1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "qapi/error.h" 36 #include "hw/sysbus.h" 37 #include "hw/boards.h" 38 #include "hw/arm/boot.h" 39 #include "hw/arm/primecell.h" 40 #include "hw/arm/virt.h" 41 #include "hw/block/flash.h" 42 #include "hw/vfio/vfio-calxeda-xgmac.h" 43 #include "hw/vfio/vfio-amd-xgbe.h" 44 #include "hw/display/ramfb.h" 45 #include "net/net.h" 46 #include "sysemu/device_tree.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/runstate.h" 49 #include "sysemu/sysemu.h" 50 #include "sysemu/kvm.h" 51 #include "hw/loader.h" 52 #include "exec/address-spaces.h" 53 #include "qemu/bitops.h" 54 #include "qemu/error-report.h" 55 #include "qemu/module.h" 56 #include "hw/pci-host/gpex.h" 57 #include "hw/arm/sysbus-fdt.h" 58 #include "hw/platform-bus.h" 59 #include "hw/qdev-properties.h" 60 #include "hw/arm/fdt.h" 61 #include "hw/intc/arm_gic.h" 62 #include "hw/intc/arm_gicv3_common.h" 63 #include "hw/irq.h" 64 #include "kvm_arm.h" 65 #include "hw/firmware/smbios.h" 66 #include "qapi/visitor.h" 67 #include "standard-headers/linux/input.h" 68 #include "hw/arm/smmuv3.h" 69 #include "hw/acpi/acpi.h" 70 #include "target/arm/internals.h" 71 72 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 73 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 74 void *data) \ 75 { \ 76 MachineClass *mc = MACHINE_CLASS(oc); \ 77 virt_machine_##major##_##minor##_options(mc); \ 78 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 79 if (latest) { \ 80 mc->alias = "virt"; \ 81 } \ 82 } \ 83 static const TypeInfo machvirt_##major##_##minor##_info = { \ 84 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 85 .parent = TYPE_VIRT_MACHINE, \ 86 .class_init = virt_##major##_##minor##_class_init, \ 87 }; \ 88 static void machvirt_machine_##major##_##minor##_init(void) \ 89 { \ 90 type_register_static(&machvirt_##major##_##minor##_info); \ 91 } \ 92 type_init(machvirt_machine_##major##_##minor##_init); 93 94 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 95 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 96 #define DEFINE_VIRT_MACHINE(major, minor) \ 97 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 98 99 100 /* Number of external interrupt lines to configure the GIC with */ 101 #define NUM_IRQS 256 102 103 #define PLATFORM_BUS_NUM_IRQS 64 104 105 /* Legacy RAM limit in GB (< version 4.0) */ 106 #define LEGACY_RAMLIMIT_GB 255 107 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 108 109 /* Addresses and sizes of our components. 110 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 111 * 128MB..256MB is used for miscellaneous device I/O. 112 * 256MB..1GB is reserved for possible future PCI support (ie where the 113 * PCI memory window will go if we add a PCI host controller). 114 * 1GB and up is RAM (which may happily spill over into the 115 * high memory region beyond 4GB). 116 * This represents a compromise between how much RAM can be given to 117 * a 32 bit VM and leaving space for expansion and in particular for PCI. 118 * Note that devices should generally be placed at multiples of 0x10000, 119 * to accommodate guests using 64K pages. 120 */ 121 static const MemMapEntry base_memmap[] = { 122 /* Space up to 0x8000000 is reserved for a boot ROM */ 123 [VIRT_FLASH] = { 0, 0x08000000 }, 124 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 125 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 126 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 127 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 128 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 129 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 130 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 131 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 132 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 133 /* This redistributor space allows up to 2*64kB*123 CPUs */ 134 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 135 [VIRT_UART] = { 0x09000000, 0x00001000 }, 136 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 137 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 138 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 139 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 140 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 141 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 142 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 143 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 144 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 145 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 146 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 147 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 148 /* Actual RAM size depends on initial RAM and device memory settings */ 149 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 150 }; 151 152 /* 153 * Highmem IO Regions: This memory map is floating, located after the RAM. 154 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 155 * top of the RAM, so that its base get the same alignment as the size, 156 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 157 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 158 * Note the extended_memmap is sized so that it eventually also includes the 159 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 160 * index of base_memmap). 161 */ 162 static MemMapEntry extended_memmap[] = { 163 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 164 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 165 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 166 /* Second PCIe window */ 167 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 168 }; 169 170 static const int a15irqmap[] = { 171 [VIRT_UART] = 1, 172 [VIRT_RTC] = 2, 173 [VIRT_PCIE] = 3, /* ... to 6 */ 174 [VIRT_GPIO] = 7, 175 [VIRT_SECURE_UART] = 8, 176 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 177 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 178 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 179 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 180 }; 181 182 static const char *valid_cpus[] = { 183 ARM_CPU_TYPE_NAME("cortex-a7"), 184 ARM_CPU_TYPE_NAME("cortex-a15"), 185 ARM_CPU_TYPE_NAME("cortex-a53"), 186 ARM_CPU_TYPE_NAME("cortex-a57"), 187 ARM_CPU_TYPE_NAME("cortex-a72"), 188 ARM_CPU_TYPE_NAME("host"), 189 ARM_CPU_TYPE_NAME("max"), 190 }; 191 192 static bool cpu_type_valid(const char *cpu) 193 { 194 int i; 195 196 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 197 if (strcmp(cpu, valid_cpus[i]) == 0) { 198 return true; 199 } 200 } 201 return false; 202 } 203 204 static void create_fdt(VirtMachineState *vms) 205 { 206 void *fdt = create_device_tree(&vms->fdt_size); 207 208 if (!fdt) { 209 error_report("create_device_tree() failed"); 210 exit(1); 211 } 212 213 vms->fdt = fdt; 214 215 /* Header */ 216 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 217 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 218 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 219 220 /* /chosen must exist for load_dtb to fill in necessary properties later */ 221 qemu_fdt_add_subnode(fdt, "/chosen"); 222 223 /* Clock node, for the benefit of the UART. The kernel device tree 224 * binding documentation claims the PL011 node clock properties are 225 * optional but in practice if you omit them the kernel refuses to 226 * probe for the device. 227 */ 228 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 229 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 230 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 231 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 232 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 233 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 234 "clk24mhz"); 235 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 236 237 if (have_numa_distance) { 238 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 239 uint32_t *matrix = g_malloc0(size); 240 int idx, i, j; 241 242 for (i = 0; i < nb_numa_nodes; i++) { 243 for (j = 0; j < nb_numa_nodes; j++) { 244 idx = (i * nb_numa_nodes + j) * 3; 245 matrix[idx + 0] = cpu_to_be32(i); 246 matrix[idx + 1] = cpu_to_be32(j); 247 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); 248 } 249 } 250 251 qemu_fdt_add_subnode(fdt, "/distance-map"); 252 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 253 "numa-distance-map-v1"); 254 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 255 matrix, size); 256 g_free(matrix); 257 } 258 } 259 260 static void fdt_add_timer_nodes(const VirtMachineState *vms) 261 { 262 /* On real hardware these interrupts are level-triggered. 263 * On KVM they were edge-triggered before host kernel version 4.4, 264 * and level-triggered afterwards. 265 * On emulated QEMU they are level-triggered. 266 * 267 * Getting the DTB info about them wrong is awkward for some 268 * guest kernels: 269 * pre-4.8 ignore the DT and leave the interrupt configured 270 * with whatever the GIC reset value (or the bootloader) left it at 271 * 4.8 before rc6 honour the incorrect data by programming it back 272 * into the GIC, causing problems 273 * 4.8rc6 and later ignore the DT and always write "level triggered" 274 * into the GIC 275 * 276 * For backwards-compatibility, virt-2.8 and earlier will continue 277 * to say these are edge-triggered, but later machines will report 278 * the correct information. 279 */ 280 ARMCPU *armcpu; 281 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 282 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 283 284 if (vmc->claim_edge_triggered_timers) { 285 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 286 } 287 288 if (vms->gic_version == 2) { 289 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 290 GIC_FDT_IRQ_PPI_CPU_WIDTH, 291 (1 << vms->smp_cpus) - 1); 292 } 293 294 qemu_fdt_add_subnode(vms->fdt, "/timer"); 295 296 armcpu = ARM_CPU(qemu_get_cpu(0)); 297 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 298 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 299 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 300 compat, sizeof(compat)); 301 } else { 302 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 303 "arm,armv7-timer"); 304 } 305 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 306 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 307 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 308 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 309 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 310 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 311 } 312 313 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 314 { 315 int cpu; 316 int addr_cells = 1; 317 const MachineState *ms = MACHINE(vms); 318 319 /* 320 * From Documentation/devicetree/bindings/arm/cpus.txt 321 * On ARM v8 64-bit systems value should be set to 2, 322 * that corresponds to the MPIDR_EL1 register size. 323 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 324 * in the system, #address-cells can be set to 1, since 325 * MPIDR_EL1[63:32] bits are not used for CPUs 326 * identification. 327 * 328 * Here we actually don't know whether our system is 32- or 64-bit one. 329 * The simplest way to go is to examine affinity IDs of all our CPUs. If 330 * at least one of them has Aff3 populated, we set #address-cells to 2. 331 */ 332 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 333 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 334 335 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 336 addr_cells = 2; 337 break; 338 } 339 } 340 341 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 342 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 343 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 344 345 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 346 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 347 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 348 CPUState *cs = CPU(armcpu); 349 350 qemu_fdt_add_subnode(vms->fdt, nodename); 351 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 352 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 353 armcpu->dtb_compatible); 354 355 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 356 && vms->smp_cpus > 1) { 357 qemu_fdt_setprop_string(vms->fdt, nodename, 358 "enable-method", "psci"); 359 } 360 361 if (addr_cells == 2) { 362 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 363 armcpu->mp_affinity); 364 } else { 365 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 366 armcpu->mp_affinity); 367 } 368 369 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 370 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 371 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 372 } 373 374 g_free(nodename); 375 } 376 } 377 378 static void fdt_add_its_gic_node(VirtMachineState *vms) 379 { 380 char *nodename; 381 382 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 383 nodename = g_strdup_printf("/intc/its@%" PRIx64, 384 vms->memmap[VIRT_GIC_ITS].base); 385 qemu_fdt_add_subnode(vms->fdt, nodename); 386 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 387 "arm,gic-v3-its"); 388 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 389 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 390 2, vms->memmap[VIRT_GIC_ITS].base, 391 2, vms->memmap[VIRT_GIC_ITS].size); 392 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 393 g_free(nodename); 394 } 395 396 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 397 { 398 char *nodename; 399 400 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 401 vms->memmap[VIRT_GIC_V2M].base); 402 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 403 qemu_fdt_add_subnode(vms->fdt, nodename); 404 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 405 "arm,gic-v2m-frame"); 406 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 407 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 408 2, vms->memmap[VIRT_GIC_V2M].base, 409 2, vms->memmap[VIRT_GIC_V2M].size); 410 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 411 g_free(nodename); 412 } 413 414 static void fdt_add_gic_node(VirtMachineState *vms) 415 { 416 char *nodename; 417 418 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 419 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 420 421 nodename = g_strdup_printf("/intc@%" PRIx64, 422 vms->memmap[VIRT_GIC_DIST].base); 423 qemu_fdt_add_subnode(vms->fdt, nodename); 424 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 425 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 426 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 427 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 428 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 429 if (vms->gic_version == 3) { 430 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 431 432 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 433 "arm,gic-v3"); 434 435 qemu_fdt_setprop_cell(vms->fdt, nodename, 436 "#redistributor-regions", nb_redist_regions); 437 438 if (nb_redist_regions == 1) { 439 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 440 2, vms->memmap[VIRT_GIC_DIST].base, 441 2, vms->memmap[VIRT_GIC_DIST].size, 442 2, vms->memmap[VIRT_GIC_REDIST].base, 443 2, vms->memmap[VIRT_GIC_REDIST].size); 444 } else { 445 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 446 2, vms->memmap[VIRT_GIC_DIST].base, 447 2, vms->memmap[VIRT_GIC_DIST].size, 448 2, vms->memmap[VIRT_GIC_REDIST].base, 449 2, vms->memmap[VIRT_GIC_REDIST].size, 450 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 451 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 452 } 453 454 if (vms->virt) { 455 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 456 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 457 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 458 } 459 } else { 460 /* 'cortex-a15-gic' means 'GIC v2' */ 461 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 462 "arm,cortex-a15-gic"); 463 if (!vms->virt) { 464 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 465 2, vms->memmap[VIRT_GIC_DIST].base, 466 2, vms->memmap[VIRT_GIC_DIST].size, 467 2, vms->memmap[VIRT_GIC_CPU].base, 468 2, vms->memmap[VIRT_GIC_CPU].size); 469 } else { 470 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 471 2, vms->memmap[VIRT_GIC_DIST].base, 472 2, vms->memmap[VIRT_GIC_DIST].size, 473 2, vms->memmap[VIRT_GIC_CPU].base, 474 2, vms->memmap[VIRT_GIC_CPU].size, 475 2, vms->memmap[VIRT_GIC_HYP].base, 476 2, vms->memmap[VIRT_GIC_HYP].size, 477 2, vms->memmap[VIRT_GIC_VCPU].base, 478 2, vms->memmap[VIRT_GIC_VCPU].size); 479 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 480 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 481 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 482 } 483 } 484 485 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 486 g_free(nodename); 487 } 488 489 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 490 { 491 CPUState *cpu; 492 ARMCPU *armcpu; 493 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 494 495 CPU_FOREACH(cpu) { 496 armcpu = ARM_CPU(cpu); 497 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 498 return; 499 } 500 if (kvm_enabled()) { 501 if (kvm_irqchip_in_kernel()) { 502 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 503 } 504 kvm_arm_pmu_init(cpu); 505 } 506 } 507 508 if (vms->gic_version == 2) { 509 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 510 GIC_FDT_IRQ_PPI_CPU_WIDTH, 511 (1 << vms->smp_cpus) - 1); 512 } 513 514 armcpu = ARM_CPU(qemu_get_cpu(0)); 515 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 516 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 517 const char compat[] = "arm,armv8-pmuv3"; 518 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 519 compat, sizeof(compat)); 520 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 521 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 522 } 523 } 524 525 static void create_its(VirtMachineState *vms, DeviceState *gicdev) 526 { 527 const char *itsclass = its_class_name(); 528 DeviceState *dev; 529 530 if (!itsclass) { 531 /* Do nothing if not supported */ 532 return; 533 } 534 535 dev = qdev_create(NULL, itsclass); 536 537 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 538 &error_abort); 539 qdev_init_nofail(dev); 540 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 541 542 fdt_add_its_gic_node(vms); 543 } 544 545 static void create_v2m(VirtMachineState *vms, qemu_irq *pic) 546 { 547 int i; 548 int irq = vms->irqmap[VIRT_GIC_V2M]; 549 DeviceState *dev; 550 551 dev = qdev_create(NULL, "arm-gicv2m"); 552 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 553 qdev_prop_set_uint32(dev, "base-spi", irq); 554 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 555 qdev_init_nofail(dev); 556 557 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 558 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 559 } 560 561 fdt_add_v2m_gic_node(vms); 562 } 563 564 static void create_gic(VirtMachineState *vms, qemu_irq *pic) 565 { 566 MachineState *ms = MACHINE(vms); 567 /* We create a standalone GIC */ 568 DeviceState *gicdev; 569 SysBusDevice *gicbusdev; 570 const char *gictype; 571 int type = vms->gic_version, i; 572 unsigned int smp_cpus = ms->smp.cpus; 573 uint32_t nb_redist_regions = 0; 574 575 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 576 577 gicdev = qdev_create(NULL, gictype); 578 qdev_prop_set_uint32(gicdev, "revision", type); 579 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 580 /* Note that the num-irq property counts both internal and external 581 * interrupts; there are always 32 of the former (mandated by GIC spec). 582 */ 583 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 584 if (!kvm_irqchip_in_kernel()) { 585 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); 586 } 587 588 if (type == 3) { 589 uint32_t redist0_capacity = 590 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 591 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 592 593 nb_redist_regions = virt_gicv3_redist_region_count(vms); 594 595 qdev_prop_set_uint32(gicdev, "len-redist-region-count", 596 nb_redist_regions); 597 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count); 598 599 if (nb_redist_regions == 2) { 600 uint32_t redist1_capacity = 601 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 602 603 qdev_prop_set_uint32(gicdev, "redist-region-count[1]", 604 MIN(smp_cpus - redist0_count, redist1_capacity)); 605 } 606 } else { 607 if (!kvm_irqchip_in_kernel()) { 608 qdev_prop_set_bit(gicdev, "has-virtualization-extensions", 609 vms->virt); 610 } 611 } 612 qdev_init_nofail(gicdev); 613 gicbusdev = SYS_BUS_DEVICE(gicdev); 614 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 615 if (type == 3) { 616 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 617 if (nb_redist_regions == 2) { 618 sysbus_mmio_map(gicbusdev, 2, 619 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 620 } 621 } else { 622 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 623 if (vms->virt) { 624 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 625 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 626 } 627 } 628 629 /* Wire the outputs from each CPU's generic timer and the GICv3 630 * maintenance interrupt signal to the appropriate GIC PPI inputs, 631 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 632 */ 633 for (i = 0; i < smp_cpus; i++) { 634 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 635 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 636 int irq; 637 /* Mapping from the output timer irq lines from the CPU to the 638 * GIC PPI inputs we use for the virt board. 639 */ 640 const int timer_irq[] = { 641 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 642 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 643 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 644 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 645 }; 646 647 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 648 qdev_connect_gpio_out(cpudev, irq, 649 qdev_get_gpio_in(gicdev, 650 ppibase + timer_irq[irq])); 651 } 652 653 if (type == 3) { 654 qemu_irq irq = qdev_get_gpio_in(gicdev, 655 ppibase + ARCH_GIC_MAINT_IRQ); 656 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 657 0, irq); 658 } else if (vms->virt) { 659 qemu_irq irq = qdev_get_gpio_in(gicdev, 660 ppibase + ARCH_GIC_MAINT_IRQ); 661 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 662 } 663 664 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 665 qdev_get_gpio_in(gicdev, ppibase 666 + VIRTUAL_PMU_IRQ)); 667 668 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 669 sysbus_connect_irq(gicbusdev, i + smp_cpus, 670 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 671 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 672 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 673 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 674 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 675 } 676 677 for (i = 0; i < NUM_IRQS; i++) { 678 pic[i] = qdev_get_gpio_in(gicdev, i); 679 } 680 681 fdt_add_gic_node(vms); 682 683 if (type == 3 && vms->its) { 684 create_its(vms, gicdev); 685 } else if (type == 2) { 686 create_v2m(vms, pic); 687 } 688 } 689 690 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, 691 MemoryRegion *mem, Chardev *chr) 692 { 693 char *nodename; 694 hwaddr base = vms->memmap[uart].base; 695 hwaddr size = vms->memmap[uart].size; 696 int irq = vms->irqmap[uart]; 697 const char compat[] = "arm,pl011\0arm,primecell"; 698 const char clocknames[] = "uartclk\0apb_pclk"; 699 DeviceState *dev = qdev_create(NULL, "pl011"); 700 SysBusDevice *s = SYS_BUS_DEVICE(dev); 701 702 qdev_prop_set_chr(dev, "chardev", chr); 703 qdev_init_nofail(dev); 704 memory_region_add_subregion(mem, base, 705 sysbus_mmio_get_region(s, 0)); 706 sysbus_connect_irq(s, 0, pic[irq]); 707 708 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 709 qemu_fdt_add_subnode(vms->fdt, nodename); 710 /* Note that we can't use setprop_string because of the embedded NUL */ 711 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 712 compat, sizeof(compat)); 713 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 714 2, base, 2, size); 715 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 716 GIC_FDT_IRQ_TYPE_SPI, irq, 717 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 718 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 719 vms->clock_phandle, vms->clock_phandle); 720 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 721 clocknames, sizeof(clocknames)); 722 723 if (uart == VIRT_UART) { 724 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 725 } else { 726 /* Mark as not usable by the normal world */ 727 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 728 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 729 730 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen"); 731 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 732 nodename); 733 } 734 735 g_free(nodename); 736 } 737 738 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) 739 { 740 char *nodename; 741 hwaddr base = vms->memmap[VIRT_RTC].base; 742 hwaddr size = vms->memmap[VIRT_RTC].size; 743 int irq = vms->irqmap[VIRT_RTC]; 744 const char compat[] = "arm,pl031\0arm,primecell"; 745 746 sysbus_create_simple("pl031", base, pic[irq]); 747 748 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 749 qemu_fdt_add_subnode(vms->fdt, nodename); 750 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 751 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 752 2, base, 2, size); 753 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 754 GIC_FDT_IRQ_TYPE_SPI, irq, 755 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 756 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 757 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 758 g_free(nodename); 759 } 760 761 static DeviceState *gpio_key_dev; 762 static void virt_powerdown_req(Notifier *n, void *opaque) 763 { 764 /* use gpio Pin 3 for power button event */ 765 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 766 } 767 768 static Notifier virt_system_powerdown_notifier = { 769 .notify = virt_powerdown_req 770 }; 771 772 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) 773 { 774 char *nodename; 775 DeviceState *pl061_dev; 776 hwaddr base = vms->memmap[VIRT_GPIO].base; 777 hwaddr size = vms->memmap[VIRT_GPIO].size; 778 int irq = vms->irqmap[VIRT_GPIO]; 779 const char compat[] = "arm,pl061\0arm,primecell"; 780 781 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 782 783 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 784 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 785 qemu_fdt_add_subnode(vms->fdt, nodename); 786 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 787 2, base, 2, size); 788 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 789 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 790 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 791 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 792 GIC_FDT_IRQ_TYPE_SPI, irq, 793 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 794 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 795 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 796 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 797 798 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 799 qdev_get_gpio_in(pl061_dev, 3)); 800 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 801 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 802 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 803 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 804 805 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 806 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 807 "label", "GPIO Key Poweroff"); 808 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 809 KEY_POWER); 810 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 811 "gpios", phandle, 3, 0); 812 813 /* connect powerdown request */ 814 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 815 816 g_free(nodename); 817 } 818 819 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) 820 { 821 int i; 822 hwaddr size = vms->memmap[VIRT_MMIO].size; 823 824 /* We create the transports in forwards order. Since qbus_realize() 825 * prepends (not appends) new child buses, the incrementing loop below will 826 * create a list of virtio-mmio buses with decreasing base addresses. 827 * 828 * When a -device option is processed from the command line, 829 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 830 * order. The upshot is that -device options in increasing command line 831 * order are mapped to virtio-mmio buses with decreasing base addresses. 832 * 833 * When this code was originally written, that arrangement ensured that the 834 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 835 * the first -device on the command line. (The end-to-end order is a 836 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 837 * guest kernel's name-to-address assignment strategy.) 838 * 839 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 840 * the message, if not necessarily the code, of commit 70161ff336. 841 * Therefore the loop now establishes the inverse of the original intent. 842 * 843 * Unfortunately, we can't counteract the kernel change by reversing the 844 * loop; it would break existing command lines. 845 * 846 * In any case, the kernel makes no guarantee about the stability of 847 * enumeration order of virtio devices (as demonstrated by it changing 848 * between kernel versions). For reliable and stable identification 849 * of disks users must use UUIDs or similar mechanisms. 850 */ 851 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 852 int irq = vms->irqmap[VIRT_MMIO] + i; 853 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 854 855 sysbus_create_simple("virtio-mmio", base, pic[irq]); 856 } 857 858 /* We add dtb nodes in reverse order so that they appear in the finished 859 * device tree lowest address first. 860 * 861 * Note that this mapping is independent of the loop above. The previous 862 * loop influences virtio device to virtio transport assignment, whereas 863 * this loop controls how virtio transports are laid out in the dtb. 864 */ 865 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 866 char *nodename; 867 int irq = vms->irqmap[VIRT_MMIO] + i; 868 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 869 870 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 871 qemu_fdt_add_subnode(vms->fdt, nodename); 872 qemu_fdt_setprop_string(vms->fdt, nodename, 873 "compatible", "virtio,mmio"); 874 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 875 2, base, 2, size); 876 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 877 GIC_FDT_IRQ_TYPE_SPI, irq, 878 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 879 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 880 g_free(nodename); 881 } 882 } 883 884 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 885 886 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 887 const char *name, 888 const char *alias_prop_name) 889 { 890 /* 891 * Create a single flash device. We use the same parameters as 892 * the flash devices on the Versatile Express board. 893 */ 894 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01); 895 896 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 897 qdev_prop_set_uint8(dev, "width", 4); 898 qdev_prop_set_uint8(dev, "device-width", 2); 899 qdev_prop_set_bit(dev, "big-endian", false); 900 qdev_prop_set_uint16(dev, "id0", 0x89); 901 qdev_prop_set_uint16(dev, "id1", 0x18); 902 qdev_prop_set_uint16(dev, "id2", 0x00); 903 qdev_prop_set_uint16(dev, "id3", 0x00); 904 qdev_prop_set_string(dev, "name", name); 905 object_property_add_child(OBJECT(vms), name, OBJECT(dev), 906 &error_abort); 907 object_property_add_alias(OBJECT(vms), alias_prop_name, 908 OBJECT(dev), "drive", &error_abort); 909 return PFLASH_CFI01(dev); 910 } 911 912 static void virt_flash_create(VirtMachineState *vms) 913 { 914 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 915 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 916 } 917 918 static void virt_flash_map1(PFlashCFI01 *flash, 919 hwaddr base, hwaddr size, 920 MemoryRegion *sysmem) 921 { 922 DeviceState *dev = DEVICE(flash); 923 924 assert(size % VIRT_FLASH_SECTOR_SIZE == 0); 925 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 926 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 927 qdev_init_nofail(dev); 928 929 memory_region_add_subregion(sysmem, base, 930 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 931 0)); 932 } 933 934 static void virt_flash_map(VirtMachineState *vms, 935 MemoryRegion *sysmem, 936 MemoryRegion *secure_sysmem) 937 { 938 /* 939 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 940 * sysmem is the system memory space. secure_sysmem is the secure view 941 * of the system, and the first flash device should be made visible only 942 * there. The second flash device is visible to both secure and nonsecure. 943 * If sysmem == secure_sysmem this means there is no separate Secure 944 * address space and both flash devices are generally visible. 945 */ 946 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 947 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 948 949 virt_flash_map1(vms->flash[0], flashbase, flashsize, 950 secure_sysmem); 951 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 952 sysmem); 953 } 954 955 static void virt_flash_fdt(VirtMachineState *vms, 956 MemoryRegion *sysmem, 957 MemoryRegion *secure_sysmem) 958 { 959 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 960 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 961 char *nodename; 962 963 if (sysmem == secure_sysmem) { 964 /* Report both flash devices as a single node in the DT */ 965 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 966 qemu_fdt_add_subnode(vms->fdt, nodename); 967 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 968 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 969 2, flashbase, 2, flashsize, 970 2, flashbase + flashsize, 2, flashsize); 971 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 972 g_free(nodename); 973 } else { 974 /* 975 * Report the devices as separate nodes so we can mark one as 976 * only visible to the secure world. 977 */ 978 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 979 qemu_fdt_add_subnode(vms->fdt, nodename); 980 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 981 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 982 2, flashbase, 2, flashsize); 983 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 984 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 985 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 986 g_free(nodename); 987 988 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 989 qemu_fdt_add_subnode(vms->fdt, nodename); 990 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 991 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 992 2, flashbase + flashsize, 2, flashsize); 993 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 994 g_free(nodename); 995 } 996 } 997 998 static bool virt_firmware_init(VirtMachineState *vms, 999 MemoryRegion *sysmem, 1000 MemoryRegion *secure_sysmem) 1001 { 1002 int i; 1003 BlockBackend *pflash_blk0; 1004 1005 /* Map legacy -drive if=pflash to machine properties */ 1006 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1007 pflash_cfi01_legacy_drive(vms->flash[i], 1008 drive_get(IF_PFLASH, 0, i)); 1009 } 1010 1011 virt_flash_map(vms, sysmem, secure_sysmem); 1012 1013 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1014 1015 if (bios_name) { 1016 char *fname; 1017 MemoryRegion *mr; 1018 int image_size; 1019 1020 if (pflash_blk0) { 1021 error_report("The contents of the first flash device may be " 1022 "specified with -bios or with -drive if=pflash... " 1023 "but you cannot use both options at once"); 1024 exit(1); 1025 } 1026 1027 /* Fall back to -bios */ 1028 1029 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1030 if (!fname) { 1031 error_report("Could not find ROM image '%s'", bios_name); 1032 exit(1); 1033 } 1034 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1035 image_size = load_image_mr(fname, mr); 1036 g_free(fname); 1037 if (image_size < 0) { 1038 error_report("Could not load ROM image '%s'", bios_name); 1039 exit(1); 1040 } 1041 } 1042 1043 return pflash_blk0 || bios_name; 1044 } 1045 1046 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1047 { 1048 MachineState *ms = MACHINE(vms); 1049 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1050 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1051 FWCfgState *fw_cfg; 1052 char *nodename; 1053 1054 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1055 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1056 1057 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1058 qemu_fdt_add_subnode(vms->fdt, nodename); 1059 qemu_fdt_setprop_string(vms->fdt, nodename, 1060 "compatible", "qemu,fw-cfg-mmio"); 1061 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1062 2, base, 2, size); 1063 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1064 g_free(nodename); 1065 return fw_cfg; 1066 } 1067 1068 static void create_pcie_irq_map(const VirtMachineState *vms, 1069 uint32_t gic_phandle, 1070 int first_irq, const char *nodename) 1071 { 1072 int devfn, pin; 1073 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1074 uint32_t *irq_map = full_irq_map; 1075 1076 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1077 for (pin = 0; pin < 4; pin++) { 1078 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1079 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1080 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1081 int i; 1082 1083 uint32_t map[] = { 1084 devfn << 8, 0, 0, /* devfn */ 1085 pin + 1, /* PCI pin */ 1086 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1087 1088 /* Convert map to big endian */ 1089 for (i = 0; i < 10; i++) { 1090 irq_map[i] = cpu_to_be32(map[i]); 1091 } 1092 irq_map += 10; 1093 } 1094 } 1095 1096 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1097 full_irq_map, sizeof(full_irq_map)); 1098 1099 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1100 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1101 0x7 /* PCI irq */); 1102 } 1103 1104 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, 1105 PCIBus *bus) 1106 { 1107 char *node; 1108 const char compat[] = "arm,smmu-v3"; 1109 int irq = vms->irqmap[VIRT_SMMU]; 1110 int i; 1111 hwaddr base = vms->memmap[VIRT_SMMU].base; 1112 hwaddr size = vms->memmap[VIRT_SMMU].size; 1113 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1114 DeviceState *dev; 1115 1116 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1117 return; 1118 } 1119 1120 dev = qdev_create(NULL, "arm-smmuv3"); 1121 1122 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1123 &error_abort); 1124 qdev_init_nofail(dev); 1125 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1126 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1127 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1128 } 1129 1130 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1131 qemu_fdt_add_subnode(vms->fdt, node); 1132 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1133 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1134 1135 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1136 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1137 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1138 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1139 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1140 1141 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1142 sizeof(irq_names)); 1143 1144 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1145 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1146 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1147 1148 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1149 1150 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1151 g_free(node); 1152 } 1153 1154 static void create_pcie(VirtMachineState *vms, qemu_irq *pic) 1155 { 1156 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1157 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1158 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1159 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1160 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1161 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1162 hwaddr base_ecam, size_ecam; 1163 hwaddr base = base_mmio; 1164 int nr_pcie_buses; 1165 int irq = vms->irqmap[VIRT_PCIE]; 1166 MemoryRegion *mmio_alias; 1167 MemoryRegion *mmio_reg; 1168 MemoryRegion *ecam_alias; 1169 MemoryRegion *ecam_reg; 1170 DeviceState *dev; 1171 char *nodename; 1172 int i, ecam_id; 1173 PCIHostState *pci; 1174 1175 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1176 qdev_init_nofail(dev); 1177 1178 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1179 base_ecam = vms->memmap[ecam_id].base; 1180 size_ecam = vms->memmap[ecam_id].size; 1181 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1182 /* Map only the first size_ecam bytes of ECAM space */ 1183 ecam_alias = g_new0(MemoryRegion, 1); 1184 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1185 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1186 ecam_reg, 0, size_ecam); 1187 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1188 1189 /* Map the MMIO window into system address space so as to expose 1190 * the section of PCI MMIO space which starts at the same base address 1191 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1192 * the window). 1193 */ 1194 mmio_alias = g_new0(MemoryRegion, 1); 1195 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1196 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1197 mmio_reg, base_mmio, size_mmio); 1198 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1199 1200 if (vms->highmem) { 1201 /* Map high MMIO space */ 1202 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1203 1204 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1205 mmio_reg, base_mmio_high, size_mmio_high); 1206 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1207 high_mmio_alias); 1208 } 1209 1210 /* Map IO port space */ 1211 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1212 1213 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1214 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1215 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1216 } 1217 1218 pci = PCI_HOST_BRIDGE(dev); 1219 if (pci->bus) { 1220 for (i = 0; i < nb_nics; i++) { 1221 NICInfo *nd = &nd_table[i]; 1222 1223 if (!nd->model) { 1224 nd->model = g_strdup("virtio"); 1225 } 1226 1227 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1228 } 1229 } 1230 1231 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1232 qemu_fdt_add_subnode(vms->fdt, nodename); 1233 qemu_fdt_setprop_string(vms->fdt, nodename, 1234 "compatible", "pci-host-ecam-generic"); 1235 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1236 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1237 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1238 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1239 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1240 nr_pcie_buses - 1); 1241 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1242 1243 if (vms->msi_phandle) { 1244 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1245 vms->msi_phandle); 1246 } 1247 1248 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1249 2, base_ecam, 2, size_ecam); 1250 1251 if (vms->highmem) { 1252 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1253 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1254 2, base_pio, 2, size_pio, 1255 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1256 2, base_mmio, 2, size_mmio, 1257 1, FDT_PCI_RANGE_MMIO_64BIT, 1258 2, base_mmio_high, 1259 2, base_mmio_high, 2, size_mmio_high); 1260 } else { 1261 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1262 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1263 2, base_pio, 2, size_pio, 1264 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1265 2, base_mmio, 2, size_mmio); 1266 } 1267 1268 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1269 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1270 1271 if (vms->iommu) { 1272 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1273 1274 create_smmu(vms, pic, pci->bus); 1275 1276 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1277 0x0, vms->iommu_phandle, 0x0, 0x10000); 1278 } 1279 1280 g_free(nodename); 1281 } 1282 1283 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) 1284 { 1285 DeviceState *dev; 1286 SysBusDevice *s; 1287 int i; 1288 MemoryRegion *sysmem = get_system_memory(); 1289 1290 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1291 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1292 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1293 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1294 qdev_init_nofail(dev); 1295 vms->platform_bus_dev = dev; 1296 1297 s = SYS_BUS_DEVICE(dev); 1298 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1299 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1300 sysbus_connect_irq(s, i, pic[irqn]); 1301 } 1302 1303 memory_region_add_subregion(sysmem, 1304 vms->memmap[VIRT_PLATFORM_BUS].base, 1305 sysbus_mmio_get_region(s, 0)); 1306 } 1307 1308 static void create_secure_ram(VirtMachineState *vms, 1309 MemoryRegion *secure_sysmem) 1310 { 1311 MemoryRegion *secram = g_new(MemoryRegion, 1); 1312 char *nodename; 1313 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1314 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1315 1316 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1317 &error_fatal); 1318 memory_region_add_subregion(secure_sysmem, base, secram); 1319 1320 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1321 qemu_fdt_add_subnode(vms->fdt, nodename); 1322 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1323 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1324 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1325 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1326 1327 g_free(nodename); 1328 } 1329 1330 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1331 { 1332 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1333 bootinfo); 1334 1335 *fdt_size = board->fdt_size; 1336 return board->fdt; 1337 } 1338 1339 static void virt_build_smbios(VirtMachineState *vms) 1340 { 1341 MachineClass *mc = MACHINE_GET_CLASS(vms); 1342 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1343 uint8_t *smbios_tables, *smbios_anchor; 1344 size_t smbios_tables_len, smbios_anchor_len; 1345 const char *product = "QEMU Virtual Machine"; 1346 1347 if (kvm_enabled()) { 1348 product = "KVM Virtual Machine"; 1349 } 1350 1351 smbios_set_defaults("QEMU", product, 1352 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1353 true, SMBIOS_ENTRY_POINT_30); 1354 1355 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1356 &smbios_anchor, &smbios_anchor_len); 1357 1358 if (smbios_anchor) { 1359 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1360 smbios_tables, smbios_tables_len); 1361 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1362 smbios_anchor, smbios_anchor_len); 1363 } 1364 } 1365 1366 static 1367 void virt_machine_done(Notifier *notifier, void *data) 1368 { 1369 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1370 machine_done); 1371 ARMCPU *cpu = ARM_CPU(first_cpu); 1372 struct arm_boot_info *info = &vms->bootinfo; 1373 AddressSpace *as = arm_boot_address_space(cpu, info); 1374 1375 /* 1376 * If the user provided a dtb, we assume the dynamic sysbus nodes 1377 * already are integrated there. This corresponds to a use case where 1378 * the dynamic sysbus nodes are complex and their generation is not yet 1379 * supported. In that case the user can take charge of the guest dt 1380 * while qemu takes charge of the qom stuff. 1381 */ 1382 if (info->dtb_filename == NULL) { 1383 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1384 vms->memmap[VIRT_PLATFORM_BUS].base, 1385 vms->memmap[VIRT_PLATFORM_BUS].size, 1386 vms->irqmap[VIRT_PLATFORM_BUS]); 1387 } 1388 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { 1389 exit(1); 1390 } 1391 1392 virt_acpi_setup(vms); 1393 virt_build_smbios(vms); 1394 } 1395 1396 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1397 { 1398 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1399 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1400 1401 if (!vmc->disallow_affinity_adjustment) { 1402 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1403 * GIC's target-list limitations. 32-bit KVM hosts currently 1404 * always create clusters of 4 CPUs, but that is expected to 1405 * change when they gain support for gicv3. When KVM is enabled 1406 * it will override the changes we make here, therefore our 1407 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1408 * and to improve SGI efficiency. 1409 */ 1410 if (vms->gic_version == 3) { 1411 clustersz = GICV3_TARGETLIST_BITS; 1412 } else { 1413 clustersz = GIC_TARGETLIST_BITS; 1414 } 1415 } 1416 return arm_cpu_mp_affinity(idx, clustersz); 1417 } 1418 1419 static void virt_set_memmap(VirtMachineState *vms) 1420 { 1421 MachineState *ms = MACHINE(vms); 1422 hwaddr base, device_memory_base, device_memory_size; 1423 int i; 1424 1425 vms->memmap = extended_memmap; 1426 1427 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1428 vms->memmap[i] = base_memmap[i]; 1429 } 1430 1431 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1432 error_report("unsupported number of memory slots: %"PRIu64, 1433 ms->ram_slots); 1434 exit(EXIT_FAILURE); 1435 } 1436 1437 /* 1438 * We compute the base of the high IO region depending on the 1439 * amount of initial and device memory. The device memory start/size 1440 * is aligned on 1GiB. We never put the high IO region below 256GiB 1441 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1442 * The device region size assumes 1GiB page max alignment per slot. 1443 */ 1444 device_memory_base = 1445 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1446 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1447 1448 /* Base address of the high IO region */ 1449 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1450 if (base < device_memory_base) { 1451 error_report("maxmem/slots too huge"); 1452 exit(EXIT_FAILURE); 1453 } 1454 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1455 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1456 } 1457 1458 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1459 hwaddr size = extended_memmap[i].size; 1460 1461 base = ROUND_UP(base, size); 1462 vms->memmap[i].base = base; 1463 vms->memmap[i].size = size; 1464 base += size; 1465 } 1466 vms->highest_gpa = base - 1; 1467 if (device_memory_size > 0) { 1468 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1469 ms->device_memory->base = device_memory_base; 1470 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1471 "device-memory", device_memory_size); 1472 } 1473 } 1474 1475 static void machvirt_init(MachineState *machine) 1476 { 1477 VirtMachineState *vms = VIRT_MACHINE(machine); 1478 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1479 MachineClass *mc = MACHINE_GET_CLASS(machine); 1480 const CPUArchIdList *possible_cpus; 1481 qemu_irq pic[NUM_IRQS]; 1482 MemoryRegion *sysmem = get_system_memory(); 1483 MemoryRegion *secure_sysmem = NULL; 1484 int n, virt_max_cpus; 1485 MemoryRegion *ram = g_new(MemoryRegion, 1); 1486 bool firmware_loaded; 1487 bool aarch64 = true; 1488 unsigned int smp_cpus = machine->smp.cpus; 1489 unsigned int max_cpus = machine->smp.max_cpus; 1490 1491 /* 1492 * In accelerated mode, the memory map is computed earlier in kvm_type() 1493 * to create a VM with the right number of IPA bits. 1494 */ 1495 if (!vms->memmap) { 1496 virt_set_memmap(vms); 1497 } 1498 1499 /* We can probe only here because during property set 1500 * KVM is not available yet 1501 */ 1502 if (vms->gic_version <= 0) { 1503 /* "host" or "max" */ 1504 if (!kvm_enabled()) { 1505 if (vms->gic_version == 0) { 1506 error_report("gic-version=host requires KVM"); 1507 exit(1); 1508 } else { 1509 /* "max": currently means 3 for TCG */ 1510 vms->gic_version = 3; 1511 } 1512 } else { 1513 vms->gic_version = kvm_arm_vgic_probe(); 1514 if (!vms->gic_version) { 1515 error_report( 1516 "Unable to determine GIC version supported by host"); 1517 exit(1); 1518 } 1519 } 1520 } 1521 1522 if (!cpu_type_valid(machine->cpu_type)) { 1523 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1524 exit(1); 1525 } 1526 1527 if (vms->secure) { 1528 if (kvm_enabled()) { 1529 error_report("mach-virt: KVM does not support Security extensions"); 1530 exit(1); 1531 } 1532 1533 /* 1534 * The Secure view of the world is the same as the NonSecure, 1535 * but with a few extra devices. Create it as a container region 1536 * containing the system memory at low priority; any secure-only 1537 * devices go in at higher priority and take precedence. 1538 */ 1539 secure_sysmem = g_new(MemoryRegion, 1); 1540 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1541 UINT64_MAX); 1542 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1543 } 1544 1545 firmware_loaded = virt_firmware_init(vms, sysmem, 1546 secure_sysmem ?: sysmem); 1547 1548 /* If we have an EL3 boot ROM then the assumption is that it will 1549 * implement PSCI itself, so disable QEMU's internal implementation 1550 * so it doesn't get in the way. Instead of starting secondary 1551 * CPUs in PSCI powerdown state we will start them all running and 1552 * let the boot ROM sort them out. 1553 * The usual case is that we do use QEMU's PSCI implementation; 1554 * if the guest has EL2 then we will use SMC as the conduit, 1555 * and otherwise we will use HVC (for backwards compatibility and 1556 * because if we're using KVM then we must use HVC). 1557 */ 1558 if (vms->secure && firmware_loaded) { 1559 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1560 } else if (vms->virt) { 1561 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1562 } else { 1563 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1564 } 1565 1566 /* The maximum number of CPUs depends on the GIC version, or on how 1567 * many redistributors we can fit into the memory map. 1568 */ 1569 if (vms->gic_version == 3) { 1570 virt_max_cpus = 1571 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1572 virt_max_cpus += 1573 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1574 } else { 1575 virt_max_cpus = GIC_NCPU; 1576 } 1577 1578 if (max_cpus > virt_max_cpus) { 1579 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1580 "supported by machine 'mach-virt' (%d)", 1581 max_cpus, virt_max_cpus); 1582 exit(1); 1583 } 1584 1585 vms->smp_cpus = smp_cpus; 1586 1587 if (vms->virt && kvm_enabled()) { 1588 error_report("mach-virt: KVM does not support providing " 1589 "Virtualization extensions to the guest CPU"); 1590 exit(1); 1591 } 1592 1593 create_fdt(vms); 1594 1595 possible_cpus = mc->possible_cpu_arch_ids(machine); 1596 for (n = 0; n < possible_cpus->len; n++) { 1597 Object *cpuobj; 1598 CPUState *cs; 1599 1600 if (n >= smp_cpus) { 1601 break; 1602 } 1603 1604 cpuobj = object_new(possible_cpus->cpus[n].type); 1605 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1606 "mp-affinity", NULL); 1607 1608 cs = CPU(cpuobj); 1609 cs->cpu_index = n; 1610 1611 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1612 &error_fatal); 1613 1614 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1615 1616 if (!vms->secure) { 1617 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1618 } 1619 1620 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1621 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1622 } 1623 1624 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1625 object_property_set_int(cpuobj, vms->psci_conduit, 1626 "psci-conduit", NULL); 1627 1628 /* Secondary CPUs start in PSCI powered-down state */ 1629 if (n > 0) { 1630 object_property_set_bool(cpuobj, true, 1631 "start-powered-off", NULL); 1632 } 1633 } 1634 1635 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1636 object_property_set_bool(cpuobj, false, "pmu", NULL); 1637 } 1638 1639 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1640 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1641 "reset-cbar", &error_abort); 1642 } 1643 1644 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1645 &error_abort); 1646 if (vms->secure) { 1647 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1648 "secure-memory", &error_abort); 1649 } 1650 1651 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1652 object_unref(cpuobj); 1653 } 1654 fdt_add_timer_nodes(vms); 1655 fdt_add_cpu_nodes(vms); 1656 1657 if (!kvm_enabled()) { 1658 ARMCPU *cpu = ARM_CPU(first_cpu); 1659 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL); 1660 1661 if (aarch64 && vms->highmem) { 1662 int requested_pa_size, pamax = arm_pamax(cpu); 1663 1664 requested_pa_size = 64 - clz64(vms->highest_gpa); 1665 if (pamax < requested_pa_size) { 1666 error_report("VCPU supports less PA bits (%d) than requested " 1667 "by the memory map (%d)", pamax, requested_pa_size); 1668 exit(1); 1669 } 1670 } 1671 } 1672 1673 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1674 machine->ram_size); 1675 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1676 if (machine->device_memory) { 1677 memory_region_add_subregion(sysmem, machine->device_memory->base, 1678 &machine->device_memory->mr); 1679 } 1680 1681 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 1682 1683 create_gic(vms, pic); 1684 1685 fdt_add_pmu_nodes(vms); 1686 1687 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); 1688 1689 if (vms->secure) { 1690 create_secure_ram(vms, secure_sysmem); 1691 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1692 } 1693 1694 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1695 1696 create_rtc(vms, pic); 1697 1698 create_pcie(vms, pic); 1699 1700 create_gpio(vms, pic); 1701 1702 /* Create mmio transports, so the user can create virtio backends 1703 * (which will be automatically plugged in to the transports). If 1704 * no backend is created the transport will just sit harmlessly idle. 1705 */ 1706 create_virtio_devices(vms, pic); 1707 1708 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1709 rom_set_fw(vms->fw_cfg); 1710 1711 create_platform_bus(vms, pic); 1712 1713 vms->bootinfo.ram_size = machine->ram_size; 1714 vms->bootinfo.kernel_filename = machine->kernel_filename; 1715 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1716 vms->bootinfo.initrd_filename = machine->initrd_filename; 1717 vms->bootinfo.nb_cpus = smp_cpus; 1718 vms->bootinfo.board_id = -1; 1719 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1720 vms->bootinfo.get_dtb = machvirt_dtb; 1721 vms->bootinfo.skip_dtb_autoload = true; 1722 vms->bootinfo.firmware_loaded = firmware_loaded; 1723 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); 1724 1725 vms->machine_done.notify = virt_machine_done; 1726 qemu_add_machine_init_done_notifier(&vms->machine_done); 1727 } 1728 1729 static bool virt_get_secure(Object *obj, Error **errp) 1730 { 1731 VirtMachineState *vms = VIRT_MACHINE(obj); 1732 1733 return vms->secure; 1734 } 1735 1736 static void virt_set_secure(Object *obj, bool value, Error **errp) 1737 { 1738 VirtMachineState *vms = VIRT_MACHINE(obj); 1739 1740 vms->secure = value; 1741 } 1742 1743 static bool virt_get_virt(Object *obj, Error **errp) 1744 { 1745 VirtMachineState *vms = VIRT_MACHINE(obj); 1746 1747 return vms->virt; 1748 } 1749 1750 static void virt_set_virt(Object *obj, bool value, Error **errp) 1751 { 1752 VirtMachineState *vms = VIRT_MACHINE(obj); 1753 1754 vms->virt = value; 1755 } 1756 1757 static bool virt_get_highmem(Object *obj, Error **errp) 1758 { 1759 VirtMachineState *vms = VIRT_MACHINE(obj); 1760 1761 return vms->highmem; 1762 } 1763 1764 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1765 { 1766 VirtMachineState *vms = VIRT_MACHINE(obj); 1767 1768 vms->highmem = value; 1769 } 1770 1771 static bool virt_get_its(Object *obj, Error **errp) 1772 { 1773 VirtMachineState *vms = VIRT_MACHINE(obj); 1774 1775 return vms->its; 1776 } 1777 1778 static void virt_set_its(Object *obj, bool value, Error **errp) 1779 { 1780 VirtMachineState *vms = VIRT_MACHINE(obj); 1781 1782 vms->its = value; 1783 } 1784 1785 static char *virt_get_gic_version(Object *obj, Error **errp) 1786 { 1787 VirtMachineState *vms = VIRT_MACHINE(obj); 1788 const char *val = vms->gic_version == 3 ? "3" : "2"; 1789 1790 return g_strdup(val); 1791 } 1792 1793 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1794 { 1795 VirtMachineState *vms = VIRT_MACHINE(obj); 1796 1797 if (!strcmp(value, "3")) { 1798 vms->gic_version = 3; 1799 } else if (!strcmp(value, "2")) { 1800 vms->gic_version = 2; 1801 } else if (!strcmp(value, "host")) { 1802 vms->gic_version = 0; /* Will probe later */ 1803 } else if (!strcmp(value, "max")) { 1804 vms->gic_version = -1; /* Will probe later */ 1805 } else { 1806 error_setg(errp, "Invalid gic-version value"); 1807 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1808 } 1809 } 1810 1811 static char *virt_get_iommu(Object *obj, Error **errp) 1812 { 1813 VirtMachineState *vms = VIRT_MACHINE(obj); 1814 1815 switch (vms->iommu) { 1816 case VIRT_IOMMU_NONE: 1817 return g_strdup("none"); 1818 case VIRT_IOMMU_SMMUV3: 1819 return g_strdup("smmuv3"); 1820 default: 1821 g_assert_not_reached(); 1822 } 1823 } 1824 1825 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1826 { 1827 VirtMachineState *vms = VIRT_MACHINE(obj); 1828 1829 if (!strcmp(value, "smmuv3")) { 1830 vms->iommu = VIRT_IOMMU_SMMUV3; 1831 } else if (!strcmp(value, "none")) { 1832 vms->iommu = VIRT_IOMMU_NONE; 1833 } else { 1834 error_setg(errp, "Invalid iommu value"); 1835 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1836 } 1837 } 1838 1839 static CpuInstanceProperties 1840 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1841 { 1842 MachineClass *mc = MACHINE_GET_CLASS(ms); 1843 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1844 1845 assert(cpu_index < possible_cpus->len); 1846 return possible_cpus->cpus[cpu_index].props; 1847 } 1848 1849 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1850 { 1851 return idx % nb_numa_nodes; 1852 } 1853 1854 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1855 { 1856 int n; 1857 unsigned int max_cpus = ms->smp.max_cpus; 1858 VirtMachineState *vms = VIRT_MACHINE(ms); 1859 1860 if (ms->possible_cpus) { 1861 assert(ms->possible_cpus->len == max_cpus); 1862 return ms->possible_cpus; 1863 } 1864 1865 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1866 sizeof(CPUArchId) * max_cpus); 1867 ms->possible_cpus->len = max_cpus; 1868 for (n = 0; n < ms->possible_cpus->len; n++) { 1869 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1870 ms->possible_cpus->cpus[n].arch_id = 1871 virt_cpu_mp_affinity(vms, n); 1872 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1873 ms->possible_cpus->cpus[n].props.thread_id = n; 1874 } 1875 return ms->possible_cpus; 1876 } 1877 1878 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1879 DeviceState *dev, Error **errp) 1880 { 1881 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1882 1883 if (vms->platform_bus_dev) { 1884 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1885 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1886 SYS_BUS_DEVICE(dev)); 1887 } 1888 } 1889 } 1890 1891 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1892 DeviceState *dev) 1893 { 1894 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1895 return HOTPLUG_HANDLER(machine); 1896 } 1897 1898 return NULL; 1899 } 1900 1901 /* 1902 * for arm64 kvm_type [7-0] encodes the requested number of bits 1903 * in the IPA address space 1904 */ 1905 static int virt_kvm_type(MachineState *ms, const char *type_str) 1906 { 1907 VirtMachineState *vms = VIRT_MACHINE(ms); 1908 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 1909 int requested_pa_size; 1910 1911 /* we freeze the memory map to compute the highest gpa */ 1912 virt_set_memmap(vms); 1913 1914 requested_pa_size = 64 - clz64(vms->highest_gpa); 1915 1916 if (requested_pa_size > max_vm_pa_size) { 1917 error_report("-m and ,maxmem option values " 1918 "require an IPA range (%d bits) larger than " 1919 "the one supported by the host (%d bits)", 1920 requested_pa_size, max_vm_pa_size); 1921 exit(1); 1922 } 1923 /* 1924 * By default we return 0 which corresponds to an implicit legacy 1925 * 40b IPA setting. Otherwise we return the actual requested PA 1926 * logsize 1927 */ 1928 return requested_pa_size > 40 ? requested_pa_size : 0; 1929 } 1930 1931 static void virt_machine_class_init(ObjectClass *oc, void *data) 1932 { 1933 MachineClass *mc = MACHINE_CLASS(oc); 1934 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 1935 1936 mc->init = machvirt_init; 1937 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 1938 * The value may be reduced later when we have more information about the 1939 * configuration of the particular instance. 1940 */ 1941 mc->max_cpus = 512; 1942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 1943 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 1944 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 1945 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 1946 mc->block_default_type = IF_VIRTIO; 1947 mc->no_cdrom = 1; 1948 mc->pci_allow_0_address = true; 1949 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 1950 mc->minimum_page_bits = 12; 1951 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 1952 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 1953 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 1954 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 1955 mc->kvm_type = virt_kvm_type; 1956 assert(!mc->get_hotplug_handler); 1957 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 1958 hc->plug = virt_machine_device_plug_cb; 1959 mc->numa_mem_supported = true; 1960 } 1961 1962 static void virt_instance_init(Object *obj) 1963 { 1964 VirtMachineState *vms = VIRT_MACHINE(obj); 1965 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1966 1967 /* EL3 is disabled by default on virt: this makes us consistent 1968 * between KVM and TCG for this board, and it also allows us to 1969 * boot UEFI blobs which assume no TrustZone support. 1970 */ 1971 vms->secure = false; 1972 object_property_add_bool(obj, "secure", virt_get_secure, 1973 virt_set_secure, NULL); 1974 object_property_set_description(obj, "secure", 1975 "Set on/off to enable/disable the ARM " 1976 "Security Extensions (TrustZone)", 1977 NULL); 1978 1979 /* EL2 is also disabled by default, for similar reasons */ 1980 vms->virt = false; 1981 object_property_add_bool(obj, "virtualization", virt_get_virt, 1982 virt_set_virt, NULL); 1983 object_property_set_description(obj, "virtualization", 1984 "Set on/off to enable/disable emulating a " 1985 "guest CPU which implements the ARM " 1986 "Virtualization Extensions", 1987 NULL); 1988 1989 /* High memory is enabled by default */ 1990 vms->highmem = true; 1991 object_property_add_bool(obj, "highmem", virt_get_highmem, 1992 virt_set_highmem, NULL); 1993 object_property_set_description(obj, "highmem", 1994 "Set on/off to enable/disable using " 1995 "physical address space above 32 bits", 1996 NULL); 1997 /* Default GIC type is v2 */ 1998 vms->gic_version = 2; 1999 object_property_add_str(obj, "gic-version", virt_get_gic_version, 2000 virt_set_gic_version, NULL); 2001 object_property_set_description(obj, "gic-version", 2002 "Set GIC version. " 2003 "Valid values are 2, 3 and host", NULL); 2004 2005 vms->highmem_ecam = !vmc->no_highmem_ecam; 2006 2007 if (vmc->no_its) { 2008 vms->its = false; 2009 } else { 2010 /* Default allows ITS instantiation */ 2011 vms->its = true; 2012 object_property_add_bool(obj, "its", virt_get_its, 2013 virt_set_its, NULL); 2014 object_property_set_description(obj, "its", 2015 "Set on/off to enable/disable " 2016 "ITS instantiation", 2017 NULL); 2018 } 2019 2020 /* Default disallows iommu instantiation */ 2021 vms->iommu = VIRT_IOMMU_NONE; 2022 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 2023 object_property_set_description(obj, "iommu", 2024 "Set the IOMMU type. " 2025 "Valid values are none and smmuv3", 2026 NULL); 2027 2028 vms->irqmap = a15irqmap; 2029 2030 virt_flash_create(vms); 2031 } 2032 2033 static const TypeInfo virt_machine_info = { 2034 .name = TYPE_VIRT_MACHINE, 2035 .parent = TYPE_MACHINE, 2036 .abstract = true, 2037 .instance_size = sizeof(VirtMachineState), 2038 .class_size = sizeof(VirtMachineClass), 2039 .class_init = virt_machine_class_init, 2040 .instance_init = virt_instance_init, 2041 .interfaces = (InterfaceInfo[]) { 2042 { TYPE_HOTPLUG_HANDLER }, 2043 { } 2044 }, 2045 }; 2046 2047 static void machvirt_machine_init(void) 2048 { 2049 type_register_static(&virt_machine_info); 2050 } 2051 type_init(machvirt_machine_init); 2052 2053 static void virt_machine_4_2_options(MachineClass *mc) 2054 { 2055 } 2056 DEFINE_VIRT_MACHINE_AS_LATEST(4, 2) 2057 2058 static void virt_machine_4_1_options(MachineClass *mc) 2059 { 2060 virt_machine_4_2_options(mc); 2061 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2062 } 2063 DEFINE_VIRT_MACHINE(4, 1) 2064 2065 static void virt_machine_4_0_options(MachineClass *mc) 2066 { 2067 virt_machine_4_1_options(mc); 2068 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2069 } 2070 DEFINE_VIRT_MACHINE(4, 0) 2071 2072 static void virt_machine_3_1_options(MachineClass *mc) 2073 { 2074 virt_machine_4_0_options(mc); 2075 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2076 } 2077 DEFINE_VIRT_MACHINE(3, 1) 2078 2079 static void virt_machine_3_0_options(MachineClass *mc) 2080 { 2081 virt_machine_3_1_options(mc); 2082 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2083 } 2084 DEFINE_VIRT_MACHINE(3, 0) 2085 2086 static void virt_machine_2_12_options(MachineClass *mc) 2087 { 2088 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2089 2090 virt_machine_3_0_options(mc); 2091 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2092 vmc->no_highmem_ecam = true; 2093 mc->max_cpus = 255; 2094 } 2095 DEFINE_VIRT_MACHINE(2, 12) 2096 2097 static void virt_machine_2_11_options(MachineClass *mc) 2098 { 2099 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2100 2101 virt_machine_2_12_options(mc); 2102 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2103 vmc->smbios_old_sys_ver = true; 2104 } 2105 DEFINE_VIRT_MACHINE(2, 11) 2106 2107 static void virt_machine_2_10_options(MachineClass *mc) 2108 { 2109 virt_machine_2_11_options(mc); 2110 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2111 /* before 2.11 we never faulted accesses to bad addresses */ 2112 mc->ignore_memory_transaction_failures = true; 2113 } 2114 DEFINE_VIRT_MACHINE(2, 10) 2115 2116 static void virt_machine_2_9_options(MachineClass *mc) 2117 { 2118 virt_machine_2_10_options(mc); 2119 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2120 } 2121 DEFINE_VIRT_MACHINE(2, 9) 2122 2123 static void virt_machine_2_8_options(MachineClass *mc) 2124 { 2125 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2126 2127 virt_machine_2_9_options(mc); 2128 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2129 /* For 2.8 and earlier we falsely claimed in the DT that 2130 * our timers were edge-triggered, not level-triggered. 2131 */ 2132 vmc->claim_edge_triggered_timers = true; 2133 } 2134 DEFINE_VIRT_MACHINE(2, 8) 2135 2136 static void virt_machine_2_7_options(MachineClass *mc) 2137 { 2138 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2139 2140 virt_machine_2_8_options(mc); 2141 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2142 /* ITS was introduced with 2.8 */ 2143 vmc->no_its = true; 2144 /* Stick with 1K pages for migration compatibility */ 2145 mc->minimum_page_bits = 0; 2146 } 2147 DEFINE_VIRT_MACHINE(2, 7) 2148 2149 static void virt_machine_2_6_options(MachineClass *mc) 2150 { 2151 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2152 2153 virt_machine_2_7_options(mc); 2154 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2155 vmc->disallow_affinity_adjustment = true; 2156 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2157 vmc->no_pmu = true; 2158 } 2159 DEFINE_VIRT_MACHINE(2, 6) 2160