vms->gic_version = VIRT_GIC_VERSION_3; 2346 } else if (!strcmp(value, "2")) { 2347 vms->gic_version = VIRT_GIC_VERSION_2; 2348 } else if (!strcmp(value, "host")) { 2349 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2350 } else if (!strcmp(value, "max")) { 2351 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2352 } else { 2353 error_setg(errp, "Invalid gic-version value"); 2354 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2355 } 2356 } 2357 2358 static char *virt_get_iommu(Object *obj, Error **errp) 2359 { 2360 VirtMachineState *vms = VIRT_MACHINE(obj); 2361 2362 switch (vms->iommu) { 2363 case VIRT_IOMMU_NONE: 2364 return g_strdup("none"); 2365 case VIRT_IOMMU_SMMUV3: 2366 return g_strdup("smmuv3"); 2367 default: 2368 g_assert_not_reached(); 2369 } 2370 } 2371 2372 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2373 { 2374 VirtMachineState *vms = VIRT_MACHINE(obj); 2375 2376 if (!strcmp(value, "smmuv3")) { 2377 vms->iommu = VIRT_IOMMU_SMMUV3; 2378 } else if (!strcmp(value, "none")) { 2379 vms->iommu = VIRT_IOMMU_NONE; 2380 } else { 2381 error_setg(errp, "Invalid iommu value"); 2382 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2383 } 2384 } 2385 2386 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2387 { 2388 VirtMachineState *vms = VIRT_MACHINE(obj); 2389 2390 return vms->default_bus_bypass_iommu; 2391 } 2392 2393 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2394 Error **errp) 2395 { 2396 VirtMachineState *vms = VIRT_MACHINE(obj); 2397 2398 vms->default_bus_bypass_iommu = value; 2399 } 2400 2401 static CpuInstanceProperties 2402 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2403 { 2404 MachineClass *mc = MACHINE_GET_CLASS(ms); 2405 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2406 2407 assert(cpu_index < possible_cpus->len); 2408 return possible_cpus->cpus[cpu_index].props; 2409 } 2410 2411 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2412 { 2413 return idx % ms->numa_state->num_nodes; 2414 } 2415 2416 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2417 { 2418 int n; 2419 unsigned int max_cpus = ms->smp.max_cpus; 2420 VirtMachineState *vms = VIRT_MACHINE(ms); 2421 2422 if (ms->possible_cpus) { 2423 assert(ms->possible_cpus->len == max_cpus); 2424 return ms->possible_cpus; 2425 } 2426 2427 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2428 sizeof(CPUArchId) * max_cpus); 2429 ms->possible_cpus->len = max_cpus; 2430 for (n = 0; n < ms->possible_cpus->len; n++) { 2431 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2432 ms->possible_cpus->cpus[n].arch_id = 2433 virt_cpu_mp_affinity(vms, n); 2434 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2435 ms->possible_cpus->cpus[n].props.thread_id = n; 2436 } 2437 return ms->possible_cpus; 2438 } 2439 2440 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2441 Error **errp) 2442 { 2443 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2444 const MachineState *ms = MACHINE(hotplug_dev); 2445 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2446 2447 if (!vms->acpi_dev) { 2448 error_setg(errp, 2449 "memory hotplug is not enabled: missing acpi-ged device"); 2450 return; 2451 } 2452 2453 if (vms->mte) { 2454 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2455 return; 2456 } 2457 2458 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2459 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2460 return; 2461 } 2462 2463 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2464 } 2465 2466 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2467 DeviceState *dev, Error **errp) 2468 { 2469 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2470 MachineState *ms = MACHINE(hotplug_dev); 2471 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2472 2473 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2474 2475 if (is_nvdimm) { 2476 nvdimm_plug(ms->nvdimms_state); 2477 } 2478 2479 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2480 dev, &error_abort); 2481 } 2482 2483 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2484 DeviceState *dev, Error **errp) 2485 { 2486 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2487 2488 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2489 virt_memory_pre_plug(hotplug_dev, dev, errp); 2490 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2491 hwaddr db_start = 0, db_end = 0; 2492 char *resv_prop_str; 2493 2494 switch (vms->msi_controller) { 2495 case VIRT_MSI_CTRL_NONE: 2496 return; 2497 case VIRT_MSI_CTRL_ITS: 2498 /* GITS_TRANSLATER page */ 2499 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2500 db_end = base_memmap[VIRT_GIC_ITS].base + 2501 base_memmap[VIRT_GIC_ITS].size - 1; 2502 break; 2503 case VIRT_MSI_CTRL_GICV2M: 2504 /* MSI_SETSPI_NS page */ 2505 db_start = base_memmap[VIRT_GIC_V2M].base; 2506 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2507 break; 2508 } 2509 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2510 db_start, db_end, 2511 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2512 2513 qdev_prop_set_uint32(dev, "len-reserved-regions", 1); 2514 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); 2515 g_free(resv_prop_str); 2516 } 2517 } 2518 2519 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2520 DeviceState *dev, Error **errp) 2521 { 2522 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2523 2524 if (vms->platform_bus_dev) { 2525 MachineClass *mc = MACHINE_GET_CLASS(vms); 2526 2527 if (device_is_dynamic_sysbus(mc, dev)) { 2528 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2529 SYS_BUS_DEVICE(dev)); 2530 } 2531 } 2532 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2533 virt_memory_plug(hotplug_dev, dev, errp); 2534 } 2535 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2536 PCIDevice *pdev = PCI_DEVICE(dev); 2537 2538 vms->iommu = VIRT_IOMMU_VIRTIO; 2539 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2540 create_virtio_iommu_dt_bindings(vms); 2541 } 2542 } 2543 2544 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2545 DeviceState *dev, Error **errp) 2546 { 2547 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2548 Error *local_err = NULL; 2549 2550 if (!vms->acpi_dev) { 2551 error_setg(&local_err, 2552 "memory hotplug is not enabled: missing acpi-ged device"); 2553 goto out; 2554 } 2555 2556 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2557 error_setg(&local_err, 2558 "nvdimm device hot unplug is not supported yet."); 2559 goto out; 2560 } 2561 2562 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2563 &local_err); 2564 out: 2565 error_propagate(errp, local_err); 2566 } 2567 2568 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2569 DeviceState *dev, Error **errp) 2570 { 2571 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2572 Error *local_err = NULL; 2573 2574 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2575 if (local_err) { 2576 goto out; 2577 } 2578 2579 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2580 qdev_unrealize(dev); 2581 2582 out: 2583 error_propagate(errp, local_err); 2584 } 2585 2586 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2587 DeviceState *dev, Error **errp) 2588 { 2589 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2590 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2591 } else { 2592 error_setg(errp, "device unplug request for unsupported device" 2593 " type: %s", object_get_typename(OBJECT(dev))); 2594 } 2595 } 2596 2597 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2598 DeviceState *dev, Error **errp) 2599 { 2600 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2601 virt_dimm_unplug(hotplug_dev, dev, errp); 2602 } else { 2603 error_setg(errp, "virt: device unplug for unsupported device" 2604 " type: %s", object_get_typename(OBJECT(dev))); 2605 } 2606 } 2607 2608 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2609 DeviceState *dev) 2610 { 2611 MachineClass *mc = MACHINE_GET_CLASS(machine); 2612 2613 if (device_is_dynamic_sysbus(mc, dev) || 2614 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2615 return HOTPLUG_HANDLER(machine); 2616 } 2617 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2618 VirtMachineState *vms = VIRT_MACHINE(machine); 2619 2620 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2621 return HOTPLUG_HANDLER(machine); 2622 } 2623 } 2624 return NULL; 2625 } 2626 2627 /* 2628 * for arm64 kvm_type [7-0] encodes the requested number of bits 2629 * in the IPA address space 2630 */ 2631 static int virt_kvm_type(MachineState *ms, const char *type_str) 2632 { 2633 VirtMachineState *vms = VIRT_MACHINE(ms); 2634 int max_vm_pa_size, requested_pa_size; 2635 bool fixed_ipa; 2636 2637 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2638 2639 /* we freeze the memory map to compute the highest gpa */ 2640 virt_set_memmap(vms); 2641 2642 requested_pa_size = 64 - clz64(vms->highest_gpa); 2643 2644 /* 2645 * KVM requires the IPA size to be at least 32 bits. 2646 */ 2647 if (requested_pa_size < 32) { 2648 requested_pa_size = 32; 2649 } 2650 2651 if (requested_pa_size > max_vm_pa_size) { 2652 error_report("-m and ,maxmem option values " 2653 "require an IPA range (%d bits) larger than " 2654 "the one supported by the host (%d bits)", 2655 requested_pa_size, max_vm_pa_size); 2656 exit(1); 2657 } 2658 /* 2659 * We return the requested PA log size, unless KVM only supports 2660 * the implicit legacy 40b IPA setting, in which case the kvm_type 2661 * must be 0. 2662 */ 2663 return fixed_ipa ? 0 : requested_pa_size; 2664 } 2665 2666 static void virt_machine_class_init(ObjectClass *oc, void *data) 2667 { 2668 MachineClass *mc = MACHINE_CLASS(oc); 2669 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2670 2671 mc->init = machvirt_init; 2672 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2673 * The value may be reduced later when we have more information about the 2674 * configuration of the particular instance. 2675 */ 2676 mc->max_cpus = 512; 2677 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2678 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2679 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2680 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2681 #ifdef CONFIG_TPM 2682 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2683 #endif 2684 mc->block_default_type = IF_VIRTIO; 2685 mc->no_cdrom = 1; 2686 mc->pci_allow_0_address = true; 2687 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2688 mc->minimum_page_bits = 12; 2689 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2690 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2691 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2692 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2693 mc->kvm_type = virt_kvm_type; 2694 assert(!mc->get_hotplug_handler); 2695 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2696 hc->pre_plug = virt_machine_device_pre_plug_cb; 2697 hc->plug = virt_machine_device_plug_cb; 2698 hc->unplug_request = virt_machine_device_unplug_request_cb; 2699 hc->unplug = virt_machine_device_unplug_cb; 2700 mc->nvdimm_supported = true; 2701 mc->auto_enable_numa_with_memhp = true; 2702 mc->auto_enable_numa_with_memdev = true; 2703 mc->default_ram_id = "mach-virt.ram"; 2704 2705 object_class_property_add(oc, "acpi", "OnOffAuto", 2706 virt_get_acpi, virt_set_acpi, 2707 NULL, NULL); 2708 object_class_property_set_description(oc, "acpi", 2709 "Enable ACPI"); 2710 object_class_property_add_bool(oc, "secure", virt_get_secure, 2711 virt_set_secure); 2712 object_class_property_set_description(oc, "secure", 2713 "Set on/off to enable/disable the ARM " 2714 "Security Extensions (TrustZone)"); 2715 2716 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2717 virt_set_virt); 2718 object_class_property_set_description(oc, "virtualization", 2719 "Set on/off to enable/disable emulating a " 2720 "guest CPU which implements the ARM " 2721 "Virtualization Extensions"); 2722 2723 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2724 virt_set_highmem); 2725 object_class_property_set_description(oc, "highmem", 2726 "Set on/off to enable/disable using " 2727 "physical address space above 32 bits"); 2728 2729 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 2730 virt_set_gic_version); 2731 object_class_property_set_description(oc, "gic-version", 2732 "Set GIC version. " 2733 "Valid values are 2, 3, host and max"); 2734 2735 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 2736 object_class_property_set_description(oc, "iommu", 2737 "Set the IOMMU type. " 2738 "Valid values are none and smmuv3"); 2739 2740 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 2741 virt_get_default_bus_bypass_iommu, 2742 virt_set_default_bus_bypass_iommu); 2743 object_class_property_set_description(oc, "default-bus-bypass-iommu", 2744 "Set on/off to enable/disable " 2745 "bypass_iommu for default root bus"); 2746 2747 object_class_property_add_bool(oc, "ras", virt_get_ras, 2748 virt_set_ras); 2749 object_class_property_set_description(oc, "ras", 2750 "Set on/off to enable/disable reporting host memory errors " 2751 "to a KVM guest using ACPI and guest external abort exceptions"); 2752 2753 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 2754 object_class_property_set_description(oc, "mte", 2755 "Set on/off to enable/disable emulating a " 2756 "guest CPU which implements the ARM " 2757 "Memory Tagging Extension"); 2758 2759 object_class_property_add_bool(oc, "its", virt_get_its, 2760 virt_set_its); 2761 object_class_property_set_description(oc, "its", 2762 "Set on/off to enable/disable " 2763 "ITS instantiation"); 2764 2765 object_class_property_add_str(oc, "x-oem-id", 2766 virt_get_oem_id, 2767 virt_set_oem_id); 2768 object_class_property_set_description(oc, "x-oem-id", 2769 "Override the default value of field OEMID " 2770 "in ACPI table header." 2771 "The string may be up to 6 bytes in size"); 2772 2773 2774 object_class_property_add_str(oc, "x-oem-table-id", 2775 virt_get_oem_table_id, 2776 virt_set_oem_table_id); 2777 object_class_property_set_description(oc, "x-oem-table-id", 2778 "Override the default value of field OEM Table ID " 2779 "in ACPI table header." 2780 "The string may be up to 8 bytes in size"); 2781 2782 } 2783 2784 static void virt_instance_init(Object *obj) 2785 { 2786 VirtMachineState *vms = VIRT_MACHINE(obj); 2787 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2788 2789 /* EL3 is disabled by default on virt: this makes us consistent 2790 * between KVM and TCG for this board, and it also allows us to 2791 * boot UEFI blobs which assume no TrustZone support. 2792 */ 2793 vms->secure = false; 2794 2795 /* EL2 is also disabled by default, for similar reasons */ 2796 vms->virt = false; 2797 2798 /* High memory is enabled by default */ 2799 vms->highmem = true; 2800 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2801 2802 vms->highmem_ecam = !vmc->no_highmem_ecam; 2803 2804 if (vmc->no_its) { 2805 vms->its = false; 2806 } else { 2807 /* Default allows ITS instantiation */ 2808 vms->its = true; 2809 2810 if (vmc->no_tcg_its) { 2811 vms->tcg_its = false; 2812 } else { 2813 vms->tcg_its = true; 2814 } 2815 } 2816 2817 /* Default disallows iommu instantiation */ 2818 vms->iommu = VIRT_IOMMU_NONE; 2819 2820 /* The default root bus is attached to iommu by default */ 2821 vms->default_bus_bypass_iommu = false; 2822 2823 /* Default disallows RAS instantiation */ 2824 vms->ras = false; 2825 2826 /* MTE is disabled by default. */ 2827 vms->mte = false; 2828 2829 vms->irqmap = a15irqmap; 2830 2831 virt_flash_create(vms); 2832 2833 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 2834 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 2835 } 2836 2837 static const TypeInfo virt_machine_info = { 2838 .name = TYPE_VIRT_MACHINE, 2839 .parent = TYPE_MACHINE, 2840 .abstract = true, 2841 .instance_size = sizeof(VirtMachineState), 2842 .class_size = sizeof(VirtMachineClass), 2843 .class_init = virt_machine_class_init, 2844 .instance_init = virt_instance_init, 2845 .interfaces = (InterfaceInfo[]) { 2846 { TYPE_HOTPLUG_HANDLER }, 2847 { } 2848 }, 2849 }; 2850 2851 static void machvirt_machine_init(void) 2852 { 2853 type_register_static(&virt_machine_info); 2854 } 2855 type_init(machvirt_machine_init); 2856 2857 static void virt_machine_6_2_options(MachineClass *mc) 2858 { 2859 } 2860 DEFINE_VIRT_MACHINE_AS_LATEST(6, 2) 2861 2862 static void virt_machine_6_1_options(MachineClass *mc) 2863 { 2864 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2865 2866 virt_machine_6_2_options(mc); 2867 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 2868 mc->smp_props.prefer_sockets = true; 2869 vmc->no_cpu_topology = true; 2870 2871 /* qemu ITS was introduced with 6.2 */ 2872 vmc->no_tcg_its = true; 2873 } 2874 DEFINE_VIRT_MACHINE(6, 1) 2875 2876 static void virt_machine_6_0_options(MachineClass *mc) 2877 { 2878 virt_machine_6_1_options(mc); 2879 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 2880 } 2881 DEFINE_VIRT_MACHINE(6, 0) 2882 2883 static void virt_machine_5_2_options(MachineClass *mc) 2884 { 2885 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2886 2887 virt_machine_6_0_options(mc); 2888 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 2889 vmc->no_secure_gpio = true; 2890 } 2891 DEFINE_VIRT_MACHINE(5, 2) 2892 2893 static void virt_machine_5_1_options(MachineClass *mc) 2894 { 2895 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2896 2897 virt_machine_5_2_options(mc); 2898 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 2899 vmc->no_kvm_steal_time = true; 2900 } 2901 DEFINE_VIRT_MACHINE(5, 1) 2902 2903 static void virt_machine_5_0_options(MachineClass *mc) 2904 { 2905 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2906 2907 virt_machine_5_1_options(mc); 2908 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 2909 mc->numa_mem_supported = true; 2910 vmc->acpi_expose_flash = true; 2911 mc->auto_enable_numa_with_memdev = false; 2912 } 2913 DEFINE_VIRT_MACHINE(5, 0) 2914 2915 static void virt_machine_4_2_options(MachineClass *mc) 2916 { 2917 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2918 2919 virt_machine_5_0_options(mc); 2920 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2921 vmc->kvm_no_adjvtime = true; 2922 } 2923 DEFINE_VIRT_MACHINE(4, 2) 2924 2925 static void virt_machine_4_1_options(MachineClass *mc) 2926 { 2927 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2928 2929 virt_machine_4_2_options(mc); 2930 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2931 vmc->no_ged = true; 2932 mc->auto_enable_numa_with_memhp = false; 2933 } 2934 DEFINE_VIRT_MACHINE(4, 1) 2935 2936 static void virt_machine_4_0_options(MachineClass *mc) 2937 { 2938 virt_machine_4_1_options(mc); 2939 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2940 } 2941 DEFINE_VIRT_MACHINE(4, 0) 2942 2943 static void virt_machine_3_1_options(MachineClass *mc) 2944 { 2945 virt_machine_4_0_options(mc); 2946 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2947 } 2948 DEFINE_VIRT_MACHINE(3, 1) 2949 2950 static void virt_machine_3_0_options(MachineClass *mc) 2951 { 2952 virt_machine_3_1_options(mc); 2953 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2954 } 2955 DEFINE_VIRT_MACHINE(3, 0) 2956 2957 static void virt_machine_2_12_options(MachineClass *mc) 2958 { 2959 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2960 2961 virt_machine_3_0_options(mc); 2962 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2963 vmc->no_highmem_ecam = true; 2964 mc->max_cpus = 255; 2965 } 2966 DEFINE_VIRT_MACHINE(2, 12) 2967 2968 static void virt_machine_2_11_options(MachineClass *mc) 2969 { 2970 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2971 2972 virt_machine_2_12_options(mc); 2973 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2974 vmc->smbios_old_sys_ver = true; 2975 } 2976 DEFINE_VIRT_MACHINE(2, 11) 2977 2978 static void virt_machine_2_10_options(MachineClass *mc) 2979 { 2980 virt_machine_2_11_options(mc); 2981 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2982 /* before 2.11 we never faulted accesses to bad addresses */ 2983 mc->ignore_memory_transaction_failures = true; 2984 } 2985 DEFINE_VIRT_MACHINE(2, 10) 2986 2987 static void virt_machine_2_9_options(MachineClass *mc) 2988 { 2989 virt_machine_2_10_options(mc); 2990 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2991 } 2992 DEFINE_VIRT_MACHINE(2, 9) 2993 2994 static void virt_machine_2_8_options(MachineClass *mc) 2995 { 2996 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2997 2998 virt_machine_2_9_options(mc); 2999 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3000 /* For 2.8 and earlier we falsely claimed in the DT that 3001 * our timers were edge-triggered, not level-triggered. 3002 */ 3003 vmc->claim_edge_triggered_timers = true; 3004 } 3005 DEFINE_VIRT_MACHINE(2, 8) 3006 3007 static void virt_machine_2_7_options(MachineClass *mc) 3008 { 3009 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3010 3011 virt_machine_2_8_options(mc); 3012 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3013 /* ITS was introduced with 2.8 */ 3014 vmc->no_its = true; 3015 /* Stick with 1K pages for migration compatibility */ 3016 mc->minimum_page_bits = 0; 3017 } 3018 DEFINE_VIRT_MACHINE(2, 7) 3019 3020 static void virt_machine_2_6_options(MachineClass *mc) 3021 { 3022 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3023 3024 virt_machine_2_7_options(mc); 3025 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3026 vmc->disallow_affinity_adjustment = true; 3027 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3028 vmc->no_pmu = true; 3029 } 3030 DEFINE_VIRT_MACHINE(2, 6) 3031