1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/devices.h" 35 #include "net/net.h" 36 #include "sysemu/block-backend.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/sysemu.h" 39 #include "sysemu/kvm.h" 40 #include "hw/boards.h" 41 #include "hw/loader.h" 42 #include "exec/address-spaces.h" 43 #include "qemu/bitops.h" 44 #include "qemu/error-report.h" 45 #include "hw/pci-host/gpex.h" 46 47 #define NUM_VIRTIO_TRANSPORTS 32 48 49 /* Number of external interrupt lines to configure the GIC with */ 50 #define NUM_IRQS 128 51 52 #define GIC_FDT_IRQ_TYPE_SPI 0 53 #define GIC_FDT_IRQ_TYPE_PPI 1 54 55 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 56 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 57 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 58 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 59 60 #define GIC_FDT_IRQ_PPI_CPU_START 8 61 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 62 63 enum { 64 VIRT_FLASH, 65 VIRT_MEM, 66 VIRT_CPUPERIPHS, 67 VIRT_GIC_DIST, 68 VIRT_GIC_CPU, 69 VIRT_UART, 70 VIRT_MMIO, 71 VIRT_RTC, 72 VIRT_FW_CFG, 73 VIRT_PCIE, 74 }; 75 76 typedef struct MemMapEntry { 77 hwaddr base; 78 hwaddr size; 79 } MemMapEntry; 80 81 typedef struct VirtBoardInfo { 82 struct arm_boot_info bootinfo; 83 const char *cpu_model; 84 const MemMapEntry *memmap; 85 const int *irqmap; 86 int smp_cpus; 87 void *fdt; 88 int fdt_size; 89 uint32_t clock_phandle; 90 } VirtBoardInfo; 91 92 typedef struct { 93 MachineClass parent; 94 VirtBoardInfo *daughterboard; 95 } VirtMachineClass; 96 97 typedef struct { 98 MachineState parent; 99 bool secure; 100 } VirtMachineState; 101 102 #define TYPE_VIRT_MACHINE "virt" 103 #define VIRT_MACHINE(obj) \ 104 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 105 #define VIRT_MACHINE_GET_CLASS(obj) \ 106 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 107 #define VIRT_MACHINE_CLASS(klass) \ 108 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 109 110 /* Addresses and sizes of our components. 111 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 112 * 128MB..256MB is used for miscellaneous device I/O. 113 * 256MB..1GB is reserved for possible future PCI support (ie where the 114 * PCI memory window will go if we add a PCI host controller). 115 * 1GB and up is RAM (which may happily spill over into the 116 * high memory region beyond 4GB). 117 * This represents a compromise between how much RAM can be given to 118 * a 32 bit VM and leaving space for expansion and in particular for PCI. 119 * Note that devices should generally be placed at multiples of 0x10000, 120 * to accommodate guests using 64K pages. 121 */ 122 static const MemMapEntry a15memmap[] = { 123 /* Space up to 0x8000000 is reserved for a boot ROM */ 124 [VIRT_FLASH] = { 0, 0x08000000 }, 125 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 126 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 127 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 128 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 129 [VIRT_UART] = { 0x09000000, 0x00001000 }, 130 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 131 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, 132 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 133 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 134 /* 135 * PCIE verbose map: 136 * 137 * MMIO window { 0x10000000, 0x2eff0000 }, 138 * PIO window { 0x3eff0000, 0x00010000 }, 139 * ECAM { 0x3f000000, 0x01000000 }, 140 */ 141 [VIRT_PCIE] = { 0x10000000, 0x30000000 }, 142 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 143 }; 144 145 static const int a15irqmap[] = { 146 [VIRT_UART] = 1, 147 [VIRT_RTC] = 2, 148 [VIRT_PCIE] = 3, /* ... to 6 */ 149 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 150 }; 151 152 static VirtBoardInfo machines[] = { 153 { 154 .cpu_model = "cortex-a15", 155 .memmap = a15memmap, 156 .irqmap = a15irqmap, 157 }, 158 { 159 .cpu_model = "cortex-a57", 160 .memmap = a15memmap, 161 .irqmap = a15irqmap, 162 }, 163 { 164 .cpu_model = "host", 165 .memmap = a15memmap, 166 .irqmap = a15irqmap, 167 }, 168 }; 169 170 static VirtBoardInfo *find_machine_info(const char *cpu) 171 { 172 int i; 173 174 for (i = 0; i < ARRAY_SIZE(machines); i++) { 175 if (strcmp(cpu, machines[i].cpu_model) == 0) { 176 return &machines[i]; 177 } 178 } 179 return NULL; 180 } 181 182 static void create_fdt(VirtBoardInfo *vbi) 183 { 184 void *fdt = create_device_tree(&vbi->fdt_size); 185 186 if (!fdt) { 187 error_report("create_device_tree() failed"); 188 exit(1); 189 } 190 191 vbi->fdt = fdt; 192 193 /* Header */ 194 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 195 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 196 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 197 198 /* 199 * /chosen and /memory nodes must exist for load_dtb 200 * to fill in necessary properties later 201 */ 202 qemu_fdt_add_subnode(fdt, "/chosen"); 203 qemu_fdt_add_subnode(fdt, "/memory"); 204 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 205 206 /* Clock node, for the benefit of the UART. The kernel device tree 207 * binding documentation claims the PL011 node clock properties are 208 * optional but in practice if you omit them the kernel refuses to 209 * probe for the device. 210 */ 211 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 212 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 213 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 214 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 215 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 216 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 217 "clk24mhz"); 218 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 219 220 } 221 222 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 223 { 224 uint32_t cpu_suspend_fn; 225 uint32_t cpu_off_fn; 226 uint32_t cpu_on_fn; 227 uint32_t migrate_fn; 228 void *fdt = vbi->fdt; 229 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 230 231 qemu_fdt_add_subnode(fdt, "/psci"); 232 if (armcpu->psci_version == 2) { 233 const char comp[] = "arm,psci-0.2\0arm,psci"; 234 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 235 236 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 237 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 238 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 239 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 240 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 241 } else { 242 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 243 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 244 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 245 } 246 } else { 247 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 248 249 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 250 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 251 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 252 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 253 } 254 255 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 256 * to the instruction that should be used to invoke PSCI functions. 257 * However, the device tree binding uses 'method' instead, so that is 258 * what we should use here. 259 */ 260 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 261 262 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 263 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 264 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 265 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 266 } 267 268 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 269 { 270 /* Note that on A15 h/w these interrupts are level-triggered, 271 * but for the GIC implementation provided by both QEMU and KVM 272 * they are edge-triggered. 273 */ 274 ARMCPU *armcpu; 275 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 276 277 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 278 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 279 280 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 281 282 armcpu = ARM_CPU(qemu_get_cpu(0)); 283 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 284 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 285 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 286 compat, sizeof(compat)); 287 } else { 288 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 289 "arm,armv7-timer"); 290 } 291 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 292 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags, 293 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags, 294 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags, 295 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags); 296 } 297 298 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 299 { 300 int cpu; 301 302 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 303 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); 304 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 305 306 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 307 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 308 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 309 310 qemu_fdt_add_subnode(vbi->fdt, nodename); 311 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 312 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 313 armcpu->dtb_compatible); 314 315 if (vbi->smp_cpus > 1) { 316 qemu_fdt_setprop_string(vbi->fdt, nodename, 317 "enable-method", "psci"); 318 } 319 320 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); 321 g_free(nodename); 322 } 323 } 324 325 static uint32_t fdt_add_gic_node(const VirtBoardInfo *vbi) 326 { 327 uint32_t gic_phandle; 328 329 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 330 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle); 331 332 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 333 /* 'cortex-a15-gic' means 'GIC v2' */ 334 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 335 "arm,cortex-a15-gic"); 336 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 337 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 338 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 339 2, vbi->memmap[VIRT_GIC_DIST].base, 340 2, vbi->memmap[VIRT_GIC_DIST].size, 341 2, vbi->memmap[VIRT_GIC_CPU].base, 342 2, vbi->memmap[VIRT_GIC_CPU].size); 343 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle); 344 345 return gic_phandle; 346 } 347 348 static uint32_t create_gic(const VirtBoardInfo *vbi, qemu_irq *pic) 349 { 350 /* We create a standalone GIC v2 */ 351 DeviceState *gicdev; 352 SysBusDevice *gicbusdev; 353 const char *gictype = "arm_gic"; 354 int i; 355 356 if (kvm_irqchip_in_kernel()) { 357 gictype = "kvm-arm-gic"; 358 } 359 360 gicdev = qdev_create(NULL, gictype); 361 qdev_prop_set_uint32(gicdev, "revision", 2); 362 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 363 /* Note that the num-irq property counts both internal and external 364 * interrupts; there are always 32 of the former (mandated by GIC spec). 365 */ 366 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 367 qdev_init_nofail(gicdev); 368 gicbusdev = SYS_BUS_DEVICE(gicdev); 369 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 370 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 371 372 /* Wire the outputs from each CPU's generic timer to the 373 * appropriate GIC PPI inputs, and the GIC's IRQ output to 374 * the CPU's IRQ input. 375 */ 376 for (i = 0; i < smp_cpus; i++) { 377 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 378 int ppibase = NUM_IRQS + i * 32; 379 /* physical timer; we wire it up to the non-secure timer's ID, 380 * since a real A15 always has TrustZone but QEMU doesn't. 381 */ 382 qdev_connect_gpio_out(cpudev, 0, 383 qdev_get_gpio_in(gicdev, ppibase + 30)); 384 /* virtual timer */ 385 qdev_connect_gpio_out(cpudev, 1, 386 qdev_get_gpio_in(gicdev, ppibase + 27)); 387 388 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 389 } 390 391 for (i = 0; i < NUM_IRQS; i++) { 392 pic[i] = qdev_get_gpio_in(gicdev, i); 393 } 394 395 return fdt_add_gic_node(vbi); 396 } 397 398 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 399 { 400 char *nodename; 401 hwaddr base = vbi->memmap[VIRT_UART].base; 402 hwaddr size = vbi->memmap[VIRT_UART].size; 403 int irq = vbi->irqmap[VIRT_UART]; 404 const char compat[] = "arm,pl011\0arm,primecell"; 405 const char clocknames[] = "uartclk\0apb_pclk"; 406 407 sysbus_create_simple("pl011", base, pic[irq]); 408 409 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 410 qemu_fdt_add_subnode(vbi->fdt, nodename); 411 /* Note that we can't use setprop_string because of the embedded NUL */ 412 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 413 compat, sizeof(compat)); 414 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 415 2, base, 2, size); 416 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 417 GIC_FDT_IRQ_TYPE_SPI, irq, 418 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 419 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 420 vbi->clock_phandle, vbi->clock_phandle); 421 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 422 clocknames, sizeof(clocknames)); 423 424 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 425 g_free(nodename); 426 } 427 428 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 429 { 430 char *nodename; 431 hwaddr base = vbi->memmap[VIRT_RTC].base; 432 hwaddr size = vbi->memmap[VIRT_RTC].size; 433 int irq = vbi->irqmap[VIRT_RTC]; 434 const char compat[] = "arm,pl031\0arm,primecell"; 435 436 sysbus_create_simple("pl031", base, pic[irq]); 437 438 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 439 qemu_fdt_add_subnode(vbi->fdt, nodename); 440 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 441 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 442 2, base, 2, size); 443 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 444 GIC_FDT_IRQ_TYPE_SPI, irq, 445 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 446 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 447 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 448 g_free(nodename); 449 } 450 451 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 452 { 453 int i; 454 hwaddr size = vbi->memmap[VIRT_MMIO].size; 455 456 /* We create the transports in forwards order. Since qbus_realize() 457 * prepends (not appends) new child buses, the incrementing loop below will 458 * create a list of virtio-mmio buses with decreasing base addresses. 459 * 460 * When a -device option is processed from the command line, 461 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 462 * order. The upshot is that -device options in increasing command line 463 * order are mapped to virtio-mmio buses with decreasing base addresses. 464 * 465 * When this code was originally written, that arrangement ensured that the 466 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 467 * the first -device on the command line. (The end-to-end order is a 468 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 469 * guest kernel's name-to-address assignment strategy.) 470 * 471 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 472 * the message, if not necessarily the code, of commit 70161ff336. 473 * Therefore the loop now establishes the inverse of the original intent. 474 * 475 * Unfortunately, we can't counteract the kernel change by reversing the 476 * loop; it would break existing command lines. 477 * 478 * In any case, the kernel makes no guarantee about the stability of 479 * enumeration order of virtio devices (as demonstrated by it changing 480 * between kernel versions). For reliable and stable identification 481 * of disks users must use UUIDs or similar mechanisms. 482 */ 483 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 484 int irq = vbi->irqmap[VIRT_MMIO] + i; 485 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 486 487 sysbus_create_simple("virtio-mmio", base, pic[irq]); 488 } 489 490 /* We add dtb nodes in reverse order so that they appear in the finished 491 * device tree lowest address first. 492 * 493 * Note that this mapping is independent of the loop above. The previous 494 * loop influences virtio device to virtio transport assignment, whereas 495 * this loop controls how virtio transports are laid out in the dtb. 496 */ 497 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 498 char *nodename; 499 int irq = vbi->irqmap[VIRT_MMIO] + i; 500 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 501 502 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 503 qemu_fdt_add_subnode(vbi->fdt, nodename); 504 qemu_fdt_setprop_string(vbi->fdt, nodename, 505 "compatible", "virtio,mmio"); 506 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 507 2, base, 2, size); 508 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 509 GIC_FDT_IRQ_TYPE_SPI, irq, 510 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 511 g_free(nodename); 512 } 513 } 514 515 static void create_one_flash(const char *name, hwaddr flashbase, 516 hwaddr flashsize) 517 { 518 /* Create and map a single flash device. We use the same 519 * parameters as the flash devices on the Versatile Express board. 520 */ 521 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 522 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 523 const uint64_t sectorlength = 256 * 1024; 524 525 if (dinfo && qdev_prop_set_drive(dev, "drive", 526 blk_by_legacy_dinfo(dinfo))) { 527 abort(); 528 } 529 530 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 531 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 532 qdev_prop_set_uint8(dev, "width", 4); 533 qdev_prop_set_uint8(dev, "device-width", 2); 534 qdev_prop_set_uint8(dev, "big-endian", 0); 535 qdev_prop_set_uint16(dev, "id0", 0x89); 536 qdev_prop_set_uint16(dev, "id1", 0x18); 537 qdev_prop_set_uint16(dev, "id2", 0x00); 538 qdev_prop_set_uint16(dev, "id3", 0x00); 539 qdev_prop_set_string(dev, "name", name); 540 qdev_init_nofail(dev); 541 542 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 543 } 544 545 static void create_flash(const VirtBoardInfo *vbi) 546 { 547 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 548 * Any file passed via -bios goes in the first of these. 549 */ 550 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 551 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 552 char *nodename; 553 554 if (bios_name) { 555 const char *fn; 556 557 if (drive_get(IF_PFLASH, 0, 0)) { 558 error_report("The contents of the first flash device may be " 559 "specified with -bios or with -drive if=pflash... " 560 "but you cannot use both options at once"); 561 exit(1); 562 } 563 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 564 if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) { 565 error_report("Could not load ROM image '%s'", bios_name); 566 exit(1); 567 } 568 } 569 570 create_one_flash("virt.flash0", flashbase, flashsize); 571 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 572 573 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 574 qemu_fdt_add_subnode(vbi->fdt, nodename); 575 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 576 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 577 2, flashbase, 2, flashsize, 578 2, flashbase + flashsize, 2, flashsize); 579 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 580 g_free(nodename); 581 } 582 583 static void create_fw_cfg(const VirtBoardInfo *vbi) 584 { 585 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 586 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 587 char *nodename; 588 589 fw_cfg_init_mem_wide(base + 8, base, 8); 590 591 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 592 qemu_fdt_add_subnode(vbi->fdt, nodename); 593 qemu_fdt_setprop_string(vbi->fdt, nodename, 594 "compatible", "qemu,fw-cfg-mmio"); 595 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 596 2, base, 2, size); 597 g_free(nodename); 598 } 599 600 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 601 int first_irq, const char *nodename) 602 { 603 int devfn, pin; 604 uint32_t full_irq_map[4 * 4 * 8] = { 0 }; 605 uint32_t *irq_map = full_irq_map; 606 607 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 608 for (pin = 0; pin < 4; pin++) { 609 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 610 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 611 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 612 int i; 613 614 uint32_t map[] = { 615 devfn << 8, 0, 0, /* devfn */ 616 pin + 1, /* PCI pin */ 617 gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */ 618 619 /* Convert map to big endian */ 620 for (i = 0; i < 8; i++) { 621 irq_map[i] = cpu_to_be32(map[i]); 622 } 623 irq_map += 8; 624 } 625 } 626 627 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 628 full_irq_map, sizeof(full_irq_map)); 629 630 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 631 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 632 0x7 /* PCI irq */); 633 } 634 635 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 636 uint32_t gic_phandle) 637 { 638 hwaddr base = vbi->memmap[VIRT_PCIE].base; 639 hwaddr size = vbi->memmap[VIRT_PCIE].size; 640 hwaddr end = base + size; 641 hwaddr size_mmio; 642 hwaddr size_ioport = 64 * 1024; 643 int nr_pcie_buses = 16; 644 hwaddr size_ecam = PCIE_MMCFG_SIZE_MIN * nr_pcie_buses; 645 hwaddr base_mmio = base; 646 hwaddr base_ioport; 647 hwaddr base_ecam; 648 int irq = vbi->irqmap[VIRT_PCIE]; 649 MemoryRegion *mmio_alias; 650 MemoryRegion *mmio_reg; 651 MemoryRegion *ecam_alias; 652 MemoryRegion *ecam_reg; 653 DeviceState *dev; 654 char *nodename; 655 int i; 656 657 base_ecam = QEMU_ALIGN_DOWN(end - size_ecam, size_ecam); 658 base_ioport = QEMU_ALIGN_DOWN(base_ecam - size_ioport, size_ioport); 659 size_mmio = base_ioport - base; 660 661 dev = qdev_create(NULL, TYPE_GPEX_HOST); 662 qdev_init_nofail(dev); 663 664 /* Map only the first size_ecam bytes of ECAM space */ 665 ecam_alias = g_new0(MemoryRegion, 1); 666 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 667 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 668 ecam_reg, 0, size_ecam); 669 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 670 671 /* Map the MMIO window into system address space so as to expose 672 * the section of PCI MMIO space which starts at the same base address 673 * (ie 1:1 mapping for that part of PCI MMIO space visible through 674 * the window). 675 */ 676 mmio_alias = g_new0(MemoryRegion, 1); 677 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 678 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 679 mmio_reg, base_mmio, size_mmio); 680 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 681 682 /* Map IO port space */ 683 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_ioport); 684 685 for (i = 0; i < GPEX_NUM_IRQS; i++) { 686 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 687 } 688 689 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 690 qemu_fdt_add_subnode(vbi->fdt, nodename); 691 qemu_fdt_setprop_string(vbi->fdt, nodename, 692 "compatible", "pci-host-ecam-generic"); 693 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 694 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 695 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 696 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 697 nr_pcie_buses - 1); 698 699 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 700 2, base_ecam, 2, size_ecam); 701 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 702 1, FDT_PCI_RANGE_IOPORT, 2, 0, 703 2, base_ioport, 2, size_ioport, 704 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 705 2, base_mmio, 2, size_mmio); 706 707 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 708 create_pcie_irq_map(vbi, gic_phandle, irq, nodename); 709 710 g_free(nodename); 711 } 712 713 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 714 { 715 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 716 717 *fdt_size = board->fdt_size; 718 return board->fdt; 719 } 720 721 static void machvirt_init(MachineState *machine) 722 { 723 VirtMachineState *vms = VIRT_MACHINE(machine); 724 qemu_irq pic[NUM_IRQS]; 725 MemoryRegion *sysmem = get_system_memory(); 726 int n; 727 MemoryRegion *ram = g_new(MemoryRegion, 1); 728 const char *cpu_model = machine->cpu_model; 729 VirtBoardInfo *vbi; 730 uint32_t gic_phandle; 731 char **cpustr; 732 733 if (!cpu_model) { 734 cpu_model = "cortex-a15"; 735 } 736 737 /* Separate the actual CPU model name from any appended features */ 738 cpustr = g_strsplit(cpu_model, ",", 2); 739 740 vbi = find_machine_info(cpustr[0]); 741 742 if (!vbi) { 743 error_report("mach-virt: CPU %s not supported", cpustr[0]); 744 exit(1); 745 } 746 747 vbi->smp_cpus = smp_cpus; 748 749 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 750 error_report("mach-virt: cannot model more than 30GB RAM"); 751 exit(1); 752 } 753 754 create_fdt(vbi); 755 756 for (n = 0; n < smp_cpus; n++) { 757 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 758 CPUClass *cc = CPU_CLASS(oc); 759 Object *cpuobj; 760 Error *err = NULL; 761 762 if (!oc) { 763 fprintf(stderr, "Unable to find CPU definition\n"); 764 exit(1); 765 } 766 cpuobj = object_new(object_class_get_name(oc)); 767 768 /* Handle any CPU options specified by the user */ 769 cc->parse_features(CPU(cpuobj), cpustr[1], &err); 770 if (err) { 771 error_report("%s", error_get_pretty(err)); 772 exit(1); 773 } 774 775 if (!vms->secure) { 776 object_property_set_bool(cpuobj, false, "has_el3", NULL); 777 } 778 779 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 780 NULL); 781 782 /* Secondary CPUs start in PSCI powered-down state */ 783 if (n > 0) { 784 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 785 } 786 787 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 788 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 789 "reset-cbar", &error_abort); 790 } 791 792 object_property_set_bool(cpuobj, true, "realized", NULL); 793 } 794 g_strfreev(cpustr); 795 fdt_add_timer_nodes(vbi); 796 fdt_add_cpu_nodes(vbi); 797 fdt_add_psci_node(vbi); 798 799 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size, 800 &error_abort); 801 vmstate_register_ram_global(ram); 802 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 803 804 create_flash(vbi); 805 806 gic_phandle = create_gic(vbi, pic); 807 808 create_uart(vbi, pic); 809 810 create_rtc(vbi, pic); 811 812 create_pcie(vbi, pic, gic_phandle); 813 814 /* Create mmio transports, so the user can create virtio backends 815 * (which will be automatically plugged in to the transports). If 816 * no backend is created the transport will just sit harmlessly idle. 817 */ 818 create_virtio_devices(vbi, pic); 819 820 create_fw_cfg(vbi); 821 822 vbi->bootinfo.ram_size = machine->ram_size; 823 vbi->bootinfo.kernel_filename = machine->kernel_filename; 824 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 825 vbi->bootinfo.initrd_filename = machine->initrd_filename; 826 vbi->bootinfo.nb_cpus = smp_cpus; 827 vbi->bootinfo.board_id = -1; 828 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 829 vbi->bootinfo.get_dtb = machvirt_dtb; 830 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 831 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 832 } 833 834 static bool virt_get_secure(Object *obj, Error **errp) 835 { 836 VirtMachineState *vms = VIRT_MACHINE(obj); 837 838 return vms->secure; 839 } 840 841 static void virt_set_secure(Object *obj, bool value, Error **errp) 842 { 843 VirtMachineState *vms = VIRT_MACHINE(obj); 844 845 vms->secure = value; 846 } 847 848 static void virt_instance_init(Object *obj) 849 { 850 VirtMachineState *vms = VIRT_MACHINE(obj); 851 852 /* EL3 is enabled by default on virt */ 853 vms->secure = true; 854 object_property_add_bool(obj, "secure", virt_get_secure, 855 virt_set_secure, NULL); 856 object_property_set_description(obj, "secure", 857 "Set on/off to enable/disable the ARM " 858 "Security Extensions (TrustZone)", 859 NULL); 860 } 861 862 static void virt_class_init(ObjectClass *oc, void *data) 863 { 864 MachineClass *mc = MACHINE_CLASS(oc); 865 866 mc->name = TYPE_VIRT_MACHINE; 867 mc->desc = "ARM Virtual Machine", 868 mc->init = machvirt_init; 869 mc->max_cpus = 8; 870 } 871 872 static const TypeInfo machvirt_info = { 873 .name = TYPE_VIRT_MACHINE, 874 .parent = TYPE_MACHINE, 875 .instance_size = sizeof(VirtMachineState), 876 .instance_init = virt_instance_init, 877 .class_size = sizeof(VirtMachineClass), 878 .class_init = virt_class_init, 879 }; 880 881 static void machvirt_machine_init(void) 882 { 883 type_register_static(&machvirt_info); 884 } 885 886 machine_init(machvirt_machine_init); 887