xref: /openbmc/qemu/hw/arm/virt.c (revision 891f8dcd)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/virt-acpi-build.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
59 
60 /* Number of external interrupt lines to configure the GIC with */
61 #define NUM_IRQS 256
62 
63 #define PLATFORM_BUS_NUM_IRQS 64
64 
65 static ARMPlatformBusSystemParams platform_bus_params;
66 
67 typedef struct VirtBoardInfo {
68     struct arm_boot_info bootinfo;
69     const char *cpu_model;
70     const MemMapEntry *memmap;
71     const int *irqmap;
72     int smp_cpus;
73     void *fdt;
74     int fdt_size;
75     uint32_t clock_phandle;
76     uint32_t gic_phandle;
77     uint32_t v2m_phandle;
78     bool using_psci;
79 } VirtBoardInfo;
80 
81 typedef struct {
82     MachineClass parent;
83     VirtBoardInfo *daughterboard;
84 } VirtMachineClass;
85 
86 typedef struct {
87     MachineState parent;
88     bool secure;
89     bool highmem;
90     int32_t gic_version;
91 } VirtMachineState;
92 
93 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
94 #define VIRT_MACHINE(obj) \
95     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
96 #define VIRT_MACHINE_GET_CLASS(obj) \
97     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
98 #define VIRT_MACHINE_CLASS(klass) \
99     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
100 
101 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
102  * RAM can go up to the 256GB mark, leaving 256GB of the physical
103  * address space unallocated and free for future use between 256G and 512G.
104  * If we need to provide more RAM to VMs in the future then we need to:
105  *  * allocate a second bank of RAM starting at 2TB and working up
106  *  * fix the DT and ACPI table generation code in QEMU to correctly
107  *    report two split lumps of RAM to the guest
108  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
109  * (We don't want to fill all the way up to 512GB with RAM because
110  * we might want it for non-RAM purposes later. Conversely it seems
111  * reasonable to assume that anybody configuring a VM with a quarter
112  * of a terabyte of RAM will be doing it on a host with more than a
113  * terabyte of physical address space.)
114  */
115 #define RAMLIMIT_GB 255
116 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
117 
118 /* Addresses and sizes of our components.
119  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
120  * 128MB..256MB is used for miscellaneous device I/O.
121  * 256MB..1GB is reserved for possible future PCI support (ie where the
122  * PCI memory window will go if we add a PCI host controller).
123  * 1GB and up is RAM (which may happily spill over into the
124  * high memory region beyond 4GB).
125  * This represents a compromise between how much RAM can be given to
126  * a 32 bit VM and leaving space for expansion and in particular for PCI.
127  * Note that devices should generally be placed at multiples of 0x10000,
128  * to accommodate guests using 64K pages.
129  */
130 static const MemMapEntry a15memmap[] = {
131     /* Space up to 0x8000000 is reserved for a boot ROM */
132     [VIRT_FLASH] =              {          0, 0x08000000 },
133     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
134     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
135     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
136     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
137     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
138     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
139     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
140     /* This redistributor space allows up to 2*64kB*123 CPUs */
141     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
142     [VIRT_UART] =               { 0x09000000, 0x00001000 },
143     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
144     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
145     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
146     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
147     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
148     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
149     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
150     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
151     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
152     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
153     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
154     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
155     /* Second PCIe window, 512GB wide at the 512GB boundary */
156     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
157 };
158 
159 static const int a15irqmap[] = {
160     [VIRT_UART] = 1,
161     [VIRT_RTC] = 2,
162     [VIRT_PCIE] = 3, /* ... to 6 */
163     [VIRT_GPIO] = 7,
164     [VIRT_SECURE_UART] = 8,
165     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
168 };
169 
170 static VirtBoardInfo machines[] = {
171     {
172         .cpu_model = "cortex-a15",
173         .memmap = a15memmap,
174         .irqmap = a15irqmap,
175     },
176     {
177         .cpu_model = "cortex-a53",
178         .memmap = a15memmap,
179         .irqmap = a15irqmap,
180     },
181     {
182         .cpu_model = "cortex-a57",
183         .memmap = a15memmap,
184         .irqmap = a15irqmap,
185     },
186     {
187         .cpu_model = "host",
188         .memmap = a15memmap,
189         .irqmap = a15irqmap,
190     },
191 };
192 
193 static VirtBoardInfo *find_machine_info(const char *cpu)
194 {
195     int i;
196 
197     for (i = 0; i < ARRAY_SIZE(machines); i++) {
198         if (strcmp(cpu, machines[i].cpu_model) == 0) {
199             return &machines[i];
200         }
201     }
202     return NULL;
203 }
204 
205 static void create_fdt(VirtBoardInfo *vbi)
206 {
207     void *fdt = create_device_tree(&vbi->fdt_size);
208 
209     if (!fdt) {
210         error_report("create_device_tree() failed");
211         exit(1);
212     }
213 
214     vbi->fdt = fdt;
215 
216     /* Header */
217     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
218     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
219     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
220 
221     /*
222      * /chosen and /memory nodes must exist for load_dtb
223      * to fill in necessary properties later
224      */
225     qemu_fdt_add_subnode(fdt, "/chosen");
226     qemu_fdt_add_subnode(fdt, "/memory");
227     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
228 
229     /* Clock node, for the benefit of the UART. The kernel device tree
230      * binding documentation claims the PL011 node clock properties are
231      * optional but in practice if you omit them the kernel refuses to
232      * probe for the device.
233      */
234     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
235     qemu_fdt_add_subnode(fdt, "/apb-pclk");
236     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
237     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
238     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
239     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
240                                 "clk24mhz");
241     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
242 
243 }
244 
245 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
246 {
247     uint32_t cpu_suspend_fn;
248     uint32_t cpu_off_fn;
249     uint32_t cpu_on_fn;
250     uint32_t migrate_fn;
251     void *fdt = vbi->fdt;
252     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
253 
254     if (!vbi->using_psci) {
255         return;
256     }
257 
258     qemu_fdt_add_subnode(fdt, "/psci");
259     if (armcpu->psci_version == 2) {
260         const char comp[] = "arm,psci-0.2\0arm,psci";
261         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
262 
263         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
264         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
265             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
266             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
267             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
268         } else {
269             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
270             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
271             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
272         }
273     } else {
274         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
275 
276         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
277         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
278         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
279         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
280     }
281 
282     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
283      * to the instruction that should be used to invoke PSCI functions.
284      * However, the device tree binding uses 'method' instead, so that is
285      * what we should use here.
286      */
287     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
288 
289     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
290     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
291     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
292     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
293 }
294 
295 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
296 {
297     /* Note that on A15 h/w these interrupts are level-triggered,
298      * but for the GIC implementation provided by both QEMU and KVM
299      * they are edge-triggered.
300      */
301     ARMCPU *armcpu;
302     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
303 
304     if (gictype == 2) {
305         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
306                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
307                              (1 << vbi->smp_cpus) - 1);
308     }
309 
310     qemu_fdt_add_subnode(vbi->fdt, "/timer");
311 
312     armcpu = ARM_CPU(qemu_get_cpu(0));
313     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
314         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
315         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
316                          compat, sizeof(compat));
317     } else {
318         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
319                                 "arm,armv7-timer");
320     }
321     qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
322     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
323                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
324                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
325                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
326                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
327 }
328 
329 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
330 {
331     int cpu;
332     int addr_cells = 1;
333     unsigned int i;
334 
335     /*
336      * From Documentation/devicetree/bindings/arm/cpus.txt
337      *  On ARM v8 64-bit systems value should be set to 2,
338      *  that corresponds to the MPIDR_EL1 register size.
339      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
340      *  in the system, #address-cells can be set to 1, since
341      *  MPIDR_EL1[63:32] bits are not used for CPUs
342      *  identification.
343      *
344      *  Here we actually don't know whether our system is 32- or 64-bit one.
345      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
346      *  at least one of them has Aff3 populated, we set #address-cells to 2.
347      */
348     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
349         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
350 
351         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
352             addr_cells = 2;
353             break;
354         }
355     }
356 
357     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
358     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
359     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
360 
361     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
362         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
363         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
364 
365         qemu_fdt_add_subnode(vbi->fdt, nodename);
366         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
367         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
368                                     armcpu->dtb_compatible);
369 
370         if (vbi->using_psci && vbi->smp_cpus > 1) {
371             qemu_fdt_setprop_string(vbi->fdt, nodename,
372                                         "enable-method", "psci");
373         }
374 
375         if (addr_cells == 2) {
376             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
377                                  armcpu->mp_affinity);
378         } else {
379             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
380                                   armcpu->mp_affinity);
381         }
382 
383         for (i = 0; i < nb_numa_nodes; i++) {
384             if (test_bit(cpu, numa_info[i].node_cpu)) {
385                 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
386             }
387         }
388 
389         g_free(nodename);
390     }
391 }
392 
393 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
394 {
395     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
396     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
397     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
398                             "arm,gic-v2m-frame");
399     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
400     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
401                                  2, vbi->memmap[VIRT_GIC_V2M].base,
402                                  2, vbi->memmap[VIRT_GIC_V2M].size);
403     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
404 }
405 
406 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
407 {
408     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
409     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
410 
411     qemu_fdt_add_subnode(vbi->fdt, "/intc");
412     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
413     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
414     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
415     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
416     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
417     if (type == 3) {
418         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
419                                 "arm,gic-v3");
420         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
421                                      2, vbi->memmap[VIRT_GIC_DIST].base,
422                                      2, vbi->memmap[VIRT_GIC_DIST].size,
423                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
424                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
425     } else {
426         /* 'cortex-a15-gic' means 'GIC v2' */
427         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
428                                 "arm,cortex-a15-gic");
429         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
430                                       2, vbi->memmap[VIRT_GIC_DIST].base,
431                                       2, vbi->memmap[VIRT_GIC_DIST].size,
432                                       2, vbi->memmap[VIRT_GIC_CPU].base,
433                                       2, vbi->memmap[VIRT_GIC_CPU].size);
434     }
435 
436     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
437 }
438 
439 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
440 {
441     int i;
442     int irq = vbi->irqmap[VIRT_GIC_V2M];
443     DeviceState *dev;
444 
445     dev = qdev_create(NULL, "arm-gicv2m");
446     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
447     qdev_prop_set_uint32(dev, "base-spi", irq);
448     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
449     qdev_init_nofail(dev);
450 
451     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
452         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
453     }
454 
455     fdt_add_v2m_gic_node(vbi);
456 }
457 
458 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
459 {
460     /* We create a standalone GIC */
461     DeviceState *gicdev;
462     SysBusDevice *gicbusdev;
463     const char *gictype;
464     int i;
465 
466     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
467 
468     gicdev = qdev_create(NULL, gictype);
469     qdev_prop_set_uint32(gicdev, "revision", type);
470     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
471     /* Note that the num-irq property counts both internal and external
472      * interrupts; there are always 32 of the former (mandated by GIC spec).
473      */
474     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
475     if (!kvm_irqchip_in_kernel()) {
476         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
477     }
478     qdev_init_nofail(gicdev);
479     gicbusdev = SYS_BUS_DEVICE(gicdev);
480     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
481     if (type == 3) {
482         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
483     } else {
484         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
485     }
486 
487     /* Wire the outputs from each CPU's generic timer to the
488      * appropriate GIC PPI inputs, and the GIC's IRQ output to
489      * the CPU's IRQ input.
490      */
491     for (i = 0; i < smp_cpus; i++) {
492         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
493         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
494         int irq;
495         /* Mapping from the output timer irq lines from the CPU to the
496          * GIC PPI inputs we use for the virt board.
497          */
498         const int timer_irq[] = {
499             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
500             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
501             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
502             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
503         };
504 
505         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
506             qdev_connect_gpio_out(cpudev, irq,
507                                   qdev_get_gpio_in(gicdev,
508                                                    ppibase + timer_irq[irq]));
509         }
510 
511         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
512         sysbus_connect_irq(gicbusdev, i + smp_cpus,
513                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
514     }
515 
516     for (i = 0; i < NUM_IRQS; i++) {
517         pic[i] = qdev_get_gpio_in(gicdev, i);
518     }
519 
520     fdt_add_gic_node(vbi, type);
521 
522     if (type == 2) {
523         create_v2m(vbi, pic);
524     }
525 }
526 
527 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
528                         MemoryRegion *mem)
529 {
530     char *nodename;
531     hwaddr base = vbi->memmap[uart].base;
532     hwaddr size = vbi->memmap[uart].size;
533     int irq = vbi->irqmap[uart];
534     const char compat[] = "arm,pl011\0arm,primecell";
535     const char clocknames[] = "uartclk\0apb_pclk";
536     DeviceState *dev = qdev_create(NULL, "pl011");
537     SysBusDevice *s = SYS_BUS_DEVICE(dev);
538 
539     qdev_prop_set_chr(dev, "chardev", serial_hds[0]);
540     qdev_init_nofail(dev);
541     memory_region_add_subregion(mem, base,
542                                 sysbus_mmio_get_region(s, 0));
543     sysbus_connect_irq(s, 0, pic[irq]);
544 
545     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
546     qemu_fdt_add_subnode(vbi->fdt, nodename);
547     /* Note that we can't use setprop_string because of the embedded NUL */
548     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
549                          compat, sizeof(compat));
550     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
551                                      2, base, 2, size);
552     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
553                                GIC_FDT_IRQ_TYPE_SPI, irq,
554                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
555     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
556                                vbi->clock_phandle, vbi->clock_phandle);
557     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
558                          clocknames, sizeof(clocknames));
559 
560     if (uart == VIRT_UART) {
561         qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
562     } else {
563         /* Mark as not usable by the normal world */
564         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
565         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
566     }
567 
568     g_free(nodename);
569 }
570 
571 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
572 {
573     char *nodename;
574     hwaddr base = vbi->memmap[VIRT_RTC].base;
575     hwaddr size = vbi->memmap[VIRT_RTC].size;
576     int irq = vbi->irqmap[VIRT_RTC];
577     const char compat[] = "arm,pl031\0arm,primecell";
578 
579     sysbus_create_simple("pl031", base, pic[irq]);
580 
581     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
582     qemu_fdt_add_subnode(vbi->fdt, nodename);
583     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
584     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
585                                  2, base, 2, size);
586     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
587                            GIC_FDT_IRQ_TYPE_SPI, irq,
588                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
589     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
590     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
591     g_free(nodename);
592 }
593 
594 static DeviceState *gpio_key_dev;
595 static void virt_powerdown_req(Notifier *n, void *opaque)
596 {
597     /* use gpio Pin 3 for power button event */
598     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
599 }
600 
601 static Notifier virt_system_powerdown_notifier = {
602     .notify = virt_powerdown_req
603 };
604 
605 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
606 {
607     char *nodename;
608     DeviceState *pl061_dev;
609     hwaddr base = vbi->memmap[VIRT_GPIO].base;
610     hwaddr size = vbi->memmap[VIRT_GPIO].size;
611     int irq = vbi->irqmap[VIRT_GPIO];
612     const char compat[] = "arm,pl061\0arm,primecell";
613 
614     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
615 
616     uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
617     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
618     qemu_fdt_add_subnode(vbi->fdt, nodename);
619     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
620                                  2, base, 2, size);
621     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
622     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
623     qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
624     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
625                            GIC_FDT_IRQ_TYPE_SPI, irq,
626                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
627     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
628     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
629     qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
630 
631     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
632                                         qdev_get_gpio_in(pl061_dev, 3));
633     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
634     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
635     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
636     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
637 
638     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
639     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
640                             "label", "GPIO Key Poweroff");
641     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
642                           KEY_POWER);
643     qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
644                            "gpios", phandle, 3, 0);
645 
646     /* connect powerdown request */
647     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
648 
649     g_free(nodename);
650 }
651 
652 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
653 {
654     int i;
655     hwaddr size = vbi->memmap[VIRT_MMIO].size;
656 
657     /* We create the transports in forwards order. Since qbus_realize()
658      * prepends (not appends) new child buses, the incrementing loop below will
659      * create a list of virtio-mmio buses with decreasing base addresses.
660      *
661      * When a -device option is processed from the command line,
662      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
663      * order. The upshot is that -device options in increasing command line
664      * order are mapped to virtio-mmio buses with decreasing base addresses.
665      *
666      * When this code was originally written, that arrangement ensured that the
667      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
668      * the first -device on the command line. (The end-to-end order is a
669      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
670      * guest kernel's name-to-address assignment strategy.)
671      *
672      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
673      * the message, if not necessarily the code, of commit 70161ff336.
674      * Therefore the loop now establishes the inverse of the original intent.
675      *
676      * Unfortunately, we can't counteract the kernel change by reversing the
677      * loop; it would break existing command lines.
678      *
679      * In any case, the kernel makes no guarantee about the stability of
680      * enumeration order of virtio devices (as demonstrated by it changing
681      * between kernel versions). For reliable and stable identification
682      * of disks users must use UUIDs or similar mechanisms.
683      */
684     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
685         int irq = vbi->irqmap[VIRT_MMIO] + i;
686         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
687 
688         sysbus_create_simple("virtio-mmio", base, pic[irq]);
689     }
690 
691     /* We add dtb nodes in reverse order so that they appear in the finished
692      * device tree lowest address first.
693      *
694      * Note that this mapping is independent of the loop above. The previous
695      * loop influences virtio device to virtio transport assignment, whereas
696      * this loop controls how virtio transports are laid out in the dtb.
697      */
698     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
699         char *nodename;
700         int irq = vbi->irqmap[VIRT_MMIO] + i;
701         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
702 
703         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
704         qemu_fdt_add_subnode(vbi->fdt, nodename);
705         qemu_fdt_setprop_string(vbi->fdt, nodename,
706                                 "compatible", "virtio,mmio");
707         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
708                                      2, base, 2, size);
709         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
710                                GIC_FDT_IRQ_TYPE_SPI, irq,
711                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
712         g_free(nodename);
713     }
714 }
715 
716 static void create_one_flash(const char *name, hwaddr flashbase,
717                              hwaddr flashsize, const char *file,
718                              MemoryRegion *sysmem)
719 {
720     /* Create and map a single flash device. We use the same
721      * parameters as the flash devices on the Versatile Express board.
722      */
723     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
724     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
725     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
726     const uint64_t sectorlength = 256 * 1024;
727 
728     if (dinfo) {
729         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
730                             &error_abort);
731     }
732 
733     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
734     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
735     qdev_prop_set_uint8(dev, "width", 4);
736     qdev_prop_set_uint8(dev, "device-width", 2);
737     qdev_prop_set_bit(dev, "big-endian", false);
738     qdev_prop_set_uint16(dev, "id0", 0x89);
739     qdev_prop_set_uint16(dev, "id1", 0x18);
740     qdev_prop_set_uint16(dev, "id2", 0x00);
741     qdev_prop_set_uint16(dev, "id3", 0x00);
742     qdev_prop_set_string(dev, "name", name);
743     qdev_init_nofail(dev);
744 
745     memory_region_add_subregion(sysmem, flashbase,
746                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
747 
748     if (file) {
749         char *fn;
750         int image_size;
751 
752         if (drive_get(IF_PFLASH, 0, 0)) {
753             error_report("The contents of the first flash device may be "
754                          "specified with -bios or with -drive if=pflash... "
755                          "but you cannot use both options at once");
756             exit(1);
757         }
758         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
759         if (!fn) {
760             error_report("Could not find ROM image '%s'", file);
761             exit(1);
762         }
763         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
764         g_free(fn);
765         if (image_size < 0) {
766             error_report("Could not load ROM image '%s'", file);
767             exit(1);
768         }
769     }
770 }
771 
772 static void create_flash(const VirtBoardInfo *vbi,
773                          MemoryRegion *sysmem,
774                          MemoryRegion *secure_sysmem)
775 {
776     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
777      * Any file passed via -bios goes in the first of these.
778      * sysmem is the system memory space. secure_sysmem is the secure view
779      * of the system, and the first flash device should be made visible only
780      * there. The second flash device is visible to both secure and nonsecure.
781      * If sysmem == secure_sysmem this means there is no separate Secure
782      * address space and both flash devices are generally visible.
783      */
784     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
785     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
786     char *nodename;
787 
788     create_one_flash("virt.flash0", flashbase, flashsize,
789                      bios_name, secure_sysmem);
790     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
791                      NULL, sysmem);
792 
793     if (sysmem == secure_sysmem) {
794         /* Report both flash devices as a single node in the DT */
795         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
796         qemu_fdt_add_subnode(vbi->fdt, nodename);
797         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
798         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
799                                      2, flashbase, 2, flashsize,
800                                      2, flashbase + flashsize, 2, flashsize);
801         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
802         g_free(nodename);
803     } else {
804         /* Report the devices as separate nodes so we can mark one as
805          * only visible to the secure world.
806          */
807         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
808         qemu_fdt_add_subnode(vbi->fdt, nodename);
809         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
810         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
811                                      2, flashbase, 2, flashsize);
812         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
813         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
814         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
815         g_free(nodename);
816 
817         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
818         qemu_fdt_add_subnode(vbi->fdt, nodename);
819         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
820         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
821                                      2, flashbase + flashsize, 2, flashsize);
822         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
823         g_free(nodename);
824     }
825 }
826 
827 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
828 {
829     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
830     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
831     char *nodename;
832 
833     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
834 
835     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
836     qemu_fdt_add_subnode(vbi->fdt, nodename);
837     qemu_fdt_setprop_string(vbi->fdt, nodename,
838                             "compatible", "qemu,fw-cfg-mmio");
839     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
840                                  2, base, 2, size);
841     g_free(nodename);
842 }
843 
844 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
845                                 int first_irq, const char *nodename)
846 {
847     int devfn, pin;
848     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
849     uint32_t *irq_map = full_irq_map;
850 
851     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
852         for (pin = 0; pin < 4; pin++) {
853             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
854             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
855             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
856             int i;
857 
858             uint32_t map[] = {
859                 devfn << 8, 0, 0,                           /* devfn */
860                 pin + 1,                                    /* PCI pin */
861                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
862 
863             /* Convert map to big endian */
864             for (i = 0; i < 10; i++) {
865                 irq_map[i] = cpu_to_be32(map[i]);
866             }
867             irq_map += 10;
868         }
869     }
870 
871     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
872                      full_irq_map, sizeof(full_irq_map));
873 
874     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
875                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
876                            0x7           /* PCI irq */);
877 }
878 
879 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
880                         bool use_highmem)
881 {
882     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
883     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
884     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
885     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
886     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
887     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
888     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
889     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
890     hwaddr base = base_mmio;
891     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
892     int irq = vbi->irqmap[VIRT_PCIE];
893     MemoryRegion *mmio_alias;
894     MemoryRegion *mmio_reg;
895     MemoryRegion *ecam_alias;
896     MemoryRegion *ecam_reg;
897     DeviceState *dev;
898     char *nodename;
899     int i;
900     PCIHostState *pci;
901 
902     dev = qdev_create(NULL, TYPE_GPEX_HOST);
903     qdev_init_nofail(dev);
904 
905     /* Map only the first size_ecam bytes of ECAM space */
906     ecam_alias = g_new0(MemoryRegion, 1);
907     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
908     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
909                              ecam_reg, 0, size_ecam);
910     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
911 
912     /* Map the MMIO window into system address space so as to expose
913      * the section of PCI MMIO space which starts at the same base address
914      * (ie 1:1 mapping for that part of PCI MMIO space visible through
915      * the window).
916      */
917     mmio_alias = g_new0(MemoryRegion, 1);
918     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
919     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
920                              mmio_reg, base_mmio, size_mmio);
921     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
922 
923     if (use_highmem) {
924         /* Map high MMIO space */
925         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
926 
927         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
928                                  mmio_reg, base_mmio_high, size_mmio_high);
929         memory_region_add_subregion(get_system_memory(), base_mmio_high,
930                                     high_mmio_alias);
931     }
932 
933     /* Map IO port space */
934     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
935 
936     for (i = 0; i < GPEX_NUM_IRQS; i++) {
937         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
938     }
939 
940     pci = PCI_HOST_BRIDGE(dev);
941     if (pci->bus) {
942         for (i = 0; i < nb_nics; i++) {
943             NICInfo *nd = &nd_table[i];
944 
945             if (!nd->model) {
946                 nd->model = g_strdup("virtio");
947             }
948 
949             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
950         }
951     }
952 
953     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
954     qemu_fdt_add_subnode(vbi->fdt, nodename);
955     qemu_fdt_setprop_string(vbi->fdt, nodename,
956                             "compatible", "pci-host-ecam-generic");
957     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
958     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
959     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
960     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
961                            nr_pcie_buses - 1);
962 
963     if (vbi->v2m_phandle) {
964         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
965                                vbi->v2m_phandle);
966     }
967 
968     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
969                                  2, base_ecam, 2, size_ecam);
970 
971     if (use_highmem) {
972         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
973                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
974                                      2, base_pio, 2, size_pio,
975                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
976                                      2, base_mmio, 2, size_mmio,
977                                      1, FDT_PCI_RANGE_MMIO_64BIT,
978                                      2, base_mmio_high,
979                                      2, base_mmio_high, 2, size_mmio_high);
980     } else {
981         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
982                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
983                                      2, base_pio, 2, size_pio,
984                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
985                                      2, base_mmio, 2, size_mmio);
986     }
987 
988     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
989     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
990 
991     g_free(nodename);
992 }
993 
994 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
995 {
996     DeviceState *dev;
997     SysBusDevice *s;
998     int i;
999     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1000     MemoryRegion *sysmem = get_system_memory();
1001 
1002     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1003     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1004     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1005     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1006 
1007     fdt_params->system_params = &platform_bus_params;
1008     fdt_params->binfo = &vbi->bootinfo;
1009     fdt_params->intc = "/intc";
1010     /*
1011      * register a machine init done notifier that creates the device tree
1012      * nodes of the platform bus and its children dynamic sysbus devices
1013      */
1014     arm_register_platform_bus_fdt_creator(fdt_params);
1015 
1016     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1017     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1018     qdev_prop_set_uint32(dev, "num_irqs",
1019         platform_bus_params.platform_bus_num_irqs);
1020     qdev_prop_set_uint32(dev, "mmio_size",
1021         platform_bus_params.platform_bus_size);
1022     qdev_init_nofail(dev);
1023     s = SYS_BUS_DEVICE(dev);
1024 
1025     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1026         int irqn = platform_bus_params.platform_bus_first_irq + i;
1027         sysbus_connect_irq(s, i, pic[irqn]);
1028     }
1029 
1030     memory_region_add_subregion(sysmem,
1031                                 platform_bus_params.platform_bus_base,
1032                                 sysbus_mmio_get_region(s, 0));
1033 }
1034 
1035 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1036 {
1037     MemoryRegion *secram = g_new(MemoryRegion, 1);
1038     char *nodename;
1039     hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1040     hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1041 
1042     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1043     vmstate_register_ram_global(secram);
1044     memory_region_add_subregion(secure_sysmem, base, secram);
1045 
1046     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1047     qemu_fdt_add_subnode(vbi->fdt, nodename);
1048     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1049     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1050     qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1051     qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1052 
1053     g_free(nodename);
1054 }
1055 
1056 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1057 {
1058     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1059 
1060     *fdt_size = board->fdt_size;
1061     return board->fdt;
1062 }
1063 
1064 static void virt_build_smbios(VirtGuestInfo *guest_info)
1065 {
1066     FWCfgState *fw_cfg = guest_info->fw_cfg;
1067     uint8_t *smbios_tables, *smbios_anchor;
1068     size_t smbios_tables_len, smbios_anchor_len;
1069     const char *product = "QEMU Virtual Machine";
1070 
1071     if (!fw_cfg) {
1072         return;
1073     }
1074 
1075     if (kvm_enabled()) {
1076         product = "KVM Virtual Machine";
1077     }
1078 
1079     smbios_set_defaults("QEMU", product,
1080                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1081 
1082     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1083                       &smbios_anchor, &smbios_anchor_len);
1084 
1085     if (smbios_anchor) {
1086         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1087                         smbios_tables, smbios_tables_len);
1088         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1089                         smbios_anchor, smbios_anchor_len);
1090     }
1091 }
1092 
1093 static
1094 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1095 {
1096     VirtGuestInfoState *guest_info_state = container_of(notifier,
1097                                               VirtGuestInfoState, machine_done);
1098     virt_acpi_setup(&guest_info_state->info);
1099     virt_build_smbios(&guest_info_state->info);
1100 }
1101 
1102 static void machvirt_init(MachineState *machine)
1103 {
1104     VirtMachineState *vms = VIRT_MACHINE(machine);
1105     qemu_irq pic[NUM_IRQS];
1106     MemoryRegion *sysmem = get_system_memory();
1107     MemoryRegion *secure_sysmem = NULL;
1108     int gic_version = vms->gic_version;
1109     int n, virt_max_cpus;
1110     MemoryRegion *ram = g_new(MemoryRegion, 1);
1111     const char *cpu_model = machine->cpu_model;
1112     VirtBoardInfo *vbi;
1113     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1114     VirtGuestInfo *guest_info = &guest_info_state->info;
1115     char **cpustr;
1116     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1117 
1118     if (!cpu_model) {
1119         cpu_model = "cortex-a15";
1120     }
1121 
1122     /* We can probe only here because during property set
1123      * KVM is not available yet
1124      */
1125     if (!gic_version) {
1126         if (!kvm_enabled()) {
1127             error_report("gic-version=host requires KVM");
1128             exit(1);
1129         }
1130 
1131         gic_version = kvm_arm_vgic_probe();
1132         if (!gic_version) {
1133             error_report("Unable to determine GIC version supported by host");
1134             exit(1);
1135         }
1136     }
1137 
1138     /* Separate the actual CPU model name from any appended features */
1139     cpustr = g_strsplit(cpu_model, ",", 2);
1140 
1141     vbi = find_machine_info(cpustr[0]);
1142 
1143     if (!vbi) {
1144         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1145         exit(1);
1146     }
1147 
1148     /* If we have an EL3 boot ROM then the assumption is that it will
1149      * implement PSCI itself, so disable QEMU's internal implementation
1150      * so it doesn't get in the way. Instead of starting secondary
1151      * CPUs in PSCI powerdown state we will start them all running and
1152      * let the boot ROM sort them out.
1153      * The usual case is that we do use QEMU's PSCI implementation.
1154      */
1155     vbi->using_psci = !(vms->secure && firmware_loaded);
1156 
1157     /* The maximum number of CPUs depends on the GIC version, or on how
1158      * many redistributors we can fit into the memory map.
1159      */
1160     if (gic_version == 3) {
1161         virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1162     } else {
1163         virt_max_cpus = GIC_NCPU;
1164     }
1165 
1166     if (max_cpus > virt_max_cpus) {
1167         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1168                      "supported by machine 'mach-virt' (%d)",
1169                      max_cpus, virt_max_cpus);
1170         exit(1);
1171     }
1172 
1173     vbi->smp_cpus = smp_cpus;
1174 
1175     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1176         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1177         exit(1);
1178     }
1179 
1180     if (vms->secure) {
1181         if (kvm_enabled()) {
1182             error_report("mach-virt: KVM does not support Security extensions");
1183             exit(1);
1184         }
1185 
1186         /* The Secure view of the world is the same as the NonSecure,
1187          * but with a few extra devices. Create it as a container region
1188          * containing the system memory at low priority; any secure-only
1189          * devices go in at higher priority and take precedence.
1190          */
1191         secure_sysmem = g_new(MemoryRegion, 1);
1192         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1193                            UINT64_MAX);
1194         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1195     }
1196 
1197     create_fdt(vbi);
1198 
1199     for (n = 0; n < smp_cpus; n++) {
1200         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1201         CPUClass *cc = CPU_CLASS(oc);
1202         Object *cpuobj;
1203         Error *err = NULL;
1204         char *cpuopts = g_strdup(cpustr[1]);
1205 
1206         if (!oc) {
1207             error_report("Unable to find CPU definition");
1208             exit(1);
1209         }
1210         cpuobj = object_new(object_class_get_name(oc));
1211 
1212         /* Handle any CPU options specified by the user */
1213         cc->parse_features(CPU(cpuobj), cpuopts, &err);
1214         g_free(cpuopts);
1215         if (err) {
1216             error_report_err(err);
1217             exit(1);
1218         }
1219 
1220         if (!vms->secure) {
1221             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1222         }
1223 
1224         if (vbi->using_psci) {
1225             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1226                                     "psci-conduit", NULL);
1227 
1228             /* Secondary CPUs start in PSCI powered-down state */
1229             if (n > 0) {
1230                 object_property_set_bool(cpuobj, true,
1231                                          "start-powered-off", NULL);
1232             }
1233         }
1234 
1235         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1236             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1237                                     "reset-cbar", &error_abort);
1238         }
1239 
1240         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1241                                  &error_abort);
1242         if (vms->secure) {
1243             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1244                                      "secure-memory", &error_abort);
1245         }
1246 
1247         object_property_set_bool(cpuobj, true, "realized", NULL);
1248     }
1249     g_strfreev(cpustr);
1250     fdt_add_timer_nodes(vbi, gic_version);
1251     fdt_add_cpu_nodes(vbi);
1252     fdt_add_psci_node(vbi);
1253 
1254     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1255                                          machine->ram_size);
1256     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1257 
1258     create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1259 
1260     create_gic(vbi, pic, gic_version, vms->secure);
1261 
1262     create_uart(vbi, pic, VIRT_UART, sysmem);
1263 
1264     if (vms->secure) {
1265         create_secure_ram(vbi, secure_sysmem);
1266         create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem);
1267     }
1268 
1269     create_rtc(vbi, pic);
1270 
1271     create_pcie(vbi, pic, vms->highmem);
1272 
1273     create_gpio(vbi, pic);
1274 
1275     /* Create mmio transports, so the user can create virtio backends
1276      * (which will be automatically plugged in to the transports). If
1277      * no backend is created the transport will just sit harmlessly idle.
1278      */
1279     create_virtio_devices(vbi, pic);
1280 
1281     create_fw_cfg(vbi, &address_space_memory);
1282     rom_set_fw(fw_cfg_find());
1283 
1284     guest_info->smp_cpus = smp_cpus;
1285     guest_info->fw_cfg = fw_cfg_find();
1286     guest_info->memmap = vbi->memmap;
1287     guest_info->irqmap = vbi->irqmap;
1288     guest_info->use_highmem = vms->highmem;
1289     guest_info->gic_version = gic_version;
1290     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1291     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1292 
1293     vbi->bootinfo.ram_size = machine->ram_size;
1294     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1295     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1296     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1297     vbi->bootinfo.nb_cpus = smp_cpus;
1298     vbi->bootinfo.board_id = -1;
1299     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1300     vbi->bootinfo.get_dtb = machvirt_dtb;
1301     vbi->bootinfo.firmware_loaded = firmware_loaded;
1302     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1303 
1304     /*
1305      * arm_load_kernel machine init done notifier registration must
1306      * happen before the platform_bus_create call. In this latter,
1307      * another notifier is registered which adds platform bus nodes.
1308      * Notifiers are executed in registration reverse order.
1309      */
1310     create_platform_bus(vbi, pic);
1311 }
1312 
1313 static bool virt_get_secure(Object *obj, Error **errp)
1314 {
1315     VirtMachineState *vms = VIRT_MACHINE(obj);
1316 
1317     return vms->secure;
1318 }
1319 
1320 static void virt_set_secure(Object *obj, bool value, Error **errp)
1321 {
1322     VirtMachineState *vms = VIRT_MACHINE(obj);
1323 
1324     vms->secure = value;
1325 }
1326 
1327 static bool virt_get_highmem(Object *obj, Error **errp)
1328 {
1329     VirtMachineState *vms = VIRT_MACHINE(obj);
1330 
1331     return vms->highmem;
1332 }
1333 
1334 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1335 {
1336     VirtMachineState *vms = VIRT_MACHINE(obj);
1337 
1338     vms->highmem = value;
1339 }
1340 
1341 static char *virt_get_gic_version(Object *obj, Error **errp)
1342 {
1343     VirtMachineState *vms = VIRT_MACHINE(obj);
1344     const char *val = vms->gic_version == 3 ? "3" : "2";
1345 
1346     return g_strdup(val);
1347 }
1348 
1349 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1350 {
1351     VirtMachineState *vms = VIRT_MACHINE(obj);
1352 
1353     if (!strcmp(value, "3")) {
1354         vms->gic_version = 3;
1355     } else if (!strcmp(value, "2")) {
1356         vms->gic_version = 2;
1357     } else if (!strcmp(value, "host")) {
1358         vms->gic_version = 0; /* Will probe later */
1359     } else {
1360         error_setg(errp, "Invalid gic-version value");
1361         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1362     }
1363 }
1364 
1365 static void virt_machine_class_init(ObjectClass *oc, void *data)
1366 {
1367     MachineClass *mc = MACHINE_CLASS(oc);
1368 
1369     mc->init = machvirt_init;
1370     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1371      * it later in machvirt_init, where we have more information about the
1372      * configuration of the particular instance.
1373      */
1374     mc->max_cpus = MAX_CPUMASK_BITS;
1375     mc->has_dynamic_sysbus = true;
1376     mc->block_default_type = IF_VIRTIO;
1377     mc->no_cdrom = 1;
1378     mc->pci_allow_0_address = true;
1379 }
1380 
1381 static const TypeInfo virt_machine_info = {
1382     .name          = TYPE_VIRT_MACHINE,
1383     .parent        = TYPE_MACHINE,
1384     .abstract      = true,
1385     .instance_size = sizeof(VirtMachineState),
1386     .class_size    = sizeof(VirtMachineClass),
1387     .class_init    = virt_machine_class_init,
1388 };
1389 
1390 static void virt_2_6_instance_init(Object *obj)
1391 {
1392     VirtMachineState *vms = VIRT_MACHINE(obj);
1393 
1394     /* EL3 is disabled by default on virt: this makes us consistent
1395      * between KVM and TCG for this board, and it also allows us to
1396      * boot UEFI blobs which assume no TrustZone support.
1397      */
1398     vms->secure = false;
1399     object_property_add_bool(obj, "secure", virt_get_secure,
1400                              virt_set_secure, NULL);
1401     object_property_set_description(obj, "secure",
1402                                     "Set on/off to enable/disable the ARM "
1403                                     "Security Extensions (TrustZone)",
1404                                     NULL);
1405 
1406     /* High memory is enabled by default */
1407     vms->highmem = true;
1408     object_property_add_bool(obj, "highmem", virt_get_highmem,
1409                              virt_set_highmem, NULL);
1410     object_property_set_description(obj, "highmem",
1411                                     "Set on/off to enable/disable using "
1412                                     "physical address space above 32 bits",
1413                                     NULL);
1414     /* Default GIC type is v2 */
1415     vms->gic_version = 2;
1416     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1417                         virt_set_gic_version, NULL);
1418     object_property_set_description(obj, "gic-version",
1419                                     "Set GIC version. "
1420                                     "Valid values are 2, 3 and host", NULL);
1421 }
1422 
1423 static void virt_2_6_class_init(ObjectClass *oc, void *data)
1424 {
1425     MachineClass *mc = MACHINE_CLASS(oc);
1426 
1427     mc->desc = "QEMU 2.6 ARM Virtual Machine";
1428     mc->alias = "virt";
1429 }
1430 
1431 static const TypeInfo machvirt_info = {
1432     .name = MACHINE_TYPE_NAME("virt-2.6"),
1433     .parent = TYPE_VIRT_MACHINE,
1434     .instance_init = virt_2_6_instance_init,
1435     .class_init = virt_2_6_class_init,
1436 };
1437 
1438 static void machvirt_machine_init(void)
1439 {
1440     type_register_static(&virt_machine_info);
1441     type_register_static(&machvirt_info);
1442 }
1443 
1444 type_init(machvirt_machine_init);
1445