xref: /openbmc/qemu/hw/arm/virt.c (revision 9e7dac7c)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "qemu/bitops.h"
42 #include "qemu/error-report.h"
43 
44 #define NUM_VIRTIO_TRANSPORTS 32
45 
46 /* Number of external interrupt lines to configure the GIC with */
47 #define NUM_IRQS 128
48 
49 #define GIC_FDT_IRQ_TYPE_SPI 0
50 #define GIC_FDT_IRQ_TYPE_PPI 1
51 
52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
56 
57 #define GIC_FDT_IRQ_PPI_CPU_START 8
58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
59 
60 enum {
61     VIRT_FLASH,
62     VIRT_MEM,
63     VIRT_CPUPERIPHS,
64     VIRT_GIC_DIST,
65     VIRT_GIC_CPU,
66     VIRT_UART,
67     VIRT_MMIO,
68     VIRT_RTC,
69 };
70 
71 typedef struct MemMapEntry {
72     hwaddr base;
73     hwaddr size;
74 } MemMapEntry;
75 
76 typedef struct VirtBoardInfo {
77     struct arm_boot_info bootinfo;
78     const char *cpu_model;
79     const MemMapEntry *memmap;
80     const int *irqmap;
81     int smp_cpus;
82     void *fdt;
83     int fdt_size;
84     uint32_t clock_phandle;
85 } VirtBoardInfo;
86 
87 /* Addresses and sizes of our components.
88  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
89  * 128MB..256MB is used for miscellaneous device I/O.
90  * 256MB..1GB is reserved for possible future PCI support (ie where the
91  * PCI memory window will go if we add a PCI host controller).
92  * 1GB and up is RAM (which may happily spill over into the
93  * high memory region beyond 4GB).
94  * This represents a compromise between how much RAM can be given to
95  * a 32 bit VM and leaving space for expansion and in particular for PCI.
96  * Note that devices should generally be placed at multiples of 0x10000,
97  * to accommodate guests using 64K pages.
98  */
99 static const MemMapEntry a15memmap[] = {
100     /* Space up to 0x8000000 is reserved for a boot ROM */
101     [VIRT_FLASH] =      {          0, 0x08000000 },
102     [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
103     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
104     [VIRT_GIC_DIST] =   { 0x08000000, 0x00010000 },
105     [VIRT_GIC_CPU] =    { 0x08010000, 0x00010000 },
106     [VIRT_UART] =       { 0x09000000, 0x00001000 },
107     [VIRT_RTC] =        { 0x09010000, 0x00001000 },
108     [VIRT_MMIO] =       { 0x0a000000, 0x00000200 },
109     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
110     /* 0x10000000 .. 0x40000000 reserved for PCI */
111     [VIRT_MEM] =        { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
112 };
113 
114 static const int a15irqmap[] = {
115     [VIRT_UART] = 1,
116     [VIRT_RTC] = 2,
117     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
118 };
119 
120 static VirtBoardInfo machines[] = {
121     {
122         .cpu_model = "cortex-a15",
123         .memmap = a15memmap,
124         .irqmap = a15irqmap,
125     },
126     {
127         .cpu_model = "cortex-a57",
128         .memmap = a15memmap,
129         .irqmap = a15irqmap,
130     },
131     {
132         .cpu_model = "host",
133         .memmap = a15memmap,
134         .irqmap = a15irqmap,
135     },
136 };
137 
138 static VirtBoardInfo *find_machine_info(const char *cpu)
139 {
140     int i;
141 
142     for (i = 0; i < ARRAY_SIZE(machines); i++) {
143         if (strcmp(cpu, machines[i].cpu_model) == 0) {
144             return &machines[i];
145         }
146     }
147     return NULL;
148 }
149 
150 static void create_fdt(VirtBoardInfo *vbi)
151 {
152     void *fdt = create_device_tree(&vbi->fdt_size);
153 
154     if (!fdt) {
155         error_report("create_device_tree() failed");
156         exit(1);
157     }
158 
159     vbi->fdt = fdt;
160 
161     /* Header */
162     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
163     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
164     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
165 
166     /*
167      * /chosen and /memory nodes must exist for load_dtb
168      * to fill in necessary properties later
169      */
170     qemu_fdt_add_subnode(fdt, "/chosen");
171     qemu_fdt_add_subnode(fdt, "/memory");
172     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
173 
174     /* Clock node, for the benefit of the UART. The kernel device tree
175      * binding documentation claims the PL011 node clock properties are
176      * optional but in practice if you omit them the kernel refuses to
177      * probe for the device.
178      */
179     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
180     qemu_fdt_add_subnode(fdt, "/apb-pclk");
181     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
182     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
183     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
184     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
185                                 "clk24mhz");
186     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
187 
188 }
189 
190 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
191 {
192     void *fdt = vbi->fdt;
193     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
194 
195     /* No PSCI for TCG yet */
196     if (kvm_enabled()) {
197         uint32_t cpu_suspend_fn;
198         uint32_t cpu_off_fn;
199         uint32_t cpu_on_fn;
200         uint32_t migrate_fn;
201 
202         qemu_fdt_add_subnode(fdt, "/psci");
203         if (armcpu->psci_version == 2) {
204             const char comp[] = "arm,psci-0.2\0arm,psci";
205             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
206 
207             cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
208             if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
209                 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
210                 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
211                 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
212             } else {
213                 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
214                 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
215                 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
216             }
217         } else {
218             qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
219 
220             cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
221             cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
222             cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
223             migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
224         }
225 
226         qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
227 
228         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
229         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
230         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
231         qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
232     }
233 }
234 
235 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
236 {
237     /* Note that on A15 h/w these interrupts are level-triggered,
238      * but for the GIC implementation provided by both QEMU and KVM
239      * they are edge-triggered.
240      */
241     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
242 
243     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
244                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
245 
246     qemu_fdt_add_subnode(vbi->fdt, "/timer");
247     qemu_fdt_setprop_string(vbi->fdt, "/timer",
248                                 "compatible", "arm,armv7-timer");
249     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
250                                GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
251                                GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
252                                GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
253                                GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
254 }
255 
256 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
257 {
258     int cpu;
259 
260     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
261     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
262     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
263 
264     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
265         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
266         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
267 
268         qemu_fdt_add_subnode(vbi->fdt, nodename);
269         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
270         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
271                                     armcpu->dtb_compatible);
272 
273         if (vbi->smp_cpus > 1) {
274             qemu_fdt_setprop_string(vbi->fdt, nodename,
275                                         "enable-method", "psci");
276         }
277 
278         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
279         g_free(nodename);
280     }
281 }
282 
283 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
284 {
285     uint32_t gic_phandle;
286 
287     gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
288     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
289 
290     qemu_fdt_add_subnode(vbi->fdt, "/intc");
291     /* 'cortex-a15-gic' means 'GIC v2' */
292     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
293                             "arm,cortex-a15-gic");
294     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
295     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
296     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
297                                      2, vbi->memmap[VIRT_GIC_DIST].base,
298                                      2, vbi->memmap[VIRT_GIC_DIST].size,
299                                      2, vbi->memmap[VIRT_GIC_CPU].base,
300                                      2, vbi->memmap[VIRT_GIC_CPU].size);
301     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
302 }
303 
304 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
305 {
306     /* We create a standalone GIC v2 */
307     DeviceState *gicdev;
308     SysBusDevice *gicbusdev;
309     const char *gictype = "arm_gic";
310     int i;
311 
312     if (kvm_irqchip_in_kernel()) {
313         gictype = "kvm-arm-gic";
314     }
315 
316     gicdev = qdev_create(NULL, gictype);
317     qdev_prop_set_uint32(gicdev, "revision", 2);
318     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
319     /* Note that the num-irq property counts both internal and external
320      * interrupts; there are always 32 of the former (mandated by GIC spec).
321      */
322     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
323     qdev_init_nofail(gicdev);
324     gicbusdev = SYS_BUS_DEVICE(gicdev);
325     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
326     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
327 
328     /* Wire the outputs from each CPU's generic timer to the
329      * appropriate GIC PPI inputs, and the GIC's IRQ output to
330      * the CPU's IRQ input.
331      */
332     for (i = 0; i < smp_cpus; i++) {
333         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
334         int ppibase = NUM_IRQS + i * 32;
335         /* physical timer; we wire it up to the non-secure timer's ID,
336          * since a real A15 always has TrustZone but QEMU doesn't.
337          */
338         qdev_connect_gpio_out(cpudev, 0,
339                               qdev_get_gpio_in(gicdev, ppibase + 30));
340         /* virtual timer */
341         qdev_connect_gpio_out(cpudev, 1,
342                               qdev_get_gpio_in(gicdev, ppibase + 27));
343 
344         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
345     }
346 
347     for (i = 0; i < NUM_IRQS; i++) {
348         pic[i] = qdev_get_gpio_in(gicdev, i);
349     }
350 
351     fdt_add_gic_node(vbi);
352 }
353 
354 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
355 {
356     char *nodename;
357     hwaddr base = vbi->memmap[VIRT_UART].base;
358     hwaddr size = vbi->memmap[VIRT_UART].size;
359     int irq = vbi->irqmap[VIRT_UART];
360     const char compat[] = "arm,pl011\0arm,primecell";
361     const char clocknames[] = "uartclk\0apb_pclk";
362 
363     sysbus_create_simple("pl011", base, pic[irq]);
364 
365     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
366     qemu_fdt_add_subnode(vbi->fdt, nodename);
367     /* Note that we can't use setprop_string because of the embedded NUL */
368     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
369                          compat, sizeof(compat));
370     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
371                                      2, base, 2, size);
372     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
373                                GIC_FDT_IRQ_TYPE_SPI, irq,
374                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
375     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
376                                vbi->clock_phandle, vbi->clock_phandle);
377     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
378                          clocknames, sizeof(clocknames));
379     g_free(nodename);
380 }
381 
382 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
383 {
384     char *nodename;
385     hwaddr base = vbi->memmap[VIRT_RTC].base;
386     hwaddr size = vbi->memmap[VIRT_RTC].size;
387     int irq = vbi->irqmap[VIRT_RTC];
388     const char compat[] = "arm,pl031\0arm,primecell";
389 
390     sysbus_create_simple("pl031", base, pic[irq]);
391 
392     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
393     qemu_fdt_add_subnode(vbi->fdt, nodename);
394     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
395     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
396                                  2, base, 2, size);
397     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
398                            GIC_FDT_IRQ_TYPE_SPI, irq,
399                            GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
400     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
401     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
402     g_free(nodename);
403 }
404 
405 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
406 {
407     int i;
408     hwaddr size = vbi->memmap[VIRT_MMIO].size;
409 
410     /* Note that we have to create the transports in forwards order
411      * so that command line devices are inserted lowest address first,
412      * and then add dtb nodes in reverse order so that they appear in
413      * the finished device tree lowest address first.
414      */
415     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
416         int irq = vbi->irqmap[VIRT_MMIO] + i;
417         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
418 
419         sysbus_create_simple("virtio-mmio", base, pic[irq]);
420     }
421 
422     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
423         char *nodename;
424         int irq = vbi->irqmap[VIRT_MMIO] + i;
425         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
426 
427         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
428         qemu_fdt_add_subnode(vbi->fdt, nodename);
429         qemu_fdt_setprop_string(vbi->fdt, nodename,
430                                 "compatible", "virtio,mmio");
431         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
432                                      2, base, 2, size);
433         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
434                                GIC_FDT_IRQ_TYPE_SPI, irq,
435                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
436         g_free(nodename);
437     }
438 }
439 
440 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
441 {
442     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
443 
444     *fdt_size = board->fdt_size;
445     return board->fdt;
446 }
447 
448 static void machvirt_init(MachineState *machine)
449 {
450     qemu_irq pic[NUM_IRQS];
451     MemoryRegion *sysmem = get_system_memory();
452     int n;
453     MemoryRegion *ram = g_new(MemoryRegion, 1);
454     const char *cpu_model = machine->cpu_model;
455     VirtBoardInfo *vbi;
456 
457     if (!cpu_model) {
458         cpu_model = "cortex-a15";
459     }
460 
461     vbi = find_machine_info(cpu_model);
462 
463     if (!vbi) {
464         error_report("mach-virt: CPU %s not supported", cpu_model);
465         exit(1);
466     }
467 
468     vbi->smp_cpus = smp_cpus;
469 
470     /*
471      * Only supported method of starting secondary CPUs is PSCI and
472      * PSCI is not yet supported with TCG, so limit smp_cpus to 1
473      * if we're not using KVM.
474      */
475     if (!kvm_enabled() && smp_cpus > 1) {
476         error_report("mach-virt: must enable KVM to use multiple CPUs");
477         exit(1);
478     }
479 
480     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
481         error_report("mach-virt: cannot model more than 30GB RAM");
482         exit(1);
483     }
484 
485     create_fdt(vbi);
486     fdt_add_timer_nodes(vbi);
487 
488     for (n = 0; n < smp_cpus; n++) {
489         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
490         Object *cpuobj;
491 
492         if (!oc) {
493             fprintf(stderr, "Unable to find CPU definition\n");
494             exit(1);
495         }
496         cpuobj = object_new(object_class_get_name(oc));
497 
498         /* Secondary CPUs start in PSCI powered-down state */
499         if (n > 0) {
500             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
501         }
502 
503         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
504             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
505                                     "reset-cbar", &error_abort);
506         }
507 
508         object_property_set_bool(cpuobj, true, "realized", NULL);
509     }
510     fdt_add_cpu_nodes(vbi);
511     fdt_add_psci_node(vbi);
512 
513     memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
514     vmstate_register_ram_global(ram);
515     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
516 
517     create_gic(vbi, pic);
518 
519     create_uart(vbi, pic);
520 
521     create_rtc(vbi, pic);
522 
523     /* Create mmio transports, so the user can create virtio backends
524      * (which will be automatically plugged in to the transports). If
525      * no backend is created the transport will just sit harmlessly idle.
526      */
527     create_virtio_devices(vbi, pic);
528 
529     vbi->bootinfo.ram_size = machine->ram_size;
530     vbi->bootinfo.kernel_filename = machine->kernel_filename;
531     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
532     vbi->bootinfo.initrd_filename = machine->initrd_filename;
533     vbi->bootinfo.nb_cpus = smp_cpus;
534     vbi->bootinfo.board_id = -1;
535     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
536     vbi->bootinfo.get_dtb = machvirt_dtb;
537     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
538 }
539 
540 static QEMUMachine machvirt_a15_machine = {
541     .name = "virt",
542     .desc = "ARM Virtual Machine",
543     .init = machvirt_init,
544     .max_cpus = 8,
545 };
546 
547 static void machvirt_machine_init(void)
548 {
549     qemu_register_machine(&machvirt_a15_machine);
550 }
551 
552 machine_init(machvirt_machine_init);
553