1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/runstate.h" 48 #include "sysemu/tpm.h" 49 #include "sysemu/tcg.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hvf.h" 52 #include "sysemu/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/core/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/intc/arm_gicv3_its_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/qmp/qlist.h" 73 #include "standard-headers/linux/input.h" 74 #include "hw/arm/smmuv3.h" 75 #include "hw/acpi/acpi.h" 76 #include "target/arm/cpu-qom.h" 77 #include "target/arm/internals.h" 78 #include "target/arm/multiprocessing.h" 79 #include "target/arm/gtimer.h" 80 #include "hw/mem/pc-dimm.h" 81 #include "hw/mem/nvdimm.h" 82 #include "hw/acpi/generic_event_device.h" 83 #include "hw/virtio/virtio-md-pci.h" 84 #include "hw/virtio/virtio-iommu.h" 85 #include "hw/char/pl011.h" 86 #include "qemu/guest-random.h" 87 88 static GlobalProperty arm_virt_compat[] = { 89 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, 90 }; 91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); 92 93 /* 94 * This cannot be called from the virt_machine_class_init() because 95 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() 96 * only is called on virt non abstract class init. 97 */ 98 static void arm_virt_compat_set(MachineClass *mc) 99 { 100 compat_props_add(mc->compat_props, arm_virt_compat, 101 arm_virt_compat_len); 102 } 103 104 #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \ 105 static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \ 106 ObjectClass *oc, \ 107 void *data) \ 108 { \ 109 MachineClass *mc = MACHINE_CLASS(oc); \ 110 arm_virt_compat_set(mc); \ 111 MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \ 112 mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \ 113 if (latest) { \ 114 mc->alias = "virt"; \ 115 } \ 116 } \ 117 static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \ 118 { \ 119 .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \ 120 .parent = TYPE_VIRT_MACHINE, \ 121 .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \ 122 }; \ 123 static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \ 124 { \ 125 type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \ 126 } \ 127 type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__)); 128 129 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 130 DEFINE_VIRT_MACHINE_IMPL(true, major, minor) 131 #define DEFINE_VIRT_MACHINE(major, minor) \ 132 DEFINE_VIRT_MACHINE_IMPL(false, major, minor) 133 134 135 /* Number of external interrupt lines to configure the GIC with */ 136 #define NUM_IRQS 256 137 138 #define PLATFORM_BUS_NUM_IRQS 64 139 140 /* Legacy RAM limit in GB (< version 4.0) */ 141 #define LEGACY_RAMLIMIT_GB 255 142 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 143 144 /* Addresses and sizes of our components. 145 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 146 * 128MB..256MB is used for miscellaneous device I/O. 147 * 256MB..1GB is reserved for possible future PCI support (ie where the 148 * PCI memory window will go if we add a PCI host controller). 149 * 1GB and up is RAM (which may happily spill over into the 150 * high memory region beyond 4GB). 151 * This represents a compromise between how much RAM can be given to 152 * a 32 bit VM and leaving space for expansion and in particular for PCI. 153 * Note that devices should generally be placed at multiples of 0x10000, 154 * to accommodate guests using 64K pages. 155 */ 156 static const MemMapEntry base_memmap[] = { 157 /* Space up to 0x8000000 is reserved for a boot ROM */ 158 [VIRT_FLASH] = { 0, 0x08000000 }, 159 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 160 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 161 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 162 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 163 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 164 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 165 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 166 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 167 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 168 /* This redistributor space allows up to 2*64kB*123 CPUs */ 169 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 170 [VIRT_UART0] = { 0x09000000, 0x00001000 }, 171 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 172 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 173 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 174 [VIRT_UART1] = { 0x09040000, 0x00001000 }, 175 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 176 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 177 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 178 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 179 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 180 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 181 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 182 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 183 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 184 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 185 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 186 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 187 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 188 /* Actual RAM size depends on initial RAM and device memory settings */ 189 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 190 }; 191 192 /* 193 * Highmem IO Regions: This memory map is floating, located after the RAM. 194 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 195 * top of the RAM, so that its base get the same alignment as the size, 196 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 197 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 198 * Note the extended_memmap is sized so that it eventually also includes the 199 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 200 * index of base_memmap). 201 * 202 * The memory map for these Highmem IO Regions can be in legacy or compact 203 * layout, depending on 'compact-highmem' property. With legacy layout, the 204 * PA space for one specific region is always reserved, even if the region 205 * has been disabled or doesn't fit into the PA space. However, the PA space 206 * for the region won't be reserved in these circumstances with compact layout. 207 */ 208 static MemMapEntry extended_memmap[] = { 209 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 210 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 211 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 212 /* Second PCIe window */ 213 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 214 }; 215 216 static const int a15irqmap[] = { 217 [VIRT_UART0] = 1, 218 [VIRT_RTC] = 2, 219 [VIRT_PCIE] = 3, /* ... to 6 */ 220 [VIRT_GPIO] = 7, 221 [VIRT_UART1] = 8, 222 [VIRT_ACPI_GED] = 9, 223 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 224 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 225 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 226 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 227 }; 228 229 static void create_randomness(MachineState *ms, const char *node) 230 { 231 struct { 232 uint64_t kaslr; 233 uint8_t rng[32]; 234 } seed; 235 236 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 237 return; 238 } 239 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 240 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 241 } 242 243 /* 244 * The CPU object always exposes the NS EL2 virt timer IRQ line, 245 * but we don't want to advertise it to the guest in the dtb or ACPI 246 * table unless it's really going to do something. 247 */ 248 static bool ns_el2_virt_timer_present(void) 249 { 250 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 251 CPUARMState *env = &cpu->env; 252 253 return arm_feature(env, ARM_FEATURE_AARCH64) && 254 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); 255 } 256 257 static void create_fdt(VirtMachineState *vms) 258 { 259 MachineState *ms = MACHINE(vms); 260 int nb_numa_nodes = ms->numa_state->num_nodes; 261 void *fdt = create_device_tree(&vms->fdt_size); 262 263 if (!fdt) { 264 error_report("create_device_tree() failed"); 265 exit(1); 266 } 267 268 ms->fdt = fdt; 269 270 /* Header */ 271 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 272 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 273 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 274 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 275 276 /* 277 * For QEMU, all DMA is coherent. Advertising this in the root node 278 * has two benefits: 279 * 280 * - It avoids potential bugs where we forget to mark a DMA 281 * capable device as being dma-coherent 282 * - It avoids spurious warnings from the Linux kernel about 283 * devices which can't do DMA at all 284 */ 285 qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); 286 287 /* /chosen must exist for load_dtb to fill in necessary properties later */ 288 qemu_fdt_add_subnode(fdt, "/chosen"); 289 if (vms->dtb_randomness) { 290 create_randomness(ms, "/chosen"); 291 } 292 293 if (vms->secure) { 294 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 295 if (vms->dtb_randomness) { 296 create_randomness(ms, "/secure-chosen"); 297 } 298 } 299 300 qemu_fdt_add_subnode(fdt, "/aliases"); 301 302 /* Clock node, for the benefit of the UART. The kernel device tree 303 * binding documentation claims the PL011 node clock properties are 304 * optional but in practice if you omit them the kernel refuses to 305 * probe for the device. 306 */ 307 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 308 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 309 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 310 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 311 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 312 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 313 "clk24mhz"); 314 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 315 316 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 317 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 318 uint32_t *matrix = g_malloc0(size); 319 int idx, i, j; 320 321 for (i = 0; i < nb_numa_nodes; i++) { 322 for (j = 0; j < nb_numa_nodes; j++) { 323 idx = (i * nb_numa_nodes + j) * 3; 324 matrix[idx + 0] = cpu_to_be32(i); 325 matrix[idx + 1] = cpu_to_be32(j); 326 matrix[idx + 2] = 327 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 328 } 329 } 330 331 qemu_fdt_add_subnode(fdt, "/distance-map"); 332 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 333 "numa-distance-map-v1"); 334 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 335 matrix, size); 336 g_free(matrix); 337 } 338 } 339 340 static void fdt_add_timer_nodes(const VirtMachineState *vms) 341 { 342 /* On real hardware these interrupts are level-triggered. 343 * On KVM they were edge-triggered before host kernel version 4.4, 344 * and level-triggered afterwards. 345 * On emulated QEMU they are level-triggered. 346 * 347 * Getting the DTB info about them wrong is awkward for some 348 * guest kernels: 349 * pre-4.8 ignore the DT and leave the interrupt configured 350 * with whatever the GIC reset value (or the bootloader) left it at 351 * 4.8 before rc6 honour the incorrect data by programming it back 352 * into the GIC, causing problems 353 * 4.8rc6 and later ignore the DT and always write "level triggered" 354 * into the GIC 355 * 356 * For backwards-compatibility, virt-2.8 and earlier will continue 357 * to say these are edge-triggered, but later machines will report 358 * the correct information. 359 */ 360 ARMCPU *armcpu; 361 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 362 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 363 MachineState *ms = MACHINE(vms); 364 365 if (vmc->claim_edge_triggered_timers) { 366 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 367 } 368 369 if (vms->gic_version == VIRT_GIC_VERSION_2) { 370 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 371 GIC_FDT_IRQ_PPI_CPU_WIDTH, 372 (1 << MACHINE(vms)->smp.cpus) - 1); 373 } 374 375 qemu_fdt_add_subnode(ms->fdt, "/timer"); 376 377 armcpu = ARM_CPU(qemu_get_cpu(0)); 378 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 379 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 380 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 381 compat, sizeof(compat)); 382 } else { 383 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 384 "arm,armv7-timer"); 385 } 386 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 387 if (vms->ns_el2_virt_timer_irq) { 388 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 389 GIC_FDT_IRQ_TYPE_PPI, 390 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 391 GIC_FDT_IRQ_TYPE_PPI, 392 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 393 GIC_FDT_IRQ_TYPE_PPI, 394 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 395 GIC_FDT_IRQ_TYPE_PPI, 396 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, 397 GIC_FDT_IRQ_TYPE_PPI, 398 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); 399 } else { 400 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 401 GIC_FDT_IRQ_TYPE_PPI, 402 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 403 GIC_FDT_IRQ_TYPE_PPI, 404 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 405 GIC_FDT_IRQ_TYPE_PPI, 406 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 407 GIC_FDT_IRQ_TYPE_PPI, 408 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 409 } 410 } 411 412 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 413 { 414 int cpu; 415 int addr_cells = 1; 416 const MachineState *ms = MACHINE(vms); 417 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 418 int smp_cpus = ms->smp.cpus; 419 420 /* 421 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 422 * On ARM v8 64-bit systems value should be set to 2, 423 * that corresponds to the MPIDR_EL1 register size. 424 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 425 * in the system, #address-cells can be set to 1, since 426 * MPIDR_EL1[63:32] bits are not used for CPUs 427 * identification. 428 * 429 * Here we actually don't know whether our system is 32- or 64-bit one. 430 * The simplest way to go is to examine affinity IDs of all our CPUs. If 431 * at least one of them has Aff3 populated, we set #address-cells to 2. 432 */ 433 for (cpu = 0; cpu < smp_cpus; cpu++) { 434 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 435 436 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { 437 addr_cells = 2; 438 break; 439 } 440 } 441 442 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 443 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 444 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 445 446 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 447 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 448 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 449 CPUState *cs = CPU(armcpu); 450 451 qemu_fdt_add_subnode(ms->fdt, nodename); 452 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 453 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 454 armcpu->dtb_compatible); 455 456 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 457 qemu_fdt_setprop_string(ms->fdt, nodename, 458 "enable-method", "psci"); 459 } 460 461 if (addr_cells == 2) { 462 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 463 arm_cpu_mp_affinity(armcpu)); 464 } else { 465 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 466 arm_cpu_mp_affinity(armcpu)); 467 } 468 469 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 470 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 471 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 472 } 473 474 if (!vmc->no_cpu_topology) { 475 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 476 qemu_fdt_alloc_phandle(ms->fdt)); 477 } 478 479 g_free(nodename); 480 } 481 482 if (!vmc->no_cpu_topology) { 483 /* 484 * Add vCPU topology description through fdt node cpu-map. 485 * 486 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 487 * In a SMP system, the hierarchy of CPUs can be defined through 488 * four entities that are used to describe the layout of CPUs in 489 * the system: socket/cluster/core/thread. 490 * 491 * A socket node represents the boundary of system physical package 492 * and its child nodes must be one or more cluster nodes. A system 493 * can contain several layers of clustering within a single physical 494 * package and cluster nodes can be contained in parent cluster nodes. 495 * 496 * Note: currently we only support one layer of clustering within 497 * each physical package. 498 */ 499 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 500 501 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 502 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 503 char *map_path; 504 505 if (ms->smp.threads > 1) { 506 map_path = g_strdup_printf( 507 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 508 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 509 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 510 (cpu / ms->smp.threads) % ms->smp.cores, 511 cpu % ms->smp.threads); 512 } else { 513 map_path = g_strdup_printf( 514 "/cpus/cpu-map/socket%d/cluster%d/core%d", 515 cpu / (ms->smp.clusters * ms->smp.cores), 516 (cpu / ms->smp.cores) % ms->smp.clusters, 517 cpu % ms->smp.cores); 518 } 519 qemu_fdt_add_path(ms->fdt, map_path); 520 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 521 522 g_free(map_path); 523 g_free(cpu_path); 524 } 525 } 526 } 527 528 static void fdt_add_its_gic_node(VirtMachineState *vms) 529 { 530 char *nodename; 531 MachineState *ms = MACHINE(vms); 532 533 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 534 nodename = g_strdup_printf("/intc/its@%" PRIx64, 535 vms->memmap[VIRT_GIC_ITS].base); 536 qemu_fdt_add_subnode(ms->fdt, nodename); 537 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 538 "arm,gic-v3-its"); 539 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 540 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 541 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 542 2, vms->memmap[VIRT_GIC_ITS].base, 543 2, vms->memmap[VIRT_GIC_ITS].size); 544 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 545 g_free(nodename); 546 } 547 548 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 549 { 550 MachineState *ms = MACHINE(vms); 551 char *nodename; 552 553 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 554 vms->memmap[VIRT_GIC_V2M].base); 555 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 556 qemu_fdt_add_subnode(ms->fdt, nodename); 557 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 558 "arm,gic-v2m-frame"); 559 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 560 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 561 2, vms->memmap[VIRT_GIC_V2M].base, 562 2, vms->memmap[VIRT_GIC_V2M].size); 563 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 564 g_free(nodename); 565 } 566 567 static void fdt_add_gic_node(VirtMachineState *vms) 568 { 569 MachineState *ms = MACHINE(vms); 570 char *nodename; 571 572 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 573 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 574 575 nodename = g_strdup_printf("/intc@%" PRIx64, 576 vms->memmap[VIRT_GIC_DIST].base); 577 qemu_fdt_add_subnode(ms->fdt, nodename); 578 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 579 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 580 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 581 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 582 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 583 if (vms->gic_version != VIRT_GIC_VERSION_2) { 584 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 585 586 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 587 "arm,gic-v3"); 588 589 qemu_fdt_setprop_cell(ms->fdt, nodename, 590 "#redistributor-regions", nb_redist_regions); 591 592 if (nb_redist_regions == 1) { 593 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 594 2, vms->memmap[VIRT_GIC_DIST].base, 595 2, vms->memmap[VIRT_GIC_DIST].size, 596 2, vms->memmap[VIRT_GIC_REDIST].base, 597 2, vms->memmap[VIRT_GIC_REDIST].size); 598 } else { 599 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 600 2, vms->memmap[VIRT_GIC_DIST].base, 601 2, vms->memmap[VIRT_GIC_DIST].size, 602 2, vms->memmap[VIRT_GIC_REDIST].base, 603 2, vms->memmap[VIRT_GIC_REDIST].size, 604 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 605 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 606 } 607 608 if (vms->virt) { 609 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 610 GIC_FDT_IRQ_TYPE_PPI, 611 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 612 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 613 } 614 } else { 615 /* 'cortex-a15-gic' means 'GIC v2' */ 616 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 617 "arm,cortex-a15-gic"); 618 if (!vms->virt) { 619 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 620 2, vms->memmap[VIRT_GIC_DIST].base, 621 2, vms->memmap[VIRT_GIC_DIST].size, 622 2, vms->memmap[VIRT_GIC_CPU].base, 623 2, vms->memmap[VIRT_GIC_CPU].size); 624 } else { 625 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 626 2, vms->memmap[VIRT_GIC_DIST].base, 627 2, vms->memmap[VIRT_GIC_DIST].size, 628 2, vms->memmap[VIRT_GIC_CPU].base, 629 2, vms->memmap[VIRT_GIC_CPU].size, 630 2, vms->memmap[VIRT_GIC_HYP].base, 631 2, vms->memmap[VIRT_GIC_HYP].size, 632 2, vms->memmap[VIRT_GIC_VCPU].base, 633 2, vms->memmap[VIRT_GIC_VCPU].size); 634 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 635 GIC_FDT_IRQ_TYPE_PPI, 636 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 637 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 638 } 639 } 640 641 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 642 g_free(nodename); 643 } 644 645 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 646 { 647 ARMCPU *armcpu = ARM_CPU(first_cpu); 648 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 649 MachineState *ms = MACHINE(vms); 650 651 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 652 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 653 return; 654 } 655 656 if (vms->gic_version == VIRT_GIC_VERSION_2) { 657 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 658 GIC_FDT_IRQ_PPI_CPU_WIDTH, 659 (1 << MACHINE(vms)->smp.cpus) - 1); 660 } 661 662 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 663 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 664 const char compat[] = "arm,armv8-pmuv3"; 665 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 666 compat, sizeof(compat)); 667 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 668 GIC_FDT_IRQ_TYPE_PPI, 669 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 670 } 671 } 672 673 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 674 { 675 DeviceState *dev; 676 MachineState *ms = MACHINE(vms); 677 int irq = vms->irqmap[VIRT_ACPI_GED]; 678 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 679 680 if (ms->ram_slots) { 681 event |= ACPI_GED_MEM_HOTPLUG_EVT; 682 } 683 684 if (ms->nvdimms_state->is_enabled) { 685 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 686 } 687 688 dev = qdev_new(TYPE_ACPI_GED); 689 qdev_prop_set_uint32(dev, "ged-event", event); 690 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 691 692 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 693 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 694 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 695 696 return dev; 697 } 698 699 static void create_its(VirtMachineState *vms) 700 { 701 const char *itsclass = its_class_name(); 702 DeviceState *dev; 703 704 if (!strcmp(itsclass, "arm-gicv3-its")) { 705 if (!vms->tcg_its) { 706 itsclass = NULL; 707 } 708 } 709 710 if (!itsclass) { 711 /* Do nothing if not supported */ 712 return; 713 } 714 715 dev = qdev_new(itsclass); 716 717 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 718 &error_abort); 719 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 720 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 721 722 fdt_add_its_gic_node(vms); 723 vms->msi_controller = VIRT_MSI_CTRL_ITS; 724 } 725 726 static void create_v2m(VirtMachineState *vms) 727 { 728 int i; 729 int irq = vms->irqmap[VIRT_GIC_V2M]; 730 DeviceState *dev; 731 732 dev = qdev_new("arm-gicv2m"); 733 qdev_prop_set_uint32(dev, "base-spi", irq); 734 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 735 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 736 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 737 738 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 739 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 740 qdev_get_gpio_in(vms->gic, irq + i)); 741 } 742 743 fdt_add_v2m_gic_node(vms); 744 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 745 } 746 747 /* 748 * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. 749 * It's permitted to have a configuration with NMI in the CPU (and thus the 750 * GICv3 CPU interface) but not in the distributor/redistributors, but it's 751 * not very useful. 752 */ 753 static bool gicv3_nmi_present(VirtMachineState *vms) 754 { 755 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 756 757 return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && 758 (vms->gic_version != VIRT_GIC_VERSION_2); 759 } 760 761 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 762 { 763 MachineState *ms = MACHINE(vms); 764 /* We create a standalone GIC */ 765 SysBusDevice *gicbusdev; 766 const char *gictype; 767 int i; 768 unsigned int smp_cpus = ms->smp.cpus; 769 uint32_t nb_redist_regions = 0; 770 int revision; 771 772 if (vms->gic_version == VIRT_GIC_VERSION_2) { 773 gictype = gic_class_name(); 774 } else { 775 gictype = gicv3_class_name(); 776 } 777 778 switch (vms->gic_version) { 779 case VIRT_GIC_VERSION_2: 780 revision = 2; 781 break; 782 case VIRT_GIC_VERSION_3: 783 revision = 3; 784 break; 785 case VIRT_GIC_VERSION_4: 786 revision = 4; 787 break; 788 default: 789 g_assert_not_reached(); 790 } 791 vms->gic = qdev_new(gictype); 792 qdev_prop_set_uint32(vms->gic, "revision", revision); 793 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 794 /* Note that the num-irq property counts both internal and external 795 * interrupts; there are always 32 of the former (mandated by GIC spec). 796 */ 797 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 798 if (!kvm_irqchip_in_kernel()) { 799 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 800 } 801 802 if (vms->gic_version != VIRT_GIC_VERSION_2) { 803 QList *redist_region_count; 804 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 805 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 806 807 nb_redist_regions = virt_gicv3_redist_region_count(vms); 808 809 redist_region_count = qlist_new(); 810 qlist_append_int(redist_region_count, redist0_count); 811 if (nb_redist_regions == 2) { 812 uint32_t redist1_capacity = 813 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 814 815 qlist_append_int(redist_region_count, 816 MIN(smp_cpus - redist0_count, redist1_capacity)); 817 } 818 qdev_prop_set_array(vms->gic, "redist-region-count", 819 redist_region_count); 820 821 if (!kvm_irqchip_in_kernel()) { 822 if (vms->tcg_its) { 823 object_property_set_link(OBJECT(vms->gic), "sysmem", 824 OBJECT(mem), &error_fatal); 825 qdev_prop_set_bit(vms->gic, "has-lpi", true); 826 } 827 } 828 } else { 829 if (!kvm_irqchip_in_kernel()) { 830 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 831 vms->virt); 832 } 833 } 834 835 if (gicv3_nmi_present(vms)) { 836 qdev_prop_set_bit(vms->gic, "has-nmi", true); 837 } 838 839 gicbusdev = SYS_BUS_DEVICE(vms->gic); 840 sysbus_realize_and_unref(gicbusdev, &error_fatal); 841 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 842 if (vms->gic_version != VIRT_GIC_VERSION_2) { 843 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 844 if (nb_redist_regions == 2) { 845 sysbus_mmio_map(gicbusdev, 2, 846 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 847 } 848 } else { 849 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 850 if (vms->virt) { 851 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 852 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 853 } 854 } 855 856 /* Wire the outputs from each CPU's generic timer and the GICv3 857 * maintenance interrupt signal to the appropriate GIC PPI inputs, 858 * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the 859 * CPU's inputs. 860 */ 861 for (i = 0; i < smp_cpus; i++) { 862 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 863 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 864 /* Mapping from the output timer irq lines from the CPU to the 865 * GIC PPI inputs we use for the virt board. 866 */ 867 const int timer_irq[] = { 868 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 869 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 870 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 871 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 872 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 873 }; 874 875 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 876 qdev_connect_gpio_out(cpudev, irq, 877 qdev_get_gpio_in(vms->gic, 878 intidbase + timer_irq[irq])); 879 } 880 881 if (vms->gic_version != VIRT_GIC_VERSION_2) { 882 qemu_irq irq = qdev_get_gpio_in(vms->gic, 883 intidbase + ARCH_GIC_MAINT_IRQ); 884 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 885 0, irq); 886 } else if (vms->virt) { 887 qemu_irq irq = qdev_get_gpio_in(vms->gic, 888 intidbase + ARCH_GIC_MAINT_IRQ); 889 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 890 } 891 892 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 893 qdev_get_gpio_in(vms->gic, intidbase 894 + VIRTUAL_PMU_IRQ)); 895 896 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 897 sysbus_connect_irq(gicbusdev, i + smp_cpus, 898 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 899 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 900 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 901 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 902 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 903 904 if (vms->gic_version != VIRT_GIC_VERSION_2) { 905 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, 906 qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); 907 sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, 908 qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); 909 } 910 } 911 912 fdt_add_gic_node(vms); 913 914 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 915 create_its(vms); 916 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 917 create_v2m(vms); 918 } 919 } 920 921 static void create_uart(const VirtMachineState *vms, int uart, 922 MemoryRegion *mem, Chardev *chr, bool secure) 923 { 924 char *nodename; 925 hwaddr base = vms->memmap[uart].base; 926 hwaddr size = vms->memmap[uart].size; 927 int irq = vms->irqmap[uart]; 928 const char compat[] = "arm,pl011\0arm,primecell"; 929 const char clocknames[] = "uartclk\0apb_pclk"; 930 DeviceState *dev = qdev_new(TYPE_PL011); 931 SysBusDevice *s = SYS_BUS_DEVICE(dev); 932 MachineState *ms = MACHINE(vms); 933 934 qdev_prop_set_chr(dev, "chardev", chr); 935 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 936 memory_region_add_subregion(mem, base, 937 sysbus_mmio_get_region(s, 0)); 938 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 939 940 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 941 qemu_fdt_add_subnode(ms->fdt, nodename); 942 /* Note that we can't use setprop_string because of the embedded NUL */ 943 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 944 compat, sizeof(compat)); 945 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 946 2, base, 2, size); 947 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 948 GIC_FDT_IRQ_TYPE_SPI, irq, 949 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 950 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 951 vms->clock_phandle, vms->clock_phandle); 952 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 953 clocknames, sizeof(clocknames)); 954 955 if (uart == VIRT_UART0) { 956 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 957 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); 958 } else { 959 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); 960 } 961 if (secure) { 962 /* Mark as not usable by the normal world */ 963 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 964 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 965 966 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 967 nodename); 968 } 969 970 g_free(nodename); 971 } 972 973 static void create_rtc(const VirtMachineState *vms) 974 { 975 char *nodename; 976 hwaddr base = vms->memmap[VIRT_RTC].base; 977 hwaddr size = vms->memmap[VIRT_RTC].size; 978 int irq = vms->irqmap[VIRT_RTC]; 979 const char compat[] = "arm,pl031\0arm,primecell"; 980 MachineState *ms = MACHINE(vms); 981 982 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 983 984 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 985 qemu_fdt_add_subnode(ms->fdt, nodename); 986 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 987 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 988 2, base, 2, size); 989 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 990 GIC_FDT_IRQ_TYPE_SPI, irq, 991 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 992 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 993 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 994 g_free(nodename); 995 } 996 997 static DeviceState *gpio_key_dev; 998 static void virt_powerdown_req(Notifier *n, void *opaque) 999 { 1000 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 1001 1002 if (s->acpi_dev) { 1003 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 1004 } else { 1005 /* use gpio Pin 3 for power button event */ 1006 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 1007 } 1008 } 1009 1010 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 1011 uint32_t phandle) 1012 { 1013 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 1014 qdev_get_gpio_in(pl061_dev, 3)); 1015 1016 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 1017 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 1018 1019 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 1020 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 1021 "label", "GPIO Key Poweroff"); 1022 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 1023 KEY_POWER); 1024 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 1025 "gpios", phandle, 3, 0); 1026 } 1027 1028 #define SECURE_GPIO_POWEROFF 0 1029 #define SECURE_GPIO_RESET 1 1030 1031 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 1032 uint32_t phandle) 1033 { 1034 DeviceState *gpio_pwr_dev; 1035 1036 /* gpio-pwr */ 1037 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 1038 1039 /* connect secure pl061 to gpio-pwr */ 1040 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 1041 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 1042 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 1043 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 1044 1045 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 1046 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 1047 "gpio-poweroff"); 1048 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 1049 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 1050 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 1051 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 1052 "okay"); 1053 1054 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 1055 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 1056 "gpio-restart"); 1057 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 1058 "gpios", phandle, SECURE_GPIO_RESET, 0); 1059 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 1060 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 1061 "okay"); 1062 } 1063 1064 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 1065 MemoryRegion *mem) 1066 { 1067 char *nodename; 1068 DeviceState *pl061_dev; 1069 hwaddr base = vms->memmap[gpio].base; 1070 hwaddr size = vms->memmap[gpio].size; 1071 int irq = vms->irqmap[gpio]; 1072 const char compat[] = "arm,pl061\0arm,primecell"; 1073 SysBusDevice *s; 1074 MachineState *ms = MACHINE(vms); 1075 1076 pl061_dev = qdev_new("pl061"); 1077 /* Pull lines down to 0 if not driven by the PL061 */ 1078 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1079 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1080 s = SYS_BUS_DEVICE(pl061_dev); 1081 sysbus_realize_and_unref(s, &error_fatal); 1082 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1083 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1084 1085 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1086 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1087 qemu_fdt_add_subnode(ms->fdt, nodename); 1088 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1089 2, base, 2, size); 1090 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1091 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1092 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1093 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1094 GIC_FDT_IRQ_TYPE_SPI, irq, 1095 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1096 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1097 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1098 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1099 1100 if (gpio != VIRT_GPIO) { 1101 /* Mark as not usable by the normal world */ 1102 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1103 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1104 } 1105 g_free(nodename); 1106 1107 /* Child gpio devices */ 1108 if (gpio == VIRT_GPIO) { 1109 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1110 } else { 1111 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1112 } 1113 } 1114 1115 static void create_virtio_devices(const VirtMachineState *vms) 1116 { 1117 int i; 1118 hwaddr size = vms->memmap[VIRT_MMIO].size; 1119 MachineState *ms = MACHINE(vms); 1120 1121 /* We create the transports in forwards order. Since qbus_realize() 1122 * prepends (not appends) new child buses, the incrementing loop below will 1123 * create a list of virtio-mmio buses with decreasing base addresses. 1124 * 1125 * When a -device option is processed from the command line, 1126 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1127 * order. The upshot is that -device options in increasing command line 1128 * order are mapped to virtio-mmio buses with decreasing base addresses. 1129 * 1130 * When this code was originally written, that arrangement ensured that the 1131 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1132 * the first -device on the command line. (The end-to-end order is a 1133 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1134 * guest kernel's name-to-address assignment strategy.) 1135 * 1136 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1137 * the message, if not necessarily the code, of commit 70161ff336. 1138 * Therefore the loop now establishes the inverse of the original intent. 1139 * 1140 * Unfortunately, we can't counteract the kernel change by reversing the 1141 * loop; it would break existing command lines. 1142 * 1143 * In any case, the kernel makes no guarantee about the stability of 1144 * enumeration order of virtio devices (as demonstrated by it changing 1145 * between kernel versions). For reliable and stable identification 1146 * of disks users must use UUIDs or similar mechanisms. 1147 */ 1148 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1149 int irq = vms->irqmap[VIRT_MMIO] + i; 1150 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1151 1152 sysbus_create_simple("virtio-mmio", base, 1153 qdev_get_gpio_in(vms->gic, irq)); 1154 } 1155 1156 /* We add dtb nodes in reverse order so that they appear in the finished 1157 * device tree lowest address first. 1158 * 1159 * Note that this mapping is independent of the loop above. The previous 1160 * loop influences virtio device to virtio transport assignment, whereas 1161 * this loop controls how virtio transports are laid out in the dtb. 1162 */ 1163 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1164 char *nodename; 1165 int irq = vms->irqmap[VIRT_MMIO] + i; 1166 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1167 1168 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1169 qemu_fdt_add_subnode(ms->fdt, nodename); 1170 qemu_fdt_setprop_string(ms->fdt, nodename, 1171 "compatible", "virtio,mmio"); 1172 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1173 2, base, 2, size); 1174 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1175 GIC_FDT_IRQ_TYPE_SPI, irq, 1176 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1177 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1178 g_free(nodename); 1179 } 1180 } 1181 1182 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1183 1184 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1185 const char *name, 1186 const char *alias_prop_name) 1187 { 1188 /* 1189 * Create a single flash device. We use the same parameters as 1190 * the flash devices on the Versatile Express board. 1191 */ 1192 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1193 1194 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1195 qdev_prop_set_uint8(dev, "width", 4); 1196 qdev_prop_set_uint8(dev, "device-width", 2); 1197 qdev_prop_set_bit(dev, "big-endian", false); 1198 qdev_prop_set_uint16(dev, "id0", 0x89); 1199 qdev_prop_set_uint16(dev, "id1", 0x18); 1200 qdev_prop_set_uint16(dev, "id2", 0x00); 1201 qdev_prop_set_uint16(dev, "id3", 0x00); 1202 qdev_prop_set_string(dev, "name", name); 1203 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1204 object_property_add_alias(OBJECT(vms), alias_prop_name, 1205 OBJECT(dev), "drive"); 1206 return PFLASH_CFI01(dev); 1207 } 1208 1209 static void virt_flash_create(VirtMachineState *vms) 1210 { 1211 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1212 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1213 } 1214 1215 static void virt_flash_map1(PFlashCFI01 *flash, 1216 hwaddr base, hwaddr size, 1217 MemoryRegion *sysmem) 1218 { 1219 DeviceState *dev = DEVICE(flash); 1220 1221 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1222 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1223 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1224 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1225 1226 memory_region_add_subregion(sysmem, base, 1227 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1228 0)); 1229 } 1230 1231 static void virt_flash_map(VirtMachineState *vms, 1232 MemoryRegion *sysmem, 1233 MemoryRegion *secure_sysmem) 1234 { 1235 /* 1236 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1237 * sysmem is the system memory space. secure_sysmem is the secure view 1238 * of the system, and the first flash device should be made visible only 1239 * there. The second flash device is visible to both secure and nonsecure. 1240 * If sysmem == secure_sysmem this means there is no separate Secure 1241 * address space and both flash devices are generally visible. 1242 */ 1243 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1244 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1245 1246 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1247 secure_sysmem); 1248 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1249 sysmem); 1250 } 1251 1252 static void virt_flash_fdt(VirtMachineState *vms, 1253 MemoryRegion *sysmem, 1254 MemoryRegion *secure_sysmem) 1255 { 1256 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1257 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1258 MachineState *ms = MACHINE(vms); 1259 char *nodename; 1260 1261 if (sysmem == secure_sysmem) { 1262 /* Report both flash devices as a single node in the DT */ 1263 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1264 qemu_fdt_add_subnode(ms->fdt, nodename); 1265 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1266 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1267 2, flashbase, 2, flashsize, 1268 2, flashbase + flashsize, 2, flashsize); 1269 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1270 g_free(nodename); 1271 } else { 1272 /* 1273 * Report the devices as separate nodes so we can mark one as 1274 * only visible to the secure world. 1275 */ 1276 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1277 qemu_fdt_add_subnode(ms->fdt, nodename); 1278 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1279 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1280 2, flashbase, 2, flashsize); 1281 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1282 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1283 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1284 g_free(nodename); 1285 1286 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1287 qemu_fdt_add_subnode(ms->fdt, nodename); 1288 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1289 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1290 2, flashbase + flashsize, 2, flashsize); 1291 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1292 g_free(nodename); 1293 } 1294 } 1295 1296 static bool virt_firmware_init(VirtMachineState *vms, 1297 MemoryRegion *sysmem, 1298 MemoryRegion *secure_sysmem) 1299 { 1300 int i; 1301 const char *bios_name; 1302 BlockBackend *pflash_blk0; 1303 1304 /* Map legacy -drive if=pflash to machine properties */ 1305 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1306 pflash_cfi01_legacy_drive(vms->flash[i], 1307 drive_get(IF_PFLASH, 0, i)); 1308 } 1309 1310 virt_flash_map(vms, sysmem, secure_sysmem); 1311 1312 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1313 1314 bios_name = MACHINE(vms)->firmware; 1315 if (bios_name) { 1316 char *fname; 1317 MemoryRegion *mr; 1318 int image_size; 1319 1320 if (pflash_blk0) { 1321 error_report("The contents of the first flash device may be " 1322 "specified with -bios or with -drive if=pflash... " 1323 "but you cannot use both options at once"); 1324 exit(1); 1325 } 1326 1327 /* Fall back to -bios */ 1328 1329 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1330 if (!fname) { 1331 error_report("Could not find ROM image '%s'", bios_name); 1332 exit(1); 1333 } 1334 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1335 image_size = load_image_mr(fname, mr); 1336 g_free(fname); 1337 if (image_size < 0) { 1338 error_report("Could not load ROM image '%s'", bios_name); 1339 exit(1); 1340 } 1341 } 1342 1343 return pflash_blk0 || bios_name; 1344 } 1345 1346 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1347 { 1348 MachineState *ms = MACHINE(vms); 1349 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1350 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1351 FWCfgState *fw_cfg; 1352 char *nodename; 1353 1354 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1355 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1356 1357 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1358 qemu_fdt_add_subnode(ms->fdt, nodename); 1359 qemu_fdt_setprop_string(ms->fdt, nodename, 1360 "compatible", "qemu,fw-cfg-mmio"); 1361 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1362 2, base, 2, size); 1363 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1364 g_free(nodename); 1365 return fw_cfg; 1366 } 1367 1368 static void create_pcie_irq_map(const MachineState *ms, 1369 uint32_t gic_phandle, 1370 int first_irq, const char *nodename) 1371 { 1372 int devfn, pin; 1373 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1374 uint32_t *irq_map = full_irq_map; 1375 1376 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1377 for (pin = 0; pin < 4; pin++) { 1378 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1379 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1380 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1381 int i; 1382 1383 uint32_t map[] = { 1384 devfn << 8, 0, 0, /* devfn */ 1385 pin + 1, /* PCI pin */ 1386 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1387 1388 /* Convert map to big endian */ 1389 for (i = 0; i < 10; i++) { 1390 irq_map[i] = cpu_to_be32(map[i]); 1391 } 1392 irq_map += 10; 1393 } 1394 } 1395 1396 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1397 full_irq_map, sizeof(full_irq_map)); 1398 1399 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1400 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1401 0, 0, 1402 0x7 /* PCI irq */); 1403 } 1404 1405 static void create_smmu(const VirtMachineState *vms, 1406 PCIBus *bus) 1407 { 1408 char *node; 1409 const char compat[] = "arm,smmu-v3"; 1410 int irq = vms->irqmap[VIRT_SMMU]; 1411 int i; 1412 hwaddr base = vms->memmap[VIRT_SMMU].base; 1413 hwaddr size = vms->memmap[VIRT_SMMU].size; 1414 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1415 DeviceState *dev; 1416 MachineState *ms = MACHINE(vms); 1417 1418 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1419 return; 1420 } 1421 1422 dev = qdev_new(TYPE_ARM_SMMUV3); 1423 1424 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1425 &error_abort); 1426 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1427 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1428 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1429 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1430 qdev_get_gpio_in(vms->gic, irq + i)); 1431 } 1432 1433 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1434 qemu_fdt_add_subnode(ms->fdt, node); 1435 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1436 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1437 1438 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1439 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1440 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1441 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1442 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1443 1444 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1445 sizeof(irq_names)); 1446 1447 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1448 1449 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1450 1451 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1452 g_free(node); 1453 } 1454 1455 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1456 { 1457 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1458 uint16_t bdf = vms->virtio_iommu_bdf; 1459 MachineState *ms = MACHINE(vms); 1460 char *node; 1461 1462 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1463 1464 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1465 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1466 qemu_fdt_add_subnode(ms->fdt, node); 1467 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1468 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1469 1, bdf << 8, 1, 0, 1, 0, 1470 1, 0, 1, 0); 1471 1472 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1473 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1474 g_free(node); 1475 1476 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1477 0x0, vms->iommu_phandle, 0x0, bdf, 1478 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1479 } 1480 1481 static void create_pcie(VirtMachineState *vms) 1482 { 1483 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1484 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1485 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1486 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1487 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1488 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1489 hwaddr base_ecam, size_ecam; 1490 hwaddr base = base_mmio; 1491 int nr_pcie_buses; 1492 int irq = vms->irqmap[VIRT_PCIE]; 1493 MemoryRegion *mmio_alias; 1494 MemoryRegion *mmio_reg; 1495 MemoryRegion *ecam_alias; 1496 MemoryRegion *ecam_reg; 1497 DeviceState *dev; 1498 char *nodename; 1499 int i, ecam_id; 1500 PCIHostState *pci; 1501 MachineState *ms = MACHINE(vms); 1502 MachineClass *mc = MACHINE_GET_CLASS(ms); 1503 1504 dev = qdev_new(TYPE_GPEX_HOST); 1505 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1506 1507 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1508 base_ecam = vms->memmap[ecam_id].base; 1509 size_ecam = vms->memmap[ecam_id].size; 1510 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1511 /* Map only the first size_ecam bytes of ECAM space */ 1512 ecam_alias = g_new0(MemoryRegion, 1); 1513 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1514 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1515 ecam_reg, 0, size_ecam); 1516 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1517 1518 /* Map the MMIO window into system address space so as to expose 1519 * the section of PCI MMIO space which starts at the same base address 1520 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1521 * the window). 1522 */ 1523 mmio_alias = g_new0(MemoryRegion, 1); 1524 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1525 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1526 mmio_reg, base_mmio, size_mmio); 1527 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1528 1529 if (vms->highmem_mmio) { 1530 /* Map high MMIO space */ 1531 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1532 1533 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1534 mmio_reg, base_mmio_high, size_mmio_high); 1535 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1536 high_mmio_alias); 1537 } 1538 1539 /* Map IO port space */ 1540 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1541 1542 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1543 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1544 qdev_get_gpio_in(vms->gic, irq + i)); 1545 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1546 } 1547 1548 pci = PCI_HOST_BRIDGE(dev); 1549 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1550 vms->bus = pci->bus; 1551 if (vms->bus) { 1552 pci_init_nic_devices(pci->bus, mc->default_nic); 1553 } 1554 1555 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1556 qemu_fdt_add_subnode(ms->fdt, nodename); 1557 qemu_fdt_setprop_string(ms->fdt, nodename, 1558 "compatible", "pci-host-ecam-generic"); 1559 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1560 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1561 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1562 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1563 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1564 nr_pcie_buses - 1); 1565 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1566 1567 if (vms->msi_phandle) { 1568 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1569 0, vms->msi_phandle, 0, 0x10000); 1570 } 1571 1572 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1573 2, base_ecam, 2, size_ecam); 1574 1575 if (vms->highmem_mmio) { 1576 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1577 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1578 2, base_pio, 2, size_pio, 1579 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1580 2, base_mmio, 2, size_mmio, 1581 1, FDT_PCI_RANGE_MMIO_64BIT, 1582 2, base_mmio_high, 1583 2, base_mmio_high, 2, size_mmio_high); 1584 } else { 1585 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1586 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1587 2, base_pio, 2, size_pio, 1588 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1589 2, base_mmio, 2, size_mmio); 1590 } 1591 1592 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1593 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1594 1595 if (vms->iommu) { 1596 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1597 1598 switch (vms->iommu) { 1599 case VIRT_IOMMU_SMMUV3: 1600 create_smmu(vms, vms->bus); 1601 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1602 0x0, vms->iommu_phandle, 0x0, 0x10000); 1603 break; 1604 default: 1605 g_assert_not_reached(); 1606 } 1607 } 1608 } 1609 1610 static void create_platform_bus(VirtMachineState *vms) 1611 { 1612 DeviceState *dev; 1613 SysBusDevice *s; 1614 int i; 1615 MemoryRegion *sysmem = get_system_memory(); 1616 1617 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1618 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1619 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1620 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1621 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1622 vms->platform_bus_dev = dev; 1623 1624 s = SYS_BUS_DEVICE(dev); 1625 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1626 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1627 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1628 } 1629 1630 memory_region_add_subregion(sysmem, 1631 vms->memmap[VIRT_PLATFORM_BUS].base, 1632 sysbus_mmio_get_region(s, 0)); 1633 } 1634 1635 static void create_tag_ram(MemoryRegion *tag_sysmem, 1636 hwaddr base, hwaddr size, 1637 const char *name) 1638 { 1639 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1640 1641 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1642 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1643 } 1644 1645 static void create_secure_ram(VirtMachineState *vms, 1646 MemoryRegion *secure_sysmem, 1647 MemoryRegion *secure_tag_sysmem) 1648 { 1649 MemoryRegion *secram = g_new(MemoryRegion, 1); 1650 char *nodename; 1651 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1652 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1653 MachineState *ms = MACHINE(vms); 1654 1655 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1656 &error_fatal); 1657 memory_region_add_subregion(secure_sysmem, base, secram); 1658 1659 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1660 qemu_fdt_add_subnode(ms->fdt, nodename); 1661 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1662 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1663 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1664 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1665 1666 if (secure_tag_sysmem) { 1667 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1668 } 1669 1670 g_free(nodename); 1671 } 1672 1673 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1674 { 1675 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1676 bootinfo); 1677 MachineState *ms = MACHINE(board); 1678 1679 1680 *fdt_size = board->fdt_size; 1681 return ms->fdt; 1682 } 1683 1684 static void virt_build_smbios(VirtMachineState *vms) 1685 { 1686 MachineClass *mc = MACHINE_GET_CLASS(vms); 1687 MachineState *ms = MACHINE(vms); 1688 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1689 uint8_t *smbios_tables, *smbios_anchor; 1690 size_t smbios_tables_len, smbios_anchor_len; 1691 struct smbios_phys_mem_area mem_array; 1692 const char *product = "QEMU Virtual Machine"; 1693 1694 if (kvm_enabled()) { 1695 product = "KVM Virtual Machine"; 1696 } 1697 1698 smbios_set_defaults("QEMU", product, 1699 vmc->smbios_old_sys_ver ? "1.0" : mc->name); 1700 1701 /* build the array of physical mem area from base_memmap */ 1702 mem_array.address = vms->memmap[VIRT_MEM].base; 1703 mem_array.length = ms->ram_size; 1704 1705 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, 1706 &smbios_tables, &smbios_tables_len, 1707 &smbios_anchor, &smbios_anchor_len, 1708 &error_fatal); 1709 1710 if (smbios_anchor) { 1711 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1712 smbios_tables, smbios_tables_len); 1713 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1714 smbios_anchor, smbios_anchor_len); 1715 } 1716 } 1717 1718 static 1719 void virt_machine_done(Notifier *notifier, void *data) 1720 { 1721 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1722 machine_done); 1723 MachineState *ms = MACHINE(vms); 1724 ARMCPU *cpu = ARM_CPU(first_cpu); 1725 struct arm_boot_info *info = &vms->bootinfo; 1726 AddressSpace *as = arm_boot_address_space(cpu, info); 1727 1728 /* 1729 * If the user provided a dtb, we assume the dynamic sysbus nodes 1730 * already are integrated there. This corresponds to a use case where 1731 * the dynamic sysbus nodes are complex and their generation is not yet 1732 * supported. In that case the user can take charge of the guest dt 1733 * while qemu takes charge of the qom stuff. 1734 */ 1735 if (info->dtb_filename == NULL) { 1736 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1737 vms->memmap[VIRT_PLATFORM_BUS].base, 1738 vms->memmap[VIRT_PLATFORM_BUS].size, 1739 vms->irqmap[VIRT_PLATFORM_BUS]); 1740 } 1741 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1742 exit(1); 1743 } 1744 1745 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1746 1747 virt_acpi_setup(vms); 1748 virt_build_smbios(vms); 1749 } 1750 1751 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1752 { 1753 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1754 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1755 1756 if (!vmc->disallow_affinity_adjustment) { 1757 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1758 * GIC's target-list limitations. 32-bit KVM hosts currently 1759 * always create clusters of 4 CPUs, but that is expected to 1760 * change when they gain support for gicv3. When KVM is enabled 1761 * it will override the changes we make here, therefore our 1762 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1763 * and to improve SGI efficiency. 1764 */ 1765 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1766 clustersz = GIC_TARGETLIST_BITS; 1767 } else { 1768 clustersz = GICV3_TARGETLIST_BITS; 1769 } 1770 } 1771 return arm_build_mp_affinity(idx, clustersz); 1772 } 1773 1774 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1775 int index) 1776 { 1777 bool *enabled_array[] = { 1778 &vms->highmem_redists, 1779 &vms->highmem_ecam, 1780 &vms->highmem_mmio, 1781 }; 1782 1783 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1784 ARRAY_SIZE(enabled_array)); 1785 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1786 1787 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1788 } 1789 1790 static void virt_set_high_memmap(VirtMachineState *vms, 1791 hwaddr base, int pa_bits) 1792 { 1793 hwaddr region_base, region_size; 1794 bool *region_enabled, fits; 1795 int i; 1796 1797 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1798 region_enabled = virt_get_high_memmap_enabled(vms, i); 1799 region_base = ROUND_UP(base, extended_memmap[i].size); 1800 region_size = extended_memmap[i].size; 1801 1802 vms->memmap[i].base = region_base; 1803 vms->memmap[i].size = region_size; 1804 1805 /* 1806 * Check each device to see if it fits in the PA space, 1807 * moving highest_gpa as we go. For compatibility, move 1808 * highest_gpa for disabled fitting devices as well, if 1809 * the compact layout has been disabled. 1810 * 1811 * For each device that doesn't fit, disable it. 1812 */ 1813 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1814 *region_enabled &= fits; 1815 if (vms->highmem_compact && !*region_enabled) { 1816 continue; 1817 } 1818 1819 base = region_base + region_size; 1820 if (fits) { 1821 vms->highest_gpa = base - 1; 1822 } 1823 } 1824 } 1825 1826 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1827 { 1828 MachineState *ms = MACHINE(vms); 1829 hwaddr base, device_memory_base, device_memory_size, memtop; 1830 int i; 1831 1832 vms->memmap = extended_memmap; 1833 1834 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1835 vms->memmap[i] = base_memmap[i]; 1836 } 1837 1838 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1839 error_report("unsupported number of memory slots: %"PRIu64, 1840 ms->ram_slots); 1841 exit(EXIT_FAILURE); 1842 } 1843 1844 /* 1845 * !highmem is exactly the same as limiting the PA space to 32bit, 1846 * irrespective of the underlying capabilities of the HW. 1847 */ 1848 if (!vms->highmem) { 1849 pa_bits = 32; 1850 } 1851 1852 /* 1853 * We compute the base of the high IO region depending on the 1854 * amount of initial and device memory. The device memory start/size 1855 * is aligned on 1GiB. We never put the high IO region below 256GiB 1856 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1857 * The device region size assumes 1GiB page max alignment per slot. 1858 */ 1859 device_memory_base = 1860 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1861 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1862 1863 /* Base address of the high IO region */ 1864 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1865 if (memtop > BIT_ULL(pa_bits)) { 1866 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", 1867 pa_bits, memtop - BIT_ULL(pa_bits)); 1868 exit(EXIT_FAILURE); 1869 } 1870 if (base < device_memory_base) { 1871 error_report("maxmem/slots too huge"); 1872 exit(EXIT_FAILURE); 1873 } 1874 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1875 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1876 } 1877 1878 /* We know for sure that at least the memory fits in the PA space */ 1879 vms->highest_gpa = memtop - 1; 1880 1881 virt_set_high_memmap(vms, base, pa_bits); 1882 1883 if (device_memory_size > 0) { 1884 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1885 } 1886 } 1887 1888 static VirtGICType finalize_gic_version_do(const char *accel_name, 1889 VirtGICType gic_version, 1890 int gics_supported, 1891 unsigned int max_cpus) 1892 { 1893 /* Convert host/max/nosel to GIC version number */ 1894 switch (gic_version) { 1895 case VIRT_GIC_VERSION_HOST: 1896 if (!kvm_enabled()) { 1897 error_report("gic-version=host requires KVM"); 1898 exit(1); 1899 } 1900 1901 /* For KVM, gic-version=host means gic-version=max */ 1902 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1903 gics_supported, max_cpus); 1904 case VIRT_GIC_VERSION_MAX: 1905 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1906 gic_version = VIRT_GIC_VERSION_4; 1907 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1908 gic_version = VIRT_GIC_VERSION_3; 1909 } else { 1910 gic_version = VIRT_GIC_VERSION_2; 1911 } 1912 break; 1913 case VIRT_GIC_VERSION_NOSEL: 1914 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1915 max_cpus <= GIC_NCPU) { 1916 gic_version = VIRT_GIC_VERSION_2; 1917 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1918 /* 1919 * in case the host does not support v2 emulation or 1920 * the end-user requested more than 8 VCPUs we now default 1921 * to v3. In any case defaulting to v2 would be broken. 1922 */ 1923 gic_version = VIRT_GIC_VERSION_3; 1924 } else if (max_cpus > GIC_NCPU) { 1925 error_report("%s only supports GICv2 emulation but more than 8 " 1926 "vcpus are requested", accel_name); 1927 exit(1); 1928 } 1929 break; 1930 case VIRT_GIC_VERSION_2: 1931 case VIRT_GIC_VERSION_3: 1932 case VIRT_GIC_VERSION_4: 1933 break; 1934 } 1935 1936 /* Check chosen version is effectively supported */ 1937 switch (gic_version) { 1938 case VIRT_GIC_VERSION_2: 1939 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1940 error_report("%s does not support GICv2 emulation", accel_name); 1941 exit(1); 1942 } 1943 break; 1944 case VIRT_GIC_VERSION_3: 1945 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1946 error_report("%s does not support GICv3 emulation", accel_name); 1947 exit(1); 1948 } 1949 break; 1950 case VIRT_GIC_VERSION_4: 1951 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1952 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1953 accel_name); 1954 exit(1); 1955 } 1956 break; 1957 default: 1958 error_report("logic error in finalize_gic_version"); 1959 exit(1); 1960 break; 1961 } 1962 1963 return gic_version; 1964 } 1965 1966 /* 1967 * finalize_gic_version - Determines the final gic_version 1968 * according to the gic-version property 1969 * 1970 * Default GIC type is v2 1971 */ 1972 static void finalize_gic_version(VirtMachineState *vms) 1973 { 1974 const char *accel_name = current_accel_name(); 1975 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1976 int gics_supported = 0; 1977 1978 /* Determine which GIC versions the current environment supports */ 1979 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1980 int probe_bitmap = kvm_arm_vgic_probe(); 1981 1982 if (!probe_bitmap) { 1983 error_report("Unable to determine GIC version supported by host"); 1984 exit(1); 1985 } 1986 1987 if (probe_bitmap & KVM_ARM_VGIC_V2) { 1988 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1989 } 1990 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1991 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1992 } 1993 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 1994 /* KVM w/o kernel irqchip can only deal with GICv2 */ 1995 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1996 accel_name = "KVM with kernel-irqchip=off"; 1997 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 1998 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1999 if (module_object_class_by_name("arm-gicv3")) { 2000 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2001 if (vms->virt) { 2002 /* GICv4 only makes sense if CPU has EL2 */ 2003 gics_supported |= VIRT_GIC_VERSION_4_MASK; 2004 } 2005 } 2006 } else { 2007 error_report("Unsupported accelerator, can not determine GIC support"); 2008 exit(1); 2009 } 2010 2011 /* 2012 * Then convert helpers like host/max to concrete GIC versions and ensure 2013 * the desired version is supported 2014 */ 2015 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 2016 gics_supported, max_cpus); 2017 } 2018 2019 /* 2020 * virt_cpu_post_init() must be called after the CPUs have 2021 * been realized and the GIC has been created. 2022 */ 2023 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 2024 { 2025 int max_cpus = MACHINE(vms)->smp.max_cpus; 2026 bool aarch64, pmu, steal_time; 2027 CPUState *cpu; 2028 2029 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 2030 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 2031 steal_time = object_property_get_bool(OBJECT(first_cpu), 2032 "kvm-steal-time", NULL); 2033 2034 if (kvm_enabled()) { 2035 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 2036 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 2037 2038 if (steal_time) { 2039 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 2040 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 2041 2042 /* The memory region size must be a multiple of host page size. */ 2043 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 2044 2045 if (pvtime_size > pvtime_reg_size) { 2046 error_report("pvtime requires a %" HWADDR_PRId 2047 " byte memory region for %d CPUs," 2048 " but only %" HWADDR_PRId " has been reserved", 2049 pvtime_size, max_cpus, pvtime_reg_size); 2050 exit(1); 2051 } 2052 2053 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 2054 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 2055 } 2056 2057 CPU_FOREACH(cpu) { 2058 if (pmu) { 2059 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 2060 if (kvm_irqchip_in_kernel()) { 2061 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 2062 } 2063 kvm_arm_pmu_init(ARM_CPU(cpu)); 2064 } 2065 if (steal_time) { 2066 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 2067 + cpu->cpu_index 2068 * PVTIME_SIZE_PER_CPU); 2069 } 2070 } 2071 } else { 2072 if (aarch64 && vms->highmem) { 2073 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2074 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2075 2076 if (pamax < requested_pa_size) { 2077 error_report("VCPU supports less PA bits (%d) than " 2078 "requested by the memory map (%d)", 2079 pamax, requested_pa_size); 2080 exit(1); 2081 } 2082 } 2083 } 2084 } 2085 2086 static void machvirt_init(MachineState *machine) 2087 { 2088 VirtMachineState *vms = VIRT_MACHINE(machine); 2089 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2090 MachineClass *mc = MACHINE_GET_CLASS(machine); 2091 const CPUArchIdList *possible_cpus; 2092 MemoryRegion *sysmem = get_system_memory(); 2093 MemoryRegion *secure_sysmem = NULL; 2094 MemoryRegion *tag_sysmem = NULL; 2095 MemoryRegion *secure_tag_sysmem = NULL; 2096 int n, virt_max_cpus; 2097 bool firmware_loaded; 2098 bool aarch64 = true; 2099 bool has_ged = !vmc->no_ged; 2100 unsigned int smp_cpus = machine->smp.cpus; 2101 unsigned int max_cpus = machine->smp.max_cpus; 2102 2103 possible_cpus = mc->possible_cpu_arch_ids(machine); 2104 2105 /* 2106 * In accelerated mode, the memory map is computed earlier in kvm_type() 2107 * to create a VM with the right number of IPA bits. 2108 */ 2109 if (!vms->memmap) { 2110 Object *cpuobj; 2111 ARMCPU *armcpu; 2112 int pa_bits; 2113 2114 /* 2115 * Instantiate a temporary CPU object to find out about what 2116 * we are about to deal with. Once this is done, get rid of 2117 * the object. 2118 */ 2119 cpuobj = object_new(possible_cpus->cpus[0].type); 2120 armcpu = ARM_CPU(cpuobj); 2121 2122 pa_bits = arm_pamax(armcpu); 2123 2124 object_unref(cpuobj); 2125 2126 virt_set_memmap(vms, pa_bits); 2127 } 2128 2129 /* We can probe only here because during property set 2130 * KVM is not available yet 2131 */ 2132 finalize_gic_version(vms); 2133 2134 if (vms->secure) { 2135 /* 2136 * The Secure view of the world is the same as the NonSecure, 2137 * but with a few extra devices. Create it as a container region 2138 * containing the system memory at low priority; any secure-only 2139 * devices go in at higher priority and take precedence. 2140 */ 2141 secure_sysmem = g_new(MemoryRegion, 1); 2142 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2143 UINT64_MAX); 2144 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2145 } 2146 2147 firmware_loaded = virt_firmware_init(vms, sysmem, 2148 secure_sysmem ?: sysmem); 2149 2150 /* If we have an EL3 boot ROM then the assumption is that it will 2151 * implement PSCI itself, so disable QEMU's internal implementation 2152 * so it doesn't get in the way. Instead of starting secondary 2153 * CPUs in PSCI powerdown state we will start them all running and 2154 * let the boot ROM sort them out. 2155 * The usual case is that we do use QEMU's PSCI implementation; 2156 * if the guest has EL2 then we will use SMC as the conduit, 2157 * and otherwise we will use HVC (for backwards compatibility and 2158 * because if we're using KVM then we must use HVC). 2159 */ 2160 if (vms->secure && firmware_loaded) { 2161 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2162 } else if (vms->virt) { 2163 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2164 } else { 2165 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2166 } 2167 2168 /* 2169 * The maximum number of CPUs depends on the GIC version, or on how 2170 * many redistributors we can fit into the memory map (which in turn 2171 * depends on whether this is a GICv3 or v4). 2172 */ 2173 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2174 virt_max_cpus = GIC_NCPU; 2175 } else { 2176 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2177 if (vms->highmem_redists) { 2178 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2179 } 2180 } 2181 2182 if (max_cpus > virt_max_cpus) { 2183 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2184 "supported by machine 'mach-virt' (%d)", 2185 max_cpus, virt_max_cpus); 2186 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2187 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2188 } 2189 2190 exit(1); 2191 } 2192 2193 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2194 error_report("mach-virt: %s does not support providing " 2195 "Security extensions (TrustZone) to the guest CPU", 2196 current_accel_name()); 2197 exit(1); 2198 } 2199 2200 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2201 error_report("mach-virt: %s does not support providing " 2202 "Virtualization extensions to the guest CPU", 2203 current_accel_name()); 2204 exit(1); 2205 } 2206 2207 if (vms->mte && (kvm_enabled() || hvf_enabled())) { 2208 error_report("mach-virt: %s does not support providing " 2209 "MTE to the guest CPU", 2210 current_accel_name()); 2211 exit(1); 2212 } 2213 2214 create_fdt(vms); 2215 2216 assert(possible_cpus->len == max_cpus); 2217 for (n = 0; n < possible_cpus->len; n++) { 2218 Object *cpuobj; 2219 CPUState *cs; 2220 2221 if (n >= smp_cpus) { 2222 break; 2223 } 2224 2225 cpuobj = object_new(possible_cpus->cpus[n].type); 2226 object_property_set_int(cpuobj, "mp-affinity", 2227 possible_cpus->cpus[n].arch_id, NULL); 2228 2229 cs = CPU(cpuobj); 2230 cs->cpu_index = n; 2231 2232 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2233 &error_fatal); 2234 2235 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2236 2237 if (!vms->secure) { 2238 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2239 } 2240 2241 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2242 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2243 } 2244 2245 if (vmc->kvm_no_adjvtime && 2246 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2247 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2248 } 2249 2250 if (vmc->no_kvm_steal_time && 2251 object_property_find(cpuobj, "kvm-steal-time")) { 2252 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2253 } 2254 2255 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2256 object_property_set_bool(cpuobj, "pmu", false, NULL); 2257 } 2258 2259 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2260 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2261 } 2262 2263 if (object_property_find(cpuobj, "reset-cbar")) { 2264 object_property_set_int(cpuobj, "reset-cbar", 2265 vms->memmap[VIRT_CPUPERIPHS].base, 2266 &error_abort); 2267 } 2268 2269 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2270 &error_abort); 2271 if (vms->secure) { 2272 object_property_set_link(cpuobj, "secure-memory", 2273 OBJECT(secure_sysmem), &error_abort); 2274 } 2275 2276 if (vms->mte) { 2277 /* Create the memory region only once, but link to all cpus. */ 2278 if (!tag_sysmem) { 2279 /* 2280 * The property exists only if MemTag is supported. 2281 * If it is, we must allocate the ram to back that up. 2282 */ 2283 if (!object_property_find(cpuobj, "tag-memory")) { 2284 error_report("MTE requested, but not supported " 2285 "by the guest CPU"); 2286 exit(1); 2287 } 2288 2289 tag_sysmem = g_new(MemoryRegion, 1); 2290 memory_region_init(tag_sysmem, OBJECT(machine), 2291 "tag-memory", UINT64_MAX / 32); 2292 2293 if (vms->secure) { 2294 secure_tag_sysmem = g_new(MemoryRegion, 1); 2295 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2296 "secure-tag-memory", UINT64_MAX / 32); 2297 2298 /* As with ram, secure-tag takes precedence over tag. */ 2299 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2300 tag_sysmem, -1); 2301 } 2302 } 2303 2304 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2305 &error_abort); 2306 if (vms->secure) { 2307 object_property_set_link(cpuobj, "secure-tag-memory", 2308 OBJECT(secure_tag_sysmem), 2309 &error_abort); 2310 } 2311 } 2312 2313 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2314 object_unref(cpuobj); 2315 } 2316 2317 /* Now we've created the CPUs we can see if they have the hypvirt timer */ 2318 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && 2319 !vmc->no_ns_el2_virt_timer_irq; 2320 2321 fdt_add_timer_nodes(vms); 2322 fdt_add_cpu_nodes(vms); 2323 2324 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2325 machine->ram); 2326 2327 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2328 2329 create_gic(vms, sysmem); 2330 2331 virt_cpu_post_init(vms, sysmem); 2332 2333 fdt_add_pmu_nodes(vms); 2334 2335 /* 2336 * The first UART always exists. If the security extensions are 2337 * enabled, the second UART also always exists. Otherwise, it only exists 2338 * if a backend is configured explicitly via '-serial <backend>'. 2339 * This avoids potentially breaking existing user setups that expect 2340 * only one NonSecure UART to be present (for instance, older EDK2 2341 * binaries). 2342 * 2343 * The nodes end up in the DTB in reverse order of creation, so we must 2344 * create UART0 last to ensure it appears as the first node in the DTB, 2345 * for compatibility with guest software that just iterates through the 2346 * DTB to find the first UART, as older versions of EDK2 do. 2347 * DTB readers that follow the spec, as Linux does, should honour the 2348 * aliases node information and /chosen/stdout-path regardless of 2349 * the order that nodes appear in the DTB. 2350 * 2351 * For similar back-compatibility reasons, if UART1 is the secure UART 2352 * we create it second (and so it appears first in the DTB), because 2353 * that's what QEMU has always done. 2354 */ 2355 if (!vms->secure) { 2356 Chardev *serial1 = serial_hd(1); 2357 2358 if (serial1) { 2359 vms->second_ns_uart_present = true; 2360 create_uart(vms, VIRT_UART1, sysmem, serial1, false); 2361 } 2362 } 2363 create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); 2364 if (vms->secure) { 2365 create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); 2366 } 2367 2368 if (vms->secure) { 2369 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2370 } 2371 2372 if (tag_sysmem) { 2373 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2374 machine->ram_size, "mach-virt.tag"); 2375 } 2376 2377 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2378 2379 create_rtc(vms); 2380 2381 create_pcie(vms); 2382 2383 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2384 vms->acpi_dev = create_acpi_ged(vms); 2385 } else { 2386 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2387 } 2388 2389 if (vms->secure && !vmc->no_secure_gpio) { 2390 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2391 } 2392 2393 /* connect powerdown request */ 2394 vms->powerdown_notifier.notify = virt_powerdown_req; 2395 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2396 2397 /* Create mmio transports, so the user can create virtio backends 2398 * (which will be automatically plugged in to the transports). If 2399 * no backend is created the transport will just sit harmlessly idle. 2400 */ 2401 create_virtio_devices(vms); 2402 2403 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2404 rom_set_fw(vms->fw_cfg); 2405 2406 create_platform_bus(vms); 2407 2408 if (machine->nvdimms_state->is_enabled) { 2409 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2410 .space_id = AML_AS_SYSTEM_MEMORY, 2411 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2412 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2413 }; 2414 2415 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2416 arm_virt_nvdimm_acpi_dsmio, 2417 vms->fw_cfg, OBJECT(vms)); 2418 } 2419 2420 vms->bootinfo.ram_size = machine->ram_size; 2421 vms->bootinfo.board_id = -1; 2422 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2423 vms->bootinfo.get_dtb = machvirt_dtb; 2424 vms->bootinfo.skip_dtb_autoload = true; 2425 vms->bootinfo.firmware_loaded = firmware_loaded; 2426 vms->bootinfo.psci_conduit = vms->psci_conduit; 2427 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2428 2429 vms->machine_done.notify = virt_machine_done; 2430 qemu_add_machine_init_done_notifier(&vms->machine_done); 2431 } 2432 2433 static bool virt_get_secure(Object *obj, Error **errp) 2434 { 2435 VirtMachineState *vms = VIRT_MACHINE(obj); 2436 2437 return vms->secure; 2438 } 2439 2440 static void virt_set_secure(Object *obj, bool value, Error **errp) 2441 { 2442 VirtMachineState *vms = VIRT_MACHINE(obj); 2443 2444 vms->secure = value; 2445 } 2446 2447 static bool virt_get_virt(Object *obj, Error **errp) 2448 { 2449 VirtMachineState *vms = VIRT_MACHINE(obj); 2450 2451 return vms->virt; 2452 } 2453 2454 static void virt_set_virt(Object *obj, bool value, Error **errp) 2455 { 2456 VirtMachineState *vms = VIRT_MACHINE(obj); 2457 2458 vms->virt = value; 2459 } 2460 2461 static bool virt_get_highmem(Object *obj, Error **errp) 2462 { 2463 VirtMachineState *vms = VIRT_MACHINE(obj); 2464 2465 return vms->highmem; 2466 } 2467 2468 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2469 { 2470 VirtMachineState *vms = VIRT_MACHINE(obj); 2471 2472 vms->highmem = value; 2473 } 2474 2475 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2476 { 2477 VirtMachineState *vms = VIRT_MACHINE(obj); 2478 2479 return vms->highmem_compact; 2480 } 2481 2482 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2483 { 2484 VirtMachineState *vms = VIRT_MACHINE(obj); 2485 2486 vms->highmem_compact = value; 2487 } 2488 2489 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2490 { 2491 VirtMachineState *vms = VIRT_MACHINE(obj); 2492 2493 return vms->highmem_redists; 2494 } 2495 2496 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2497 { 2498 VirtMachineState *vms = VIRT_MACHINE(obj); 2499 2500 vms->highmem_redists = value; 2501 } 2502 2503 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2504 { 2505 VirtMachineState *vms = VIRT_MACHINE(obj); 2506 2507 return vms->highmem_ecam; 2508 } 2509 2510 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2511 { 2512 VirtMachineState *vms = VIRT_MACHINE(obj); 2513 2514 vms->highmem_ecam = value; 2515 } 2516 2517 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2518 { 2519 VirtMachineState *vms = VIRT_MACHINE(obj); 2520 2521 return vms->highmem_mmio; 2522 } 2523 2524 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2525 { 2526 VirtMachineState *vms = VIRT_MACHINE(obj); 2527 2528 vms->highmem_mmio = value; 2529 } 2530 2531 2532 static bool virt_get_its(Object *obj, Error **errp) 2533 { 2534 VirtMachineState *vms = VIRT_MACHINE(obj); 2535 2536 return vms->its; 2537 } 2538 2539 static void virt_set_its(Object *obj, bool value, Error **errp) 2540 { 2541 VirtMachineState *vms = VIRT_MACHINE(obj); 2542 2543 vms->its = value; 2544 } 2545 2546 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2547 { 2548 VirtMachineState *vms = VIRT_MACHINE(obj); 2549 2550 return vms->dtb_randomness; 2551 } 2552 2553 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2554 { 2555 VirtMachineState *vms = VIRT_MACHINE(obj); 2556 2557 vms->dtb_randomness = value; 2558 } 2559 2560 static char *virt_get_oem_id(Object *obj, Error **errp) 2561 { 2562 VirtMachineState *vms = VIRT_MACHINE(obj); 2563 2564 return g_strdup(vms->oem_id); 2565 } 2566 2567 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2568 { 2569 VirtMachineState *vms = VIRT_MACHINE(obj); 2570 size_t len = strlen(value); 2571 2572 if (len > 6) { 2573 error_setg(errp, 2574 "User specified oem-id value is bigger than 6 bytes in size"); 2575 return; 2576 } 2577 2578 strncpy(vms->oem_id, value, 6); 2579 } 2580 2581 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2582 { 2583 VirtMachineState *vms = VIRT_MACHINE(obj); 2584 2585 return g_strdup(vms->oem_table_id); 2586 } 2587 2588 static void virt_set_oem_table_id(Object *obj, const char *value, 2589 Error **errp) 2590 { 2591 VirtMachineState *vms = VIRT_MACHINE(obj); 2592 size_t len = strlen(value); 2593 2594 if (len > 8) { 2595 error_setg(errp, 2596 "User specified oem-table-id value is bigger than 8 bytes in size"); 2597 return; 2598 } 2599 strncpy(vms->oem_table_id, value, 8); 2600 } 2601 2602 2603 bool virt_is_acpi_enabled(VirtMachineState *vms) 2604 { 2605 if (vms->acpi == ON_OFF_AUTO_OFF) { 2606 return false; 2607 } 2608 return true; 2609 } 2610 2611 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2612 void *opaque, Error **errp) 2613 { 2614 VirtMachineState *vms = VIRT_MACHINE(obj); 2615 OnOffAuto acpi = vms->acpi; 2616 2617 visit_type_OnOffAuto(v, name, &acpi, errp); 2618 } 2619 2620 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2621 void *opaque, Error **errp) 2622 { 2623 VirtMachineState *vms = VIRT_MACHINE(obj); 2624 2625 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2626 } 2627 2628 static bool virt_get_ras(Object *obj, Error **errp) 2629 { 2630 VirtMachineState *vms = VIRT_MACHINE(obj); 2631 2632 return vms->ras; 2633 } 2634 2635 static void virt_set_ras(Object *obj, bool value, Error **errp) 2636 { 2637 VirtMachineState *vms = VIRT_MACHINE(obj); 2638 2639 vms->ras = value; 2640 } 2641 2642 static bool virt_get_mte(Object *obj, Error **errp) 2643 { 2644 VirtMachineState *vms = VIRT_MACHINE(obj); 2645 2646 return vms->mte; 2647 } 2648 2649 static void virt_set_mte(Object *obj, bool value, Error **errp) 2650 { 2651 VirtMachineState *vms = VIRT_MACHINE(obj); 2652 2653 vms->mte = value; 2654 } 2655 2656 static char *virt_get_gic_version(Object *obj, Error **errp) 2657 { 2658 VirtMachineState *vms = VIRT_MACHINE(obj); 2659 const char *val; 2660 2661 switch (vms->gic_version) { 2662 case VIRT_GIC_VERSION_4: 2663 val = "4"; 2664 break; 2665 case VIRT_GIC_VERSION_3: 2666 val = "3"; 2667 break; 2668 default: 2669 val = "2"; 2670 break; 2671 } 2672 return g_strdup(val); 2673 } 2674 2675 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2676 { 2677 VirtMachineState *vms = VIRT_MACHINE(obj); 2678 2679 if (!strcmp(value, "4")) { 2680 vms->gic_version = VIRT_GIC_VERSION_4; 2681 } else if (!strcmp(value, "3")) { 2682 vms->gic_version = VIRT_GIC_VERSION_3; 2683 } else if (!strcmp(value, "2")) { 2684 vms->gic_version = VIRT_GIC_VERSION_2; 2685 } else if (!strcmp(value, "host")) { 2686 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2687 } else if (!strcmp(value, "max")) { 2688 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2689 } else { 2690 error_setg(errp, "Invalid gic-version value"); 2691 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2692 } 2693 } 2694 2695 static char *virt_get_iommu(Object *obj, Error **errp) 2696 { 2697 VirtMachineState *vms = VIRT_MACHINE(obj); 2698 2699 switch (vms->iommu) { 2700 case VIRT_IOMMU_NONE: 2701 return g_strdup("none"); 2702 case VIRT_IOMMU_SMMUV3: 2703 return g_strdup("smmuv3"); 2704 default: 2705 g_assert_not_reached(); 2706 } 2707 } 2708 2709 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2710 { 2711 VirtMachineState *vms = VIRT_MACHINE(obj); 2712 2713 if (!strcmp(value, "smmuv3")) { 2714 vms->iommu = VIRT_IOMMU_SMMUV3; 2715 } else if (!strcmp(value, "none")) { 2716 vms->iommu = VIRT_IOMMU_NONE; 2717 } else { 2718 error_setg(errp, "Invalid iommu value"); 2719 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2720 } 2721 } 2722 2723 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2724 { 2725 VirtMachineState *vms = VIRT_MACHINE(obj); 2726 2727 return vms->default_bus_bypass_iommu; 2728 } 2729 2730 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2731 Error **errp) 2732 { 2733 VirtMachineState *vms = VIRT_MACHINE(obj); 2734 2735 vms->default_bus_bypass_iommu = value; 2736 } 2737 2738 static CpuInstanceProperties 2739 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2740 { 2741 MachineClass *mc = MACHINE_GET_CLASS(ms); 2742 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2743 2744 assert(cpu_index < possible_cpus->len); 2745 return possible_cpus->cpus[cpu_index].props; 2746 } 2747 2748 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2749 { 2750 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2751 2752 return socket_id % ms->numa_state->num_nodes; 2753 } 2754 2755 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2756 { 2757 int n; 2758 unsigned int max_cpus = ms->smp.max_cpus; 2759 VirtMachineState *vms = VIRT_MACHINE(ms); 2760 MachineClass *mc = MACHINE_GET_CLASS(vms); 2761 2762 if (ms->possible_cpus) { 2763 assert(ms->possible_cpus->len == max_cpus); 2764 return ms->possible_cpus; 2765 } 2766 2767 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2768 sizeof(CPUArchId) * max_cpus); 2769 ms->possible_cpus->len = max_cpus; 2770 for (n = 0; n < ms->possible_cpus->len; n++) { 2771 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2772 ms->possible_cpus->cpus[n].arch_id = 2773 virt_cpu_mp_affinity(vms, n); 2774 2775 assert(!mc->smp_props.dies_supported); 2776 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2777 ms->possible_cpus->cpus[n].props.socket_id = 2778 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2779 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2780 ms->possible_cpus->cpus[n].props.cluster_id = 2781 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2782 ms->possible_cpus->cpus[n].props.has_core_id = true; 2783 ms->possible_cpus->cpus[n].props.core_id = 2784 (n / ms->smp.threads) % ms->smp.cores; 2785 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2786 ms->possible_cpus->cpus[n].props.thread_id = 2787 n % ms->smp.threads; 2788 } 2789 return ms->possible_cpus; 2790 } 2791 2792 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2793 Error **errp) 2794 { 2795 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2796 const MachineState *ms = MACHINE(hotplug_dev); 2797 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2798 2799 if (!vms->acpi_dev) { 2800 error_setg(errp, 2801 "memory hotplug is not enabled: missing acpi-ged device"); 2802 return; 2803 } 2804 2805 if (vms->mte) { 2806 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2807 return; 2808 } 2809 2810 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2811 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2812 return; 2813 } 2814 2815 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); 2816 } 2817 2818 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2819 DeviceState *dev, Error **errp) 2820 { 2821 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2822 MachineState *ms = MACHINE(hotplug_dev); 2823 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2824 2825 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2826 2827 if (is_nvdimm) { 2828 nvdimm_plug(ms->nvdimms_state); 2829 } 2830 2831 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2832 dev, &error_abort); 2833 } 2834 2835 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2836 DeviceState *dev, Error **errp) 2837 { 2838 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2839 2840 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2841 virt_memory_pre_plug(hotplug_dev, dev, errp); 2842 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2843 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2844 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2845 hwaddr db_start = 0, db_end = 0; 2846 QList *reserved_regions; 2847 char *resv_prop_str; 2848 2849 if (vms->iommu != VIRT_IOMMU_NONE) { 2850 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2851 return; 2852 } 2853 2854 switch (vms->msi_controller) { 2855 case VIRT_MSI_CTRL_NONE: 2856 return; 2857 case VIRT_MSI_CTRL_ITS: 2858 /* GITS_TRANSLATER page */ 2859 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2860 db_end = base_memmap[VIRT_GIC_ITS].base + 2861 base_memmap[VIRT_GIC_ITS].size - 1; 2862 break; 2863 case VIRT_MSI_CTRL_GICV2M: 2864 /* MSI_SETSPI_NS page */ 2865 db_start = base_memmap[VIRT_GIC_V2M].base; 2866 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2867 break; 2868 } 2869 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2870 db_start, db_end, 2871 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2872 2873 reserved_regions = qlist_new(); 2874 qlist_append_str(reserved_regions, resv_prop_str); 2875 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2876 g_free(resv_prop_str); 2877 } 2878 } 2879 2880 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2881 DeviceState *dev, Error **errp) 2882 { 2883 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2884 2885 if (vms->platform_bus_dev) { 2886 MachineClass *mc = MACHINE_GET_CLASS(vms); 2887 2888 if (device_is_dynamic_sysbus(mc, dev)) { 2889 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2890 SYS_BUS_DEVICE(dev)); 2891 } 2892 } 2893 2894 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2895 virt_memory_plug(hotplug_dev, dev, errp); 2896 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2897 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2898 } 2899 2900 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2901 PCIDevice *pdev = PCI_DEVICE(dev); 2902 2903 vms->iommu = VIRT_IOMMU_VIRTIO; 2904 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2905 create_virtio_iommu_dt_bindings(vms); 2906 } 2907 } 2908 2909 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2910 DeviceState *dev, Error **errp) 2911 { 2912 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2913 2914 if (!vms->acpi_dev) { 2915 error_setg(errp, 2916 "memory hotplug is not enabled: missing acpi-ged device"); 2917 return; 2918 } 2919 2920 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2921 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2922 return; 2923 } 2924 2925 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2926 errp); 2927 } 2928 2929 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2930 DeviceState *dev, Error **errp) 2931 { 2932 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2933 Error *local_err = NULL; 2934 2935 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2936 if (local_err) { 2937 goto out; 2938 } 2939 2940 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2941 qdev_unrealize(dev); 2942 2943 out: 2944 error_propagate(errp, local_err); 2945 } 2946 2947 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2948 DeviceState *dev, Error **errp) 2949 { 2950 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2951 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2952 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2953 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 2954 errp); 2955 } else { 2956 error_setg(errp, "device unplug request for unsupported device" 2957 " type: %s", object_get_typename(OBJECT(dev))); 2958 } 2959 } 2960 2961 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2962 DeviceState *dev, Error **errp) 2963 { 2964 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2965 virt_dimm_unplug(hotplug_dev, dev, errp); 2966 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2967 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2968 } else { 2969 error_setg(errp, "virt: device unplug for unsupported device" 2970 " type: %s", object_get_typename(OBJECT(dev))); 2971 } 2972 } 2973 2974 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2975 DeviceState *dev) 2976 { 2977 MachineClass *mc = MACHINE_GET_CLASS(machine); 2978 2979 if (device_is_dynamic_sysbus(mc, dev) || 2980 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2981 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 2982 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2983 return HOTPLUG_HANDLER(machine); 2984 } 2985 return NULL; 2986 } 2987 2988 /* 2989 * for arm64 kvm_type [7-0] encodes the requested number of bits 2990 * in the IPA address space 2991 */ 2992 static int virt_kvm_type(MachineState *ms, const char *type_str) 2993 { 2994 VirtMachineState *vms = VIRT_MACHINE(ms); 2995 int max_vm_pa_size, requested_pa_size; 2996 bool fixed_ipa; 2997 2998 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2999 3000 /* we freeze the memory map to compute the highest gpa */ 3001 virt_set_memmap(vms, max_vm_pa_size); 3002 3003 requested_pa_size = 64 - clz64(vms->highest_gpa); 3004 3005 /* 3006 * KVM requires the IPA size to be at least 32 bits. 3007 */ 3008 if (requested_pa_size < 32) { 3009 requested_pa_size = 32; 3010 } 3011 3012 if (requested_pa_size > max_vm_pa_size) { 3013 error_report("-m and ,maxmem option values " 3014 "require an IPA range (%d bits) larger than " 3015 "the one supported by the host (%d bits)", 3016 requested_pa_size, max_vm_pa_size); 3017 return -1; 3018 } 3019 /* 3020 * We return the requested PA log size, unless KVM only supports 3021 * the implicit legacy 40b IPA setting, in which case the kvm_type 3022 * must be 0. 3023 */ 3024 return fixed_ipa ? 0 : requested_pa_size; 3025 } 3026 3027 static void virt_machine_class_init(ObjectClass *oc, void *data) 3028 { 3029 MachineClass *mc = MACHINE_CLASS(oc); 3030 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3031 static const char * const valid_cpu_types[] = { 3032 #ifdef CONFIG_TCG 3033 ARM_CPU_TYPE_NAME("cortex-a7"), 3034 ARM_CPU_TYPE_NAME("cortex-a15"), 3035 #ifdef TARGET_AARCH64 3036 ARM_CPU_TYPE_NAME("cortex-a35"), 3037 ARM_CPU_TYPE_NAME("cortex-a55"), 3038 ARM_CPU_TYPE_NAME("cortex-a72"), 3039 ARM_CPU_TYPE_NAME("cortex-a76"), 3040 ARM_CPU_TYPE_NAME("cortex-a710"), 3041 ARM_CPU_TYPE_NAME("a64fx"), 3042 ARM_CPU_TYPE_NAME("neoverse-n1"), 3043 ARM_CPU_TYPE_NAME("neoverse-v1"), 3044 ARM_CPU_TYPE_NAME("neoverse-n2"), 3045 #endif /* TARGET_AARCH64 */ 3046 #endif /* CONFIG_TCG */ 3047 #ifdef TARGET_AARCH64 3048 ARM_CPU_TYPE_NAME("cortex-a53"), 3049 ARM_CPU_TYPE_NAME("cortex-a57"), 3050 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 3051 ARM_CPU_TYPE_NAME("host"), 3052 #endif /* CONFIG_KVM || CONFIG_HVF */ 3053 #endif /* TARGET_AARCH64 */ 3054 ARM_CPU_TYPE_NAME("max"), 3055 NULL 3056 }; 3057 3058 mc->init = machvirt_init; 3059 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 3060 * The value may be reduced later when we have more information about the 3061 * configuration of the particular instance. 3062 */ 3063 mc->max_cpus = 512; 3064 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 3065 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 3066 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 3067 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 3068 #ifdef CONFIG_TPM 3069 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 3070 #endif 3071 mc->block_default_type = IF_VIRTIO; 3072 mc->no_cdrom = 1; 3073 mc->pci_allow_0_address = true; 3074 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 3075 mc->minimum_page_bits = 12; 3076 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 3077 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 3078 #ifdef CONFIG_TCG 3079 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 3080 #else 3081 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 3082 #endif 3083 mc->valid_cpu_types = valid_cpu_types; 3084 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 3085 mc->kvm_type = virt_kvm_type; 3086 assert(!mc->get_hotplug_handler); 3087 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 3088 hc->pre_plug = virt_machine_device_pre_plug_cb; 3089 hc->plug = virt_machine_device_plug_cb; 3090 hc->unplug_request = virt_machine_device_unplug_request_cb; 3091 hc->unplug = virt_machine_device_unplug_cb; 3092 mc->nvdimm_supported = true; 3093 mc->smp_props.clusters_supported = true; 3094 mc->auto_enable_numa_with_memhp = true; 3095 mc->auto_enable_numa_with_memdev = true; 3096 /* platform instead of architectural choice */ 3097 mc->cpu_cluster_has_numa_boundary = true; 3098 mc->default_ram_id = "mach-virt.ram"; 3099 mc->default_nic = "virtio-net-pci"; 3100 3101 object_class_property_add(oc, "acpi", "OnOffAuto", 3102 virt_get_acpi, virt_set_acpi, 3103 NULL, NULL); 3104 object_class_property_set_description(oc, "acpi", 3105 "Enable ACPI"); 3106 object_class_property_add_bool(oc, "secure", virt_get_secure, 3107 virt_set_secure); 3108 object_class_property_set_description(oc, "secure", 3109 "Set on/off to enable/disable the ARM " 3110 "Security Extensions (TrustZone)"); 3111 3112 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 3113 virt_set_virt); 3114 object_class_property_set_description(oc, "virtualization", 3115 "Set on/off to enable/disable emulating a " 3116 "guest CPU which implements the ARM " 3117 "Virtualization Extensions"); 3118 3119 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 3120 virt_set_highmem); 3121 object_class_property_set_description(oc, "highmem", 3122 "Set on/off to enable/disable using " 3123 "physical address space above 32 bits"); 3124 3125 object_class_property_add_bool(oc, "compact-highmem", 3126 virt_get_compact_highmem, 3127 virt_set_compact_highmem); 3128 object_class_property_set_description(oc, "compact-highmem", 3129 "Set on/off to enable/disable compact " 3130 "layout for high memory regions"); 3131 3132 object_class_property_add_bool(oc, "highmem-redists", 3133 virt_get_highmem_redists, 3134 virt_set_highmem_redists); 3135 object_class_property_set_description(oc, "highmem-redists", 3136 "Set on/off to enable/disable high " 3137 "memory region for GICv3 or GICv4 " 3138 "redistributor"); 3139 3140 object_class_property_add_bool(oc, "highmem-ecam", 3141 virt_get_highmem_ecam, 3142 virt_set_highmem_ecam); 3143 object_class_property_set_description(oc, "highmem-ecam", 3144 "Set on/off to enable/disable high " 3145 "memory region for PCI ECAM"); 3146 3147 object_class_property_add_bool(oc, "highmem-mmio", 3148 virt_get_highmem_mmio, 3149 virt_set_highmem_mmio); 3150 object_class_property_set_description(oc, "highmem-mmio", 3151 "Set on/off to enable/disable high " 3152 "memory region for PCI MMIO"); 3153 3154 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3155 virt_set_gic_version); 3156 object_class_property_set_description(oc, "gic-version", 3157 "Set GIC version. " 3158 "Valid values are 2, 3, 4, host and max"); 3159 3160 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3161 object_class_property_set_description(oc, "iommu", 3162 "Set the IOMMU type. " 3163 "Valid values are none and smmuv3"); 3164 3165 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3166 virt_get_default_bus_bypass_iommu, 3167 virt_set_default_bus_bypass_iommu); 3168 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3169 "Set on/off to enable/disable " 3170 "bypass_iommu for default root bus"); 3171 3172 object_class_property_add_bool(oc, "ras", virt_get_ras, 3173 virt_set_ras); 3174 object_class_property_set_description(oc, "ras", 3175 "Set on/off to enable/disable reporting host memory errors " 3176 "to a KVM guest using ACPI and guest external abort exceptions"); 3177 3178 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3179 object_class_property_set_description(oc, "mte", 3180 "Set on/off to enable/disable emulating a " 3181 "guest CPU which implements the ARM " 3182 "Memory Tagging Extension"); 3183 3184 object_class_property_add_bool(oc, "its", virt_get_its, 3185 virt_set_its); 3186 object_class_property_set_description(oc, "its", 3187 "Set on/off to enable/disable " 3188 "ITS instantiation"); 3189 3190 object_class_property_add_bool(oc, "dtb-randomness", 3191 virt_get_dtb_randomness, 3192 virt_set_dtb_randomness); 3193 object_class_property_set_description(oc, "dtb-randomness", 3194 "Set off to disable passing random or " 3195 "non-deterministic dtb nodes to guest"); 3196 3197 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3198 virt_get_dtb_randomness, 3199 virt_set_dtb_randomness); 3200 object_class_property_set_description(oc, "dtb-kaslr-seed", 3201 "Deprecated synonym of dtb-randomness"); 3202 3203 object_class_property_add_str(oc, "x-oem-id", 3204 virt_get_oem_id, 3205 virt_set_oem_id); 3206 object_class_property_set_description(oc, "x-oem-id", 3207 "Override the default value of field OEMID " 3208 "in ACPI table header." 3209 "The string may be up to 6 bytes in size"); 3210 3211 3212 object_class_property_add_str(oc, "x-oem-table-id", 3213 virt_get_oem_table_id, 3214 virt_set_oem_table_id); 3215 object_class_property_set_description(oc, "x-oem-table-id", 3216 "Override the default value of field OEM Table ID " 3217 "in ACPI table header." 3218 "The string may be up to 8 bytes in size"); 3219 3220 } 3221 3222 static void virt_instance_init(Object *obj) 3223 { 3224 VirtMachineState *vms = VIRT_MACHINE(obj); 3225 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3226 3227 /* EL3 is disabled by default on virt: this makes us consistent 3228 * between KVM and TCG for this board, and it also allows us to 3229 * boot UEFI blobs which assume no TrustZone support. 3230 */ 3231 vms->secure = false; 3232 3233 /* EL2 is also disabled by default, for similar reasons */ 3234 vms->virt = false; 3235 3236 /* High memory is enabled by default */ 3237 vms->highmem = true; 3238 vms->highmem_compact = !vmc->no_highmem_compact; 3239 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3240 3241 vms->highmem_ecam = !vmc->no_highmem_ecam; 3242 vms->highmem_mmio = true; 3243 vms->highmem_redists = true; 3244 3245 if (vmc->no_its) { 3246 vms->its = false; 3247 } else { 3248 /* Default allows ITS instantiation */ 3249 vms->its = true; 3250 3251 if (vmc->no_tcg_its) { 3252 vms->tcg_its = false; 3253 } else { 3254 vms->tcg_its = true; 3255 } 3256 } 3257 3258 /* Default disallows iommu instantiation */ 3259 vms->iommu = VIRT_IOMMU_NONE; 3260 3261 /* The default root bus is attached to iommu by default */ 3262 vms->default_bus_bypass_iommu = false; 3263 3264 /* Default disallows RAS instantiation */ 3265 vms->ras = false; 3266 3267 /* MTE is disabled by default. */ 3268 vms->mte = false; 3269 3270 /* Supply kaslr-seed and rng-seed by default */ 3271 vms->dtb_randomness = true; 3272 3273 vms->irqmap = a15irqmap; 3274 3275 virt_flash_create(vms); 3276 3277 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3278 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3279 } 3280 3281 static const TypeInfo virt_machine_info = { 3282 .name = TYPE_VIRT_MACHINE, 3283 .parent = TYPE_MACHINE, 3284 .abstract = true, 3285 .instance_size = sizeof(VirtMachineState), 3286 .class_size = sizeof(VirtMachineClass), 3287 .class_init = virt_machine_class_init, 3288 .instance_init = virt_instance_init, 3289 .interfaces = (InterfaceInfo[]) { 3290 { TYPE_HOTPLUG_HANDLER }, 3291 { } 3292 }, 3293 }; 3294 3295 static void machvirt_machine_init(void) 3296 { 3297 type_register_static(&virt_machine_info); 3298 } 3299 type_init(machvirt_machine_init); 3300 3301 static void virt_machine_9_1_options(MachineClass *mc) 3302 { 3303 } 3304 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1) 3305 3306 static void virt_machine_9_0_options(MachineClass *mc) 3307 { 3308 virt_machine_9_1_options(mc); 3309 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 3310 } 3311 DEFINE_VIRT_MACHINE(9, 0) 3312 3313 static void virt_machine_8_2_options(MachineClass *mc) 3314 { 3315 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3316 3317 virt_machine_9_0_options(mc); 3318 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3319 /* 3320 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and 3321 * earlier machines. (Exposing it tickles a bug in older EDK2 3322 * guest BIOS binaries.) 3323 */ 3324 vmc->no_ns_el2_virt_timer_irq = true; 3325 } 3326 DEFINE_VIRT_MACHINE(8, 2) 3327 3328 static void virt_machine_8_1_options(MachineClass *mc) 3329 { 3330 virt_machine_8_2_options(mc); 3331 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3332 } 3333 DEFINE_VIRT_MACHINE(8, 1) 3334 3335 static void virt_machine_8_0_options(MachineClass *mc) 3336 { 3337 virt_machine_8_1_options(mc); 3338 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3339 } 3340 DEFINE_VIRT_MACHINE(8, 0) 3341 3342 static void virt_machine_7_2_options(MachineClass *mc) 3343 { 3344 virt_machine_8_0_options(mc); 3345 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3346 } 3347 DEFINE_VIRT_MACHINE(7, 2) 3348 3349 static void virt_machine_7_1_options(MachineClass *mc) 3350 { 3351 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3352 3353 virt_machine_7_2_options(mc); 3354 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3355 /* Compact layout for high memory regions was introduced with 7.2 */ 3356 vmc->no_highmem_compact = true; 3357 } 3358 DEFINE_VIRT_MACHINE(7, 1) 3359 3360 static void virt_machine_7_0_options(MachineClass *mc) 3361 { 3362 virt_machine_7_1_options(mc); 3363 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3364 } 3365 DEFINE_VIRT_MACHINE(7, 0) 3366 3367 static void virt_machine_6_2_options(MachineClass *mc) 3368 { 3369 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3370 3371 virt_machine_7_0_options(mc); 3372 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3373 vmc->no_tcg_lpa2 = true; 3374 } 3375 DEFINE_VIRT_MACHINE(6, 2) 3376 3377 static void virt_machine_6_1_options(MachineClass *mc) 3378 { 3379 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3380 3381 virt_machine_6_2_options(mc); 3382 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3383 mc->smp_props.prefer_sockets = true; 3384 vmc->no_cpu_topology = true; 3385 3386 /* qemu ITS was introduced with 6.2 */ 3387 vmc->no_tcg_its = true; 3388 } 3389 DEFINE_VIRT_MACHINE(6, 1) 3390 3391 static void virt_machine_6_0_options(MachineClass *mc) 3392 { 3393 virt_machine_6_1_options(mc); 3394 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3395 } 3396 DEFINE_VIRT_MACHINE(6, 0) 3397 3398 static void virt_machine_5_2_options(MachineClass *mc) 3399 { 3400 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3401 3402 virt_machine_6_0_options(mc); 3403 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3404 vmc->no_secure_gpio = true; 3405 } 3406 DEFINE_VIRT_MACHINE(5, 2) 3407 3408 static void virt_machine_5_1_options(MachineClass *mc) 3409 { 3410 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3411 3412 virt_machine_5_2_options(mc); 3413 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3414 vmc->no_kvm_steal_time = true; 3415 } 3416 DEFINE_VIRT_MACHINE(5, 1) 3417 3418 static void virt_machine_5_0_options(MachineClass *mc) 3419 { 3420 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3421 3422 virt_machine_5_1_options(mc); 3423 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3424 mc->numa_mem_supported = true; 3425 vmc->acpi_expose_flash = true; 3426 mc->auto_enable_numa_with_memdev = false; 3427 } 3428 DEFINE_VIRT_MACHINE(5, 0) 3429 3430 static void virt_machine_4_2_options(MachineClass *mc) 3431 { 3432 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3433 3434 virt_machine_5_0_options(mc); 3435 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3436 vmc->kvm_no_adjvtime = true; 3437 } 3438 DEFINE_VIRT_MACHINE(4, 2) 3439 3440 static void virt_machine_4_1_options(MachineClass *mc) 3441 { 3442 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3443 3444 virt_machine_4_2_options(mc); 3445 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3446 vmc->no_ged = true; 3447 mc->auto_enable_numa_with_memhp = false; 3448 } 3449 DEFINE_VIRT_MACHINE(4, 1) 3450 3451 static void virt_machine_4_0_options(MachineClass *mc) 3452 { 3453 virt_machine_4_1_options(mc); 3454 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3455 } 3456 DEFINE_VIRT_MACHINE(4, 0) 3457 3458 static void virt_machine_3_1_options(MachineClass *mc) 3459 { 3460 virt_machine_4_0_options(mc); 3461 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3462 } 3463 DEFINE_VIRT_MACHINE(3, 1) 3464 3465 static void virt_machine_3_0_options(MachineClass *mc) 3466 { 3467 virt_machine_3_1_options(mc); 3468 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3469 } 3470 DEFINE_VIRT_MACHINE(3, 0) 3471 3472 static void virt_machine_2_12_options(MachineClass *mc) 3473 { 3474 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3475 3476 virt_machine_3_0_options(mc); 3477 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3478 vmc->no_highmem_ecam = true; 3479 mc->max_cpus = 255; 3480 } 3481 DEFINE_VIRT_MACHINE(2, 12) 3482 3483 static void virt_machine_2_11_options(MachineClass *mc) 3484 { 3485 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3486 3487 virt_machine_2_12_options(mc); 3488 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3489 vmc->smbios_old_sys_ver = true; 3490 } 3491 DEFINE_VIRT_MACHINE(2, 11) 3492 3493 static void virt_machine_2_10_options(MachineClass *mc) 3494 { 3495 virt_machine_2_11_options(mc); 3496 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3497 /* before 2.11 we never faulted accesses to bad addresses */ 3498 mc->ignore_memory_transaction_failures = true; 3499 } 3500 DEFINE_VIRT_MACHINE(2, 10) 3501 3502 static void virt_machine_2_9_options(MachineClass *mc) 3503 { 3504 virt_machine_2_10_options(mc); 3505 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3506 } 3507 DEFINE_VIRT_MACHINE(2, 9) 3508 3509 static void virt_machine_2_8_options(MachineClass *mc) 3510 { 3511 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3512 3513 virt_machine_2_9_options(mc); 3514 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3515 /* For 2.8 and earlier we falsely claimed in the DT that 3516 * our timers were edge-triggered, not level-triggered. 3517 */ 3518 vmc->claim_edge_triggered_timers = true; 3519 } 3520 DEFINE_VIRT_MACHINE(2, 8) 3521 3522 static void virt_machine_2_7_options(MachineClass *mc) 3523 { 3524 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3525 3526 virt_machine_2_8_options(mc); 3527 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3528 /* ITS was introduced with 2.8 */ 3529 vmc->no_its = true; 3530 /* Stick with 1K pages for migration compatibility */ 3531 mc->minimum_page_bits = 0; 3532 } 3533 DEFINE_VIRT_MACHINE(2, 7) 3534 3535 static void virt_machine_2_6_options(MachineClass *mc) 3536 { 3537 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3538 3539 virt_machine_2_7_options(mc); 3540 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3541 vmc->disallow_affinity_adjustment = true; 3542 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3543 vmc->no_pmu = true; 3544 } 3545 DEFINE_VIRT_MACHINE(2, 6) 3546