xref: /openbmc/qemu/hw/arm/virt.c (revision 8e6fe6b8)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/sysemu.h"
48 #include "sysemu/kvm.h"
49 #include "hw/loader.h"
50 #include "exec/address-spaces.h"
51 #include "qemu/bitops.h"
52 #include "qemu/error-report.h"
53 #include "qemu/module.h"
54 #include "hw/pci-host/gpex.h"
55 #include "hw/arm/sysbus-fdt.h"
56 #include "hw/platform-bus.h"
57 #include "hw/arm/fdt.h"
58 #include "hw/intc/arm_gic.h"
59 #include "hw/intc/arm_gicv3_common.h"
60 #include "kvm_arm.h"
61 #include "hw/firmware/smbios.h"
62 #include "qapi/visitor.h"
63 #include "standard-headers/linux/input.h"
64 #include "hw/arm/smmuv3.h"
65 #include "hw/acpi/acpi.h"
66 #include "target/arm/internals.h"
67 
68 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
69     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
70                                                     void *data) \
71     { \
72         MachineClass *mc = MACHINE_CLASS(oc); \
73         virt_machine_##major##_##minor##_options(mc); \
74         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
75         if (latest) { \
76             mc->alias = "virt"; \
77         } \
78     } \
79     static const TypeInfo machvirt_##major##_##minor##_info = { \
80         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
81         .parent = TYPE_VIRT_MACHINE, \
82         .class_init = virt_##major##_##minor##_class_init, \
83     }; \
84     static void machvirt_machine_##major##_##minor##_init(void) \
85     { \
86         type_register_static(&machvirt_##major##_##minor##_info); \
87     } \
88     type_init(machvirt_machine_##major##_##minor##_init);
89 
90 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
91     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
92 #define DEFINE_VIRT_MACHINE(major, minor) \
93     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
94 
95 
96 /* Number of external interrupt lines to configure the GIC with */
97 #define NUM_IRQS 256
98 
99 #define PLATFORM_BUS_NUM_IRQS 64
100 
101 /* Legacy RAM limit in GB (< version 4.0) */
102 #define LEGACY_RAMLIMIT_GB 255
103 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
104 
105 /* Addresses and sizes of our components.
106  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
107  * 128MB..256MB is used for miscellaneous device I/O.
108  * 256MB..1GB is reserved for possible future PCI support (ie where the
109  * PCI memory window will go if we add a PCI host controller).
110  * 1GB and up is RAM (which may happily spill over into the
111  * high memory region beyond 4GB).
112  * This represents a compromise between how much RAM can be given to
113  * a 32 bit VM and leaving space for expansion and in particular for PCI.
114  * Note that devices should generally be placed at multiples of 0x10000,
115  * to accommodate guests using 64K pages.
116  */
117 static const MemMapEntry base_memmap[] = {
118     /* Space up to 0x8000000 is reserved for a boot ROM */
119     [VIRT_FLASH] =              {          0, 0x08000000 },
120     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
121     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
122     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
123     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
124     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
125     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
126     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
127     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
128     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
129     /* This redistributor space allows up to 2*64kB*123 CPUs */
130     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
131     [VIRT_UART] =               { 0x09000000, 0x00001000 },
132     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
133     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
134     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
135     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
136     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
137     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
138     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
139     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
140     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
141     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
142     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
143     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
144     /* Actual RAM size depends on initial RAM and device memory settings */
145     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
146 };
147 
148 /*
149  * Highmem IO Regions: This memory map is floating, located after the RAM.
150  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
151  * top of the RAM, so that its base get the same alignment as the size,
152  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
153  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
154  * Note the extended_memmap is sized so that it eventually also includes the
155  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
156  * index of base_memmap).
157  */
158 static MemMapEntry extended_memmap[] = {
159     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
160     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
161     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
162     /* Second PCIe window */
163     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
164 };
165 
166 static const int a15irqmap[] = {
167     [VIRT_UART] = 1,
168     [VIRT_RTC] = 2,
169     [VIRT_PCIE] = 3, /* ... to 6 */
170     [VIRT_GPIO] = 7,
171     [VIRT_SECURE_UART] = 8,
172     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
173     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
174     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
175     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
176 };
177 
178 static const char *valid_cpus[] = {
179     ARM_CPU_TYPE_NAME("cortex-a15"),
180     ARM_CPU_TYPE_NAME("cortex-a53"),
181     ARM_CPU_TYPE_NAME("cortex-a57"),
182     ARM_CPU_TYPE_NAME("cortex-a72"),
183     ARM_CPU_TYPE_NAME("host"),
184     ARM_CPU_TYPE_NAME("max"),
185 };
186 
187 static bool cpu_type_valid(const char *cpu)
188 {
189     int i;
190 
191     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
192         if (strcmp(cpu, valid_cpus[i]) == 0) {
193             return true;
194         }
195     }
196     return false;
197 }
198 
199 static void create_fdt(VirtMachineState *vms)
200 {
201     void *fdt = create_device_tree(&vms->fdt_size);
202 
203     if (!fdt) {
204         error_report("create_device_tree() failed");
205         exit(1);
206     }
207 
208     vms->fdt = fdt;
209 
210     /* Header */
211     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
212     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
213     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
214 
215     /* /chosen must exist for load_dtb to fill in necessary properties later */
216     qemu_fdt_add_subnode(fdt, "/chosen");
217 
218     /* Clock node, for the benefit of the UART. The kernel device tree
219      * binding documentation claims the PL011 node clock properties are
220      * optional but in practice if you omit them the kernel refuses to
221      * probe for the device.
222      */
223     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
224     qemu_fdt_add_subnode(fdt, "/apb-pclk");
225     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
226     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
227     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
228     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
229                                 "clk24mhz");
230     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
231 
232     if (have_numa_distance) {
233         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
234         uint32_t *matrix = g_malloc0(size);
235         int idx, i, j;
236 
237         for (i = 0; i < nb_numa_nodes; i++) {
238             for (j = 0; j < nb_numa_nodes; j++) {
239                 idx = (i * nb_numa_nodes + j) * 3;
240                 matrix[idx + 0] = cpu_to_be32(i);
241                 matrix[idx + 1] = cpu_to_be32(j);
242                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
243             }
244         }
245 
246         qemu_fdt_add_subnode(fdt, "/distance-map");
247         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
248                                 "numa-distance-map-v1");
249         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
250                          matrix, size);
251         g_free(matrix);
252     }
253 }
254 
255 static void fdt_add_timer_nodes(const VirtMachineState *vms)
256 {
257     /* On real hardware these interrupts are level-triggered.
258      * On KVM they were edge-triggered before host kernel version 4.4,
259      * and level-triggered afterwards.
260      * On emulated QEMU they are level-triggered.
261      *
262      * Getting the DTB info about them wrong is awkward for some
263      * guest kernels:
264      *  pre-4.8 ignore the DT and leave the interrupt configured
265      *   with whatever the GIC reset value (or the bootloader) left it at
266      *  4.8 before rc6 honour the incorrect data by programming it back
267      *   into the GIC, causing problems
268      *  4.8rc6 and later ignore the DT and always write "level triggered"
269      *   into the GIC
270      *
271      * For backwards-compatibility, virt-2.8 and earlier will continue
272      * to say these are edge-triggered, but later machines will report
273      * the correct information.
274      */
275     ARMCPU *armcpu;
276     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
277     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
278 
279     if (vmc->claim_edge_triggered_timers) {
280         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
281     }
282 
283     if (vms->gic_version == 2) {
284         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
285                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
286                              (1 << vms->smp_cpus) - 1);
287     }
288 
289     qemu_fdt_add_subnode(vms->fdt, "/timer");
290 
291     armcpu = ARM_CPU(qemu_get_cpu(0));
292     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
293         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
294         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
295                          compat, sizeof(compat));
296     } else {
297         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
298                                 "arm,armv7-timer");
299     }
300     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
301     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
302                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
303                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
304                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
305                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
306 }
307 
308 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
309 {
310     int cpu;
311     int addr_cells = 1;
312     const MachineState *ms = MACHINE(vms);
313 
314     /*
315      * From Documentation/devicetree/bindings/arm/cpus.txt
316      *  On ARM v8 64-bit systems value should be set to 2,
317      *  that corresponds to the MPIDR_EL1 register size.
318      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
319      *  in the system, #address-cells can be set to 1, since
320      *  MPIDR_EL1[63:32] bits are not used for CPUs
321      *  identification.
322      *
323      *  Here we actually don't know whether our system is 32- or 64-bit one.
324      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
325      *  at least one of them has Aff3 populated, we set #address-cells to 2.
326      */
327     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
328         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
329 
330         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
331             addr_cells = 2;
332             break;
333         }
334     }
335 
336     qemu_fdt_add_subnode(vms->fdt, "/cpus");
337     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
338     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
339 
340     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
341         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
342         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
343         CPUState *cs = CPU(armcpu);
344 
345         qemu_fdt_add_subnode(vms->fdt, nodename);
346         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
347         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
348                                     armcpu->dtb_compatible);
349 
350         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
351             && vms->smp_cpus > 1) {
352             qemu_fdt_setprop_string(vms->fdt, nodename,
353                                         "enable-method", "psci");
354         }
355 
356         if (addr_cells == 2) {
357             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
358                                  armcpu->mp_affinity);
359         } else {
360             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
361                                   armcpu->mp_affinity);
362         }
363 
364         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
365             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
366                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
367         }
368 
369         g_free(nodename);
370     }
371 }
372 
373 static void fdt_add_its_gic_node(VirtMachineState *vms)
374 {
375     char *nodename;
376 
377     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
378     nodename = g_strdup_printf("/intc/its@%" PRIx64,
379                                vms->memmap[VIRT_GIC_ITS].base);
380     qemu_fdt_add_subnode(vms->fdt, nodename);
381     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
382                             "arm,gic-v3-its");
383     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
384     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
385                                  2, vms->memmap[VIRT_GIC_ITS].base,
386                                  2, vms->memmap[VIRT_GIC_ITS].size);
387     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
388     g_free(nodename);
389 }
390 
391 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
392 {
393     char *nodename;
394 
395     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
396                                vms->memmap[VIRT_GIC_V2M].base);
397     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
398     qemu_fdt_add_subnode(vms->fdt, nodename);
399     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
400                             "arm,gic-v2m-frame");
401     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
402     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
403                                  2, vms->memmap[VIRT_GIC_V2M].base,
404                                  2, vms->memmap[VIRT_GIC_V2M].size);
405     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
406     g_free(nodename);
407 }
408 
409 static void fdt_add_gic_node(VirtMachineState *vms)
410 {
411     char *nodename;
412 
413     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
414     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
415 
416     nodename = g_strdup_printf("/intc@%" PRIx64,
417                                vms->memmap[VIRT_GIC_DIST].base);
418     qemu_fdt_add_subnode(vms->fdt, nodename);
419     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
420     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
421     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
422     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
423     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
424     if (vms->gic_version == 3) {
425         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
426 
427         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
428                                 "arm,gic-v3");
429 
430         qemu_fdt_setprop_cell(vms->fdt, nodename,
431                               "#redistributor-regions", nb_redist_regions);
432 
433         if (nb_redist_regions == 1) {
434             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
435                                          2, vms->memmap[VIRT_GIC_DIST].base,
436                                          2, vms->memmap[VIRT_GIC_DIST].size,
437                                          2, vms->memmap[VIRT_GIC_REDIST].base,
438                                          2, vms->memmap[VIRT_GIC_REDIST].size);
439         } else {
440             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
441                                  2, vms->memmap[VIRT_GIC_DIST].base,
442                                  2, vms->memmap[VIRT_GIC_DIST].size,
443                                  2, vms->memmap[VIRT_GIC_REDIST].base,
444                                  2, vms->memmap[VIRT_GIC_REDIST].size,
445                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
446                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
447         }
448 
449         if (vms->virt) {
450             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
451                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
452                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
453         }
454     } else {
455         /* 'cortex-a15-gic' means 'GIC v2' */
456         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
457                                 "arm,cortex-a15-gic");
458         if (!vms->virt) {
459             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
460                                          2, vms->memmap[VIRT_GIC_DIST].base,
461                                          2, vms->memmap[VIRT_GIC_DIST].size,
462                                          2, vms->memmap[VIRT_GIC_CPU].base,
463                                          2, vms->memmap[VIRT_GIC_CPU].size);
464         } else {
465             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
466                                          2, vms->memmap[VIRT_GIC_DIST].base,
467                                          2, vms->memmap[VIRT_GIC_DIST].size,
468                                          2, vms->memmap[VIRT_GIC_CPU].base,
469                                          2, vms->memmap[VIRT_GIC_CPU].size,
470                                          2, vms->memmap[VIRT_GIC_HYP].base,
471                                          2, vms->memmap[VIRT_GIC_HYP].size,
472                                          2, vms->memmap[VIRT_GIC_VCPU].base,
473                                          2, vms->memmap[VIRT_GIC_VCPU].size);
474             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
475                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
476                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
477         }
478     }
479 
480     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
481     g_free(nodename);
482 }
483 
484 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
485 {
486     CPUState *cpu;
487     ARMCPU *armcpu;
488     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
489 
490     CPU_FOREACH(cpu) {
491         armcpu = ARM_CPU(cpu);
492         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
493             return;
494         }
495         if (kvm_enabled()) {
496             if (kvm_irqchip_in_kernel()) {
497                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
498             }
499             kvm_arm_pmu_init(cpu);
500         }
501     }
502 
503     if (vms->gic_version == 2) {
504         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
505                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
506                              (1 << vms->smp_cpus) - 1);
507     }
508 
509     armcpu = ARM_CPU(qemu_get_cpu(0));
510     qemu_fdt_add_subnode(vms->fdt, "/pmu");
511     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
512         const char compat[] = "arm,armv8-pmuv3";
513         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
514                          compat, sizeof(compat));
515         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
516                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
517     }
518 }
519 
520 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
521 {
522     const char *itsclass = its_class_name();
523     DeviceState *dev;
524 
525     if (!itsclass) {
526         /* Do nothing if not supported */
527         return;
528     }
529 
530     dev = qdev_create(NULL, itsclass);
531 
532     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
533                              &error_abort);
534     qdev_init_nofail(dev);
535     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
536 
537     fdt_add_its_gic_node(vms);
538 }
539 
540 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
541 {
542     int i;
543     int irq = vms->irqmap[VIRT_GIC_V2M];
544     DeviceState *dev;
545 
546     dev = qdev_create(NULL, "arm-gicv2m");
547     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
548     qdev_prop_set_uint32(dev, "base-spi", irq);
549     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
550     qdev_init_nofail(dev);
551 
552     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
553         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
554     }
555 
556     fdt_add_v2m_gic_node(vms);
557 }
558 
559 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
560 {
561     /* We create a standalone GIC */
562     DeviceState *gicdev;
563     SysBusDevice *gicbusdev;
564     const char *gictype;
565     int type = vms->gic_version, i;
566     uint32_t nb_redist_regions = 0;
567 
568     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
569 
570     gicdev = qdev_create(NULL, gictype);
571     qdev_prop_set_uint32(gicdev, "revision", type);
572     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
573     /* Note that the num-irq property counts both internal and external
574      * interrupts; there are always 32 of the former (mandated by GIC spec).
575      */
576     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
577     if (!kvm_irqchip_in_kernel()) {
578         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
579     }
580 
581     if (type == 3) {
582         uint32_t redist0_capacity =
583                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
584         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
585 
586         nb_redist_regions = virt_gicv3_redist_region_count(vms);
587 
588         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
589                              nb_redist_regions);
590         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
591 
592         if (nb_redist_regions == 2) {
593             uint32_t redist1_capacity =
594                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
595 
596             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
597                 MIN(smp_cpus - redist0_count, redist1_capacity));
598         }
599     } else {
600         if (!kvm_irqchip_in_kernel()) {
601             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
602                               vms->virt);
603         }
604     }
605     qdev_init_nofail(gicdev);
606     gicbusdev = SYS_BUS_DEVICE(gicdev);
607     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
608     if (type == 3) {
609         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
610         if (nb_redist_regions == 2) {
611             sysbus_mmio_map(gicbusdev, 2,
612                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
613         }
614     } else {
615         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
616         if (vms->virt) {
617             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
618             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
619         }
620     }
621 
622     /* Wire the outputs from each CPU's generic timer and the GICv3
623      * maintenance interrupt signal to the appropriate GIC PPI inputs,
624      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
625      */
626     for (i = 0; i < smp_cpus; i++) {
627         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
628         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
629         int irq;
630         /* Mapping from the output timer irq lines from the CPU to the
631          * GIC PPI inputs we use for the virt board.
632          */
633         const int timer_irq[] = {
634             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
635             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
636             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
637             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
638         };
639 
640         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
641             qdev_connect_gpio_out(cpudev, irq,
642                                   qdev_get_gpio_in(gicdev,
643                                                    ppibase + timer_irq[irq]));
644         }
645 
646         if (type == 3) {
647             qemu_irq irq = qdev_get_gpio_in(gicdev,
648                                             ppibase + ARCH_GIC_MAINT_IRQ);
649             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
650                                         0, irq);
651         } else if (vms->virt) {
652             qemu_irq irq = qdev_get_gpio_in(gicdev,
653                                             ppibase + ARCH_GIC_MAINT_IRQ);
654             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
655         }
656 
657         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
658                                     qdev_get_gpio_in(gicdev, ppibase
659                                                      + VIRTUAL_PMU_IRQ));
660 
661         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
662         sysbus_connect_irq(gicbusdev, i + smp_cpus,
663                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
664         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
665                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
666         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
667                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
668     }
669 
670     for (i = 0; i < NUM_IRQS; i++) {
671         pic[i] = qdev_get_gpio_in(gicdev, i);
672     }
673 
674     fdt_add_gic_node(vms);
675 
676     if (type == 3 && vms->its) {
677         create_its(vms, gicdev);
678     } else if (type == 2) {
679         create_v2m(vms, pic);
680     }
681 }
682 
683 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
684                         MemoryRegion *mem, Chardev *chr)
685 {
686     char *nodename;
687     hwaddr base = vms->memmap[uart].base;
688     hwaddr size = vms->memmap[uart].size;
689     int irq = vms->irqmap[uart];
690     const char compat[] = "arm,pl011\0arm,primecell";
691     const char clocknames[] = "uartclk\0apb_pclk";
692     DeviceState *dev = qdev_create(NULL, "pl011");
693     SysBusDevice *s = SYS_BUS_DEVICE(dev);
694 
695     qdev_prop_set_chr(dev, "chardev", chr);
696     qdev_init_nofail(dev);
697     memory_region_add_subregion(mem, base,
698                                 sysbus_mmio_get_region(s, 0));
699     sysbus_connect_irq(s, 0, pic[irq]);
700 
701     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
702     qemu_fdt_add_subnode(vms->fdt, nodename);
703     /* Note that we can't use setprop_string because of the embedded NUL */
704     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
705                          compat, sizeof(compat));
706     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
707                                      2, base, 2, size);
708     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
709                                GIC_FDT_IRQ_TYPE_SPI, irq,
710                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
711     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
712                                vms->clock_phandle, vms->clock_phandle);
713     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
714                          clocknames, sizeof(clocknames));
715 
716     if (uart == VIRT_UART) {
717         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
718     } else {
719         /* Mark as not usable by the normal world */
720         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
721         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
722 
723         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
724         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
725                                 nodename);
726     }
727 
728     g_free(nodename);
729 }
730 
731 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
732 {
733     char *nodename;
734     hwaddr base = vms->memmap[VIRT_RTC].base;
735     hwaddr size = vms->memmap[VIRT_RTC].size;
736     int irq = vms->irqmap[VIRT_RTC];
737     const char compat[] = "arm,pl031\0arm,primecell";
738 
739     sysbus_create_simple("pl031", base, pic[irq]);
740 
741     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
742     qemu_fdt_add_subnode(vms->fdt, nodename);
743     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
744     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
745                                  2, base, 2, size);
746     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
747                            GIC_FDT_IRQ_TYPE_SPI, irq,
748                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
749     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
750     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
751     g_free(nodename);
752 }
753 
754 static DeviceState *gpio_key_dev;
755 static void virt_powerdown_req(Notifier *n, void *opaque)
756 {
757     /* use gpio Pin 3 for power button event */
758     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
759 }
760 
761 static Notifier virt_system_powerdown_notifier = {
762     .notify = virt_powerdown_req
763 };
764 
765 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
766 {
767     char *nodename;
768     DeviceState *pl061_dev;
769     hwaddr base = vms->memmap[VIRT_GPIO].base;
770     hwaddr size = vms->memmap[VIRT_GPIO].size;
771     int irq = vms->irqmap[VIRT_GPIO];
772     const char compat[] = "arm,pl061\0arm,primecell";
773 
774     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
775 
776     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
777     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
778     qemu_fdt_add_subnode(vms->fdt, nodename);
779     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
780                                  2, base, 2, size);
781     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
782     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
783     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
784     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
785                            GIC_FDT_IRQ_TYPE_SPI, irq,
786                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
787     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
788     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
789     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
790 
791     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
792                                         qdev_get_gpio_in(pl061_dev, 3));
793     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
794     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
795     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
796     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
797 
798     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
799     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
800                             "label", "GPIO Key Poweroff");
801     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
802                           KEY_POWER);
803     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
804                            "gpios", phandle, 3, 0);
805 
806     /* connect powerdown request */
807     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
808 
809     g_free(nodename);
810 }
811 
812 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
813 {
814     int i;
815     hwaddr size = vms->memmap[VIRT_MMIO].size;
816 
817     /* We create the transports in forwards order. Since qbus_realize()
818      * prepends (not appends) new child buses, the incrementing loop below will
819      * create a list of virtio-mmio buses with decreasing base addresses.
820      *
821      * When a -device option is processed from the command line,
822      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
823      * order. The upshot is that -device options in increasing command line
824      * order are mapped to virtio-mmio buses with decreasing base addresses.
825      *
826      * When this code was originally written, that arrangement ensured that the
827      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
828      * the first -device on the command line. (The end-to-end order is a
829      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
830      * guest kernel's name-to-address assignment strategy.)
831      *
832      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
833      * the message, if not necessarily the code, of commit 70161ff336.
834      * Therefore the loop now establishes the inverse of the original intent.
835      *
836      * Unfortunately, we can't counteract the kernel change by reversing the
837      * loop; it would break existing command lines.
838      *
839      * In any case, the kernel makes no guarantee about the stability of
840      * enumeration order of virtio devices (as demonstrated by it changing
841      * between kernel versions). For reliable and stable identification
842      * of disks users must use UUIDs or similar mechanisms.
843      */
844     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
845         int irq = vms->irqmap[VIRT_MMIO] + i;
846         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
847 
848         sysbus_create_simple("virtio-mmio", base, pic[irq]);
849     }
850 
851     /* We add dtb nodes in reverse order so that they appear in the finished
852      * device tree lowest address first.
853      *
854      * Note that this mapping is independent of the loop above. The previous
855      * loop influences virtio device to virtio transport assignment, whereas
856      * this loop controls how virtio transports are laid out in the dtb.
857      */
858     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
859         char *nodename;
860         int irq = vms->irqmap[VIRT_MMIO] + i;
861         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
862 
863         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
864         qemu_fdt_add_subnode(vms->fdt, nodename);
865         qemu_fdt_setprop_string(vms->fdt, nodename,
866                                 "compatible", "virtio,mmio");
867         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
868                                      2, base, 2, size);
869         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
870                                GIC_FDT_IRQ_TYPE_SPI, irq,
871                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
872         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
873         g_free(nodename);
874     }
875 }
876 
877 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
878 
879 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
880                                         const char *name,
881                                         const char *alias_prop_name)
882 {
883     /*
884      * Create a single flash device.  We use the same parameters as
885      * the flash devices on the Versatile Express board.
886      */
887     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
888 
889     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
890     qdev_prop_set_uint8(dev, "width", 4);
891     qdev_prop_set_uint8(dev, "device-width", 2);
892     qdev_prop_set_bit(dev, "big-endian", false);
893     qdev_prop_set_uint16(dev, "id0", 0x89);
894     qdev_prop_set_uint16(dev, "id1", 0x18);
895     qdev_prop_set_uint16(dev, "id2", 0x00);
896     qdev_prop_set_uint16(dev, "id3", 0x00);
897     qdev_prop_set_string(dev, "name", name);
898     object_property_add_child(OBJECT(vms), name, OBJECT(dev),
899                               &error_abort);
900     object_property_add_alias(OBJECT(vms), alias_prop_name,
901                               OBJECT(dev), "drive", &error_abort);
902     return PFLASH_CFI01(dev);
903 }
904 
905 static void virt_flash_create(VirtMachineState *vms)
906 {
907     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
908     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
909 }
910 
911 static void virt_flash_map1(PFlashCFI01 *flash,
912                             hwaddr base, hwaddr size,
913                             MemoryRegion *sysmem)
914 {
915     DeviceState *dev = DEVICE(flash);
916 
917     assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
918     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
919     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
920     qdev_init_nofail(dev);
921 
922     memory_region_add_subregion(sysmem, base,
923                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
924                                                        0));
925 }
926 
927 static void virt_flash_map(VirtMachineState *vms,
928                            MemoryRegion *sysmem,
929                            MemoryRegion *secure_sysmem)
930 {
931     /*
932      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
933      * sysmem is the system memory space. secure_sysmem is the secure view
934      * of the system, and the first flash device should be made visible only
935      * there. The second flash device is visible to both secure and nonsecure.
936      * If sysmem == secure_sysmem this means there is no separate Secure
937      * address space and both flash devices are generally visible.
938      */
939     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
940     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
941 
942     virt_flash_map1(vms->flash[0], flashbase, flashsize,
943                     secure_sysmem);
944     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
945                     sysmem);
946 }
947 
948 static void virt_flash_fdt(VirtMachineState *vms,
949                            MemoryRegion *sysmem,
950                            MemoryRegion *secure_sysmem)
951 {
952     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
953     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
954     char *nodename;
955 
956     if (sysmem == secure_sysmem) {
957         /* Report both flash devices as a single node in the DT */
958         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
959         qemu_fdt_add_subnode(vms->fdt, nodename);
960         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
961         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
962                                      2, flashbase, 2, flashsize,
963                                      2, flashbase + flashsize, 2, flashsize);
964         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
965         g_free(nodename);
966     } else {
967         /*
968          * Report the devices as separate nodes so we can mark one as
969          * only visible to the secure world.
970          */
971         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
972         qemu_fdt_add_subnode(vms->fdt, nodename);
973         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
974         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
975                                      2, flashbase, 2, flashsize);
976         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
977         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
978         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
979         g_free(nodename);
980 
981         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
982         qemu_fdt_add_subnode(vms->fdt, nodename);
983         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
984         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
985                                      2, flashbase + flashsize, 2, flashsize);
986         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
987         g_free(nodename);
988     }
989 }
990 
991 static bool virt_firmware_init(VirtMachineState *vms,
992                                MemoryRegion *sysmem,
993                                MemoryRegion *secure_sysmem)
994 {
995     int i;
996     BlockBackend *pflash_blk0;
997 
998     /* Map legacy -drive if=pflash to machine properties */
999     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1000         pflash_cfi01_legacy_drive(vms->flash[i],
1001                                   drive_get(IF_PFLASH, 0, i));
1002     }
1003 
1004     virt_flash_map(vms, sysmem, secure_sysmem);
1005 
1006     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1007 
1008     if (bios_name) {
1009         char *fname;
1010         MemoryRegion *mr;
1011         int image_size;
1012 
1013         if (pflash_blk0) {
1014             error_report("The contents of the first flash device may be "
1015                          "specified with -bios or with -drive if=pflash... "
1016                          "but you cannot use both options at once");
1017             exit(1);
1018         }
1019 
1020         /* Fall back to -bios */
1021 
1022         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1023         if (!fname) {
1024             error_report("Could not find ROM image '%s'", bios_name);
1025             exit(1);
1026         }
1027         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1028         image_size = load_image_mr(fname, mr);
1029         g_free(fname);
1030         if (image_size < 0) {
1031             error_report("Could not load ROM image '%s'", bios_name);
1032             exit(1);
1033         }
1034     }
1035 
1036     return pflash_blk0 || bios_name;
1037 }
1038 
1039 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1040 {
1041     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1042     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1043     FWCfgState *fw_cfg;
1044     char *nodename;
1045 
1046     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1047     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1048 
1049     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1050     qemu_fdt_add_subnode(vms->fdt, nodename);
1051     qemu_fdt_setprop_string(vms->fdt, nodename,
1052                             "compatible", "qemu,fw-cfg-mmio");
1053     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1054                                  2, base, 2, size);
1055     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1056     g_free(nodename);
1057     return fw_cfg;
1058 }
1059 
1060 static void create_pcie_irq_map(const VirtMachineState *vms,
1061                                 uint32_t gic_phandle,
1062                                 int first_irq, const char *nodename)
1063 {
1064     int devfn, pin;
1065     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1066     uint32_t *irq_map = full_irq_map;
1067 
1068     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1069         for (pin = 0; pin < 4; pin++) {
1070             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1071             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1072             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1073             int i;
1074 
1075             uint32_t map[] = {
1076                 devfn << 8, 0, 0,                           /* devfn */
1077                 pin + 1,                                    /* PCI pin */
1078                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1079 
1080             /* Convert map to big endian */
1081             for (i = 0; i < 10; i++) {
1082                 irq_map[i] = cpu_to_be32(map[i]);
1083             }
1084             irq_map += 10;
1085         }
1086     }
1087 
1088     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1089                      full_irq_map, sizeof(full_irq_map));
1090 
1091     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1092                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1093                            0x7           /* PCI irq */);
1094 }
1095 
1096 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1097                         PCIBus *bus)
1098 {
1099     char *node;
1100     const char compat[] = "arm,smmu-v3";
1101     int irq =  vms->irqmap[VIRT_SMMU];
1102     int i;
1103     hwaddr base = vms->memmap[VIRT_SMMU].base;
1104     hwaddr size = vms->memmap[VIRT_SMMU].size;
1105     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1106     DeviceState *dev;
1107 
1108     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1109         return;
1110     }
1111 
1112     dev = qdev_create(NULL, "arm-smmuv3");
1113 
1114     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1115                              &error_abort);
1116     qdev_init_nofail(dev);
1117     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1118     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1119         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1120     }
1121 
1122     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1123     qemu_fdt_add_subnode(vms->fdt, node);
1124     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1125     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1126 
1127     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1128             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1129             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1130             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1131             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1132 
1133     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1134                      sizeof(irq_names));
1135 
1136     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1137     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1138     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1139 
1140     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1141 
1142     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1143     g_free(node);
1144 }
1145 
1146 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1147 {
1148     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1149     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1150     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1151     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1152     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1153     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1154     hwaddr base_ecam, size_ecam;
1155     hwaddr base = base_mmio;
1156     int nr_pcie_buses;
1157     int irq = vms->irqmap[VIRT_PCIE];
1158     MemoryRegion *mmio_alias;
1159     MemoryRegion *mmio_reg;
1160     MemoryRegion *ecam_alias;
1161     MemoryRegion *ecam_reg;
1162     DeviceState *dev;
1163     char *nodename;
1164     int i, ecam_id;
1165     PCIHostState *pci;
1166 
1167     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1168     qdev_init_nofail(dev);
1169 
1170     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1171     base_ecam = vms->memmap[ecam_id].base;
1172     size_ecam = vms->memmap[ecam_id].size;
1173     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1174     /* Map only the first size_ecam bytes of ECAM space */
1175     ecam_alias = g_new0(MemoryRegion, 1);
1176     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1177     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1178                              ecam_reg, 0, size_ecam);
1179     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1180 
1181     /* Map the MMIO window into system address space so as to expose
1182      * the section of PCI MMIO space which starts at the same base address
1183      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1184      * the window).
1185      */
1186     mmio_alias = g_new0(MemoryRegion, 1);
1187     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1188     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1189                              mmio_reg, base_mmio, size_mmio);
1190     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1191 
1192     if (vms->highmem) {
1193         /* Map high MMIO space */
1194         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1195 
1196         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1197                                  mmio_reg, base_mmio_high, size_mmio_high);
1198         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1199                                     high_mmio_alias);
1200     }
1201 
1202     /* Map IO port space */
1203     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1204 
1205     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1206         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1207         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1208     }
1209 
1210     pci = PCI_HOST_BRIDGE(dev);
1211     if (pci->bus) {
1212         for (i = 0; i < nb_nics; i++) {
1213             NICInfo *nd = &nd_table[i];
1214 
1215             if (!nd->model) {
1216                 nd->model = g_strdup("virtio");
1217             }
1218 
1219             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1220         }
1221     }
1222 
1223     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1224     qemu_fdt_add_subnode(vms->fdt, nodename);
1225     qemu_fdt_setprop_string(vms->fdt, nodename,
1226                             "compatible", "pci-host-ecam-generic");
1227     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1228     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1229     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1230     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1231     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1232                            nr_pcie_buses - 1);
1233     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1234 
1235     if (vms->msi_phandle) {
1236         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1237                                vms->msi_phandle);
1238     }
1239 
1240     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1241                                  2, base_ecam, 2, size_ecam);
1242 
1243     if (vms->highmem) {
1244         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1245                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1246                                      2, base_pio, 2, size_pio,
1247                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1248                                      2, base_mmio, 2, size_mmio,
1249                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1250                                      2, base_mmio_high,
1251                                      2, base_mmio_high, 2, size_mmio_high);
1252     } else {
1253         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1254                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1255                                      2, base_pio, 2, size_pio,
1256                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1257                                      2, base_mmio, 2, size_mmio);
1258     }
1259 
1260     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1261     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1262 
1263     if (vms->iommu) {
1264         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1265 
1266         create_smmu(vms, pic, pci->bus);
1267 
1268         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1269                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1270     }
1271 
1272     g_free(nodename);
1273 }
1274 
1275 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1276 {
1277     DeviceState *dev;
1278     SysBusDevice *s;
1279     int i;
1280     MemoryRegion *sysmem = get_system_memory();
1281 
1282     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1283     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1284     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1285     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1286     qdev_init_nofail(dev);
1287     vms->platform_bus_dev = dev;
1288 
1289     s = SYS_BUS_DEVICE(dev);
1290     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1291         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1292         sysbus_connect_irq(s, i, pic[irqn]);
1293     }
1294 
1295     memory_region_add_subregion(sysmem,
1296                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1297                                 sysbus_mmio_get_region(s, 0));
1298 }
1299 
1300 static void create_secure_ram(VirtMachineState *vms,
1301                               MemoryRegion *secure_sysmem)
1302 {
1303     MemoryRegion *secram = g_new(MemoryRegion, 1);
1304     char *nodename;
1305     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1306     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1307 
1308     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1309                            &error_fatal);
1310     memory_region_add_subregion(secure_sysmem, base, secram);
1311 
1312     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1313     qemu_fdt_add_subnode(vms->fdt, nodename);
1314     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1315     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1316     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1317     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1318 
1319     g_free(nodename);
1320 }
1321 
1322 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1323 {
1324     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1325                                                  bootinfo);
1326 
1327     *fdt_size = board->fdt_size;
1328     return board->fdt;
1329 }
1330 
1331 static void virt_build_smbios(VirtMachineState *vms)
1332 {
1333     MachineClass *mc = MACHINE_GET_CLASS(vms);
1334     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1335     uint8_t *smbios_tables, *smbios_anchor;
1336     size_t smbios_tables_len, smbios_anchor_len;
1337     const char *product = "QEMU Virtual Machine";
1338 
1339     if (kvm_enabled()) {
1340         product = "KVM Virtual Machine";
1341     }
1342 
1343     smbios_set_defaults("QEMU", product,
1344                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1345                         true, SMBIOS_ENTRY_POINT_30);
1346 
1347     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1348                       &smbios_anchor, &smbios_anchor_len);
1349 
1350     if (smbios_anchor) {
1351         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1352                         smbios_tables, smbios_tables_len);
1353         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1354                         smbios_anchor, smbios_anchor_len);
1355     }
1356 }
1357 
1358 static
1359 void virt_machine_done(Notifier *notifier, void *data)
1360 {
1361     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1362                                          machine_done);
1363     ARMCPU *cpu = ARM_CPU(first_cpu);
1364     struct arm_boot_info *info = &vms->bootinfo;
1365     AddressSpace *as = arm_boot_address_space(cpu, info);
1366 
1367     /*
1368      * If the user provided a dtb, we assume the dynamic sysbus nodes
1369      * already are integrated there. This corresponds to a use case where
1370      * the dynamic sysbus nodes are complex and their generation is not yet
1371      * supported. In that case the user can take charge of the guest dt
1372      * while qemu takes charge of the qom stuff.
1373      */
1374     if (info->dtb_filename == NULL) {
1375         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1376                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1377                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1378                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1379     }
1380     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1381         exit(1);
1382     }
1383 
1384     virt_acpi_setup(vms);
1385     virt_build_smbios(vms);
1386 }
1387 
1388 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1389 {
1390     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1391     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1392 
1393     if (!vmc->disallow_affinity_adjustment) {
1394         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1395          * GIC's target-list limitations. 32-bit KVM hosts currently
1396          * always create clusters of 4 CPUs, but that is expected to
1397          * change when they gain support for gicv3. When KVM is enabled
1398          * it will override the changes we make here, therefore our
1399          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1400          * and to improve SGI efficiency.
1401          */
1402         if (vms->gic_version == 3) {
1403             clustersz = GICV3_TARGETLIST_BITS;
1404         } else {
1405             clustersz = GIC_TARGETLIST_BITS;
1406         }
1407     }
1408     return arm_cpu_mp_affinity(idx, clustersz);
1409 }
1410 
1411 static void virt_set_memmap(VirtMachineState *vms)
1412 {
1413     MachineState *ms = MACHINE(vms);
1414     hwaddr base, device_memory_base, device_memory_size;
1415     int i;
1416 
1417     vms->memmap = extended_memmap;
1418 
1419     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1420         vms->memmap[i] = base_memmap[i];
1421     }
1422 
1423     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1424         error_report("unsupported number of memory slots: %"PRIu64,
1425                      ms->ram_slots);
1426         exit(EXIT_FAILURE);
1427     }
1428 
1429     /*
1430      * We compute the base of the high IO region depending on the
1431      * amount of initial and device memory. The device memory start/size
1432      * is aligned on 1GiB. We never put the high IO region below 256GiB
1433      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1434      * The device region size assumes 1GiB page max alignment per slot.
1435      */
1436     device_memory_base =
1437         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1438     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1439 
1440     /* Base address of the high IO region */
1441     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1442     if (base < device_memory_base) {
1443         error_report("maxmem/slots too huge");
1444         exit(EXIT_FAILURE);
1445     }
1446     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1447         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1448     }
1449 
1450     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1451         hwaddr size = extended_memmap[i].size;
1452 
1453         base = ROUND_UP(base, size);
1454         vms->memmap[i].base = base;
1455         vms->memmap[i].size = size;
1456         base += size;
1457     }
1458     vms->highest_gpa = base - 1;
1459     if (device_memory_size > 0) {
1460         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1461         ms->device_memory->base = device_memory_base;
1462         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1463                            "device-memory", device_memory_size);
1464     }
1465 }
1466 
1467 static void machvirt_init(MachineState *machine)
1468 {
1469     VirtMachineState *vms = VIRT_MACHINE(machine);
1470     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1471     MachineClass *mc = MACHINE_GET_CLASS(machine);
1472     const CPUArchIdList *possible_cpus;
1473     qemu_irq pic[NUM_IRQS];
1474     MemoryRegion *sysmem = get_system_memory();
1475     MemoryRegion *secure_sysmem = NULL;
1476     int n, virt_max_cpus;
1477     MemoryRegion *ram = g_new(MemoryRegion, 1);
1478     bool firmware_loaded;
1479     bool aarch64 = true;
1480 
1481     /*
1482      * In accelerated mode, the memory map is computed earlier in kvm_type()
1483      * to create a VM with the right number of IPA bits.
1484      */
1485     if (!vms->memmap) {
1486         virt_set_memmap(vms);
1487     }
1488 
1489     /* We can probe only here because during property set
1490      * KVM is not available yet
1491      */
1492     if (vms->gic_version <= 0) {
1493         /* "host" or "max" */
1494         if (!kvm_enabled()) {
1495             if (vms->gic_version == 0) {
1496                 error_report("gic-version=host requires KVM");
1497                 exit(1);
1498             } else {
1499                 /* "max": currently means 3 for TCG */
1500                 vms->gic_version = 3;
1501             }
1502         } else {
1503             vms->gic_version = kvm_arm_vgic_probe();
1504             if (!vms->gic_version) {
1505                 error_report(
1506                     "Unable to determine GIC version supported by host");
1507                 exit(1);
1508             }
1509         }
1510     }
1511 
1512     if (!cpu_type_valid(machine->cpu_type)) {
1513         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1514         exit(1);
1515     }
1516 
1517     if (vms->secure) {
1518         if (kvm_enabled()) {
1519             error_report("mach-virt: KVM does not support Security extensions");
1520             exit(1);
1521         }
1522 
1523         /*
1524          * The Secure view of the world is the same as the NonSecure,
1525          * but with a few extra devices. Create it as a container region
1526          * containing the system memory at low priority; any secure-only
1527          * devices go in at higher priority and take precedence.
1528          */
1529         secure_sysmem = g_new(MemoryRegion, 1);
1530         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1531                            UINT64_MAX);
1532         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1533     }
1534 
1535     firmware_loaded = virt_firmware_init(vms, sysmem,
1536                                          secure_sysmem ?: sysmem);
1537 
1538     /* If we have an EL3 boot ROM then the assumption is that it will
1539      * implement PSCI itself, so disable QEMU's internal implementation
1540      * so it doesn't get in the way. Instead of starting secondary
1541      * CPUs in PSCI powerdown state we will start them all running and
1542      * let the boot ROM sort them out.
1543      * The usual case is that we do use QEMU's PSCI implementation;
1544      * if the guest has EL2 then we will use SMC as the conduit,
1545      * and otherwise we will use HVC (for backwards compatibility and
1546      * because if we're using KVM then we must use HVC).
1547      */
1548     if (vms->secure && firmware_loaded) {
1549         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1550     } else if (vms->virt) {
1551         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1552     } else {
1553         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1554     }
1555 
1556     /* The maximum number of CPUs depends on the GIC version, or on how
1557      * many redistributors we can fit into the memory map.
1558      */
1559     if (vms->gic_version == 3) {
1560         virt_max_cpus =
1561             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1562         virt_max_cpus +=
1563             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1564     } else {
1565         virt_max_cpus = GIC_NCPU;
1566     }
1567 
1568     if (max_cpus > virt_max_cpus) {
1569         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1570                      "supported by machine 'mach-virt' (%d)",
1571                      max_cpus, virt_max_cpus);
1572         exit(1);
1573     }
1574 
1575     vms->smp_cpus = smp_cpus;
1576 
1577     if (vms->virt && kvm_enabled()) {
1578         error_report("mach-virt: KVM does not support providing "
1579                      "Virtualization extensions to the guest CPU");
1580         exit(1);
1581     }
1582 
1583     create_fdt(vms);
1584 
1585     possible_cpus = mc->possible_cpu_arch_ids(machine);
1586     for (n = 0; n < possible_cpus->len; n++) {
1587         Object *cpuobj;
1588         CPUState *cs;
1589 
1590         if (n >= smp_cpus) {
1591             break;
1592         }
1593 
1594         cpuobj = object_new(possible_cpus->cpus[n].type);
1595         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1596                                 "mp-affinity", NULL);
1597 
1598         cs = CPU(cpuobj);
1599         cs->cpu_index = n;
1600 
1601         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1602                           &error_fatal);
1603 
1604         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1605 
1606         if (!vms->secure) {
1607             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1608         }
1609 
1610         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1611             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1612         }
1613 
1614         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1615             object_property_set_int(cpuobj, vms->psci_conduit,
1616                                     "psci-conduit", NULL);
1617 
1618             /* Secondary CPUs start in PSCI powered-down state */
1619             if (n > 0) {
1620                 object_property_set_bool(cpuobj, true,
1621                                          "start-powered-off", NULL);
1622             }
1623         }
1624 
1625         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1626             object_property_set_bool(cpuobj, false, "pmu", NULL);
1627         }
1628 
1629         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1630             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1631                                     "reset-cbar", &error_abort);
1632         }
1633 
1634         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1635                                  &error_abort);
1636         if (vms->secure) {
1637             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1638                                      "secure-memory", &error_abort);
1639         }
1640 
1641         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1642         object_unref(cpuobj);
1643     }
1644     fdt_add_timer_nodes(vms);
1645     fdt_add_cpu_nodes(vms);
1646 
1647    if (!kvm_enabled()) {
1648         ARMCPU *cpu = ARM_CPU(first_cpu);
1649         bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1650 
1651         if (aarch64 && vms->highmem) {
1652             int requested_pa_size, pamax = arm_pamax(cpu);
1653 
1654             requested_pa_size = 64 - clz64(vms->highest_gpa);
1655             if (pamax < requested_pa_size) {
1656                 error_report("VCPU supports less PA bits (%d) than requested "
1657                             "by the memory map (%d)", pamax, requested_pa_size);
1658                 exit(1);
1659             }
1660         }
1661     }
1662 
1663     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1664                                          machine->ram_size);
1665     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1666     if (machine->device_memory) {
1667         memory_region_add_subregion(sysmem, machine->device_memory->base,
1668                                     &machine->device_memory->mr);
1669     }
1670 
1671     virt_flash_fdt(vms, sysmem, secure_sysmem);
1672 
1673     create_gic(vms, pic);
1674 
1675     fdt_add_pmu_nodes(vms);
1676 
1677     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1678 
1679     if (vms->secure) {
1680         create_secure_ram(vms, secure_sysmem);
1681         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1682     }
1683 
1684     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1685 
1686     create_rtc(vms, pic);
1687 
1688     create_pcie(vms, pic);
1689 
1690     create_gpio(vms, pic);
1691 
1692     /* Create mmio transports, so the user can create virtio backends
1693      * (which will be automatically plugged in to the transports). If
1694      * no backend is created the transport will just sit harmlessly idle.
1695      */
1696     create_virtio_devices(vms, pic);
1697 
1698     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1699     rom_set_fw(vms->fw_cfg);
1700 
1701     create_platform_bus(vms, pic);
1702 
1703     vms->bootinfo.ram_size = machine->ram_size;
1704     vms->bootinfo.kernel_filename = machine->kernel_filename;
1705     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1706     vms->bootinfo.initrd_filename = machine->initrd_filename;
1707     vms->bootinfo.nb_cpus = smp_cpus;
1708     vms->bootinfo.board_id = -1;
1709     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1710     vms->bootinfo.get_dtb = machvirt_dtb;
1711     vms->bootinfo.skip_dtb_autoload = true;
1712     vms->bootinfo.firmware_loaded = firmware_loaded;
1713     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1714 
1715     vms->machine_done.notify = virt_machine_done;
1716     qemu_add_machine_init_done_notifier(&vms->machine_done);
1717 }
1718 
1719 static bool virt_get_secure(Object *obj, Error **errp)
1720 {
1721     VirtMachineState *vms = VIRT_MACHINE(obj);
1722 
1723     return vms->secure;
1724 }
1725 
1726 static void virt_set_secure(Object *obj, bool value, Error **errp)
1727 {
1728     VirtMachineState *vms = VIRT_MACHINE(obj);
1729 
1730     vms->secure = value;
1731 }
1732 
1733 static bool virt_get_virt(Object *obj, Error **errp)
1734 {
1735     VirtMachineState *vms = VIRT_MACHINE(obj);
1736 
1737     return vms->virt;
1738 }
1739 
1740 static void virt_set_virt(Object *obj, bool value, Error **errp)
1741 {
1742     VirtMachineState *vms = VIRT_MACHINE(obj);
1743 
1744     vms->virt = value;
1745 }
1746 
1747 static bool virt_get_highmem(Object *obj, Error **errp)
1748 {
1749     VirtMachineState *vms = VIRT_MACHINE(obj);
1750 
1751     return vms->highmem;
1752 }
1753 
1754 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1755 {
1756     VirtMachineState *vms = VIRT_MACHINE(obj);
1757 
1758     vms->highmem = value;
1759 }
1760 
1761 static bool virt_get_its(Object *obj, Error **errp)
1762 {
1763     VirtMachineState *vms = VIRT_MACHINE(obj);
1764 
1765     return vms->its;
1766 }
1767 
1768 static void virt_set_its(Object *obj, bool value, Error **errp)
1769 {
1770     VirtMachineState *vms = VIRT_MACHINE(obj);
1771 
1772     vms->its = value;
1773 }
1774 
1775 static char *virt_get_gic_version(Object *obj, Error **errp)
1776 {
1777     VirtMachineState *vms = VIRT_MACHINE(obj);
1778     const char *val = vms->gic_version == 3 ? "3" : "2";
1779 
1780     return g_strdup(val);
1781 }
1782 
1783 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1784 {
1785     VirtMachineState *vms = VIRT_MACHINE(obj);
1786 
1787     if (!strcmp(value, "3")) {
1788         vms->gic_version = 3;
1789     } else if (!strcmp(value, "2")) {
1790         vms->gic_version = 2;
1791     } else if (!strcmp(value, "host")) {
1792         vms->gic_version = 0; /* Will probe later */
1793     } else if (!strcmp(value, "max")) {
1794         vms->gic_version = -1; /* Will probe later */
1795     } else {
1796         error_setg(errp, "Invalid gic-version value");
1797         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1798     }
1799 }
1800 
1801 static char *virt_get_iommu(Object *obj, Error **errp)
1802 {
1803     VirtMachineState *vms = VIRT_MACHINE(obj);
1804 
1805     switch (vms->iommu) {
1806     case VIRT_IOMMU_NONE:
1807         return g_strdup("none");
1808     case VIRT_IOMMU_SMMUV3:
1809         return g_strdup("smmuv3");
1810     default:
1811         g_assert_not_reached();
1812     }
1813 }
1814 
1815 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1816 {
1817     VirtMachineState *vms = VIRT_MACHINE(obj);
1818 
1819     if (!strcmp(value, "smmuv3")) {
1820         vms->iommu = VIRT_IOMMU_SMMUV3;
1821     } else if (!strcmp(value, "none")) {
1822         vms->iommu = VIRT_IOMMU_NONE;
1823     } else {
1824         error_setg(errp, "Invalid iommu value");
1825         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1826     }
1827 }
1828 
1829 static CpuInstanceProperties
1830 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1831 {
1832     MachineClass *mc = MACHINE_GET_CLASS(ms);
1833     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1834 
1835     assert(cpu_index < possible_cpus->len);
1836     return possible_cpus->cpus[cpu_index].props;
1837 }
1838 
1839 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1840 {
1841     return idx % nb_numa_nodes;
1842 }
1843 
1844 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1845 {
1846     int n;
1847     VirtMachineState *vms = VIRT_MACHINE(ms);
1848 
1849     if (ms->possible_cpus) {
1850         assert(ms->possible_cpus->len == max_cpus);
1851         return ms->possible_cpus;
1852     }
1853 
1854     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1855                                   sizeof(CPUArchId) * max_cpus);
1856     ms->possible_cpus->len = max_cpus;
1857     for (n = 0; n < ms->possible_cpus->len; n++) {
1858         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1859         ms->possible_cpus->cpus[n].arch_id =
1860             virt_cpu_mp_affinity(vms, n);
1861         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1862         ms->possible_cpus->cpus[n].props.thread_id = n;
1863     }
1864     return ms->possible_cpus;
1865 }
1866 
1867 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1868                                         DeviceState *dev, Error **errp)
1869 {
1870     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1871 
1872     if (vms->platform_bus_dev) {
1873         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1874             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1875                                      SYS_BUS_DEVICE(dev));
1876         }
1877     }
1878 }
1879 
1880 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1881                                                         DeviceState *dev)
1882 {
1883     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1884         return HOTPLUG_HANDLER(machine);
1885     }
1886 
1887     return NULL;
1888 }
1889 
1890 /*
1891  * for arm64 kvm_type [7-0] encodes the requested number of bits
1892  * in the IPA address space
1893  */
1894 static int virt_kvm_type(MachineState *ms, const char *type_str)
1895 {
1896     VirtMachineState *vms = VIRT_MACHINE(ms);
1897     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1898     int requested_pa_size;
1899 
1900     /* we freeze the memory map to compute the highest gpa */
1901     virt_set_memmap(vms);
1902 
1903     requested_pa_size = 64 - clz64(vms->highest_gpa);
1904 
1905     if (requested_pa_size > max_vm_pa_size) {
1906         error_report("-m and ,maxmem option values "
1907                      "require an IPA range (%d bits) larger than "
1908                      "the one supported by the host (%d bits)",
1909                      requested_pa_size, max_vm_pa_size);
1910        exit(1);
1911     }
1912     /*
1913      * By default we return 0 which corresponds to an implicit legacy
1914      * 40b IPA setting. Otherwise we return the actual requested PA
1915      * logsize
1916      */
1917     return requested_pa_size > 40 ? requested_pa_size : 0;
1918 }
1919 
1920 static void virt_machine_class_init(ObjectClass *oc, void *data)
1921 {
1922     MachineClass *mc = MACHINE_CLASS(oc);
1923     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1924 
1925     mc->init = machvirt_init;
1926     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1927      * The value may be reduced later when we have more information about the
1928      * configuration of the particular instance.
1929      */
1930     mc->max_cpus = 512;
1931     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1932     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1933     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1934     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1935     mc->block_default_type = IF_VIRTIO;
1936     mc->no_cdrom = 1;
1937     mc->pci_allow_0_address = true;
1938     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1939     mc->minimum_page_bits = 12;
1940     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1941     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1942     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1943     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1944     mc->kvm_type = virt_kvm_type;
1945     assert(!mc->get_hotplug_handler);
1946     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1947     hc->plug = virt_machine_device_plug_cb;
1948 }
1949 
1950 static void virt_instance_init(Object *obj)
1951 {
1952     VirtMachineState *vms = VIRT_MACHINE(obj);
1953     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1954 
1955     /* EL3 is disabled by default on virt: this makes us consistent
1956      * between KVM and TCG for this board, and it also allows us to
1957      * boot UEFI blobs which assume no TrustZone support.
1958      */
1959     vms->secure = false;
1960     object_property_add_bool(obj, "secure", virt_get_secure,
1961                              virt_set_secure, NULL);
1962     object_property_set_description(obj, "secure",
1963                                     "Set on/off to enable/disable the ARM "
1964                                     "Security Extensions (TrustZone)",
1965                                     NULL);
1966 
1967     /* EL2 is also disabled by default, for similar reasons */
1968     vms->virt = false;
1969     object_property_add_bool(obj, "virtualization", virt_get_virt,
1970                              virt_set_virt, NULL);
1971     object_property_set_description(obj, "virtualization",
1972                                     "Set on/off to enable/disable emulating a "
1973                                     "guest CPU which implements the ARM "
1974                                     "Virtualization Extensions",
1975                                     NULL);
1976 
1977     /* High memory is enabled by default */
1978     vms->highmem = true;
1979     object_property_add_bool(obj, "highmem", virt_get_highmem,
1980                              virt_set_highmem, NULL);
1981     object_property_set_description(obj, "highmem",
1982                                     "Set on/off to enable/disable using "
1983                                     "physical address space above 32 bits",
1984                                     NULL);
1985     /* Default GIC type is v2 */
1986     vms->gic_version = 2;
1987     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1988                         virt_set_gic_version, NULL);
1989     object_property_set_description(obj, "gic-version",
1990                                     "Set GIC version. "
1991                                     "Valid values are 2, 3 and host", NULL);
1992 
1993     vms->highmem_ecam = !vmc->no_highmem_ecam;
1994 
1995     if (vmc->no_its) {
1996         vms->its = false;
1997     } else {
1998         /* Default allows ITS instantiation */
1999         vms->its = true;
2000         object_property_add_bool(obj, "its", virt_get_its,
2001                                  virt_set_its, NULL);
2002         object_property_set_description(obj, "its",
2003                                         "Set on/off to enable/disable "
2004                                         "ITS instantiation",
2005                                         NULL);
2006     }
2007 
2008     /* Default disallows iommu instantiation */
2009     vms->iommu = VIRT_IOMMU_NONE;
2010     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2011     object_property_set_description(obj, "iommu",
2012                                     "Set the IOMMU type. "
2013                                     "Valid values are none and smmuv3",
2014                                     NULL);
2015 
2016     vms->irqmap = a15irqmap;
2017 
2018     virt_flash_create(vms);
2019 }
2020 
2021 static const TypeInfo virt_machine_info = {
2022     .name          = TYPE_VIRT_MACHINE,
2023     .parent        = TYPE_MACHINE,
2024     .abstract      = true,
2025     .instance_size = sizeof(VirtMachineState),
2026     .class_size    = sizeof(VirtMachineClass),
2027     .class_init    = virt_machine_class_init,
2028     .instance_init = virt_instance_init,
2029     .interfaces = (InterfaceInfo[]) {
2030          { TYPE_HOTPLUG_HANDLER },
2031          { }
2032     },
2033 };
2034 
2035 static void machvirt_machine_init(void)
2036 {
2037     type_register_static(&virt_machine_info);
2038 }
2039 type_init(machvirt_machine_init);
2040 
2041 static void virt_machine_4_1_options(MachineClass *mc)
2042 {
2043 }
2044 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2045 
2046 static void virt_machine_4_0_options(MachineClass *mc)
2047 {
2048     virt_machine_4_1_options(mc);
2049     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2050 }
2051 DEFINE_VIRT_MACHINE(4, 0)
2052 
2053 static void virt_machine_3_1_options(MachineClass *mc)
2054 {
2055     virt_machine_4_0_options(mc);
2056     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2057 }
2058 DEFINE_VIRT_MACHINE(3, 1)
2059 
2060 static void virt_machine_3_0_options(MachineClass *mc)
2061 {
2062     virt_machine_3_1_options(mc);
2063     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2064 }
2065 DEFINE_VIRT_MACHINE(3, 0)
2066 
2067 static void virt_machine_2_12_options(MachineClass *mc)
2068 {
2069     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2070 
2071     virt_machine_3_0_options(mc);
2072     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2073     vmc->no_highmem_ecam = true;
2074     mc->max_cpus = 255;
2075 }
2076 DEFINE_VIRT_MACHINE(2, 12)
2077 
2078 static void virt_machine_2_11_options(MachineClass *mc)
2079 {
2080     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2081 
2082     virt_machine_2_12_options(mc);
2083     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2084     vmc->smbios_old_sys_ver = true;
2085 }
2086 DEFINE_VIRT_MACHINE(2, 11)
2087 
2088 static void virt_machine_2_10_options(MachineClass *mc)
2089 {
2090     virt_machine_2_11_options(mc);
2091     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2092     /* before 2.11 we never faulted accesses to bad addresses */
2093     mc->ignore_memory_transaction_failures = true;
2094 }
2095 DEFINE_VIRT_MACHINE(2, 10)
2096 
2097 static void virt_machine_2_9_options(MachineClass *mc)
2098 {
2099     virt_machine_2_10_options(mc);
2100     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2101 }
2102 DEFINE_VIRT_MACHINE(2, 9)
2103 
2104 static void virt_machine_2_8_options(MachineClass *mc)
2105 {
2106     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2107 
2108     virt_machine_2_9_options(mc);
2109     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2110     /* For 2.8 and earlier we falsely claimed in the DT that
2111      * our timers were edge-triggered, not level-triggered.
2112      */
2113     vmc->claim_edge_triggered_timers = true;
2114 }
2115 DEFINE_VIRT_MACHINE(2, 8)
2116 
2117 static void virt_machine_2_7_options(MachineClass *mc)
2118 {
2119     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2120 
2121     virt_machine_2_8_options(mc);
2122     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2123     /* ITS was introduced with 2.8 */
2124     vmc->no_its = true;
2125     /* Stick with 1K pages for migration compatibility */
2126     mc->minimum_page_bits = 0;
2127 }
2128 DEFINE_VIRT_MACHINE(2, 7)
2129 
2130 static void virt_machine_2_6_options(MachineClass *mc)
2131 {
2132     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2133 
2134     virt_machine_2_7_options(mc);
2135     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2136     vmc->disallow_affinity_adjustment = true;
2137     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2138     vmc->no_pmu = true;
2139 }
2140 DEFINE_VIRT_MACHINE(2, 6)
2141