xref: /openbmc/qemu/hw/arm/virt.c (revision 83fb360d)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
87 
88 static GlobalProperty arm_virt_compat[] = {
89     { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
90 };
91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
92 
93 /*
94  * This cannot be called from the virt_machine_class_init() because
95  * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
96  * only is called on virt non abstract class init.
97  */
98 static void arm_virt_compat_set(MachineClass *mc)
99 {
100     compat_props_add(mc->compat_props, arm_virt_compat,
101                      arm_virt_compat_len);
102 }
103 
104 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
105     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
106                                                     void *data) \
107     { \
108         MachineClass *mc = MACHINE_CLASS(oc); \
109         arm_virt_compat_set(mc); \
110         virt_machine_##major##_##minor##_options(mc); \
111         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
112         if (latest) { \
113             mc->alias = "virt"; \
114         } \
115     } \
116     static const TypeInfo machvirt_##major##_##minor##_info = { \
117         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118         .parent = TYPE_VIRT_MACHINE, \
119         .class_init = virt_##major##_##minor##_class_init, \
120     }; \
121     static void machvirt_machine_##major##_##minor##_init(void) \
122     { \
123         type_register_static(&machvirt_##major##_##minor##_info); \
124     } \
125     type_init(machvirt_machine_##major##_##minor##_init);
126 
127 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
128     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
129 #define DEFINE_VIRT_MACHINE(major, minor) \
130     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
131 
132 
133 /* Number of external interrupt lines to configure the GIC with */
134 #define NUM_IRQS 256
135 
136 #define PLATFORM_BUS_NUM_IRQS 64
137 
138 /* Legacy RAM limit in GB (< version 4.0) */
139 #define LEGACY_RAMLIMIT_GB 255
140 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
141 
142 /* Addresses and sizes of our components.
143  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
144  * 128MB..256MB is used for miscellaneous device I/O.
145  * 256MB..1GB is reserved for possible future PCI support (ie where the
146  * PCI memory window will go if we add a PCI host controller).
147  * 1GB and up is RAM (which may happily spill over into the
148  * high memory region beyond 4GB).
149  * This represents a compromise between how much RAM can be given to
150  * a 32 bit VM and leaving space for expansion and in particular for PCI.
151  * Note that devices should generally be placed at multiples of 0x10000,
152  * to accommodate guests using 64K pages.
153  */
154 static const MemMapEntry base_memmap[] = {
155     /* Space up to 0x8000000 is reserved for a boot ROM */
156     [VIRT_FLASH] =              {          0, 0x08000000 },
157     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
158     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
159     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
160     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
161     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
162     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
163     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
164     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
165     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
166     /* This redistributor space allows up to 2*64kB*123 CPUs */
167     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
168     [VIRT_UART] =               { 0x09000000, 0x00001000 },
169     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
170     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
171     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
172     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
173     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
174     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
175     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
176     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
177     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
178     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
179     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
180     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
181     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
182     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
183     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
184     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
185     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
186     /* Actual RAM size depends on initial RAM and device memory settings */
187     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
188 };
189 
190 /*
191  * Highmem IO Regions: This memory map is floating, located after the RAM.
192  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
193  * top of the RAM, so that its base get the same alignment as the size,
194  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
195  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
196  * Note the extended_memmap is sized so that it eventually also includes the
197  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
198  * index of base_memmap).
199  *
200  * The memory map for these Highmem IO Regions can be in legacy or compact
201  * layout, depending on 'compact-highmem' property. With legacy layout, the
202  * PA space for one specific region is always reserved, even if the region
203  * has been disabled or doesn't fit into the PA space. However, the PA space
204  * for the region won't be reserved in these circumstances with compact layout.
205  */
206 static MemMapEntry extended_memmap[] = {
207     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
208     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
209     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
210     /* Second PCIe window */
211     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
212 };
213 
214 static const int a15irqmap[] = {
215     [VIRT_UART] = 1,
216     [VIRT_RTC] = 2,
217     [VIRT_PCIE] = 3, /* ... to 6 */
218     [VIRT_GPIO] = 7,
219     [VIRT_SECURE_UART] = 8,
220     [VIRT_ACPI_GED] = 9,
221     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
222     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
223     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
224     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
225 };
226 
227 static void create_randomness(MachineState *ms, const char *node)
228 {
229     struct {
230         uint64_t kaslr;
231         uint8_t rng[32];
232     } seed;
233 
234     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
235         return;
236     }
237     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
238     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
239 }
240 
241 /*
242  * The CPU object always exposes the NS EL2 virt timer IRQ line,
243  * but we don't want to advertise it to the guest in the dtb or ACPI
244  * table unless it's really going to do something.
245  */
246 static bool ns_el2_virt_timer_present(void)
247 {
248     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
249     CPUARMState *env = &cpu->env;
250 
251     return arm_feature(env, ARM_FEATURE_AARCH64) &&
252         arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
253 }
254 
255 static void create_fdt(VirtMachineState *vms)
256 {
257     MachineState *ms = MACHINE(vms);
258     int nb_numa_nodes = ms->numa_state->num_nodes;
259     void *fdt = create_device_tree(&vms->fdt_size);
260 
261     if (!fdt) {
262         error_report("create_device_tree() failed");
263         exit(1);
264     }
265 
266     ms->fdt = fdt;
267 
268     /* Header */
269     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
270     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
271     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
272     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
273 
274     /* /chosen must exist for load_dtb to fill in necessary properties later */
275     qemu_fdt_add_subnode(fdt, "/chosen");
276     if (vms->dtb_randomness) {
277         create_randomness(ms, "/chosen");
278     }
279 
280     if (vms->secure) {
281         qemu_fdt_add_subnode(fdt, "/secure-chosen");
282         if (vms->dtb_randomness) {
283             create_randomness(ms, "/secure-chosen");
284         }
285     }
286 
287     /* Clock node, for the benefit of the UART. The kernel device tree
288      * binding documentation claims the PL011 node clock properties are
289      * optional but in practice if you omit them the kernel refuses to
290      * probe for the device.
291      */
292     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
293     qemu_fdt_add_subnode(fdt, "/apb-pclk");
294     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
295     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
296     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
297     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
298                                 "clk24mhz");
299     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
300 
301     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
302         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
303         uint32_t *matrix = g_malloc0(size);
304         int idx, i, j;
305 
306         for (i = 0; i < nb_numa_nodes; i++) {
307             for (j = 0; j < nb_numa_nodes; j++) {
308                 idx = (i * nb_numa_nodes + j) * 3;
309                 matrix[idx + 0] = cpu_to_be32(i);
310                 matrix[idx + 1] = cpu_to_be32(j);
311                 matrix[idx + 2] =
312                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
313             }
314         }
315 
316         qemu_fdt_add_subnode(fdt, "/distance-map");
317         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
318                                 "numa-distance-map-v1");
319         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
320                          matrix, size);
321         g_free(matrix);
322     }
323 }
324 
325 static void fdt_add_timer_nodes(const VirtMachineState *vms)
326 {
327     /* On real hardware these interrupts are level-triggered.
328      * On KVM they were edge-triggered before host kernel version 4.4,
329      * and level-triggered afterwards.
330      * On emulated QEMU they are level-triggered.
331      *
332      * Getting the DTB info about them wrong is awkward for some
333      * guest kernels:
334      *  pre-4.8 ignore the DT and leave the interrupt configured
335      *   with whatever the GIC reset value (or the bootloader) left it at
336      *  4.8 before rc6 honour the incorrect data by programming it back
337      *   into the GIC, causing problems
338      *  4.8rc6 and later ignore the DT and always write "level triggered"
339      *   into the GIC
340      *
341      * For backwards-compatibility, virt-2.8 and earlier will continue
342      * to say these are edge-triggered, but later machines will report
343      * the correct information.
344      */
345     ARMCPU *armcpu;
346     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
347     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
348     MachineState *ms = MACHINE(vms);
349 
350     if (vmc->claim_edge_triggered_timers) {
351         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
352     }
353 
354     if (vms->gic_version == VIRT_GIC_VERSION_2) {
355         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
356                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
357                              (1 << MACHINE(vms)->smp.cpus) - 1);
358     }
359 
360     qemu_fdt_add_subnode(ms->fdt, "/timer");
361 
362     armcpu = ARM_CPU(qemu_get_cpu(0));
363     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
364         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
365         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
366                          compat, sizeof(compat));
367     } else {
368         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
369                                 "arm,armv7-timer");
370     }
371     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
372     if (vms->ns_el2_virt_timer_irq) {
373         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
374                                GIC_FDT_IRQ_TYPE_PPI,
375                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
376                                GIC_FDT_IRQ_TYPE_PPI,
377                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
378                                GIC_FDT_IRQ_TYPE_PPI,
379                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
380                                GIC_FDT_IRQ_TYPE_PPI,
381                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
382                                GIC_FDT_IRQ_TYPE_PPI,
383                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
384     } else {
385         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
386                                GIC_FDT_IRQ_TYPE_PPI,
387                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
388                                GIC_FDT_IRQ_TYPE_PPI,
389                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
390                                GIC_FDT_IRQ_TYPE_PPI,
391                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
392                                GIC_FDT_IRQ_TYPE_PPI,
393                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
394     }
395 }
396 
397 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
398 {
399     int cpu;
400     int addr_cells = 1;
401     const MachineState *ms = MACHINE(vms);
402     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
403     int smp_cpus = ms->smp.cpus;
404 
405     /*
406      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
407      * On ARM v8 64-bit systems value should be set to 2,
408      * that corresponds to the MPIDR_EL1 register size.
409      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
410      * in the system, #address-cells can be set to 1, since
411      * MPIDR_EL1[63:32] bits are not used for CPUs
412      * identification.
413      *
414      * Here we actually don't know whether our system is 32- or 64-bit one.
415      * The simplest way to go is to examine affinity IDs of all our CPUs. If
416      * at least one of them has Aff3 populated, we set #address-cells to 2.
417      */
418     for (cpu = 0; cpu < smp_cpus; cpu++) {
419         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
420 
421         if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
422             addr_cells = 2;
423             break;
424         }
425     }
426 
427     qemu_fdt_add_subnode(ms->fdt, "/cpus");
428     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
429     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
430 
431     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
432         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
433         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
434         CPUState *cs = CPU(armcpu);
435 
436         qemu_fdt_add_subnode(ms->fdt, nodename);
437         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
438         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
439                                     armcpu->dtb_compatible);
440 
441         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
442             qemu_fdt_setprop_string(ms->fdt, nodename,
443                                         "enable-method", "psci");
444         }
445 
446         if (addr_cells == 2) {
447             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
448                                  arm_cpu_mp_affinity(armcpu));
449         } else {
450             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
451                                   arm_cpu_mp_affinity(armcpu));
452         }
453 
454         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
455             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
456                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
457         }
458 
459         if (!vmc->no_cpu_topology) {
460             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
461                                   qemu_fdt_alloc_phandle(ms->fdt));
462         }
463 
464         g_free(nodename);
465     }
466 
467     if (!vmc->no_cpu_topology) {
468         /*
469          * Add vCPU topology description through fdt node cpu-map.
470          *
471          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
472          * In a SMP system, the hierarchy of CPUs can be defined through
473          * four entities that are used to describe the layout of CPUs in
474          * the system: socket/cluster/core/thread.
475          *
476          * A socket node represents the boundary of system physical package
477          * and its child nodes must be one or more cluster nodes. A system
478          * can contain several layers of clustering within a single physical
479          * package and cluster nodes can be contained in parent cluster nodes.
480          *
481          * Note: currently we only support one layer of clustering within
482          * each physical package.
483          */
484         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
485 
486         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
487             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
488             char *map_path;
489 
490             if (ms->smp.threads > 1) {
491                 map_path = g_strdup_printf(
492                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
493                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
494                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
495                     (cpu / ms->smp.threads) % ms->smp.cores,
496                     cpu % ms->smp.threads);
497             } else {
498                 map_path = g_strdup_printf(
499                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
500                     cpu / (ms->smp.clusters * ms->smp.cores),
501                     (cpu / ms->smp.cores) % ms->smp.clusters,
502                     cpu % ms->smp.cores);
503             }
504             qemu_fdt_add_path(ms->fdt, map_path);
505             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
506 
507             g_free(map_path);
508             g_free(cpu_path);
509         }
510     }
511 }
512 
513 static void fdt_add_its_gic_node(VirtMachineState *vms)
514 {
515     char *nodename;
516     MachineState *ms = MACHINE(vms);
517 
518     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
519     nodename = g_strdup_printf("/intc/its@%" PRIx64,
520                                vms->memmap[VIRT_GIC_ITS].base);
521     qemu_fdt_add_subnode(ms->fdt, nodename);
522     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
523                             "arm,gic-v3-its");
524     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
525     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
526     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
527                                  2, vms->memmap[VIRT_GIC_ITS].base,
528                                  2, vms->memmap[VIRT_GIC_ITS].size);
529     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
530     g_free(nodename);
531 }
532 
533 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
534 {
535     MachineState *ms = MACHINE(vms);
536     char *nodename;
537 
538     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
539                                vms->memmap[VIRT_GIC_V2M].base);
540     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
541     qemu_fdt_add_subnode(ms->fdt, nodename);
542     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
543                             "arm,gic-v2m-frame");
544     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
545     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
546                                  2, vms->memmap[VIRT_GIC_V2M].base,
547                                  2, vms->memmap[VIRT_GIC_V2M].size);
548     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
549     g_free(nodename);
550 }
551 
552 static void fdt_add_gic_node(VirtMachineState *vms)
553 {
554     MachineState *ms = MACHINE(vms);
555     char *nodename;
556 
557     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
558     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
559 
560     nodename = g_strdup_printf("/intc@%" PRIx64,
561                                vms->memmap[VIRT_GIC_DIST].base);
562     qemu_fdt_add_subnode(ms->fdt, nodename);
563     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
564     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
565     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
566     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
567     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
568     if (vms->gic_version != VIRT_GIC_VERSION_2) {
569         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
570 
571         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
572                                 "arm,gic-v3");
573 
574         qemu_fdt_setprop_cell(ms->fdt, nodename,
575                               "#redistributor-regions", nb_redist_regions);
576 
577         if (nb_redist_regions == 1) {
578             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
579                                          2, vms->memmap[VIRT_GIC_DIST].base,
580                                          2, vms->memmap[VIRT_GIC_DIST].size,
581                                          2, vms->memmap[VIRT_GIC_REDIST].base,
582                                          2, vms->memmap[VIRT_GIC_REDIST].size);
583         } else {
584             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
585                                  2, vms->memmap[VIRT_GIC_DIST].base,
586                                  2, vms->memmap[VIRT_GIC_DIST].size,
587                                  2, vms->memmap[VIRT_GIC_REDIST].base,
588                                  2, vms->memmap[VIRT_GIC_REDIST].size,
589                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
590                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
591         }
592 
593         if (vms->virt) {
594             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
595                                    GIC_FDT_IRQ_TYPE_PPI,
596                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
597                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
598         }
599     } else {
600         /* 'cortex-a15-gic' means 'GIC v2' */
601         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
602                                 "arm,cortex-a15-gic");
603         if (!vms->virt) {
604             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
605                                          2, vms->memmap[VIRT_GIC_DIST].base,
606                                          2, vms->memmap[VIRT_GIC_DIST].size,
607                                          2, vms->memmap[VIRT_GIC_CPU].base,
608                                          2, vms->memmap[VIRT_GIC_CPU].size);
609         } else {
610             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
611                                          2, vms->memmap[VIRT_GIC_DIST].base,
612                                          2, vms->memmap[VIRT_GIC_DIST].size,
613                                          2, vms->memmap[VIRT_GIC_CPU].base,
614                                          2, vms->memmap[VIRT_GIC_CPU].size,
615                                          2, vms->memmap[VIRT_GIC_HYP].base,
616                                          2, vms->memmap[VIRT_GIC_HYP].size,
617                                          2, vms->memmap[VIRT_GIC_VCPU].base,
618                                          2, vms->memmap[VIRT_GIC_VCPU].size);
619             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
620                                    GIC_FDT_IRQ_TYPE_PPI,
621                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
622                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
623         }
624     }
625 
626     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
627     g_free(nodename);
628 }
629 
630 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
631 {
632     ARMCPU *armcpu = ARM_CPU(first_cpu);
633     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
634     MachineState *ms = MACHINE(vms);
635 
636     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
637         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
638         return;
639     }
640 
641     if (vms->gic_version == VIRT_GIC_VERSION_2) {
642         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
643                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
644                              (1 << MACHINE(vms)->smp.cpus) - 1);
645     }
646 
647     qemu_fdt_add_subnode(ms->fdt, "/pmu");
648     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
649         const char compat[] = "arm,armv8-pmuv3";
650         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
651                          compat, sizeof(compat));
652         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
653                                GIC_FDT_IRQ_TYPE_PPI,
654                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
655     }
656 }
657 
658 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
659 {
660     DeviceState *dev;
661     MachineState *ms = MACHINE(vms);
662     int irq = vms->irqmap[VIRT_ACPI_GED];
663     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
664 
665     if (ms->ram_slots) {
666         event |= ACPI_GED_MEM_HOTPLUG_EVT;
667     }
668 
669     if (ms->nvdimms_state->is_enabled) {
670         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
671     }
672 
673     dev = qdev_new(TYPE_ACPI_GED);
674     qdev_prop_set_uint32(dev, "ged-event", event);
675     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
676 
677     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
678     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
679     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
680 
681     return dev;
682 }
683 
684 static void create_its(VirtMachineState *vms)
685 {
686     const char *itsclass = its_class_name();
687     DeviceState *dev;
688 
689     if (!strcmp(itsclass, "arm-gicv3-its")) {
690         if (!vms->tcg_its) {
691             itsclass = NULL;
692         }
693     }
694 
695     if (!itsclass) {
696         /* Do nothing if not supported */
697         return;
698     }
699 
700     dev = qdev_new(itsclass);
701 
702     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
703                              &error_abort);
704     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
705     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
706 
707     fdt_add_its_gic_node(vms);
708     vms->msi_controller = VIRT_MSI_CTRL_ITS;
709 }
710 
711 static void create_v2m(VirtMachineState *vms)
712 {
713     int i;
714     int irq = vms->irqmap[VIRT_GIC_V2M];
715     DeviceState *dev;
716 
717     dev = qdev_new("arm-gicv2m");
718     qdev_prop_set_uint32(dev, "base-spi", irq);
719     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
720     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
721     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
722 
723     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
724         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
725                            qdev_get_gpio_in(vms->gic, irq + i));
726     }
727 
728     fdt_add_v2m_gic_node(vms);
729     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
730 }
731 
732 /*
733  * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too.
734  * It's permitted to have a configuration with NMI in the CPU (and thus the
735  * GICv3 CPU interface) but not in the distributor/redistributors, but it's
736  * not very useful.
737  */
738 static bool gicv3_nmi_present(VirtMachineState *vms)
739 {
740     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
741 
742     return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) &&
743            (vms->gic_version != VIRT_GIC_VERSION_2);
744 }
745 
746 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
747 {
748     MachineState *ms = MACHINE(vms);
749     /* We create a standalone GIC */
750     SysBusDevice *gicbusdev;
751     const char *gictype;
752     int i;
753     unsigned int smp_cpus = ms->smp.cpus;
754     uint32_t nb_redist_regions = 0;
755     int revision;
756 
757     if (vms->gic_version == VIRT_GIC_VERSION_2) {
758         gictype = gic_class_name();
759     } else {
760         gictype = gicv3_class_name();
761     }
762 
763     switch (vms->gic_version) {
764     case VIRT_GIC_VERSION_2:
765         revision = 2;
766         break;
767     case VIRT_GIC_VERSION_3:
768         revision = 3;
769         break;
770     case VIRT_GIC_VERSION_4:
771         revision = 4;
772         break;
773     default:
774         g_assert_not_reached();
775     }
776     vms->gic = qdev_new(gictype);
777     qdev_prop_set_uint32(vms->gic, "revision", revision);
778     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
779     /* Note that the num-irq property counts both internal and external
780      * interrupts; there are always 32 of the former (mandated by GIC spec).
781      */
782     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
783     if (!kvm_irqchip_in_kernel()) {
784         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
785     }
786 
787     if (vms->gic_version != VIRT_GIC_VERSION_2) {
788         QList *redist_region_count;
789         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
790         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
791 
792         nb_redist_regions = virt_gicv3_redist_region_count(vms);
793 
794         redist_region_count = qlist_new();
795         qlist_append_int(redist_region_count, redist0_count);
796         if (nb_redist_regions == 2) {
797             uint32_t redist1_capacity =
798                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
799 
800             qlist_append_int(redist_region_count,
801                 MIN(smp_cpus - redist0_count, redist1_capacity));
802         }
803         qdev_prop_set_array(vms->gic, "redist-region-count",
804                             redist_region_count);
805 
806         if (!kvm_irqchip_in_kernel()) {
807             if (vms->tcg_its) {
808                 object_property_set_link(OBJECT(vms->gic), "sysmem",
809                                          OBJECT(mem), &error_fatal);
810                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
811             }
812         }
813     } else {
814         if (!kvm_irqchip_in_kernel()) {
815             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
816                               vms->virt);
817         }
818     }
819 
820     if (gicv3_nmi_present(vms)) {
821         qdev_prop_set_bit(vms->gic, "has-nmi", true);
822     }
823 
824     gicbusdev = SYS_BUS_DEVICE(vms->gic);
825     sysbus_realize_and_unref(gicbusdev, &error_fatal);
826     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
827     if (vms->gic_version != VIRT_GIC_VERSION_2) {
828         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
829         if (nb_redist_regions == 2) {
830             sysbus_mmio_map(gicbusdev, 2,
831                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
832         }
833     } else {
834         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
835         if (vms->virt) {
836             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
837             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
838         }
839     }
840 
841     /* Wire the outputs from each CPU's generic timer and the GICv3
842      * maintenance interrupt signal to the appropriate GIC PPI inputs,
843      * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the
844      * CPU's inputs.
845      */
846     for (i = 0; i < smp_cpus; i++) {
847         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
848         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
849         /* Mapping from the output timer irq lines from the CPU to the
850          * GIC PPI inputs we use for the virt board.
851          */
852         const int timer_irq[] = {
853             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
854             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
855             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
856             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
857             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
858         };
859 
860         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
861             qdev_connect_gpio_out(cpudev, irq,
862                                   qdev_get_gpio_in(vms->gic,
863                                                    intidbase + timer_irq[irq]));
864         }
865 
866         if (vms->gic_version != VIRT_GIC_VERSION_2) {
867             qemu_irq irq = qdev_get_gpio_in(vms->gic,
868                                             intidbase + ARCH_GIC_MAINT_IRQ);
869             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
870                                         0, irq);
871         } else if (vms->virt) {
872             qemu_irq irq = qdev_get_gpio_in(vms->gic,
873                                             intidbase + ARCH_GIC_MAINT_IRQ);
874             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
875         }
876 
877         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
878                                     qdev_get_gpio_in(vms->gic, intidbase
879                                                      + VIRTUAL_PMU_IRQ));
880 
881         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
882         sysbus_connect_irq(gicbusdev, i + smp_cpus,
883                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
884         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
885                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
886         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
887                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
888 
889         if (vms->gic_version != VIRT_GIC_VERSION_2) {
890             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus,
891                                qdev_get_gpio_in(cpudev, ARM_CPU_NMI));
892             sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus,
893                                qdev_get_gpio_in(cpudev, ARM_CPU_VINMI));
894         }
895     }
896 
897     fdt_add_gic_node(vms);
898 
899     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
900         create_its(vms);
901     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
902         create_v2m(vms);
903     }
904 }
905 
906 static void create_uart(const VirtMachineState *vms, int uart,
907                         MemoryRegion *mem, Chardev *chr)
908 {
909     char *nodename;
910     hwaddr base = vms->memmap[uart].base;
911     hwaddr size = vms->memmap[uart].size;
912     int irq = vms->irqmap[uart];
913     const char compat[] = "arm,pl011\0arm,primecell";
914     const char clocknames[] = "uartclk\0apb_pclk";
915     DeviceState *dev = qdev_new(TYPE_PL011);
916     SysBusDevice *s = SYS_BUS_DEVICE(dev);
917     MachineState *ms = MACHINE(vms);
918 
919     qdev_prop_set_chr(dev, "chardev", chr);
920     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
921     memory_region_add_subregion(mem, base,
922                                 sysbus_mmio_get_region(s, 0));
923     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
924 
925     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
926     qemu_fdt_add_subnode(ms->fdt, nodename);
927     /* Note that we can't use setprop_string because of the embedded NUL */
928     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
929                          compat, sizeof(compat));
930     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
931                                      2, base, 2, size);
932     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
933                                GIC_FDT_IRQ_TYPE_SPI, irq,
934                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
935     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
936                                vms->clock_phandle, vms->clock_phandle);
937     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
938                          clocknames, sizeof(clocknames));
939 
940     if (uart == VIRT_UART) {
941         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
942     } else {
943         /* Mark as not usable by the normal world */
944         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
945         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
946 
947         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
948                                 nodename);
949     }
950 
951     g_free(nodename);
952 }
953 
954 static void create_rtc(const VirtMachineState *vms)
955 {
956     char *nodename;
957     hwaddr base = vms->memmap[VIRT_RTC].base;
958     hwaddr size = vms->memmap[VIRT_RTC].size;
959     int irq = vms->irqmap[VIRT_RTC];
960     const char compat[] = "arm,pl031\0arm,primecell";
961     MachineState *ms = MACHINE(vms);
962 
963     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
964 
965     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
966     qemu_fdt_add_subnode(ms->fdt, nodename);
967     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
968     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
969                                  2, base, 2, size);
970     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
971                            GIC_FDT_IRQ_TYPE_SPI, irq,
972                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
973     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
974     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
975     g_free(nodename);
976 }
977 
978 static DeviceState *gpio_key_dev;
979 static void virt_powerdown_req(Notifier *n, void *opaque)
980 {
981     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
982 
983     if (s->acpi_dev) {
984         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
985     } else {
986         /* use gpio Pin 3 for power button event */
987         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
988     }
989 }
990 
991 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
992                              uint32_t phandle)
993 {
994     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
995                                         qdev_get_gpio_in(pl061_dev, 3));
996 
997     qemu_fdt_add_subnode(fdt, "/gpio-keys");
998     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
999 
1000     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
1001     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
1002                             "label", "GPIO Key Poweroff");
1003     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
1004                           KEY_POWER);
1005     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
1006                            "gpios", phandle, 3, 0);
1007 }
1008 
1009 #define SECURE_GPIO_POWEROFF 0
1010 #define SECURE_GPIO_RESET    1
1011 
1012 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
1013                                    uint32_t phandle)
1014 {
1015     DeviceState *gpio_pwr_dev;
1016 
1017     /* gpio-pwr */
1018     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
1019 
1020     /* connect secure pl061 to gpio-pwr */
1021     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
1022                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
1023     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
1024                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
1025 
1026     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
1027     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
1028                             "gpio-poweroff");
1029     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
1030                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
1031     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
1032     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
1033                             "okay");
1034 
1035     qemu_fdt_add_subnode(fdt, "/gpio-restart");
1036     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
1037                             "gpio-restart");
1038     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
1039                            "gpios", phandle, SECURE_GPIO_RESET, 0);
1040     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
1041     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
1042                             "okay");
1043 }
1044 
1045 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1046                                 MemoryRegion *mem)
1047 {
1048     char *nodename;
1049     DeviceState *pl061_dev;
1050     hwaddr base = vms->memmap[gpio].base;
1051     hwaddr size = vms->memmap[gpio].size;
1052     int irq = vms->irqmap[gpio];
1053     const char compat[] = "arm,pl061\0arm,primecell";
1054     SysBusDevice *s;
1055     MachineState *ms = MACHINE(vms);
1056 
1057     pl061_dev = qdev_new("pl061");
1058     /* Pull lines down to 0 if not driven by the PL061 */
1059     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1060     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1061     s = SYS_BUS_DEVICE(pl061_dev);
1062     sysbus_realize_and_unref(s, &error_fatal);
1063     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1064     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1065 
1066     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1067     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1068     qemu_fdt_add_subnode(ms->fdt, nodename);
1069     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1070                                  2, base, 2, size);
1071     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1072     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1073     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1074     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1075                            GIC_FDT_IRQ_TYPE_SPI, irq,
1076                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1077     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1078     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1079     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1080 
1081     if (gpio != VIRT_GPIO) {
1082         /* Mark as not usable by the normal world */
1083         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1084         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1085     }
1086     g_free(nodename);
1087 
1088     /* Child gpio devices */
1089     if (gpio == VIRT_GPIO) {
1090         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1091     } else {
1092         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1093     }
1094 }
1095 
1096 static void create_virtio_devices(const VirtMachineState *vms)
1097 {
1098     int i;
1099     hwaddr size = vms->memmap[VIRT_MMIO].size;
1100     MachineState *ms = MACHINE(vms);
1101 
1102     /* We create the transports in forwards order. Since qbus_realize()
1103      * prepends (not appends) new child buses, the incrementing loop below will
1104      * create a list of virtio-mmio buses with decreasing base addresses.
1105      *
1106      * When a -device option is processed from the command line,
1107      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1108      * order. The upshot is that -device options in increasing command line
1109      * order are mapped to virtio-mmio buses with decreasing base addresses.
1110      *
1111      * When this code was originally written, that arrangement ensured that the
1112      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1113      * the first -device on the command line. (The end-to-end order is a
1114      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1115      * guest kernel's name-to-address assignment strategy.)
1116      *
1117      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1118      * the message, if not necessarily the code, of commit 70161ff336.
1119      * Therefore the loop now establishes the inverse of the original intent.
1120      *
1121      * Unfortunately, we can't counteract the kernel change by reversing the
1122      * loop; it would break existing command lines.
1123      *
1124      * In any case, the kernel makes no guarantee about the stability of
1125      * enumeration order of virtio devices (as demonstrated by it changing
1126      * between kernel versions). For reliable and stable identification
1127      * of disks users must use UUIDs or similar mechanisms.
1128      */
1129     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1130         int irq = vms->irqmap[VIRT_MMIO] + i;
1131         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1132 
1133         sysbus_create_simple("virtio-mmio", base,
1134                              qdev_get_gpio_in(vms->gic, irq));
1135     }
1136 
1137     /* We add dtb nodes in reverse order so that they appear in the finished
1138      * device tree lowest address first.
1139      *
1140      * Note that this mapping is independent of the loop above. The previous
1141      * loop influences virtio device to virtio transport assignment, whereas
1142      * this loop controls how virtio transports are laid out in the dtb.
1143      */
1144     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1145         char *nodename;
1146         int irq = vms->irqmap[VIRT_MMIO] + i;
1147         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1148 
1149         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1150         qemu_fdt_add_subnode(ms->fdt, nodename);
1151         qemu_fdt_setprop_string(ms->fdt, nodename,
1152                                 "compatible", "virtio,mmio");
1153         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1154                                      2, base, 2, size);
1155         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1156                                GIC_FDT_IRQ_TYPE_SPI, irq,
1157                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1158         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1159         g_free(nodename);
1160     }
1161 }
1162 
1163 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1164 
1165 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1166                                         const char *name,
1167                                         const char *alias_prop_name)
1168 {
1169     /*
1170      * Create a single flash device.  We use the same parameters as
1171      * the flash devices on the Versatile Express board.
1172      */
1173     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1174 
1175     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1176     qdev_prop_set_uint8(dev, "width", 4);
1177     qdev_prop_set_uint8(dev, "device-width", 2);
1178     qdev_prop_set_bit(dev, "big-endian", false);
1179     qdev_prop_set_uint16(dev, "id0", 0x89);
1180     qdev_prop_set_uint16(dev, "id1", 0x18);
1181     qdev_prop_set_uint16(dev, "id2", 0x00);
1182     qdev_prop_set_uint16(dev, "id3", 0x00);
1183     qdev_prop_set_string(dev, "name", name);
1184     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1185     object_property_add_alias(OBJECT(vms), alias_prop_name,
1186                               OBJECT(dev), "drive");
1187     return PFLASH_CFI01(dev);
1188 }
1189 
1190 static void virt_flash_create(VirtMachineState *vms)
1191 {
1192     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1193     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1194 }
1195 
1196 static void virt_flash_map1(PFlashCFI01 *flash,
1197                             hwaddr base, hwaddr size,
1198                             MemoryRegion *sysmem)
1199 {
1200     DeviceState *dev = DEVICE(flash);
1201 
1202     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1203     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1204     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1205     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1206 
1207     memory_region_add_subregion(sysmem, base,
1208                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1209                                                        0));
1210 }
1211 
1212 static void virt_flash_map(VirtMachineState *vms,
1213                            MemoryRegion *sysmem,
1214                            MemoryRegion *secure_sysmem)
1215 {
1216     /*
1217      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1218      * sysmem is the system memory space. secure_sysmem is the secure view
1219      * of the system, and the first flash device should be made visible only
1220      * there. The second flash device is visible to both secure and nonsecure.
1221      * If sysmem == secure_sysmem this means there is no separate Secure
1222      * address space and both flash devices are generally visible.
1223      */
1224     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1225     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1226 
1227     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1228                     secure_sysmem);
1229     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1230                     sysmem);
1231 }
1232 
1233 static void virt_flash_fdt(VirtMachineState *vms,
1234                            MemoryRegion *sysmem,
1235                            MemoryRegion *secure_sysmem)
1236 {
1237     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1238     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1239     MachineState *ms = MACHINE(vms);
1240     char *nodename;
1241 
1242     if (sysmem == secure_sysmem) {
1243         /* Report both flash devices as a single node in the DT */
1244         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1245         qemu_fdt_add_subnode(ms->fdt, nodename);
1246         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1247         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1248                                      2, flashbase, 2, flashsize,
1249                                      2, flashbase + flashsize, 2, flashsize);
1250         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1251         g_free(nodename);
1252     } else {
1253         /*
1254          * Report the devices as separate nodes so we can mark one as
1255          * only visible to the secure world.
1256          */
1257         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1258         qemu_fdt_add_subnode(ms->fdt, nodename);
1259         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1260         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1261                                      2, flashbase, 2, flashsize);
1262         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1263         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1264         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1265         g_free(nodename);
1266 
1267         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1268         qemu_fdt_add_subnode(ms->fdt, nodename);
1269         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1270         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1271                                      2, flashbase + flashsize, 2, flashsize);
1272         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1273         g_free(nodename);
1274     }
1275 }
1276 
1277 static bool virt_firmware_init(VirtMachineState *vms,
1278                                MemoryRegion *sysmem,
1279                                MemoryRegion *secure_sysmem)
1280 {
1281     int i;
1282     const char *bios_name;
1283     BlockBackend *pflash_blk0;
1284 
1285     /* Map legacy -drive if=pflash to machine properties */
1286     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1287         pflash_cfi01_legacy_drive(vms->flash[i],
1288                                   drive_get(IF_PFLASH, 0, i));
1289     }
1290 
1291     virt_flash_map(vms, sysmem, secure_sysmem);
1292 
1293     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1294 
1295     bios_name = MACHINE(vms)->firmware;
1296     if (bios_name) {
1297         char *fname;
1298         MemoryRegion *mr;
1299         int image_size;
1300 
1301         if (pflash_blk0) {
1302             error_report("The contents of the first flash device may be "
1303                          "specified with -bios or with -drive if=pflash... "
1304                          "but you cannot use both options at once");
1305             exit(1);
1306         }
1307 
1308         /* Fall back to -bios */
1309 
1310         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1311         if (!fname) {
1312             error_report("Could not find ROM image '%s'", bios_name);
1313             exit(1);
1314         }
1315         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1316         image_size = load_image_mr(fname, mr);
1317         g_free(fname);
1318         if (image_size < 0) {
1319             error_report("Could not load ROM image '%s'", bios_name);
1320             exit(1);
1321         }
1322     }
1323 
1324     return pflash_blk0 || bios_name;
1325 }
1326 
1327 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1328 {
1329     MachineState *ms = MACHINE(vms);
1330     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1331     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1332     FWCfgState *fw_cfg;
1333     char *nodename;
1334 
1335     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1336     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1337 
1338     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1339     qemu_fdt_add_subnode(ms->fdt, nodename);
1340     qemu_fdt_setprop_string(ms->fdt, nodename,
1341                             "compatible", "qemu,fw-cfg-mmio");
1342     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1343                                  2, base, 2, size);
1344     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1345     g_free(nodename);
1346     return fw_cfg;
1347 }
1348 
1349 static void create_pcie_irq_map(const MachineState *ms,
1350                                 uint32_t gic_phandle,
1351                                 int first_irq, const char *nodename)
1352 {
1353     int devfn, pin;
1354     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1355     uint32_t *irq_map = full_irq_map;
1356 
1357     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1358         for (pin = 0; pin < 4; pin++) {
1359             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1360             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1361             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1362             int i;
1363 
1364             uint32_t map[] = {
1365                 devfn << 8, 0, 0,                           /* devfn */
1366                 pin + 1,                                    /* PCI pin */
1367                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1368 
1369             /* Convert map to big endian */
1370             for (i = 0; i < 10; i++) {
1371                 irq_map[i] = cpu_to_be32(map[i]);
1372             }
1373             irq_map += 10;
1374         }
1375     }
1376 
1377     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1378                      full_irq_map, sizeof(full_irq_map));
1379 
1380     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1381                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1382                            0, 0,
1383                            0x7           /* PCI irq */);
1384 }
1385 
1386 static void create_smmu(const VirtMachineState *vms,
1387                         PCIBus *bus)
1388 {
1389     char *node;
1390     const char compat[] = "arm,smmu-v3";
1391     int irq =  vms->irqmap[VIRT_SMMU];
1392     int i;
1393     hwaddr base = vms->memmap[VIRT_SMMU].base;
1394     hwaddr size = vms->memmap[VIRT_SMMU].size;
1395     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1396     DeviceState *dev;
1397     MachineState *ms = MACHINE(vms);
1398 
1399     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1400         return;
1401     }
1402 
1403     dev = qdev_new(TYPE_ARM_SMMUV3);
1404 
1405     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1406                              &error_abort);
1407     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1408     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1409     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1410         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1411                            qdev_get_gpio_in(vms->gic, irq + i));
1412     }
1413 
1414     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1415     qemu_fdt_add_subnode(ms->fdt, node);
1416     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1417     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1418 
1419     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1420             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1421             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1422             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1423             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1424 
1425     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1426                      sizeof(irq_names));
1427 
1428     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1429 
1430     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1431 
1432     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1433     g_free(node);
1434 }
1435 
1436 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1437 {
1438     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1439     uint16_t bdf = vms->virtio_iommu_bdf;
1440     MachineState *ms = MACHINE(vms);
1441     char *node;
1442 
1443     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1444 
1445     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1446                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1447     qemu_fdt_add_subnode(ms->fdt, node);
1448     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1449     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1450                                  1, bdf << 8, 1, 0, 1, 0,
1451                                  1, 0, 1, 0);
1452 
1453     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1454     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1455     g_free(node);
1456 
1457     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1458                            0x0, vms->iommu_phandle, 0x0, bdf,
1459                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1460 }
1461 
1462 static void create_pcie(VirtMachineState *vms)
1463 {
1464     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1465     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1466     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1467     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1468     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1469     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1470     hwaddr base_ecam, size_ecam;
1471     hwaddr base = base_mmio;
1472     int nr_pcie_buses;
1473     int irq = vms->irqmap[VIRT_PCIE];
1474     MemoryRegion *mmio_alias;
1475     MemoryRegion *mmio_reg;
1476     MemoryRegion *ecam_alias;
1477     MemoryRegion *ecam_reg;
1478     DeviceState *dev;
1479     char *nodename;
1480     int i, ecam_id;
1481     PCIHostState *pci;
1482     MachineState *ms = MACHINE(vms);
1483     MachineClass *mc = MACHINE_GET_CLASS(ms);
1484 
1485     dev = qdev_new(TYPE_GPEX_HOST);
1486     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1487 
1488     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1489     base_ecam = vms->memmap[ecam_id].base;
1490     size_ecam = vms->memmap[ecam_id].size;
1491     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1492     /* Map only the first size_ecam bytes of ECAM space */
1493     ecam_alias = g_new0(MemoryRegion, 1);
1494     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1495     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1496                              ecam_reg, 0, size_ecam);
1497     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1498 
1499     /* Map the MMIO window into system address space so as to expose
1500      * the section of PCI MMIO space which starts at the same base address
1501      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1502      * the window).
1503      */
1504     mmio_alias = g_new0(MemoryRegion, 1);
1505     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1506     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1507                              mmio_reg, base_mmio, size_mmio);
1508     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1509 
1510     if (vms->highmem_mmio) {
1511         /* Map high MMIO space */
1512         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1513 
1514         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1515                                  mmio_reg, base_mmio_high, size_mmio_high);
1516         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1517                                     high_mmio_alias);
1518     }
1519 
1520     /* Map IO port space */
1521     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1522 
1523     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1524         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1525                            qdev_get_gpio_in(vms->gic, irq + i));
1526         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1527     }
1528 
1529     pci = PCI_HOST_BRIDGE(dev);
1530     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1531     vms->bus = pci->bus;
1532     if (vms->bus) {
1533         pci_init_nic_devices(pci->bus, mc->default_nic);
1534     }
1535 
1536     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1537     qemu_fdt_add_subnode(ms->fdt, nodename);
1538     qemu_fdt_setprop_string(ms->fdt, nodename,
1539                             "compatible", "pci-host-ecam-generic");
1540     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1541     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1542     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1543     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1544     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1545                            nr_pcie_buses - 1);
1546     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1547 
1548     if (vms->msi_phandle) {
1549         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1550                                0, vms->msi_phandle, 0, 0x10000);
1551     }
1552 
1553     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1554                                  2, base_ecam, 2, size_ecam);
1555 
1556     if (vms->highmem_mmio) {
1557         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1558                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1559                                      2, base_pio, 2, size_pio,
1560                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1561                                      2, base_mmio, 2, size_mmio,
1562                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1563                                      2, base_mmio_high,
1564                                      2, base_mmio_high, 2, size_mmio_high);
1565     } else {
1566         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1567                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1568                                      2, base_pio, 2, size_pio,
1569                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1570                                      2, base_mmio, 2, size_mmio);
1571     }
1572 
1573     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1574     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1575 
1576     if (vms->iommu) {
1577         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1578 
1579         switch (vms->iommu) {
1580         case VIRT_IOMMU_SMMUV3:
1581             create_smmu(vms, vms->bus);
1582             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1583                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1584             break;
1585         default:
1586             g_assert_not_reached();
1587         }
1588     }
1589 }
1590 
1591 static void create_platform_bus(VirtMachineState *vms)
1592 {
1593     DeviceState *dev;
1594     SysBusDevice *s;
1595     int i;
1596     MemoryRegion *sysmem = get_system_memory();
1597 
1598     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1599     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1600     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1601     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1602     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1603     vms->platform_bus_dev = dev;
1604 
1605     s = SYS_BUS_DEVICE(dev);
1606     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1607         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1608         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1609     }
1610 
1611     memory_region_add_subregion(sysmem,
1612                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1613                                 sysbus_mmio_get_region(s, 0));
1614 }
1615 
1616 static void create_tag_ram(MemoryRegion *tag_sysmem,
1617                            hwaddr base, hwaddr size,
1618                            const char *name)
1619 {
1620     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1621 
1622     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1623     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1624 }
1625 
1626 static void create_secure_ram(VirtMachineState *vms,
1627                               MemoryRegion *secure_sysmem,
1628                               MemoryRegion *secure_tag_sysmem)
1629 {
1630     MemoryRegion *secram = g_new(MemoryRegion, 1);
1631     char *nodename;
1632     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1633     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1634     MachineState *ms = MACHINE(vms);
1635 
1636     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1637                            &error_fatal);
1638     memory_region_add_subregion(secure_sysmem, base, secram);
1639 
1640     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1641     qemu_fdt_add_subnode(ms->fdt, nodename);
1642     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1643     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1644     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1645     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1646 
1647     if (secure_tag_sysmem) {
1648         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1649     }
1650 
1651     g_free(nodename);
1652 }
1653 
1654 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1655 {
1656     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1657                                                  bootinfo);
1658     MachineState *ms = MACHINE(board);
1659 
1660 
1661     *fdt_size = board->fdt_size;
1662     return ms->fdt;
1663 }
1664 
1665 static void virt_build_smbios(VirtMachineState *vms)
1666 {
1667     MachineClass *mc = MACHINE_GET_CLASS(vms);
1668     MachineState *ms = MACHINE(vms);
1669     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1670     uint8_t *smbios_tables, *smbios_anchor;
1671     size_t smbios_tables_len, smbios_anchor_len;
1672     struct smbios_phys_mem_area mem_array;
1673     const char *product = "QEMU Virtual Machine";
1674 
1675     if (kvm_enabled()) {
1676         product = "KVM Virtual Machine";
1677     }
1678 
1679     smbios_set_defaults("QEMU", product,
1680                         vmc->smbios_old_sys_ver ? "1.0" : mc->name,
1681                         true);
1682 
1683     /* build the array of physical mem area from base_memmap */
1684     mem_array.address = vms->memmap[VIRT_MEM].base;
1685     mem_array.length = ms->ram_size;
1686 
1687     smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
1688                       &smbios_tables, &smbios_tables_len,
1689                       &smbios_anchor, &smbios_anchor_len,
1690                       &error_fatal);
1691 
1692     if (smbios_anchor) {
1693         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1694                         smbios_tables, smbios_tables_len);
1695         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1696                         smbios_anchor, smbios_anchor_len);
1697     }
1698 }
1699 
1700 static
1701 void virt_machine_done(Notifier *notifier, void *data)
1702 {
1703     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1704                                          machine_done);
1705     MachineState *ms = MACHINE(vms);
1706     ARMCPU *cpu = ARM_CPU(first_cpu);
1707     struct arm_boot_info *info = &vms->bootinfo;
1708     AddressSpace *as = arm_boot_address_space(cpu, info);
1709 
1710     /*
1711      * If the user provided a dtb, we assume the dynamic sysbus nodes
1712      * already are integrated there. This corresponds to a use case where
1713      * the dynamic sysbus nodes are complex and their generation is not yet
1714      * supported. In that case the user can take charge of the guest dt
1715      * while qemu takes charge of the qom stuff.
1716      */
1717     if (info->dtb_filename == NULL) {
1718         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1719                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1720                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1721                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1722     }
1723     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1724         exit(1);
1725     }
1726 
1727     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1728 
1729     virt_acpi_setup(vms);
1730     virt_build_smbios(vms);
1731 }
1732 
1733 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1734 {
1735     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1736     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1737 
1738     if (!vmc->disallow_affinity_adjustment) {
1739         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1740          * GIC's target-list limitations. 32-bit KVM hosts currently
1741          * always create clusters of 4 CPUs, but that is expected to
1742          * change when they gain support for gicv3. When KVM is enabled
1743          * it will override the changes we make here, therefore our
1744          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1745          * and to improve SGI efficiency.
1746          */
1747         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1748             clustersz = GIC_TARGETLIST_BITS;
1749         } else {
1750             clustersz = GICV3_TARGETLIST_BITS;
1751         }
1752     }
1753     return arm_build_mp_affinity(idx, clustersz);
1754 }
1755 
1756 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1757                                                  int index)
1758 {
1759     bool *enabled_array[] = {
1760         &vms->highmem_redists,
1761         &vms->highmem_ecam,
1762         &vms->highmem_mmio,
1763     };
1764 
1765     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1766            ARRAY_SIZE(enabled_array));
1767     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1768 
1769     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1770 }
1771 
1772 static void virt_set_high_memmap(VirtMachineState *vms,
1773                                  hwaddr base, int pa_bits)
1774 {
1775     hwaddr region_base, region_size;
1776     bool *region_enabled, fits;
1777     int i;
1778 
1779     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1780         region_enabled = virt_get_high_memmap_enabled(vms, i);
1781         region_base = ROUND_UP(base, extended_memmap[i].size);
1782         region_size = extended_memmap[i].size;
1783 
1784         vms->memmap[i].base = region_base;
1785         vms->memmap[i].size = region_size;
1786 
1787         /*
1788          * Check each device to see if it fits in the PA space,
1789          * moving highest_gpa as we go. For compatibility, move
1790          * highest_gpa for disabled fitting devices as well, if
1791          * the compact layout has been disabled.
1792          *
1793          * For each device that doesn't fit, disable it.
1794          */
1795         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1796         *region_enabled &= fits;
1797         if (vms->highmem_compact && !*region_enabled) {
1798             continue;
1799         }
1800 
1801         base = region_base + region_size;
1802         if (fits) {
1803             vms->highest_gpa = base - 1;
1804         }
1805     }
1806 }
1807 
1808 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1809 {
1810     MachineState *ms = MACHINE(vms);
1811     hwaddr base, device_memory_base, device_memory_size, memtop;
1812     int i;
1813 
1814     vms->memmap = extended_memmap;
1815 
1816     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1817         vms->memmap[i] = base_memmap[i];
1818     }
1819 
1820     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1821         error_report("unsupported number of memory slots: %"PRIu64,
1822                      ms->ram_slots);
1823         exit(EXIT_FAILURE);
1824     }
1825 
1826     /*
1827      * !highmem is exactly the same as limiting the PA space to 32bit,
1828      * irrespective of the underlying capabilities of the HW.
1829      */
1830     if (!vms->highmem) {
1831         pa_bits = 32;
1832     }
1833 
1834     /*
1835      * We compute the base of the high IO region depending on the
1836      * amount of initial and device memory. The device memory start/size
1837      * is aligned on 1GiB. We never put the high IO region below 256GiB
1838      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1839      * The device region size assumes 1GiB page max alignment per slot.
1840      */
1841     device_memory_base =
1842         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1843     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1844 
1845     /* Base address of the high IO region */
1846     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1847     if (memtop > BIT_ULL(pa_bits)) {
1848         error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1849                      pa_bits, memtop - BIT_ULL(pa_bits));
1850         exit(EXIT_FAILURE);
1851     }
1852     if (base < device_memory_base) {
1853         error_report("maxmem/slots too huge");
1854         exit(EXIT_FAILURE);
1855     }
1856     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1857         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1858     }
1859 
1860     /* We know for sure that at least the memory fits in the PA space */
1861     vms->highest_gpa = memtop - 1;
1862 
1863     virt_set_high_memmap(vms, base, pa_bits);
1864 
1865     if (device_memory_size > 0) {
1866         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1867     }
1868 }
1869 
1870 static VirtGICType finalize_gic_version_do(const char *accel_name,
1871                                            VirtGICType gic_version,
1872                                            int gics_supported,
1873                                            unsigned int max_cpus)
1874 {
1875     /* Convert host/max/nosel to GIC version number */
1876     switch (gic_version) {
1877     case VIRT_GIC_VERSION_HOST:
1878         if (!kvm_enabled()) {
1879             error_report("gic-version=host requires KVM");
1880             exit(1);
1881         }
1882 
1883         /* For KVM, gic-version=host means gic-version=max */
1884         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1885                                        gics_supported, max_cpus);
1886     case VIRT_GIC_VERSION_MAX:
1887         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1888             gic_version = VIRT_GIC_VERSION_4;
1889         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1890             gic_version = VIRT_GIC_VERSION_3;
1891         } else {
1892             gic_version = VIRT_GIC_VERSION_2;
1893         }
1894         break;
1895     case VIRT_GIC_VERSION_NOSEL:
1896         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1897             max_cpus <= GIC_NCPU) {
1898             gic_version = VIRT_GIC_VERSION_2;
1899         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1900             /*
1901              * in case the host does not support v2 emulation or
1902              * the end-user requested more than 8 VCPUs we now default
1903              * to v3. In any case defaulting to v2 would be broken.
1904              */
1905             gic_version = VIRT_GIC_VERSION_3;
1906         } else if (max_cpus > GIC_NCPU) {
1907             error_report("%s only supports GICv2 emulation but more than 8 "
1908                          "vcpus are requested", accel_name);
1909             exit(1);
1910         }
1911         break;
1912     case VIRT_GIC_VERSION_2:
1913     case VIRT_GIC_VERSION_3:
1914     case VIRT_GIC_VERSION_4:
1915         break;
1916     }
1917 
1918     /* Check chosen version is effectively supported */
1919     switch (gic_version) {
1920     case VIRT_GIC_VERSION_2:
1921         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1922             error_report("%s does not support GICv2 emulation", accel_name);
1923             exit(1);
1924         }
1925         break;
1926     case VIRT_GIC_VERSION_3:
1927         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1928             error_report("%s does not support GICv3 emulation", accel_name);
1929             exit(1);
1930         }
1931         break;
1932     case VIRT_GIC_VERSION_4:
1933         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1934             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1935                          accel_name);
1936             exit(1);
1937         }
1938         break;
1939     default:
1940         error_report("logic error in finalize_gic_version");
1941         exit(1);
1942         break;
1943     }
1944 
1945     return gic_version;
1946 }
1947 
1948 /*
1949  * finalize_gic_version - Determines the final gic_version
1950  * according to the gic-version property
1951  *
1952  * Default GIC type is v2
1953  */
1954 static void finalize_gic_version(VirtMachineState *vms)
1955 {
1956     const char *accel_name = current_accel_name();
1957     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1958     int gics_supported = 0;
1959 
1960     /* Determine which GIC versions the current environment supports */
1961     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1962         int probe_bitmap = kvm_arm_vgic_probe();
1963 
1964         if (!probe_bitmap) {
1965             error_report("Unable to determine GIC version supported by host");
1966             exit(1);
1967         }
1968 
1969         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1970             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1971         }
1972         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1973             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1974         }
1975     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1976         /* KVM w/o kernel irqchip can only deal with GICv2 */
1977         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1978         accel_name = "KVM with kernel-irqchip=off";
1979     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1980         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1981         if (module_object_class_by_name("arm-gicv3")) {
1982             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1983             if (vms->virt) {
1984                 /* GICv4 only makes sense if CPU has EL2 */
1985                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1986             }
1987         }
1988     } else {
1989         error_report("Unsupported accelerator, can not determine GIC support");
1990         exit(1);
1991     }
1992 
1993     /*
1994      * Then convert helpers like host/max to concrete GIC versions and ensure
1995      * the desired version is supported
1996      */
1997     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1998                                                gics_supported, max_cpus);
1999 }
2000 
2001 /*
2002  * virt_cpu_post_init() must be called after the CPUs have
2003  * been realized and the GIC has been created.
2004  */
2005 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
2006 {
2007     int max_cpus = MACHINE(vms)->smp.max_cpus;
2008     bool aarch64, pmu, steal_time;
2009     CPUState *cpu;
2010 
2011     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
2012     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
2013     steal_time = object_property_get_bool(OBJECT(first_cpu),
2014                                           "kvm-steal-time", NULL);
2015 
2016     if (kvm_enabled()) {
2017         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
2018         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
2019 
2020         if (steal_time) {
2021             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
2022             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
2023 
2024             /* The memory region size must be a multiple of host page size. */
2025             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
2026 
2027             if (pvtime_size > pvtime_reg_size) {
2028                 error_report("pvtime requires a %" HWADDR_PRId
2029                              " byte memory region for %d CPUs,"
2030                              " but only %" HWADDR_PRId " has been reserved",
2031                              pvtime_size, max_cpus, pvtime_reg_size);
2032                 exit(1);
2033             }
2034 
2035             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
2036             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
2037         }
2038 
2039         CPU_FOREACH(cpu) {
2040             if (pmu) {
2041                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
2042                 if (kvm_irqchip_in_kernel()) {
2043                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2044                 }
2045                 kvm_arm_pmu_init(ARM_CPU(cpu));
2046             }
2047             if (steal_time) {
2048                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2049                                                   + cpu->cpu_index
2050                                                     * PVTIME_SIZE_PER_CPU);
2051             }
2052         }
2053     } else {
2054         if (aarch64 && vms->highmem) {
2055             int requested_pa_size = 64 - clz64(vms->highest_gpa);
2056             int pamax = arm_pamax(ARM_CPU(first_cpu));
2057 
2058             if (pamax < requested_pa_size) {
2059                 error_report("VCPU supports less PA bits (%d) than "
2060                              "requested by the memory map (%d)",
2061                              pamax, requested_pa_size);
2062                 exit(1);
2063             }
2064         }
2065     }
2066 }
2067 
2068 static void machvirt_init(MachineState *machine)
2069 {
2070     VirtMachineState *vms = VIRT_MACHINE(machine);
2071     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2072     MachineClass *mc = MACHINE_GET_CLASS(machine);
2073     const CPUArchIdList *possible_cpus;
2074     MemoryRegion *sysmem = get_system_memory();
2075     MemoryRegion *secure_sysmem = NULL;
2076     MemoryRegion *tag_sysmem = NULL;
2077     MemoryRegion *secure_tag_sysmem = NULL;
2078     int n, virt_max_cpus;
2079     bool firmware_loaded;
2080     bool aarch64 = true;
2081     bool has_ged = !vmc->no_ged;
2082     unsigned int smp_cpus = machine->smp.cpus;
2083     unsigned int max_cpus = machine->smp.max_cpus;
2084 
2085     possible_cpus = mc->possible_cpu_arch_ids(machine);
2086 
2087     /*
2088      * In accelerated mode, the memory map is computed earlier in kvm_type()
2089      * to create a VM with the right number of IPA bits.
2090      */
2091     if (!vms->memmap) {
2092         Object *cpuobj;
2093         ARMCPU *armcpu;
2094         int pa_bits;
2095 
2096         /*
2097          * Instantiate a temporary CPU object to find out about what
2098          * we are about to deal with. Once this is done, get rid of
2099          * the object.
2100          */
2101         cpuobj = object_new(possible_cpus->cpus[0].type);
2102         armcpu = ARM_CPU(cpuobj);
2103 
2104         pa_bits = arm_pamax(armcpu);
2105 
2106         object_unref(cpuobj);
2107 
2108         virt_set_memmap(vms, pa_bits);
2109     }
2110 
2111     /* We can probe only here because during property set
2112      * KVM is not available yet
2113      */
2114     finalize_gic_version(vms);
2115 
2116     if (vms->secure) {
2117         /*
2118          * The Secure view of the world is the same as the NonSecure,
2119          * but with a few extra devices. Create it as a container region
2120          * containing the system memory at low priority; any secure-only
2121          * devices go in at higher priority and take precedence.
2122          */
2123         secure_sysmem = g_new(MemoryRegion, 1);
2124         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2125                            UINT64_MAX);
2126         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2127     }
2128 
2129     firmware_loaded = virt_firmware_init(vms, sysmem,
2130                                          secure_sysmem ?: sysmem);
2131 
2132     /* If we have an EL3 boot ROM then the assumption is that it will
2133      * implement PSCI itself, so disable QEMU's internal implementation
2134      * so it doesn't get in the way. Instead of starting secondary
2135      * CPUs in PSCI powerdown state we will start them all running and
2136      * let the boot ROM sort them out.
2137      * The usual case is that we do use QEMU's PSCI implementation;
2138      * if the guest has EL2 then we will use SMC as the conduit,
2139      * and otherwise we will use HVC (for backwards compatibility and
2140      * because if we're using KVM then we must use HVC).
2141      */
2142     if (vms->secure && firmware_loaded) {
2143         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2144     } else if (vms->virt) {
2145         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2146     } else {
2147         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2148     }
2149 
2150     /*
2151      * The maximum number of CPUs depends on the GIC version, or on how
2152      * many redistributors we can fit into the memory map (which in turn
2153      * depends on whether this is a GICv3 or v4).
2154      */
2155     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2156         virt_max_cpus = GIC_NCPU;
2157     } else {
2158         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2159         if (vms->highmem_redists) {
2160             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2161         }
2162     }
2163 
2164     if (max_cpus > virt_max_cpus) {
2165         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2166                      "supported by machine 'mach-virt' (%d)",
2167                      max_cpus, virt_max_cpus);
2168         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2169             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2170         }
2171 
2172         exit(1);
2173     }
2174 
2175     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2176         error_report("mach-virt: %s does not support providing "
2177                      "Security extensions (TrustZone) to the guest CPU",
2178                      current_accel_name());
2179         exit(1);
2180     }
2181 
2182     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2183         error_report("mach-virt: %s does not support providing "
2184                      "Virtualization extensions to the guest CPU",
2185                      current_accel_name());
2186         exit(1);
2187     }
2188 
2189     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2190         error_report("mach-virt: %s does not support providing "
2191                      "MTE to the guest CPU",
2192                      current_accel_name());
2193         exit(1);
2194     }
2195 
2196     create_fdt(vms);
2197 
2198     assert(possible_cpus->len == max_cpus);
2199     for (n = 0; n < possible_cpus->len; n++) {
2200         Object *cpuobj;
2201         CPUState *cs;
2202 
2203         if (n >= smp_cpus) {
2204             break;
2205         }
2206 
2207         cpuobj = object_new(possible_cpus->cpus[n].type);
2208         object_property_set_int(cpuobj, "mp-affinity",
2209                                 possible_cpus->cpus[n].arch_id, NULL);
2210 
2211         cs = CPU(cpuobj);
2212         cs->cpu_index = n;
2213 
2214         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2215                           &error_fatal);
2216 
2217         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2218 
2219         if (!vms->secure) {
2220             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2221         }
2222 
2223         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2224             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2225         }
2226 
2227         if (vmc->kvm_no_adjvtime &&
2228             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2229             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2230         }
2231 
2232         if (vmc->no_kvm_steal_time &&
2233             object_property_find(cpuobj, "kvm-steal-time")) {
2234             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2235         }
2236 
2237         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2238             object_property_set_bool(cpuobj, "pmu", false, NULL);
2239         }
2240 
2241         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2242             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2243         }
2244 
2245         if (object_property_find(cpuobj, "reset-cbar")) {
2246             object_property_set_int(cpuobj, "reset-cbar",
2247                                     vms->memmap[VIRT_CPUPERIPHS].base,
2248                                     &error_abort);
2249         }
2250 
2251         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2252                                  &error_abort);
2253         if (vms->secure) {
2254             object_property_set_link(cpuobj, "secure-memory",
2255                                      OBJECT(secure_sysmem), &error_abort);
2256         }
2257 
2258         if (vms->mte) {
2259             /* Create the memory region only once, but link to all cpus. */
2260             if (!tag_sysmem) {
2261                 /*
2262                  * The property exists only if MemTag is supported.
2263                  * If it is, we must allocate the ram to back that up.
2264                  */
2265                 if (!object_property_find(cpuobj, "tag-memory")) {
2266                     error_report("MTE requested, but not supported "
2267                                  "by the guest CPU");
2268                     exit(1);
2269                 }
2270 
2271                 tag_sysmem = g_new(MemoryRegion, 1);
2272                 memory_region_init(tag_sysmem, OBJECT(machine),
2273                                    "tag-memory", UINT64_MAX / 32);
2274 
2275                 if (vms->secure) {
2276                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2277                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2278                                        "secure-tag-memory", UINT64_MAX / 32);
2279 
2280                     /* As with ram, secure-tag takes precedence over tag.  */
2281                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2282                                                         tag_sysmem, -1);
2283                 }
2284             }
2285 
2286             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2287                                      &error_abort);
2288             if (vms->secure) {
2289                 object_property_set_link(cpuobj, "secure-tag-memory",
2290                                          OBJECT(secure_tag_sysmem),
2291                                          &error_abort);
2292             }
2293         }
2294 
2295         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2296         object_unref(cpuobj);
2297     }
2298 
2299     /* Now we've created the CPUs we can see if they have the hypvirt timer */
2300     vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2301         !vmc->no_ns_el2_virt_timer_irq;
2302 
2303     fdt_add_timer_nodes(vms);
2304     fdt_add_cpu_nodes(vms);
2305 
2306     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2307                                 machine->ram);
2308 
2309     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2310 
2311     create_gic(vms, sysmem);
2312 
2313     virt_cpu_post_init(vms, sysmem);
2314 
2315     fdt_add_pmu_nodes(vms);
2316 
2317     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2318 
2319     if (vms->secure) {
2320         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2321         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2322     }
2323 
2324     if (tag_sysmem) {
2325         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2326                        machine->ram_size, "mach-virt.tag");
2327     }
2328 
2329     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2330 
2331     create_rtc(vms);
2332 
2333     create_pcie(vms);
2334 
2335     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2336         vms->acpi_dev = create_acpi_ged(vms);
2337     } else {
2338         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2339     }
2340 
2341     if (vms->secure && !vmc->no_secure_gpio) {
2342         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2343     }
2344 
2345      /* connect powerdown request */
2346      vms->powerdown_notifier.notify = virt_powerdown_req;
2347      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2348 
2349     /* Create mmio transports, so the user can create virtio backends
2350      * (which will be automatically plugged in to the transports). If
2351      * no backend is created the transport will just sit harmlessly idle.
2352      */
2353     create_virtio_devices(vms);
2354 
2355     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2356     rom_set_fw(vms->fw_cfg);
2357 
2358     create_platform_bus(vms);
2359 
2360     if (machine->nvdimms_state->is_enabled) {
2361         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2362             .space_id = AML_AS_SYSTEM_MEMORY,
2363             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2364             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2365         };
2366 
2367         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2368                                arm_virt_nvdimm_acpi_dsmio,
2369                                vms->fw_cfg, OBJECT(vms));
2370     }
2371 
2372     vms->bootinfo.ram_size = machine->ram_size;
2373     vms->bootinfo.board_id = -1;
2374     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2375     vms->bootinfo.get_dtb = machvirt_dtb;
2376     vms->bootinfo.skip_dtb_autoload = true;
2377     vms->bootinfo.firmware_loaded = firmware_loaded;
2378     vms->bootinfo.psci_conduit = vms->psci_conduit;
2379     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2380 
2381     vms->machine_done.notify = virt_machine_done;
2382     qemu_add_machine_init_done_notifier(&vms->machine_done);
2383 }
2384 
2385 static bool virt_get_secure(Object *obj, Error **errp)
2386 {
2387     VirtMachineState *vms = VIRT_MACHINE(obj);
2388 
2389     return vms->secure;
2390 }
2391 
2392 static void virt_set_secure(Object *obj, bool value, Error **errp)
2393 {
2394     VirtMachineState *vms = VIRT_MACHINE(obj);
2395 
2396     vms->secure = value;
2397 }
2398 
2399 static bool virt_get_virt(Object *obj, Error **errp)
2400 {
2401     VirtMachineState *vms = VIRT_MACHINE(obj);
2402 
2403     return vms->virt;
2404 }
2405 
2406 static void virt_set_virt(Object *obj, bool value, Error **errp)
2407 {
2408     VirtMachineState *vms = VIRT_MACHINE(obj);
2409 
2410     vms->virt = value;
2411 }
2412 
2413 static bool virt_get_highmem(Object *obj, Error **errp)
2414 {
2415     VirtMachineState *vms = VIRT_MACHINE(obj);
2416 
2417     return vms->highmem;
2418 }
2419 
2420 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2421 {
2422     VirtMachineState *vms = VIRT_MACHINE(obj);
2423 
2424     vms->highmem = value;
2425 }
2426 
2427 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2428 {
2429     VirtMachineState *vms = VIRT_MACHINE(obj);
2430 
2431     return vms->highmem_compact;
2432 }
2433 
2434 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2435 {
2436     VirtMachineState *vms = VIRT_MACHINE(obj);
2437 
2438     vms->highmem_compact = value;
2439 }
2440 
2441 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2442 {
2443     VirtMachineState *vms = VIRT_MACHINE(obj);
2444 
2445     return vms->highmem_redists;
2446 }
2447 
2448 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2449 {
2450     VirtMachineState *vms = VIRT_MACHINE(obj);
2451 
2452     vms->highmem_redists = value;
2453 }
2454 
2455 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2456 {
2457     VirtMachineState *vms = VIRT_MACHINE(obj);
2458 
2459     return vms->highmem_ecam;
2460 }
2461 
2462 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2463 {
2464     VirtMachineState *vms = VIRT_MACHINE(obj);
2465 
2466     vms->highmem_ecam = value;
2467 }
2468 
2469 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2470 {
2471     VirtMachineState *vms = VIRT_MACHINE(obj);
2472 
2473     return vms->highmem_mmio;
2474 }
2475 
2476 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2477 {
2478     VirtMachineState *vms = VIRT_MACHINE(obj);
2479 
2480     vms->highmem_mmio = value;
2481 }
2482 
2483 
2484 static bool virt_get_its(Object *obj, Error **errp)
2485 {
2486     VirtMachineState *vms = VIRT_MACHINE(obj);
2487 
2488     return vms->its;
2489 }
2490 
2491 static void virt_set_its(Object *obj, bool value, Error **errp)
2492 {
2493     VirtMachineState *vms = VIRT_MACHINE(obj);
2494 
2495     vms->its = value;
2496 }
2497 
2498 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2499 {
2500     VirtMachineState *vms = VIRT_MACHINE(obj);
2501 
2502     return vms->dtb_randomness;
2503 }
2504 
2505 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2506 {
2507     VirtMachineState *vms = VIRT_MACHINE(obj);
2508 
2509     vms->dtb_randomness = value;
2510 }
2511 
2512 static char *virt_get_oem_id(Object *obj, Error **errp)
2513 {
2514     VirtMachineState *vms = VIRT_MACHINE(obj);
2515 
2516     return g_strdup(vms->oem_id);
2517 }
2518 
2519 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2520 {
2521     VirtMachineState *vms = VIRT_MACHINE(obj);
2522     size_t len = strlen(value);
2523 
2524     if (len > 6) {
2525         error_setg(errp,
2526                    "User specified oem-id value is bigger than 6 bytes in size");
2527         return;
2528     }
2529 
2530     strncpy(vms->oem_id, value, 6);
2531 }
2532 
2533 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2534 {
2535     VirtMachineState *vms = VIRT_MACHINE(obj);
2536 
2537     return g_strdup(vms->oem_table_id);
2538 }
2539 
2540 static void virt_set_oem_table_id(Object *obj, const char *value,
2541                                   Error **errp)
2542 {
2543     VirtMachineState *vms = VIRT_MACHINE(obj);
2544     size_t len = strlen(value);
2545 
2546     if (len > 8) {
2547         error_setg(errp,
2548                    "User specified oem-table-id value is bigger than 8 bytes in size");
2549         return;
2550     }
2551     strncpy(vms->oem_table_id, value, 8);
2552 }
2553 
2554 
2555 bool virt_is_acpi_enabled(VirtMachineState *vms)
2556 {
2557     if (vms->acpi == ON_OFF_AUTO_OFF) {
2558         return false;
2559     }
2560     return true;
2561 }
2562 
2563 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2564                           void *opaque, Error **errp)
2565 {
2566     VirtMachineState *vms = VIRT_MACHINE(obj);
2567     OnOffAuto acpi = vms->acpi;
2568 
2569     visit_type_OnOffAuto(v, name, &acpi, errp);
2570 }
2571 
2572 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2573                           void *opaque, Error **errp)
2574 {
2575     VirtMachineState *vms = VIRT_MACHINE(obj);
2576 
2577     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2578 }
2579 
2580 static bool virt_get_ras(Object *obj, Error **errp)
2581 {
2582     VirtMachineState *vms = VIRT_MACHINE(obj);
2583 
2584     return vms->ras;
2585 }
2586 
2587 static void virt_set_ras(Object *obj, bool value, Error **errp)
2588 {
2589     VirtMachineState *vms = VIRT_MACHINE(obj);
2590 
2591     vms->ras = value;
2592 }
2593 
2594 static bool virt_get_mte(Object *obj, Error **errp)
2595 {
2596     VirtMachineState *vms = VIRT_MACHINE(obj);
2597 
2598     return vms->mte;
2599 }
2600 
2601 static void virt_set_mte(Object *obj, bool value, Error **errp)
2602 {
2603     VirtMachineState *vms = VIRT_MACHINE(obj);
2604 
2605     vms->mte = value;
2606 }
2607 
2608 static char *virt_get_gic_version(Object *obj, Error **errp)
2609 {
2610     VirtMachineState *vms = VIRT_MACHINE(obj);
2611     const char *val;
2612 
2613     switch (vms->gic_version) {
2614     case VIRT_GIC_VERSION_4:
2615         val = "4";
2616         break;
2617     case VIRT_GIC_VERSION_3:
2618         val = "3";
2619         break;
2620     default:
2621         val = "2";
2622         break;
2623     }
2624     return g_strdup(val);
2625 }
2626 
2627 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2628 {
2629     VirtMachineState *vms = VIRT_MACHINE(obj);
2630 
2631     if (!strcmp(value, "4")) {
2632         vms->gic_version = VIRT_GIC_VERSION_4;
2633     } else if (!strcmp(value, "3")) {
2634         vms->gic_version = VIRT_GIC_VERSION_3;
2635     } else if (!strcmp(value, "2")) {
2636         vms->gic_version = VIRT_GIC_VERSION_2;
2637     } else if (!strcmp(value, "host")) {
2638         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2639     } else if (!strcmp(value, "max")) {
2640         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2641     } else {
2642         error_setg(errp, "Invalid gic-version value");
2643         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2644     }
2645 }
2646 
2647 static char *virt_get_iommu(Object *obj, Error **errp)
2648 {
2649     VirtMachineState *vms = VIRT_MACHINE(obj);
2650 
2651     switch (vms->iommu) {
2652     case VIRT_IOMMU_NONE:
2653         return g_strdup("none");
2654     case VIRT_IOMMU_SMMUV3:
2655         return g_strdup("smmuv3");
2656     default:
2657         g_assert_not_reached();
2658     }
2659 }
2660 
2661 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2662 {
2663     VirtMachineState *vms = VIRT_MACHINE(obj);
2664 
2665     if (!strcmp(value, "smmuv3")) {
2666         vms->iommu = VIRT_IOMMU_SMMUV3;
2667     } else if (!strcmp(value, "none")) {
2668         vms->iommu = VIRT_IOMMU_NONE;
2669     } else {
2670         error_setg(errp, "Invalid iommu value");
2671         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2672     }
2673 }
2674 
2675 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2676 {
2677     VirtMachineState *vms = VIRT_MACHINE(obj);
2678 
2679     return vms->default_bus_bypass_iommu;
2680 }
2681 
2682 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2683                                               Error **errp)
2684 {
2685     VirtMachineState *vms = VIRT_MACHINE(obj);
2686 
2687     vms->default_bus_bypass_iommu = value;
2688 }
2689 
2690 static CpuInstanceProperties
2691 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2692 {
2693     MachineClass *mc = MACHINE_GET_CLASS(ms);
2694     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2695 
2696     assert(cpu_index < possible_cpus->len);
2697     return possible_cpus->cpus[cpu_index].props;
2698 }
2699 
2700 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2701 {
2702     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2703 
2704     return socket_id % ms->numa_state->num_nodes;
2705 }
2706 
2707 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2708 {
2709     int n;
2710     unsigned int max_cpus = ms->smp.max_cpus;
2711     VirtMachineState *vms = VIRT_MACHINE(ms);
2712     MachineClass *mc = MACHINE_GET_CLASS(vms);
2713 
2714     if (ms->possible_cpus) {
2715         assert(ms->possible_cpus->len == max_cpus);
2716         return ms->possible_cpus;
2717     }
2718 
2719     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2720                                   sizeof(CPUArchId) * max_cpus);
2721     ms->possible_cpus->len = max_cpus;
2722     for (n = 0; n < ms->possible_cpus->len; n++) {
2723         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2724         ms->possible_cpus->cpus[n].arch_id =
2725             virt_cpu_mp_affinity(vms, n);
2726 
2727         assert(!mc->smp_props.dies_supported);
2728         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2729         ms->possible_cpus->cpus[n].props.socket_id =
2730             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2731         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2732         ms->possible_cpus->cpus[n].props.cluster_id =
2733             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2734         ms->possible_cpus->cpus[n].props.has_core_id = true;
2735         ms->possible_cpus->cpus[n].props.core_id =
2736             (n / ms->smp.threads) % ms->smp.cores;
2737         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2738         ms->possible_cpus->cpus[n].props.thread_id =
2739             n % ms->smp.threads;
2740     }
2741     return ms->possible_cpus;
2742 }
2743 
2744 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2745                                  Error **errp)
2746 {
2747     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2748     const MachineState *ms = MACHINE(hotplug_dev);
2749     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2750 
2751     if (!vms->acpi_dev) {
2752         error_setg(errp,
2753                    "memory hotplug is not enabled: missing acpi-ged device");
2754         return;
2755     }
2756 
2757     if (vms->mte) {
2758         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2759         return;
2760     }
2761 
2762     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2763         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2764         return;
2765     }
2766 
2767     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2768 }
2769 
2770 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2771                              DeviceState *dev, Error **errp)
2772 {
2773     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2774     MachineState *ms = MACHINE(hotplug_dev);
2775     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2776 
2777     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2778 
2779     if (is_nvdimm) {
2780         nvdimm_plug(ms->nvdimms_state);
2781     }
2782 
2783     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2784                          dev, &error_abort);
2785 }
2786 
2787 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2788                                             DeviceState *dev, Error **errp)
2789 {
2790     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2791 
2792     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2793         virt_memory_pre_plug(hotplug_dev, dev, errp);
2794     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2795         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2796     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2797         hwaddr db_start = 0, db_end = 0;
2798         QList *reserved_regions;
2799         char *resv_prop_str;
2800 
2801         if (vms->iommu != VIRT_IOMMU_NONE) {
2802             error_setg(errp, "virt machine does not support multiple IOMMUs");
2803             return;
2804         }
2805 
2806         switch (vms->msi_controller) {
2807         case VIRT_MSI_CTRL_NONE:
2808             return;
2809         case VIRT_MSI_CTRL_ITS:
2810             /* GITS_TRANSLATER page */
2811             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2812             db_end = base_memmap[VIRT_GIC_ITS].base +
2813                      base_memmap[VIRT_GIC_ITS].size - 1;
2814             break;
2815         case VIRT_MSI_CTRL_GICV2M:
2816             /* MSI_SETSPI_NS page */
2817             db_start = base_memmap[VIRT_GIC_V2M].base;
2818             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2819             break;
2820         }
2821         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2822                                         db_start, db_end,
2823                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2824 
2825         reserved_regions = qlist_new();
2826         qlist_append_str(reserved_regions, resv_prop_str);
2827         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2828         g_free(resv_prop_str);
2829     }
2830 }
2831 
2832 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2833                                         DeviceState *dev, Error **errp)
2834 {
2835     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2836 
2837     if (vms->platform_bus_dev) {
2838         MachineClass *mc = MACHINE_GET_CLASS(vms);
2839 
2840         if (device_is_dynamic_sysbus(mc, dev)) {
2841             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2842                                      SYS_BUS_DEVICE(dev));
2843         }
2844     }
2845 
2846     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2847         virt_memory_plug(hotplug_dev, dev, errp);
2848     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2849         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2850     }
2851 
2852     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2853         PCIDevice *pdev = PCI_DEVICE(dev);
2854 
2855         vms->iommu = VIRT_IOMMU_VIRTIO;
2856         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2857         create_virtio_iommu_dt_bindings(vms);
2858     }
2859 }
2860 
2861 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2862                                      DeviceState *dev, Error **errp)
2863 {
2864     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2865 
2866     if (!vms->acpi_dev) {
2867         error_setg(errp,
2868                    "memory hotplug is not enabled: missing acpi-ged device");
2869         return;
2870     }
2871 
2872     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2873         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2874         return;
2875     }
2876 
2877     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2878                                    errp);
2879 }
2880 
2881 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2882                              DeviceState *dev, Error **errp)
2883 {
2884     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2885     Error *local_err = NULL;
2886 
2887     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2888     if (local_err) {
2889         goto out;
2890     }
2891 
2892     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2893     qdev_unrealize(dev);
2894 
2895 out:
2896     error_propagate(errp, local_err);
2897 }
2898 
2899 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2900                                           DeviceState *dev, Error **errp)
2901 {
2902     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2903         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2904     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2905         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2906                                      errp);
2907     } else {
2908         error_setg(errp, "device unplug request for unsupported device"
2909                    " type: %s", object_get_typename(OBJECT(dev)));
2910     }
2911 }
2912 
2913 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2914                                           DeviceState *dev, Error **errp)
2915 {
2916     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2917         virt_dimm_unplug(hotplug_dev, dev, errp);
2918     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2919         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2920     } else {
2921         error_setg(errp, "virt: device unplug for unsupported device"
2922                    " type: %s", object_get_typename(OBJECT(dev)));
2923     }
2924 }
2925 
2926 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2927                                                         DeviceState *dev)
2928 {
2929     MachineClass *mc = MACHINE_GET_CLASS(machine);
2930 
2931     if (device_is_dynamic_sysbus(mc, dev) ||
2932         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2933         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2934         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2935         return HOTPLUG_HANDLER(machine);
2936     }
2937     return NULL;
2938 }
2939 
2940 /*
2941  * for arm64 kvm_type [7-0] encodes the requested number of bits
2942  * in the IPA address space
2943  */
2944 static int virt_kvm_type(MachineState *ms, const char *type_str)
2945 {
2946     VirtMachineState *vms = VIRT_MACHINE(ms);
2947     int max_vm_pa_size, requested_pa_size;
2948     bool fixed_ipa;
2949 
2950     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2951 
2952     /* we freeze the memory map to compute the highest gpa */
2953     virt_set_memmap(vms, max_vm_pa_size);
2954 
2955     requested_pa_size = 64 - clz64(vms->highest_gpa);
2956 
2957     /*
2958      * KVM requires the IPA size to be at least 32 bits.
2959      */
2960     if (requested_pa_size < 32) {
2961         requested_pa_size = 32;
2962     }
2963 
2964     if (requested_pa_size > max_vm_pa_size) {
2965         error_report("-m and ,maxmem option values "
2966                      "require an IPA range (%d bits) larger than "
2967                      "the one supported by the host (%d bits)",
2968                      requested_pa_size, max_vm_pa_size);
2969         return -1;
2970     }
2971     /*
2972      * We return the requested PA log size, unless KVM only supports
2973      * the implicit legacy 40b IPA setting, in which case the kvm_type
2974      * must be 0.
2975      */
2976     return fixed_ipa ? 0 : requested_pa_size;
2977 }
2978 
2979 static void virt_machine_class_init(ObjectClass *oc, void *data)
2980 {
2981     MachineClass *mc = MACHINE_CLASS(oc);
2982     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2983     static const char * const valid_cpu_types[] = {
2984 #ifdef CONFIG_TCG
2985         ARM_CPU_TYPE_NAME("cortex-a7"),
2986         ARM_CPU_TYPE_NAME("cortex-a15"),
2987 #ifdef TARGET_AARCH64
2988         ARM_CPU_TYPE_NAME("cortex-a35"),
2989         ARM_CPU_TYPE_NAME("cortex-a55"),
2990         ARM_CPU_TYPE_NAME("cortex-a72"),
2991         ARM_CPU_TYPE_NAME("cortex-a76"),
2992         ARM_CPU_TYPE_NAME("cortex-a710"),
2993         ARM_CPU_TYPE_NAME("a64fx"),
2994         ARM_CPU_TYPE_NAME("neoverse-n1"),
2995         ARM_CPU_TYPE_NAME("neoverse-v1"),
2996         ARM_CPU_TYPE_NAME("neoverse-n2"),
2997 #endif /* TARGET_AARCH64 */
2998 #endif /* CONFIG_TCG */
2999 #ifdef TARGET_AARCH64
3000         ARM_CPU_TYPE_NAME("cortex-a53"),
3001         ARM_CPU_TYPE_NAME("cortex-a57"),
3002 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
3003         ARM_CPU_TYPE_NAME("host"),
3004 #endif /* CONFIG_KVM || CONFIG_HVF */
3005 #endif /* TARGET_AARCH64 */
3006         ARM_CPU_TYPE_NAME("max"),
3007         NULL
3008     };
3009 
3010     mc->init = machvirt_init;
3011     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
3012      * The value may be reduced later when we have more information about the
3013      * configuration of the particular instance.
3014      */
3015     mc->max_cpus = 512;
3016     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3017     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3018     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3019     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3020 #ifdef CONFIG_TPM
3021     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3022 #endif
3023     mc->block_default_type = IF_VIRTIO;
3024     mc->no_cdrom = 1;
3025     mc->pci_allow_0_address = true;
3026     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3027     mc->minimum_page_bits = 12;
3028     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3029     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3030 #ifdef CONFIG_TCG
3031     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3032 #else
3033     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3034 #endif
3035     mc->valid_cpu_types = valid_cpu_types;
3036     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3037     mc->kvm_type = virt_kvm_type;
3038     assert(!mc->get_hotplug_handler);
3039     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3040     hc->pre_plug = virt_machine_device_pre_plug_cb;
3041     hc->plug = virt_machine_device_plug_cb;
3042     hc->unplug_request = virt_machine_device_unplug_request_cb;
3043     hc->unplug = virt_machine_device_unplug_cb;
3044     mc->nvdimm_supported = true;
3045     mc->smp_props.clusters_supported = true;
3046     mc->auto_enable_numa_with_memhp = true;
3047     mc->auto_enable_numa_with_memdev = true;
3048     /* platform instead of architectural choice */
3049     mc->cpu_cluster_has_numa_boundary = true;
3050     mc->default_ram_id = "mach-virt.ram";
3051     mc->default_nic = "virtio-net-pci";
3052 
3053     object_class_property_add(oc, "acpi", "OnOffAuto",
3054         virt_get_acpi, virt_set_acpi,
3055         NULL, NULL);
3056     object_class_property_set_description(oc, "acpi",
3057         "Enable ACPI");
3058     object_class_property_add_bool(oc, "secure", virt_get_secure,
3059                                    virt_set_secure);
3060     object_class_property_set_description(oc, "secure",
3061                                                 "Set on/off to enable/disable the ARM "
3062                                                 "Security Extensions (TrustZone)");
3063 
3064     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3065                                    virt_set_virt);
3066     object_class_property_set_description(oc, "virtualization",
3067                                           "Set on/off to enable/disable emulating a "
3068                                           "guest CPU which implements the ARM "
3069                                           "Virtualization Extensions");
3070 
3071     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3072                                    virt_set_highmem);
3073     object_class_property_set_description(oc, "highmem",
3074                                           "Set on/off to enable/disable using "
3075                                           "physical address space above 32 bits");
3076 
3077     object_class_property_add_bool(oc, "compact-highmem",
3078                                    virt_get_compact_highmem,
3079                                    virt_set_compact_highmem);
3080     object_class_property_set_description(oc, "compact-highmem",
3081                                           "Set on/off to enable/disable compact "
3082                                           "layout for high memory regions");
3083 
3084     object_class_property_add_bool(oc, "highmem-redists",
3085                                    virt_get_highmem_redists,
3086                                    virt_set_highmem_redists);
3087     object_class_property_set_description(oc, "highmem-redists",
3088                                           "Set on/off to enable/disable high "
3089                                           "memory region for GICv3 or GICv4 "
3090                                           "redistributor");
3091 
3092     object_class_property_add_bool(oc, "highmem-ecam",
3093                                    virt_get_highmem_ecam,
3094                                    virt_set_highmem_ecam);
3095     object_class_property_set_description(oc, "highmem-ecam",
3096                                           "Set on/off to enable/disable high "
3097                                           "memory region for PCI ECAM");
3098 
3099     object_class_property_add_bool(oc, "highmem-mmio",
3100                                    virt_get_highmem_mmio,
3101                                    virt_set_highmem_mmio);
3102     object_class_property_set_description(oc, "highmem-mmio",
3103                                           "Set on/off to enable/disable high "
3104                                           "memory region for PCI MMIO");
3105 
3106     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3107                                   virt_set_gic_version);
3108     object_class_property_set_description(oc, "gic-version",
3109                                           "Set GIC version. "
3110                                           "Valid values are 2, 3, 4, host and max");
3111 
3112     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3113     object_class_property_set_description(oc, "iommu",
3114                                           "Set the IOMMU type. "
3115                                           "Valid values are none and smmuv3");
3116 
3117     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3118                                    virt_get_default_bus_bypass_iommu,
3119                                    virt_set_default_bus_bypass_iommu);
3120     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3121                                           "Set on/off to enable/disable "
3122                                           "bypass_iommu for default root bus");
3123 
3124     object_class_property_add_bool(oc, "ras", virt_get_ras,
3125                                    virt_set_ras);
3126     object_class_property_set_description(oc, "ras",
3127                                           "Set on/off to enable/disable reporting host memory errors "
3128                                           "to a KVM guest using ACPI and guest external abort exceptions");
3129 
3130     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3131     object_class_property_set_description(oc, "mte",
3132                                           "Set on/off to enable/disable emulating a "
3133                                           "guest CPU which implements the ARM "
3134                                           "Memory Tagging Extension");
3135 
3136     object_class_property_add_bool(oc, "its", virt_get_its,
3137                                    virt_set_its);
3138     object_class_property_set_description(oc, "its",
3139                                           "Set on/off to enable/disable "
3140                                           "ITS instantiation");
3141 
3142     object_class_property_add_bool(oc, "dtb-randomness",
3143                                    virt_get_dtb_randomness,
3144                                    virt_set_dtb_randomness);
3145     object_class_property_set_description(oc, "dtb-randomness",
3146                                           "Set off to disable passing random or "
3147                                           "non-deterministic dtb nodes to guest");
3148 
3149     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3150                                    virt_get_dtb_randomness,
3151                                    virt_set_dtb_randomness);
3152     object_class_property_set_description(oc, "dtb-kaslr-seed",
3153                                           "Deprecated synonym of dtb-randomness");
3154 
3155     object_class_property_add_str(oc, "x-oem-id",
3156                                   virt_get_oem_id,
3157                                   virt_set_oem_id);
3158     object_class_property_set_description(oc, "x-oem-id",
3159                                           "Override the default value of field OEMID "
3160                                           "in ACPI table header."
3161                                           "The string may be up to 6 bytes in size");
3162 
3163 
3164     object_class_property_add_str(oc, "x-oem-table-id",
3165                                   virt_get_oem_table_id,
3166                                   virt_set_oem_table_id);
3167     object_class_property_set_description(oc, "x-oem-table-id",
3168                                           "Override the default value of field OEM Table ID "
3169                                           "in ACPI table header."
3170                                           "The string may be up to 8 bytes in size");
3171 
3172 }
3173 
3174 static void virt_instance_init(Object *obj)
3175 {
3176     VirtMachineState *vms = VIRT_MACHINE(obj);
3177     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3178 
3179     /* EL3 is disabled by default on virt: this makes us consistent
3180      * between KVM and TCG for this board, and it also allows us to
3181      * boot UEFI blobs which assume no TrustZone support.
3182      */
3183     vms->secure = false;
3184 
3185     /* EL2 is also disabled by default, for similar reasons */
3186     vms->virt = false;
3187 
3188     /* High memory is enabled by default */
3189     vms->highmem = true;
3190     vms->highmem_compact = !vmc->no_highmem_compact;
3191     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3192 
3193     vms->highmem_ecam = !vmc->no_highmem_ecam;
3194     vms->highmem_mmio = true;
3195     vms->highmem_redists = true;
3196 
3197     if (vmc->no_its) {
3198         vms->its = false;
3199     } else {
3200         /* Default allows ITS instantiation */
3201         vms->its = true;
3202 
3203         if (vmc->no_tcg_its) {
3204             vms->tcg_its = false;
3205         } else {
3206             vms->tcg_its = true;
3207         }
3208     }
3209 
3210     /* Default disallows iommu instantiation */
3211     vms->iommu = VIRT_IOMMU_NONE;
3212 
3213     /* The default root bus is attached to iommu by default */
3214     vms->default_bus_bypass_iommu = false;
3215 
3216     /* Default disallows RAS instantiation */
3217     vms->ras = false;
3218 
3219     /* MTE is disabled by default.  */
3220     vms->mte = false;
3221 
3222     /* Supply kaslr-seed and rng-seed by default */
3223     vms->dtb_randomness = true;
3224 
3225     vms->irqmap = a15irqmap;
3226 
3227     virt_flash_create(vms);
3228 
3229     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3230     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3231 }
3232 
3233 static const TypeInfo virt_machine_info = {
3234     .name          = TYPE_VIRT_MACHINE,
3235     .parent        = TYPE_MACHINE,
3236     .abstract      = true,
3237     .instance_size = sizeof(VirtMachineState),
3238     .class_size    = sizeof(VirtMachineClass),
3239     .class_init    = virt_machine_class_init,
3240     .instance_init = virt_instance_init,
3241     .interfaces = (InterfaceInfo[]) {
3242          { TYPE_HOTPLUG_HANDLER },
3243          { }
3244     },
3245 };
3246 
3247 static void machvirt_machine_init(void)
3248 {
3249     type_register_static(&virt_machine_info);
3250 }
3251 type_init(machvirt_machine_init);
3252 
3253 static void virt_machine_9_1_options(MachineClass *mc)
3254 {
3255 }
3256 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1)
3257 
3258 static void virt_machine_9_0_options(MachineClass *mc)
3259 {
3260     virt_machine_9_1_options(mc);
3261     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
3262 }
3263 DEFINE_VIRT_MACHINE(9, 0)
3264 
3265 static void virt_machine_8_2_options(MachineClass *mc)
3266 {
3267     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3268 
3269     virt_machine_9_0_options(mc);
3270     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3271     /*
3272      * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3273      * earlier machines. (Exposing it tickles a bug in older EDK2
3274      * guest BIOS binaries.)
3275      */
3276     vmc->no_ns_el2_virt_timer_irq = true;
3277 }
3278 DEFINE_VIRT_MACHINE(8, 2)
3279 
3280 static void virt_machine_8_1_options(MachineClass *mc)
3281 {
3282     virt_machine_8_2_options(mc);
3283     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3284 }
3285 DEFINE_VIRT_MACHINE(8, 1)
3286 
3287 static void virt_machine_8_0_options(MachineClass *mc)
3288 {
3289     virt_machine_8_1_options(mc);
3290     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3291 }
3292 DEFINE_VIRT_MACHINE(8, 0)
3293 
3294 static void virt_machine_7_2_options(MachineClass *mc)
3295 {
3296     virt_machine_8_0_options(mc);
3297     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3298 }
3299 DEFINE_VIRT_MACHINE(7, 2)
3300 
3301 static void virt_machine_7_1_options(MachineClass *mc)
3302 {
3303     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3304 
3305     virt_machine_7_2_options(mc);
3306     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3307     /* Compact layout for high memory regions was introduced with 7.2 */
3308     vmc->no_highmem_compact = true;
3309 }
3310 DEFINE_VIRT_MACHINE(7, 1)
3311 
3312 static void virt_machine_7_0_options(MachineClass *mc)
3313 {
3314     virt_machine_7_1_options(mc);
3315     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3316 }
3317 DEFINE_VIRT_MACHINE(7, 0)
3318 
3319 static void virt_machine_6_2_options(MachineClass *mc)
3320 {
3321     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3322 
3323     virt_machine_7_0_options(mc);
3324     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3325     vmc->no_tcg_lpa2 = true;
3326 }
3327 DEFINE_VIRT_MACHINE(6, 2)
3328 
3329 static void virt_machine_6_1_options(MachineClass *mc)
3330 {
3331     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3332 
3333     virt_machine_6_2_options(mc);
3334     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3335     mc->smp_props.prefer_sockets = true;
3336     vmc->no_cpu_topology = true;
3337 
3338     /* qemu ITS was introduced with 6.2 */
3339     vmc->no_tcg_its = true;
3340 }
3341 DEFINE_VIRT_MACHINE(6, 1)
3342 
3343 static void virt_machine_6_0_options(MachineClass *mc)
3344 {
3345     virt_machine_6_1_options(mc);
3346     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3347 }
3348 DEFINE_VIRT_MACHINE(6, 0)
3349 
3350 static void virt_machine_5_2_options(MachineClass *mc)
3351 {
3352     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3353 
3354     virt_machine_6_0_options(mc);
3355     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3356     vmc->no_secure_gpio = true;
3357 }
3358 DEFINE_VIRT_MACHINE(5, 2)
3359 
3360 static void virt_machine_5_1_options(MachineClass *mc)
3361 {
3362     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3363 
3364     virt_machine_5_2_options(mc);
3365     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3366     vmc->no_kvm_steal_time = true;
3367 }
3368 DEFINE_VIRT_MACHINE(5, 1)
3369 
3370 static void virt_machine_5_0_options(MachineClass *mc)
3371 {
3372     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3373 
3374     virt_machine_5_1_options(mc);
3375     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3376     mc->numa_mem_supported = true;
3377     vmc->acpi_expose_flash = true;
3378     mc->auto_enable_numa_with_memdev = false;
3379 }
3380 DEFINE_VIRT_MACHINE(5, 0)
3381 
3382 static void virt_machine_4_2_options(MachineClass *mc)
3383 {
3384     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3385 
3386     virt_machine_5_0_options(mc);
3387     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3388     vmc->kvm_no_adjvtime = true;
3389 }
3390 DEFINE_VIRT_MACHINE(4, 2)
3391 
3392 static void virt_machine_4_1_options(MachineClass *mc)
3393 {
3394     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3395 
3396     virt_machine_4_2_options(mc);
3397     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3398     vmc->no_ged = true;
3399     mc->auto_enable_numa_with_memhp = false;
3400 }
3401 DEFINE_VIRT_MACHINE(4, 1)
3402 
3403 static void virt_machine_4_0_options(MachineClass *mc)
3404 {
3405     virt_machine_4_1_options(mc);
3406     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3407 }
3408 DEFINE_VIRT_MACHINE(4, 0)
3409 
3410 static void virt_machine_3_1_options(MachineClass *mc)
3411 {
3412     virt_machine_4_0_options(mc);
3413     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3414 }
3415 DEFINE_VIRT_MACHINE(3, 1)
3416 
3417 static void virt_machine_3_0_options(MachineClass *mc)
3418 {
3419     virt_machine_3_1_options(mc);
3420     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3421 }
3422 DEFINE_VIRT_MACHINE(3, 0)
3423 
3424 static void virt_machine_2_12_options(MachineClass *mc)
3425 {
3426     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3427 
3428     virt_machine_3_0_options(mc);
3429     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3430     vmc->no_highmem_ecam = true;
3431     mc->max_cpus = 255;
3432 }
3433 DEFINE_VIRT_MACHINE(2, 12)
3434 
3435 static void virt_machine_2_11_options(MachineClass *mc)
3436 {
3437     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3438 
3439     virt_machine_2_12_options(mc);
3440     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3441     vmc->smbios_old_sys_ver = true;
3442 }
3443 DEFINE_VIRT_MACHINE(2, 11)
3444 
3445 static void virt_machine_2_10_options(MachineClass *mc)
3446 {
3447     virt_machine_2_11_options(mc);
3448     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3449     /* before 2.11 we never faulted accesses to bad addresses */
3450     mc->ignore_memory_transaction_failures = true;
3451 }
3452 DEFINE_VIRT_MACHINE(2, 10)
3453 
3454 static void virt_machine_2_9_options(MachineClass *mc)
3455 {
3456     virt_machine_2_10_options(mc);
3457     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3458 }
3459 DEFINE_VIRT_MACHINE(2, 9)
3460 
3461 static void virt_machine_2_8_options(MachineClass *mc)
3462 {
3463     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3464 
3465     virt_machine_2_9_options(mc);
3466     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3467     /* For 2.8 and earlier we falsely claimed in the DT that
3468      * our timers were edge-triggered, not level-triggered.
3469      */
3470     vmc->claim_edge_triggered_timers = true;
3471 }
3472 DEFINE_VIRT_MACHINE(2, 8)
3473 
3474 static void virt_machine_2_7_options(MachineClass *mc)
3475 {
3476     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3477 
3478     virt_machine_2_8_options(mc);
3479     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3480     /* ITS was introduced with 2.8 */
3481     vmc->no_its = true;
3482     /* Stick with 1K pages for migration compatibility */
3483     mc->minimum_page_bits = 0;
3484 }
3485 DEFINE_VIRT_MACHINE(2, 7)
3486 
3487 static void virt_machine_2_6_options(MachineClass *mc)
3488 {
3489     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3490 
3491     virt_machine_2_7_options(mc);
3492     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3493     vmc->disallow_affinity_adjustment = true;
3494     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3495     vmc->no_pmu = true;
3496 }
3497 DEFINE_VIRT_MACHINE(2, 6)
3498