xref: /openbmc/qemu/hw/arm/virt.c (revision 9af23989)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/devices.h"
40 #include "net/net.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
64                                                     void *data) \
65     { \
66         MachineClass *mc = MACHINE_CLASS(oc); \
67         virt_machine_##major##_##minor##_options(mc); \
68         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
69         if (latest) { \
70             mc->alias = "virt"; \
71         } \
72     } \
73     static const TypeInfo machvirt_##major##_##minor##_info = { \
74         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75         .parent = TYPE_VIRT_MACHINE, \
76         .instance_init = virt_##major##_##minor##_instance_init, \
77         .class_init = virt_##major##_##minor##_class_init, \
78     }; \
79     static void machvirt_machine_##major##_##minor##_init(void) \
80     { \
81         type_register_static(&machvirt_##major##_##minor##_info); \
82     } \
83     type_init(machvirt_machine_##major##_##minor##_init);
84 
85 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
86     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
87 #define DEFINE_VIRT_MACHINE(major, minor) \
88     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 
90 
91 /* Number of external interrupt lines to configure the GIC with */
92 #define NUM_IRQS 256
93 
94 #define PLATFORM_BUS_NUM_IRQS 64
95 
96 static ARMPlatformBusSystemParams platform_bus_params;
97 
98 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
99  * RAM can go up to the 256GB mark, leaving 256GB of the physical
100  * address space unallocated and free for future use between 256G and 512G.
101  * If we need to provide more RAM to VMs in the future then we need to:
102  *  * allocate a second bank of RAM starting at 2TB and working up
103  *  * fix the DT and ACPI table generation code in QEMU to correctly
104  *    report two split lumps of RAM to the guest
105  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
106  * (We don't want to fill all the way up to 512GB with RAM because
107  * we might want it for non-RAM purposes later. Conversely it seems
108  * reasonable to assume that anybody configuring a VM with a quarter
109  * of a terabyte of RAM will be doing it on a host with more than a
110  * terabyte of physical address space.)
111  */
112 #define RAMLIMIT_GB 255
113 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
114 
115 /* Addresses and sizes of our components.
116  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
117  * 128MB..256MB is used for miscellaneous device I/O.
118  * 256MB..1GB is reserved for possible future PCI support (ie where the
119  * PCI memory window will go if we add a PCI host controller).
120  * 1GB and up is RAM (which may happily spill over into the
121  * high memory region beyond 4GB).
122  * This represents a compromise between how much RAM can be given to
123  * a 32 bit VM and leaving space for expansion and in particular for PCI.
124  * Note that devices should generally be placed at multiples of 0x10000,
125  * to accommodate guests using 64K pages.
126  */
127 static const MemMapEntry a15memmap[] = {
128     /* Space up to 0x8000000 is reserved for a boot ROM */
129     [VIRT_FLASH] =              {          0, 0x08000000 },
130     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
131     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
132     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
133     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
134     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
135     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
137     /* This redistributor space allows up to 2*64kB*123 CPUs */
138     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
139     [VIRT_UART] =               { 0x09000000, 0x00001000 },
140     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
141     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
142     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
143     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
144     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
145     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
147     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
148     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
149     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
150     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
151     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
152     /* Second PCIe window, 512GB wide at the 512GB boundary */
153     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
154 };
155 
156 static const int a15irqmap[] = {
157     [VIRT_UART] = 1,
158     [VIRT_RTC] = 2,
159     [VIRT_PCIE] = 3, /* ... to 6 */
160     [VIRT_GPIO] = 7,
161     [VIRT_SECURE_UART] = 8,
162     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
163     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
164     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 };
166 
167 static const char *valid_cpus[] = {
168     ARM_CPU_TYPE_NAME("cortex-a15"),
169     ARM_CPU_TYPE_NAME("cortex-a53"),
170     ARM_CPU_TYPE_NAME("cortex-a57"),
171     ARM_CPU_TYPE_NAME("host"),
172 };
173 
174 static bool cpu_type_valid(const char *cpu)
175 {
176     int i;
177 
178     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
179         if (strcmp(cpu, valid_cpus[i]) == 0) {
180             return true;
181         }
182     }
183     return false;
184 }
185 
186 static void create_fdt(VirtMachineState *vms)
187 {
188     void *fdt = create_device_tree(&vms->fdt_size);
189 
190     if (!fdt) {
191         error_report("create_device_tree() failed");
192         exit(1);
193     }
194 
195     vms->fdt = fdt;
196 
197     /* Header */
198     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
199     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
200     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
201 
202     /*
203      * /chosen and /memory nodes must exist for load_dtb
204      * to fill in necessary properties later
205      */
206     qemu_fdt_add_subnode(fdt, "/chosen");
207     qemu_fdt_add_subnode(fdt, "/memory");
208     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
209 
210     /* Clock node, for the benefit of the UART. The kernel device tree
211      * binding documentation claims the PL011 node clock properties are
212      * optional but in practice if you omit them the kernel refuses to
213      * probe for the device.
214      */
215     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
216     qemu_fdt_add_subnode(fdt, "/apb-pclk");
217     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
218     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
219     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
220     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
221                                 "clk24mhz");
222     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
223 
224     if (have_numa_distance) {
225         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
226         uint32_t *matrix = g_malloc0(size);
227         int idx, i, j;
228 
229         for (i = 0; i < nb_numa_nodes; i++) {
230             for (j = 0; j < nb_numa_nodes; j++) {
231                 idx = (i * nb_numa_nodes + j) * 3;
232                 matrix[idx + 0] = cpu_to_be32(i);
233                 matrix[idx + 1] = cpu_to_be32(j);
234                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
235             }
236         }
237 
238         qemu_fdt_add_subnode(fdt, "/distance-map");
239         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
240                                 "numa-distance-map-v1");
241         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
242                          matrix, size);
243         g_free(matrix);
244     }
245 }
246 
247 static void fdt_add_timer_nodes(const VirtMachineState *vms)
248 {
249     /* On real hardware these interrupts are level-triggered.
250      * On KVM they were edge-triggered before host kernel version 4.4,
251      * and level-triggered afterwards.
252      * On emulated QEMU they are level-triggered.
253      *
254      * Getting the DTB info about them wrong is awkward for some
255      * guest kernels:
256      *  pre-4.8 ignore the DT and leave the interrupt configured
257      *   with whatever the GIC reset value (or the bootloader) left it at
258      *  4.8 before rc6 honour the incorrect data by programming it back
259      *   into the GIC, causing problems
260      *  4.8rc6 and later ignore the DT and always write "level triggered"
261      *   into the GIC
262      *
263      * For backwards-compatibility, virt-2.8 and earlier will continue
264      * to say these are edge-triggered, but later machines will report
265      * the correct information.
266      */
267     ARMCPU *armcpu;
268     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
269     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
270 
271     if (vmc->claim_edge_triggered_timers) {
272         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
273     }
274 
275     if (vms->gic_version == 2) {
276         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
277                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
278                              (1 << vms->smp_cpus) - 1);
279     }
280 
281     qemu_fdt_add_subnode(vms->fdt, "/timer");
282 
283     armcpu = ARM_CPU(qemu_get_cpu(0));
284     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
285         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
286         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
287                          compat, sizeof(compat));
288     } else {
289         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
290                                 "arm,armv7-timer");
291     }
292     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
293     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
294                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
295                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
296                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
297                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
298 }
299 
300 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
301 {
302     int cpu;
303     int addr_cells = 1;
304     const MachineState *ms = MACHINE(vms);
305 
306     /*
307      * From Documentation/devicetree/bindings/arm/cpus.txt
308      *  On ARM v8 64-bit systems value should be set to 2,
309      *  that corresponds to the MPIDR_EL1 register size.
310      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
311      *  in the system, #address-cells can be set to 1, since
312      *  MPIDR_EL1[63:32] bits are not used for CPUs
313      *  identification.
314      *
315      *  Here we actually don't know whether our system is 32- or 64-bit one.
316      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
317      *  at least one of them has Aff3 populated, we set #address-cells to 2.
318      */
319     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
320         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
321 
322         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
323             addr_cells = 2;
324             break;
325         }
326     }
327 
328     qemu_fdt_add_subnode(vms->fdt, "/cpus");
329     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
330     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
331 
332     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
333         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
334         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
335         CPUState *cs = CPU(armcpu);
336 
337         qemu_fdt_add_subnode(vms->fdt, nodename);
338         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
339         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
340                                     armcpu->dtb_compatible);
341 
342         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
343             && vms->smp_cpus > 1) {
344             qemu_fdt_setprop_string(vms->fdt, nodename,
345                                         "enable-method", "psci");
346         }
347 
348         if (addr_cells == 2) {
349             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
350                                  armcpu->mp_affinity);
351         } else {
352             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
353                                   armcpu->mp_affinity);
354         }
355 
356         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
357             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
358                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
359         }
360 
361         g_free(nodename);
362     }
363 }
364 
365 static void fdt_add_its_gic_node(VirtMachineState *vms)
366 {
367     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
368     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
369     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
370                             "arm,gic-v3-its");
371     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
372     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
373                                  2, vms->memmap[VIRT_GIC_ITS].base,
374                                  2, vms->memmap[VIRT_GIC_ITS].size);
375     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
376 }
377 
378 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
379 {
380     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
381     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
382     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
383                             "arm,gic-v2m-frame");
384     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
385     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
386                                  2, vms->memmap[VIRT_GIC_V2M].base,
387                                  2, vms->memmap[VIRT_GIC_V2M].size);
388     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
389 }
390 
391 static void fdt_add_gic_node(VirtMachineState *vms)
392 {
393     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
394     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
395 
396     qemu_fdt_add_subnode(vms->fdt, "/intc");
397     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
398     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
399     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
400     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
401     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
402     if (vms->gic_version == 3) {
403         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
404                                 "arm,gic-v3");
405         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
406                                      2, vms->memmap[VIRT_GIC_DIST].base,
407                                      2, vms->memmap[VIRT_GIC_DIST].size,
408                                      2, vms->memmap[VIRT_GIC_REDIST].base,
409                                      2, vms->memmap[VIRT_GIC_REDIST].size);
410         if (vms->virt) {
411             qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
412                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
413                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
414         }
415     } else {
416         /* 'cortex-a15-gic' means 'GIC v2' */
417         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
418                                 "arm,cortex-a15-gic");
419         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
420                                       2, vms->memmap[VIRT_GIC_DIST].base,
421                                       2, vms->memmap[VIRT_GIC_DIST].size,
422                                       2, vms->memmap[VIRT_GIC_CPU].base,
423                                       2, vms->memmap[VIRT_GIC_CPU].size);
424     }
425 
426     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
427 }
428 
429 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
430 {
431     CPUState *cpu;
432     ARMCPU *armcpu;
433     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
434 
435     CPU_FOREACH(cpu) {
436         armcpu = ARM_CPU(cpu);
437         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
438             return;
439         }
440         if (kvm_enabled()) {
441             if (kvm_irqchip_in_kernel()) {
442                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
443             }
444             kvm_arm_pmu_init(cpu);
445         }
446     }
447 
448     if (vms->gic_version == 2) {
449         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
450                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
451                              (1 << vms->smp_cpus) - 1);
452     }
453 
454     armcpu = ARM_CPU(qemu_get_cpu(0));
455     qemu_fdt_add_subnode(vms->fdt, "/pmu");
456     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
457         const char compat[] = "arm,armv8-pmuv3";
458         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
459                          compat, sizeof(compat));
460         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
461                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
462     }
463 }
464 
465 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
466 {
467     const char *itsclass = its_class_name();
468     DeviceState *dev;
469 
470     if (!itsclass) {
471         /* Do nothing if not supported */
472         return;
473     }
474 
475     dev = qdev_create(NULL, itsclass);
476 
477     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
478                              &error_abort);
479     qdev_init_nofail(dev);
480     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
481 
482     fdt_add_its_gic_node(vms);
483 }
484 
485 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
486 {
487     int i;
488     int irq = vms->irqmap[VIRT_GIC_V2M];
489     DeviceState *dev;
490 
491     dev = qdev_create(NULL, "arm-gicv2m");
492     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
493     qdev_prop_set_uint32(dev, "base-spi", irq);
494     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
495     qdev_init_nofail(dev);
496 
497     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
498         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
499     }
500 
501     fdt_add_v2m_gic_node(vms);
502 }
503 
504 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
505 {
506     /* We create a standalone GIC */
507     DeviceState *gicdev;
508     SysBusDevice *gicbusdev;
509     const char *gictype;
510     int type = vms->gic_version, i;
511 
512     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
513 
514     gicdev = qdev_create(NULL, gictype);
515     qdev_prop_set_uint32(gicdev, "revision", type);
516     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
517     /* Note that the num-irq property counts both internal and external
518      * interrupts; there are always 32 of the former (mandated by GIC spec).
519      */
520     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
521     if (!kvm_irqchip_in_kernel()) {
522         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
523     }
524     qdev_init_nofail(gicdev);
525     gicbusdev = SYS_BUS_DEVICE(gicdev);
526     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
527     if (type == 3) {
528         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
529     } else {
530         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
531     }
532 
533     /* Wire the outputs from each CPU's generic timer and the GICv3
534      * maintenance interrupt signal to the appropriate GIC PPI inputs,
535      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
536      */
537     for (i = 0; i < smp_cpus; i++) {
538         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
539         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
540         int irq;
541         /* Mapping from the output timer irq lines from the CPU to the
542          * GIC PPI inputs we use for the virt board.
543          */
544         const int timer_irq[] = {
545             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
546             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
547             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
548             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
549         };
550 
551         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
552             qdev_connect_gpio_out(cpudev, irq,
553                                   qdev_get_gpio_in(gicdev,
554                                                    ppibase + timer_irq[irq]));
555         }
556 
557         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
558                                     qdev_get_gpio_in(gicdev, ppibase
559                                                      + ARCH_GICV3_MAINT_IRQ));
560         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
561                                     qdev_get_gpio_in(gicdev, ppibase
562                                                      + VIRTUAL_PMU_IRQ));
563 
564         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
565         sysbus_connect_irq(gicbusdev, i + smp_cpus,
566                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
567         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
568                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
569         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
570                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
571     }
572 
573     for (i = 0; i < NUM_IRQS; i++) {
574         pic[i] = qdev_get_gpio_in(gicdev, i);
575     }
576 
577     fdt_add_gic_node(vms);
578 
579     if (type == 3 && vms->its) {
580         create_its(vms, gicdev);
581     } else if (type == 2) {
582         create_v2m(vms, pic);
583     }
584 }
585 
586 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
587                         MemoryRegion *mem, Chardev *chr)
588 {
589     char *nodename;
590     hwaddr base = vms->memmap[uart].base;
591     hwaddr size = vms->memmap[uart].size;
592     int irq = vms->irqmap[uart];
593     const char compat[] = "arm,pl011\0arm,primecell";
594     const char clocknames[] = "uartclk\0apb_pclk";
595     DeviceState *dev = qdev_create(NULL, "pl011");
596     SysBusDevice *s = SYS_BUS_DEVICE(dev);
597 
598     qdev_prop_set_chr(dev, "chardev", chr);
599     qdev_init_nofail(dev);
600     memory_region_add_subregion(mem, base,
601                                 sysbus_mmio_get_region(s, 0));
602     sysbus_connect_irq(s, 0, pic[irq]);
603 
604     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
605     qemu_fdt_add_subnode(vms->fdt, nodename);
606     /* Note that we can't use setprop_string because of the embedded NUL */
607     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
608                          compat, sizeof(compat));
609     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
610                                      2, base, 2, size);
611     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
612                                GIC_FDT_IRQ_TYPE_SPI, irq,
613                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
614     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
615                                vms->clock_phandle, vms->clock_phandle);
616     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
617                          clocknames, sizeof(clocknames));
618 
619     if (uart == VIRT_UART) {
620         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
621     } else {
622         /* Mark as not usable by the normal world */
623         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
624         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
625     }
626 
627     g_free(nodename);
628 }
629 
630 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
631 {
632     char *nodename;
633     hwaddr base = vms->memmap[VIRT_RTC].base;
634     hwaddr size = vms->memmap[VIRT_RTC].size;
635     int irq = vms->irqmap[VIRT_RTC];
636     const char compat[] = "arm,pl031\0arm,primecell";
637 
638     sysbus_create_simple("pl031", base, pic[irq]);
639 
640     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
641     qemu_fdt_add_subnode(vms->fdt, nodename);
642     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
643     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
644                                  2, base, 2, size);
645     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
646                            GIC_FDT_IRQ_TYPE_SPI, irq,
647                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
648     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
649     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
650     g_free(nodename);
651 }
652 
653 static DeviceState *gpio_key_dev;
654 static void virt_powerdown_req(Notifier *n, void *opaque)
655 {
656     /* use gpio Pin 3 for power button event */
657     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
658 }
659 
660 static Notifier virt_system_powerdown_notifier = {
661     .notify = virt_powerdown_req
662 };
663 
664 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
665 {
666     char *nodename;
667     DeviceState *pl061_dev;
668     hwaddr base = vms->memmap[VIRT_GPIO].base;
669     hwaddr size = vms->memmap[VIRT_GPIO].size;
670     int irq = vms->irqmap[VIRT_GPIO];
671     const char compat[] = "arm,pl061\0arm,primecell";
672 
673     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
674 
675     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
676     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
677     qemu_fdt_add_subnode(vms->fdt, nodename);
678     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
679                                  2, base, 2, size);
680     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
681     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
682     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
683     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
684                            GIC_FDT_IRQ_TYPE_SPI, irq,
685                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
686     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
687     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
688     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
689 
690     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
691                                         qdev_get_gpio_in(pl061_dev, 3));
692     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
693     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
694     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
695     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
696 
697     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
698     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
699                             "label", "GPIO Key Poweroff");
700     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
701                           KEY_POWER);
702     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
703                            "gpios", phandle, 3, 0);
704 
705     /* connect powerdown request */
706     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
707 
708     g_free(nodename);
709 }
710 
711 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
712 {
713     int i;
714     hwaddr size = vms->memmap[VIRT_MMIO].size;
715 
716     /* We create the transports in forwards order. Since qbus_realize()
717      * prepends (not appends) new child buses, the incrementing loop below will
718      * create a list of virtio-mmio buses with decreasing base addresses.
719      *
720      * When a -device option is processed from the command line,
721      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
722      * order. The upshot is that -device options in increasing command line
723      * order are mapped to virtio-mmio buses with decreasing base addresses.
724      *
725      * When this code was originally written, that arrangement ensured that the
726      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
727      * the first -device on the command line. (The end-to-end order is a
728      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
729      * guest kernel's name-to-address assignment strategy.)
730      *
731      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
732      * the message, if not necessarily the code, of commit 70161ff336.
733      * Therefore the loop now establishes the inverse of the original intent.
734      *
735      * Unfortunately, we can't counteract the kernel change by reversing the
736      * loop; it would break existing command lines.
737      *
738      * In any case, the kernel makes no guarantee about the stability of
739      * enumeration order of virtio devices (as demonstrated by it changing
740      * between kernel versions). For reliable and stable identification
741      * of disks users must use UUIDs or similar mechanisms.
742      */
743     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
744         int irq = vms->irqmap[VIRT_MMIO] + i;
745         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
746 
747         sysbus_create_simple("virtio-mmio", base, pic[irq]);
748     }
749 
750     /* We add dtb nodes in reverse order so that they appear in the finished
751      * device tree lowest address first.
752      *
753      * Note that this mapping is independent of the loop above. The previous
754      * loop influences virtio device to virtio transport assignment, whereas
755      * this loop controls how virtio transports are laid out in the dtb.
756      */
757     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
758         char *nodename;
759         int irq = vms->irqmap[VIRT_MMIO] + i;
760         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
761 
762         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
763         qemu_fdt_add_subnode(vms->fdt, nodename);
764         qemu_fdt_setprop_string(vms->fdt, nodename,
765                                 "compatible", "virtio,mmio");
766         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
767                                      2, base, 2, size);
768         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
769                                GIC_FDT_IRQ_TYPE_SPI, irq,
770                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
771         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
772         g_free(nodename);
773     }
774 }
775 
776 static void create_one_flash(const char *name, hwaddr flashbase,
777                              hwaddr flashsize, const char *file,
778                              MemoryRegion *sysmem)
779 {
780     /* Create and map a single flash device. We use the same
781      * parameters as the flash devices on the Versatile Express board.
782      */
783     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
784     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
785     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
786     const uint64_t sectorlength = 256 * 1024;
787 
788     if (dinfo) {
789         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
790                             &error_abort);
791     }
792 
793     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
794     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
795     qdev_prop_set_uint8(dev, "width", 4);
796     qdev_prop_set_uint8(dev, "device-width", 2);
797     qdev_prop_set_bit(dev, "big-endian", false);
798     qdev_prop_set_uint16(dev, "id0", 0x89);
799     qdev_prop_set_uint16(dev, "id1", 0x18);
800     qdev_prop_set_uint16(dev, "id2", 0x00);
801     qdev_prop_set_uint16(dev, "id3", 0x00);
802     qdev_prop_set_string(dev, "name", name);
803     qdev_init_nofail(dev);
804 
805     memory_region_add_subregion(sysmem, flashbase,
806                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
807 
808     if (file) {
809         char *fn;
810         int image_size;
811 
812         if (drive_get(IF_PFLASH, 0, 0)) {
813             error_report("The contents of the first flash device may be "
814                          "specified with -bios or with -drive if=pflash... "
815                          "but you cannot use both options at once");
816             exit(1);
817         }
818         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
819         if (!fn) {
820             error_report("Could not find ROM image '%s'", file);
821             exit(1);
822         }
823         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
824         g_free(fn);
825         if (image_size < 0) {
826             error_report("Could not load ROM image '%s'", file);
827             exit(1);
828         }
829     }
830 }
831 
832 static void create_flash(const VirtMachineState *vms,
833                          MemoryRegion *sysmem,
834                          MemoryRegion *secure_sysmem)
835 {
836     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
837      * Any file passed via -bios goes in the first of these.
838      * sysmem is the system memory space. secure_sysmem is the secure view
839      * of the system, and the first flash device should be made visible only
840      * there. The second flash device is visible to both secure and nonsecure.
841      * If sysmem == secure_sysmem this means there is no separate Secure
842      * address space and both flash devices are generally visible.
843      */
844     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
845     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
846     char *nodename;
847 
848     create_one_flash("virt.flash0", flashbase, flashsize,
849                      bios_name, secure_sysmem);
850     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
851                      NULL, sysmem);
852 
853     if (sysmem == secure_sysmem) {
854         /* Report both flash devices as a single node in the DT */
855         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
856         qemu_fdt_add_subnode(vms->fdt, nodename);
857         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
858         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
859                                      2, flashbase, 2, flashsize,
860                                      2, flashbase + flashsize, 2, flashsize);
861         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
862         g_free(nodename);
863     } else {
864         /* Report the devices as separate nodes so we can mark one as
865          * only visible to the secure world.
866          */
867         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
868         qemu_fdt_add_subnode(vms->fdt, nodename);
869         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
870         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
871                                      2, flashbase, 2, flashsize);
872         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
873         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
874         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
875         g_free(nodename);
876 
877         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
878         qemu_fdt_add_subnode(vms->fdt, nodename);
879         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
880         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
881                                      2, flashbase + flashsize, 2, flashsize);
882         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
883         g_free(nodename);
884     }
885 }
886 
887 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
888 {
889     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
890     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
891     FWCfgState *fw_cfg;
892     char *nodename;
893 
894     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
895     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
896 
897     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
898     qemu_fdt_add_subnode(vms->fdt, nodename);
899     qemu_fdt_setprop_string(vms->fdt, nodename,
900                             "compatible", "qemu,fw-cfg-mmio");
901     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
902                                  2, base, 2, size);
903     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
904     g_free(nodename);
905     return fw_cfg;
906 }
907 
908 static void create_pcie_irq_map(const VirtMachineState *vms,
909                                 uint32_t gic_phandle,
910                                 int first_irq, const char *nodename)
911 {
912     int devfn, pin;
913     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
914     uint32_t *irq_map = full_irq_map;
915 
916     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
917         for (pin = 0; pin < 4; pin++) {
918             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
919             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
920             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
921             int i;
922 
923             uint32_t map[] = {
924                 devfn << 8, 0, 0,                           /* devfn */
925                 pin + 1,                                    /* PCI pin */
926                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
927 
928             /* Convert map to big endian */
929             for (i = 0; i < 10; i++) {
930                 irq_map[i] = cpu_to_be32(map[i]);
931             }
932             irq_map += 10;
933         }
934     }
935 
936     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
937                      full_irq_map, sizeof(full_irq_map));
938 
939     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
940                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
941                            0x7           /* PCI irq */);
942 }
943 
944 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
945 {
946     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
947     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
948     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
949     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
950     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
951     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
952     hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
953     hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
954     hwaddr base = base_mmio;
955     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
956     int irq = vms->irqmap[VIRT_PCIE];
957     MemoryRegion *mmio_alias;
958     MemoryRegion *mmio_reg;
959     MemoryRegion *ecam_alias;
960     MemoryRegion *ecam_reg;
961     DeviceState *dev;
962     char *nodename;
963     int i;
964     PCIHostState *pci;
965 
966     dev = qdev_create(NULL, TYPE_GPEX_HOST);
967     qdev_init_nofail(dev);
968 
969     /* Map only the first size_ecam bytes of ECAM space */
970     ecam_alias = g_new0(MemoryRegion, 1);
971     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
972     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
973                              ecam_reg, 0, size_ecam);
974     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
975 
976     /* Map the MMIO window into system address space so as to expose
977      * the section of PCI MMIO space which starts at the same base address
978      * (ie 1:1 mapping for that part of PCI MMIO space visible through
979      * the window).
980      */
981     mmio_alias = g_new0(MemoryRegion, 1);
982     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
983     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
984                              mmio_reg, base_mmio, size_mmio);
985     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
986 
987     if (vms->highmem) {
988         /* Map high MMIO space */
989         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
990 
991         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
992                                  mmio_reg, base_mmio_high, size_mmio_high);
993         memory_region_add_subregion(get_system_memory(), base_mmio_high,
994                                     high_mmio_alias);
995     }
996 
997     /* Map IO port space */
998     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
999 
1000     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1001         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1002         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1003     }
1004 
1005     pci = PCI_HOST_BRIDGE(dev);
1006     if (pci->bus) {
1007         for (i = 0; i < nb_nics; i++) {
1008             NICInfo *nd = &nd_table[i];
1009 
1010             if (!nd->model) {
1011                 nd->model = g_strdup("virtio");
1012             }
1013 
1014             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1015         }
1016     }
1017 
1018     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1019     qemu_fdt_add_subnode(vms->fdt, nodename);
1020     qemu_fdt_setprop_string(vms->fdt, nodename,
1021                             "compatible", "pci-host-ecam-generic");
1022     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1023     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1024     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1025     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1026                            nr_pcie_buses - 1);
1027     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1028 
1029     if (vms->msi_phandle) {
1030         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1031                                vms->msi_phandle);
1032     }
1033 
1034     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1035                                  2, base_ecam, 2, size_ecam);
1036 
1037     if (vms->highmem) {
1038         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1039                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1040                                      2, base_pio, 2, size_pio,
1041                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1042                                      2, base_mmio, 2, size_mmio,
1043                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1044                                      2, base_mmio_high,
1045                                      2, base_mmio_high, 2, size_mmio_high);
1046     } else {
1047         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1048                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1049                                      2, base_pio, 2, size_pio,
1050                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1051                                      2, base_mmio, 2, size_mmio);
1052     }
1053 
1054     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1055     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1056 
1057     g_free(nodename);
1058 }
1059 
1060 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1061 {
1062     DeviceState *dev;
1063     SysBusDevice *s;
1064     int i;
1065     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1066     MemoryRegion *sysmem = get_system_memory();
1067 
1068     platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1069     platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1070     platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1071     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1072 
1073     fdt_params->system_params = &platform_bus_params;
1074     fdt_params->binfo = &vms->bootinfo;
1075     fdt_params->intc = "/intc";
1076     /*
1077      * register a machine init done notifier that creates the device tree
1078      * nodes of the platform bus and its children dynamic sysbus devices
1079      */
1080     arm_register_platform_bus_fdt_creator(fdt_params);
1081 
1082     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1083     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1084     qdev_prop_set_uint32(dev, "num_irqs",
1085         platform_bus_params.platform_bus_num_irqs);
1086     qdev_prop_set_uint32(dev, "mmio_size",
1087         platform_bus_params.platform_bus_size);
1088     qdev_init_nofail(dev);
1089     s = SYS_BUS_DEVICE(dev);
1090 
1091     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1092         int irqn = platform_bus_params.platform_bus_first_irq + i;
1093         sysbus_connect_irq(s, i, pic[irqn]);
1094     }
1095 
1096     memory_region_add_subregion(sysmem,
1097                                 platform_bus_params.platform_bus_base,
1098                                 sysbus_mmio_get_region(s, 0));
1099 }
1100 
1101 static void create_secure_ram(VirtMachineState *vms,
1102                               MemoryRegion *secure_sysmem)
1103 {
1104     MemoryRegion *secram = g_new(MemoryRegion, 1);
1105     char *nodename;
1106     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1107     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1108 
1109     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1110                            &error_fatal);
1111     memory_region_add_subregion(secure_sysmem, base, secram);
1112 
1113     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1114     qemu_fdt_add_subnode(vms->fdt, nodename);
1115     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1116     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1117     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1118     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1119 
1120     g_free(nodename);
1121 }
1122 
1123 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1124 {
1125     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1126                                                  bootinfo);
1127 
1128     *fdt_size = board->fdt_size;
1129     return board->fdt;
1130 }
1131 
1132 static void virt_build_smbios(VirtMachineState *vms)
1133 {
1134     uint8_t *smbios_tables, *smbios_anchor;
1135     size_t smbios_tables_len, smbios_anchor_len;
1136     const char *product = "QEMU Virtual Machine";
1137 
1138     if (!vms->fw_cfg) {
1139         return;
1140     }
1141 
1142     if (kvm_enabled()) {
1143         product = "KVM Virtual Machine";
1144     }
1145 
1146     smbios_set_defaults("QEMU", product,
1147                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1148 
1149     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1150                       &smbios_anchor, &smbios_anchor_len);
1151 
1152     if (smbios_anchor) {
1153         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1154                         smbios_tables, smbios_tables_len);
1155         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1156                         smbios_anchor, smbios_anchor_len);
1157     }
1158 }
1159 
1160 static
1161 void virt_machine_done(Notifier *notifier, void *data)
1162 {
1163     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1164                                          machine_done);
1165 
1166     virt_acpi_setup(vms);
1167     virt_build_smbios(vms);
1168 }
1169 
1170 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1171 {
1172     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1173     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1174 
1175     if (!vmc->disallow_affinity_adjustment) {
1176         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1177          * GIC's target-list limitations. 32-bit KVM hosts currently
1178          * always create clusters of 4 CPUs, but that is expected to
1179          * change when they gain support for gicv3. When KVM is enabled
1180          * it will override the changes we make here, therefore our
1181          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1182          * and to improve SGI efficiency.
1183          */
1184         if (vms->gic_version == 3) {
1185             clustersz = GICV3_TARGETLIST_BITS;
1186         } else {
1187             clustersz = GIC_TARGETLIST_BITS;
1188         }
1189     }
1190     return arm_cpu_mp_affinity(idx, clustersz);
1191 }
1192 
1193 static void machvirt_init(MachineState *machine)
1194 {
1195     VirtMachineState *vms = VIRT_MACHINE(machine);
1196     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1197     MachineClass *mc = MACHINE_GET_CLASS(machine);
1198     const CPUArchIdList *possible_cpus;
1199     qemu_irq pic[NUM_IRQS];
1200     MemoryRegion *sysmem = get_system_memory();
1201     MemoryRegion *secure_sysmem = NULL;
1202     int n, virt_max_cpus;
1203     MemoryRegion *ram = g_new(MemoryRegion, 1);
1204     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1205 
1206     /* We can probe only here because during property set
1207      * KVM is not available yet
1208      */
1209     if (!vms->gic_version) {
1210         if (!kvm_enabled()) {
1211             error_report("gic-version=host requires KVM");
1212             exit(1);
1213         }
1214 
1215         vms->gic_version = kvm_arm_vgic_probe();
1216         if (!vms->gic_version) {
1217             error_report("Unable to determine GIC version supported by host");
1218             exit(1);
1219         }
1220     }
1221 
1222     if (!cpu_type_valid(machine->cpu_type)) {
1223         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1224         exit(1);
1225     }
1226 
1227     /* If we have an EL3 boot ROM then the assumption is that it will
1228      * implement PSCI itself, so disable QEMU's internal implementation
1229      * so it doesn't get in the way. Instead of starting secondary
1230      * CPUs in PSCI powerdown state we will start them all running and
1231      * let the boot ROM sort them out.
1232      * The usual case is that we do use QEMU's PSCI implementation;
1233      * if the guest has EL2 then we will use SMC as the conduit,
1234      * and otherwise we will use HVC (for backwards compatibility and
1235      * because if we're using KVM then we must use HVC).
1236      */
1237     if (vms->secure && firmware_loaded) {
1238         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1239     } else if (vms->virt) {
1240         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1241     } else {
1242         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1243     }
1244 
1245     /* The maximum number of CPUs depends on the GIC version, or on how
1246      * many redistributors we can fit into the memory map.
1247      */
1248     if (vms->gic_version == 3) {
1249         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1250     } else {
1251         virt_max_cpus = GIC_NCPU;
1252     }
1253 
1254     if (max_cpus > virt_max_cpus) {
1255         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1256                      "supported by machine 'mach-virt' (%d)",
1257                      max_cpus, virt_max_cpus);
1258         exit(1);
1259     }
1260 
1261     vms->smp_cpus = smp_cpus;
1262 
1263     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1264         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1265         exit(1);
1266     }
1267 
1268     if (vms->virt && kvm_enabled()) {
1269         error_report("mach-virt: KVM does not support providing "
1270                      "Virtualization extensions to the guest CPU");
1271         exit(1);
1272     }
1273 
1274     if (vms->secure) {
1275         if (kvm_enabled()) {
1276             error_report("mach-virt: KVM does not support Security extensions");
1277             exit(1);
1278         }
1279 
1280         /* The Secure view of the world is the same as the NonSecure,
1281          * but with a few extra devices. Create it as a container region
1282          * containing the system memory at low priority; any secure-only
1283          * devices go in at higher priority and take precedence.
1284          */
1285         secure_sysmem = g_new(MemoryRegion, 1);
1286         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1287                            UINT64_MAX);
1288         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1289     }
1290 
1291     create_fdt(vms);
1292 
1293     possible_cpus = mc->possible_cpu_arch_ids(machine);
1294     for (n = 0; n < possible_cpus->len; n++) {
1295         Object *cpuobj;
1296         CPUState *cs;
1297 
1298         if (n >= smp_cpus) {
1299             break;
1300         }
1301 
1302         cpuobj = object_new(possible_cpus->cpus[n].type);
1303         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1304                                 "mp-affinity", NULL);
1305 
1306         cs = CPU(cpuobj);
1307         cs->cpu_index = n;
1308 
1309         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1310                           &error_fatal);
1311 
1312         if (!vms->secure) {
1313             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1314         }
1315 
1316         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1317             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1318         }
1319 
1320         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1321             object_property_set_int(cpuobj, vms->psci_conduit,
1322                                     "psci-conduit", NULL);
1323 
1324             /* Secondary CPUs start in PSCI powered-down state */
1325             if (n > 0) {
1326                 object_property_set_bool(cpuobj, true,
1327                                          "start-powered-off", NULL);
1328             }
1329         }
1330 
1331         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1332             object_property_set_bool(cpuobj, false, "pmu", NULL);
1333         }
1334 
1335         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1336             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1337                                     "reset-cbar", &error_abort);
1338         }
1339 
1340         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1341                                  &error_abort);
1342         if (vms->secure) {
1343             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1344                                      "secure-memory", &error_abort);
1345         }
1346 
1347         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1348         object_unref(cpuobj);
1349     }
1350     fdt_add_timer_nodes(vms);
1351     fdt_add_cpu_nodes(vms);
1352 
1353     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1354                                          machine->ram_size);
1355     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1356 
1357     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1358 
1359     create_gic(vms, pic);
1360 
1361     fdt_add_pmu_nodes(vms);
1362 
1363     create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1364 
1365     if (vms->secure) {
1366         create_secure_ram(vms, secure_sysmem);
1367         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1368     }
1369 
1370     create_rtc(vms, pic);
1371 
1372     create_pcie(vms, pic);
1373 
1374     create_gpio(vms, pic);
1375 
1376     /* Create mmio transports, so the user can create virtio backends
1377      * (which will be automatically plugged in to the transports). If
1378      * no backend is created the transport will just sit harmlessly idle.
1379      */
1380     create_virtio_devices(vms, pic);
1381 
1382     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1383     rom_set_fw(vms->fw_cfg);
1384 
1385     vms->machine_done.notify = virt_machine_done;
1386     qemu_add_machine_init_done_notifier(&vms->machine_done);
1387 
1388     vms->bootinfo.ram_size = machine->ram_size;
1389     vms->bootinfo.kernel_filename = machine->kernel_filename;
1390     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1391     vms->bootinfo.initrd_filename = machine->initrd_filename;
1392     vms->bootinfo.nb_cpus = smp_cpus;
1393     vms->bootinfo.board_id = -1;
1394     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1395     vms->bootinfo.get_dtb = machvirt_dtb;
1396     vms->bootinfo.firmware_loaded = firmware_loaded;
1397     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1398 
1399     /*
1400      * arm_load_kernel machine init done notifier registration must
1401      * happen before the platform_bus_create call. In this latter,
1402      * another notifier is registered which adds platform bus nodes.
1403      * Notifiers are executed in registration reverse order.
1404      */
1405     create_platform_bus(vms, pic);
1406 }
1407 
1408 static bool virt_get_secure(Object *obj, Error **errp)
1409 {
1410     VirtMachineState *vms = VIRT_MACHINE(obj);
1411 
1412     return vms->secure;
1413 }
1414 
1415 static void virt_set_secure(Object *obj, bool value, Error **errp)
1416 {
1417     VirtMachineState *vms = VIRT_MACHINE(obj);
1418 
1419     vms->secure = value;
1420 }
1421 
1422 static bool virt_get_virt(Object *obj, Error **errp)
1423 {
1424     VirtMachineState *vms = VIRT_MACHINE(obj);
1425 
1426     return vms->virt;
1427 }
1428 
1429 static void virt_set_virt(Object *obj, bool value, Error **errp)
1430 {
1431     VirtMachineState *vms = VIRT_MACHINE(obj);
1432 
1433     vms->virt = value;
1434 }
1435 
1436 static bool virt_get_highmem(Object *obj, Error **errp)
1437 {
1438     VirtMachineState *vms = VIRT_MACHINE(obj);
1439 
1440     return vms->highmem;
1441 }
1442 
1443 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1444 {
1445     VirtMachineState *vms = VIRT_MACHINE(obj);
1446 
1447     vms->highmem = value;
1448 }
1449 
1450 static bool virt_get_its(Object *obj, Error **errp)
1451 {
1452     VirtMachineState *vms = VIRT_MACHINE(obj);
1453 
1454     return vms->its;
1455 }
1456 
1457 static void virt_set_its(Object *obj, bool value, Error **errp)
1458 {
1459     VirtMachineState *vms = VIRT_MACHINE(obj);
1460 
1461     vms->its = value;
1462 }
1463 
1464 static char *virt_get_gic_version(Object *obj, Error **errp)
1465 {
1466     VirtMachineState *vms = VIRT_MACHINE(obj);
1467     const char *val = vms->gic_version == 3 ? "3" : "2";
1468 
1469     return g_strdup(val);
1470 }
1471 
1472 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1473 {
1474     VirtMachineState *vms = VIRT_MACHINE(obj);
1475 
1476     if (!strcmp(value, "3")) {
1477         vms->gic_version = 3;
1478     } else if (!strcmp(value, "2")) {
1479         vms->gic_version = 2;
1480     } else if (!strcmp(value, "host")) {
1481         vms->gic_version = 0; /* Will probe later */
1482     } else {
1483         error_setg(errp, "Invalid gic-version value");
1484         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1485     }
1486 }
1487 
1488 static CpuInstanceProperties
1489 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1490 {
1491     MachineClass *mc = MACHINE_GET_CLASS(ms);
1492     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1493 
1494     assert(cpu_index < possible_cpus->len);
1495     return possible_cpus->cpus[cpu_index].props;
1496 }
1497 
1498 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1499 {
1500     return idx % nb_numa_nodes;
1501 }
1502 
1503 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1504 {
1505     int n;
1506     VirtMachineState *vms = VIRT_MACHINE(ms);
1507 
1508     if (ms->possible_cpus) {
1509         assert(ms->possible_cpus->len == max_cpus);
1510         return ms->possible_cpus;
1511     }
1512 
1513     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1514                                   sizeof(CPUArchId) * max_cpus);
1515     ms->possible_cpus->len = max_cpus;
1516     for (n = 0; n < ms->possible_cpus->len; n++) {
1517         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1518         ms->possible_cpus->cpus[n].arch_id =
1519             virt_cpu_mp_affinity(vms, n);
1520         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1521         ms->possible_cpus->cpus[n].props.thread_id = n;
1522     }
1523     return ms->possible_cpus;
1524 }
1525 
1526 static void virt_machine_class_init(ObjectClass *oc, void *data)
1527 {
1528     MachineClass *mc = MACHINE_CLASS(oc);
1529 
1530     mc->init = machvirt_init;
1531     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1532      * it later in machvirt_init, where we have more information about the
1533      * configuration of the particular instance.
1534      */
1535     mc->max_cpus = 255;
1536     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1537     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1538     mc->block_default_type = IF_VIRTIO;
1539     mc->no_cdrom = 1;
1540     mc->pci_allow_0_address = true;
1541     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1542     mc->minimum_page_bits = 12;
1543     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1544     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1545     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1546     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1547 }
1548 
1549 static const TypeInfo virt_machine_info = {
1550     .name          = TYPE_VIRT_MACHINE,
1551     .parent        = TYPE_MACHINE,
1552     .abstract      = true,
1553     .instance_size = sizeof(VirtMachineState),
1554     .class_size    = sizeof(VirtMachineClass),
1555     .class_init    = virt_machine_class_init,
1556 };
1557 
1558 static void machvirt_machine_init(void)
1559 {
1560     type_register_static(&virt_machine_info);
1561 }
1562 type_init(machvirt_machine_init);
1563 
1564 static void virt_2_12_instance_init(Object *obj)
1565 {
1566     VirtMachineState *vms = VIRT_MACHINE(obj);
1567     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1568 
1569     /* EL3 is disabled by default on virt: this makes us consistent
1570      * between KVM and TCG for this board, and it also allows us to
1571      * boot UEFI blobs which assume no TrustZone support.
1572      */
1573     vms->secure = false;
1574     object_property_add_bool(obj, "secure", virt_get_secure,
1575                              virt_set_secure, NULL);
1576     object_property_set_description(obj, "secure",
1577                                     "Set on/off to enable/disable the ARM "
1578                                     "Security Extensions (TrustZone)",
1579                                     NULL);
1580 
1581     /* EL2 is also disabled by default, for similar reasons */
1582     vms->virt = false;
1583     object_property_add_bool(obj, "virtualization", virt_get_virt,
1584                              virt_set_virt, NULL);
1585     object_property_set_description(obj, "virtualization",
1586                                     "Set on/off to enable/disable emulating a "
1587                                     "guest CPU which implements the ARM "
1588                                     "Virtualization Extensions",
1589                                     NULL);
1590 
1591     /* High memory is enabled by default */
1592     vms->highmem = true;
1593     object_property_add_bool(obj, "highmem", virt_get_highmem,
1594                              virt_set_highmem, NULL);
1595     object_property_set_description(obj, "highmem",
1596                                     "Set on/off to enable/disable using "
1597                                     "physical address space above 32 bits",
1598                                     NULL);
1599     /* Default GIC type is v2 */
1600     vms->gic_version = 2;
1601     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1602                         virt_set_gic_version, NULL);
1603     object_property_set_description(obj, "gic-version",
1604                                     "Set GIC version. "
1605                                     "Valid values are 2, 3 and host", NULL);
1606 
1607     if (vmc->no_its) {
1608         vms->its = false;
1609     } else {
1610         /* Default allows ITS instantiation */
1611         vms->its = true;
1612         object_property_add_bool(obj, "its", virt_get_its,
1613                                  virt_set_its, NULL);
1614         object_property_set_description(obj, "its",
1615                                         "Set on/off to enable/disable "
1616                                         "ITS instantiation",
1617                                         NULL);
1618     }
1619 
1620     vms->memmap = a15memmap;
1621     vms->irqmap = a15irqmap;
1622 }
1623 
1624 static void virt_machine_2_12_options(MachineClass *mc)
1625 {
1626 }
1627 DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
1628 
1629 #define VIRT_COMPAT_2_11 \
1630     HW_COMPAT_2_11
1631 
1632 static void virt_2_11_instance_init(Object *obj)
1633 {
1634     virt_2_12_instance_init(obj);
1635 }
1636 
1637 static void virt_machine_2_11_options(MachineClass *mc)
1638 {
1639     virt_machine_2_12_options(mc);
1640     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1641 }
1642 DEFINE_VIRT_MACHINE(2, 11)
1643 
1644 #define VIRT_COMPAT_2_10 \
1645     HW_COMPAT_2_10
1646 
1647 static void virt_2_10_instance_init(Object *obj)
1648 {
1649     virt_2_11_instance_init(obj);
1650 }
1651 
1652 static void virt_machine_2_10_options(MachineClass *mc)
1653 {
1654     virt_machine_2_11_options(mc);
1655     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1656 }
1657 DEFINE_VIRT_MACHINE(2, 10)
1658 
1659 #define VIRT_COMPAT_2_9 \
1660     HW_COMPAT_2_9
1661 
1662 static void virt_2_9_instance_init(Object *obj)
1663 {
1664     virt_2_10_instance_init(obj);
1665 }
1666 
1667 static void virt_machine_2_9_options(MachineClass *mc)
1668 {
1669     virt_machine_2_10_options(mc);
1670     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1671 }
1672 DEFINE_VIRT_MACHINE(2, 9)
1673 
1674 #define VIRT_COMPAT_2_8 \
1675     HW_COMPAT_2_8
1676 
1677 static void virt_2_8_instance_init(Object *obj)
1678 {
1679     virt_2_9_instance_init(obj);
1680 }
1681 
1682 static void virt_machine_2_8_options(MachineClass *mc)
1683 {
1684     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1685 
1686     virt_machine_2_9_options(mc);
1687     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1688     /* For 2.8 and earlier we falsely claimed in the DT that
1689      * our timers were edge-triggered, not level-triggered.
1690      */
1691     vmc->claim_edge_triggered_timers = true;
1692 }
1693 DEFINE_VIRT_MACHINE(2, 8)
1694 
1695 #define VIRT_COMPAT_2_7 \
1696     HW_COMPAT_2_7
1697 
1698 static void virt_2_7_instance_init(Object *obj)
1699 {
1700     virt_2_8_instance_init(obj);
1701 }
1702 
1703 static void virt_machine_2_7_options(MachineClass *mc)
1704 {
1705     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1706 
1707     virt_machine_2_8_options(mc);
1708     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1709     /* ITS was introduced with 2.8 */
1710     vmc->no_its = true;
1711     /* Stick with 1K pages for migration compatibility */
1712     mc->minimum_page_bits = 0;
1713 }
1714 DEFINE_VIRT_MACHINE(2, 7)
1715 
1716 #define VIRT_COMPAT_2_6 \
1717     HW_COMPAT_2_6
1718 
1719 static void virt_2_6_instance_init(Object *obj)
1720 {
1721     virt_2_7_instance_init(obj);
1722 }
1723 
1724 static void virt_machine_2_6_options(MachineClass *mc)
1725 {
1726     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1727 
1728     virt_machine_2_7_options(mc);
1729     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1730     vmc->disallow_affinity_adjustment = true;
1731     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1732     vmc->no_pmu = true;
1733 }
1734 DEFINE_VIRT_MACHINE(2, 6)
1735