1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/devices.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/sysemu.h" 38 #include "sysemu/kvm.h" 39 #include "hw/boards.h" 40 #include "exec/address-spaces.h" 41 #include "qemu/bitops.h" 42 #include "qemu/error-report.h" 43 44 #define NUM_VIRTIO_TRANSPORTS 32 45 46 /* Number of external interrupt lines to configure the GIC with */ 47 #define NUM_IRQS 128 48 49 #define GIC_FDT_IRQ_TYPE_SPI 0 50 #define GIC_FDT_IRQ_TYPE_PPI 1 51 52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 56 57 #define GIC_FDT_IRQ_PPI_CPU_START 8 58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 59 60 enum { 61 VIRT_FLASH, 62 VIRT_MEM, 63 VIRT_CPUPERIPHS, 64 VIRT_GIC_DIST, 65 VIRT_GIC_CPU, 66 VIRT_UART, 67 VIRT_MMIO, 68 }; 69 70 typedef struct MemMapEntry { 71 hwaddr base; 72 hwaddr size; 73 } MemMapEntry; 74 75 typedef struct VirtBoardInfo { 76 struct arm_boot_info bootinfo; 77 const char *cpu_model; 78 const MemMapEntry *memmap; 79 const int *irqmap; 80 int smp_cpus; 81 void *fdt; 82 int fdt_size; 83 uint32_t clock_phandle; 84 } VirtBoardInfo; 85 86 /* Addresses and sizes of our components. 87 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 88 * 128MB..256MB is used for miscellaneous device I/O. 89 * 256MB..1GB is reserved for possible future PCI support (ie where the 90 * PCI memory window will go if we add a PCI host controller). 91 * 1GB and up is RAM (which may happily spill over into the 92 * high memory region beyond 4GB). 93 * This represents a compromise between how much RAM can be given to 94 * a 32 bit VM and leaving space for expansion and in particular for PCI. 95 */ 96 static const MemMapEntry a15memmap[] = { 97 /* Space up to 0x8000000 is reserved for a boot ROM */ 98 [VIRT_FLASH] = { 0, 0x8000000 }, 99 [VIRT_CPUPERIPHS] = { 0x8000000, 0x20000 }, 100 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 101 [VIRT_GIC_DIST] = { 0x8000000, 0x10000 }, 102 [VIRT_GIC_CPU] = { 0x8010000, 0x10000 }, 103 [VIRT_UART] = { 0x9000000, 0x1000 }, 104 [VIRT_MMIO] = { 0xa000000, 0x200 }, 105 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 106 /* 0x10000000 .. 0x40000000 reserved for PCI */ 107 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 108 }; 109 110 static const int a15irqmap[] = { 111 [VIRT_UART] = 1, 112 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 113 }; 114 115 static VirtBoardInfo machines[] = { 116 { 117 .cpu_model = "cortex-a15", 118 .memmap = a15memmap, 119 .irqmap = a15irqmap, 120 }, 121 { 122 .cpu_model = "cortex-a57", 123 .memmap = a15memmap, 124 .irqmap = a15irqmap, 125 }, 126 { 127 .cpu_model = "host", 128 .memmap = a15memmap, 129 .irqmap = a15irqmap, 130 }, 131 }; 132 133 static VirtBoardInfo *find_machine_info(const char *cpu) 134 { 135 int i; 136 137 for (i = 0; i < ARRAY_SIZE(machines); i++) { 138 if (strcmp(cpu, machines[i].cpu_model) == 0) { 139 return &machines[i]; 140 } 141 } 142 return NULL; 143 } 144 145 static void create_fdt(VirtBoardInfo *vbi) 146 { 147 void *fdt = create_device_tree(&vbi->fdt_size); 148 149 if (!fdt) { 150 error_report("create_device_tree() failed"); 151 exit(1); 152 } 153 154 vbi->fdt = fdt; 155 156 /* Header */ 157 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 158 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 159 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 160 161 /* 162 * /chosen and /memory nodes must exist for load_dtb 163 * to fill in necessary properties later 164 */ 165 qemu_fdt_add_subnode(fdt, "/chosen"); 166 qemu_fdt_add_subnode(fdt, "/memory"); 167 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 168 169 /* Clock node, for the benefit of the UART. The kernel device tree 170 * binding documentation claims the PL011 node clock properties are 171 * optional but in practice if you omit them the kernel refuses to 172 * probe for the device. 173 */ 174 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 175 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 176 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 177 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 178 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 179 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 180 "clk24mhz"); 181 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 182 183 /* No PSCI for TCG yet */ 184 if (kvm_enabled()) { 185 qemu_fdt_add_subnode(fdt, "/psci"); 186 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 187 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 188 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", 189 PSCI_FN_CPU_SUSPEND); 190 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF); 191 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON); 192 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE); 193 } 194 } 195 196 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 197 { 198 /* Note that on A15 h/w these interrupts are level-triggered, 199 * but for the GIC implementation provided by both QEMU and KVM 200 * they are edge-triggered. 201 */ 202 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 203 204 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 205 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 206 207 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 208 qemu_fdt_setprop_string(vbi->fdt, "/timer", 209 "compatible", "arm,armv7-timer"); 210 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 211 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags, 212 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags, 213 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags, 214 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags); 215 } 216 217 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 218 { 219 int cpu; 220 221 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 222 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); 223 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 224 225 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 226 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 227 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 228 229 qemu_fdt_add_subnode(vbi->fdt, nodename); 230 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 231 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 232 armcpu->dtb_compatible); 233 234 if (vbi->smp_cpus > 1) { 235 qemu_fdt_setprop_string(vbi->fdt, nodename, 236 "enable-method", "psci"); 237 } 238 239 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); 240 g_free(nodename); 241 } 242 } 243 244 static void fdt_add_gic_node(const VirtBoardInfo *vbi) 245 { 246 uint32_t gic_phandle; 247 248 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 249 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle); 250 251 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 252 /* 'cortex-a15-gic' means 'GIC v2' */ 253 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 254 "arm,cortex-a15-gic"); 255 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 256 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 257 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 258 2, vbi->memmap[VIRT_GIC_DIST].base, 259 2, vbi->memmap[VIRT_GIC_DIST].size, 260 2, vbi->memmap[VIRT_GIC_CPU].base, 261 2, vbi->memmap[VIRT_GIC_CPU].size); 262 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle); 263 } 264 265 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic) 266 { 267 /* We create a standalone GIC v2 */ 268 DeviceState *gicdev; 269 SysBusDevice *gicbusdev; 270 const char *gictype = "arm_gic"; 271 int i; 272 273 if (kvm_irqchip_in_kernel()) { 274 gictype = "kvm-arm-gic"; 275 } 276 277 gicdev = qdev_create(NULL, gictype); 278 qdev_prop_set_uint32(gicdev, "revision", 2); 279 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 280 /* Note that the num-irq property counts both internal and external 281 * interrupts; there are always 32 of the former (mandated by GIC spec). 282 */ 283 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 284 qdev_init_nofail(gicdev); 285 gicbusdev = SYS_BUS_DEVICE(gicdev); 286 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 287 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 288 289 /* Wire the outputs from each CPU's generic timer to the 290 * appropriate GIC PPI inputs, and the GIC's IRQ output to 291 * the CPU's IRQ input. 292 */ 293 for (i = 0; i < smp_cpus; i++) { 294 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 295 int ppibase = NUM_IRQS + i * 32; 296 /* physical timer; we wire it up to the non-secure timer's ID, 297 * since a real A15 always has TrustZone but QEMU doesn't. 298 */ 299 qdev_connect_gpio_out(cpudev, 0, 300 qdev_get_gpio_in(gicdev, ppibase + 30)); 301 /* virtual timer */ 302 qdev_connect_gpio_out(cpudev, 1, 303 qdev_get_gpio_in(gicdev, ppibase + 27)); 304 305 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 306 } 307 308 for (i = 0; i < NUM_IRQS; i++) { 309 pic[i] = qdev_get_gpio_in(gicdev, i); 310 } 311 312 fdt_add_gic_node(vbi); 313 } 314 315 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 316 { 317 char *nodename; 318 hwaddr base = vbi->memmap[VIRT_UART].base; 319 hwaddr size = vbi->memmap[VIRT_UART].size; 320 int irq = vbi->irqmap[VIRT_UART]; 321 const char compat[] = "arm,pl011\0arm,primecell"; 322 const char clocknames[] = "uartclk\0apb_pclk"; 323 324 sysbus_create_simple("pl011", base, pic[irq]); 325 326 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 327 qemu_fdt_add_subnode(vbi->fdt, nodename); 328 /* Note that we can't use setprop_string because of the embedded NUL */ 329 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 330 compat, sizeof(compat)); 331 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 332 2, base, 2, size); 333 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 334 GIC_FDT_IRQ_TYPE_SPI, irq, 335 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 336 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 337 vbi->clock_phandle, vbi->clock_phandle); 338 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 339 clocknames, sizeof(clocknames)); 340 g_free(nodename); 341 } 342 343 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 344 { 345 int i; 346 hwaddr size = vbi->memmap[VIRT_MMIO].size; 347 348 /* Note that we have to create the transports in forwards order 349 * so that command line devices are inserted lowest address first, 350 * and then add dtb nodes in reverse order so that they appear in 351 * the finished device tree lowest address first. 352 */ 353 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 354 int irq = vbi->irqmap[VIRT_MMIO] + i; 355 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 356 357 sysbus_create_simple("virtio-mmio", base, pic[irq]); 358 } 359 360 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 361 char *nodename; 362 int irq = vbi->irqmap[VIRT_MMIO] + i; 363 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 364 365 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 366 qemu_fdt_add_subnode(vbi->fdt, nodename); 367 qemu_fdt_setprop_string(vbi->fdt, nodename, 368 "compatible", "virtio,mmio"); 369 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 370 2, base, 2, size); 371 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 372 GIC_FDT_IRQ_TYPE_SPI, irq, 373 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 374 g_free(nodename); 375 } 376 } 377 378 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 379 { 380 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 381 382 *fdt_size = board->fdt_size; 383 return board->fdt; 384 } 385 386 static void machvirt_init(MachineState *machine) 387 { 388 qemu_irq pic[NUM_IRQS]; 389 MemoryRegion *sysmem = get_system_memory(); 390 int n; 391 MemoryRegion *ram = g_new(MemoryRegion, 1); 392 const char *cpu_model = machine->cpu_model; 393 VirtBoardInfo *vbi; 394 395 if (!cpu_model) { 396 cpu_model = "cortex-a15"; 397 } 398 399 vbi = find_machine_info(cpu_model); 400 401 if (!vbi) { 402 error_report("mach-virt: CPU %s not supported", cpu_model); 403 exit(1); 404 } 405 406 vbi->smp_cpus = smp_cpus; 407 408 /* 409 * Only supported method of starting secondary CPUs is PSCI and 410 * PSCI is not yet supported with TCG, so limit smp_cpus to 1 411 * if we're not using KVM. 412 */ 413 if (!kvm_enabled() && smp_cpus > 1) { 414 error_report("mach-virt: must enable KVM to use multiple CPUs"); 415 exit(1); 416 } 417 418 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 419 error_report("mach-virt: cannot model more than 30GB RAM"); 420 exit(1); 421 } 422 423 create_fdt(vbi); 424 fdt_add_timer_nodes(vbi); 425 426 for (n = 0; n < smp_cpus; n++) { 427 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); 428 Object *cpuobj; 429 430 if (!oc) { 431 fprintf(stderr, "Unable to find CPU definition\n"); 432 exit(1); 433 } 434 cpuobj = object_new(object_class_get_name(oc)); 435 436 /* Secondary CPUs start in PSCI powered-down state */ 437 if (n > 0) { 438 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 439 } 440 441 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 442 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 443 "reset-cbar", &error_abort); 444 } 445 446 object_property_set_bool(cpuobj, true, "realized", NULL); 447 } 448 fdt_add_cpu_nodes(vbi); 449 450 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size); 451 vmstate_register_ram_global(ram); 452 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 453 454 create_gic(vbi, pic); 455 456 create_uart(vbi, pic); 457 458 /* Create mmio transports, so the user can create virtio backends 459 * (which will be automatically plugged in to the transports). If 460 * no backend is created the transport will just sit harmlessly idle. 461 */ 462 create_virtio_devices(vbi, pic); 463 464 vbi->bootinfo.ram_size = machine->ram_size; 465 vbi->bootinfo.kernel_filename = machine->kernel_filename; 466 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 467 vbi->bootinfo.initrd_filename = machine->initrd_filename; 468 vbi->bootinfo.nb_cpus = smp_cpus; 469 vbi->bootinfo.board_id = -1; 470 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 471 vbi->bootinfo.get_dtb = machvirt_dtb; 472 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 473 } 474 475 static QEMUMachine machvirt_a15_machine = { 476 .name = "virt", 477 .desc = "ARM Virtual Machine", 478 .init = machvirt_init, 479 .max_cpus = 4, 480 }; 481 482 static void machvirt_machine_init(void) 483 { 484 qemu_register_machine(&machvirt_a15_machine); 485 } 486 487 machine_init(machvirt_machine_init); 488