xref: /openbmc/qemu/hw/arm/virt.c (revision 82c4f87e)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
62 
63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
64     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65                                                     void *data) \
66     { \
67         MachineClass *mc = MACHINE_CLASS(oc); \
68         virt_machine_##major##_##minor##_options(mc); \
69         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
70         if (latest) { \
71             mc->alias = "virt"; \
72         } \
73     } \
74     static const TypeInfo machvirt_##major##_##minor##_info = { \
75         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76         .parent = TYPE_VIRT_MACHINE, \
77         .instance_init = virt_##major##_##minor##_instance_init, \
78         .class_init = virt_##major##_##minor##_class_init, \
79     }; \
80     static void machvirt_machine_##major##_##minor##_init(void) \
81     { \
82         type_register_static(&machvirt_##major##_##minor##_info); \
83     } \
84     type_init(machvirt_machine_##major##_##minor##_init);
85 
86 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88 #define DEFINE_VIRT_MACHINE(major, minor) \
89     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
90 
91 
92 /* Number of external interrupt lines to configure the GIC with */
93 #define NUM_IRQS 256
94 
95 #define PLATFORM_BUS_NUM_IRQS 64
96 
97 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
98  * RAM can go up to the 256GB mark, leaving 256GB of the physical
99  * address space unallocated and free for future use between 256G and 512G.
100  * If we need to provide more RAM to VMs in the future then we need to:
101  *  * allocate a second bank of RAM starting at 2TB and working up
102  *  * fix the DT and ACPI table generation code in QEMU to correctly
103  *    report two split lumps of RAM to the guest
104  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
105  * (We don't want to fill all the way up to 512GB with RAM because
106  * we might want it for non-RAM purposes later. Conversely it seems
107  * reasonable to assume that anybody configuring a VM with a quarter
108  * of a terabyte of RAM will be doing it on a host with more than a
109  * terabyte of physical address space.)
110  */
111 #define RAMLIMIT_GB 255
112 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 
114 /* Addresses and sizes of our components.
115  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
116  * 128MB..256MB is used for miscellaneous device I/O.
117  * 256MB..1GB is reserved for possible future PCI support (ie where the
118  * PCI memory window will go if we add a PCI host controller).
119  * 1GB and up is RAM (which may happily spill over into the
120  * high memory region beyond 4GB).
121  * This represents a compromise between how much RAM can be given to
122  * a 32 bit VM and leaving space for expansion and in particular for PCI.
123  * Note that devices should generally be placed at multiples of 0x10000,
124  * to accommodate guests using 64K pages.
125  */
126 static const MemMapEntry a15memmap[] = {
127     /* Space up to 0x8000000 is reserved for a boot ROM */
128     [VIRT_FLASH] =              {          0, 0x08000000 },
129     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
130     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
131     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
132     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
133     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
134     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
136     /* This redistributor space allows up to 2*64kB*123 CPUs */
137     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
138     [VIRT_UART] =               { 0x09000000, 0x00001000 },
139     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
140     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
141     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
142     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
143     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
144     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
145     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
147     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
148     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
149     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
150     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
151     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
152     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
153     [VIRT_GIC_REDIST2] =        { 0x4000000000ULL, 0x4000000 },
154     [VIRT_PCIE_ECAM_HIGH] =     { 0x4010000000ULL, 0x10000000 },
155     /* Second PCIe window, 512GB wide at the 512GB boundary */
156     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
157 };
158 
159 static const int a15irqmap[] = {
160     [VIRT_UART] = 1,
161     [VIRT_RTC] = 2,
162     [VIRT_PCIE] = 3, /* ... to 6 */
163     [VIRT_GPIO] = 7,
164     [VIRT_SECURE_UART] = 8,
165     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
168     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
169 };
170 
171 static const char *valid_cpus[] = {
172     ARM_CPU_TYPE_NAME("cortex-a15"),
173     ARM_CPU_TYPE_NAME("cortex-a53"),
174     ARM_CPU_TYPE_NAME("cortex-a57"),
175     ARM_CPU_TYPE_NAME("host"),
176     ARM_CPU_TYPE_NAME("max"),
177 };
178 
179 static bool cpu_type_valid(const char *cpu)
180 {
181     int i;
182 
183     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
184         if (strcmp(cpu, valid_cpus[i]) == 0) {
185             return true;
186         }
187     }
188     return false;
189 }
190 
191 static void create_fdt(VirtMachineState *vms)
192 {
193     void *fdt = create_device_tree(&vms->fdt_size);
194 
195     if (!fdt) {
196         error_report("create_device_tree() failed");
197         exit(1);
198     }
199 
200     vms->fdt = fdt;
201 
202     /* Header */
203     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
204     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
205     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
206 
207     /*
208      * /chosen and /memory nodes must exist for load_dtb
209      * to fill in necessary properties later
210      */
211     qemu_fdt_add_subnode(fdt, "/chosen");
212     qemu_fdt_add_subnode(fdt, "/memory");
213     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
214 
215     /* Clock node, for the benefit of the UART. The kernel device tree
216      * binding documentation claims the PL011 node clock properties are
217      * optional but in practice if you omit them the kernel refuses to
218      * probe for the device.
219      */
220     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
221     qemu_fdt_add_subnode(fdt, "/apb-pclk");
222     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
223     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
224     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
225     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
226                                 "clk24mhz");
227     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
228 
229     if (have_numa_distance) {
230         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
231         uint32_t *matrix = g_malloc0(size);
232         int idx, i, j;
233 
234         for (i = 0; i < nb_numa_nodes; i++) {
235             for (j = 0; j < nb_numa_nodes; j++) {
236                 idx = (i * nb_numa_nodes + j) * 3;
237                 matrix[idx + 0] = cpu_to_be32(i);
238                 matrix[idx + 1] = cpu_to_be32(j);
239                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
240             }
241         }
242 
243         qemu_fdt_add_subnode(fdt, "/distance-map");
244         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
245                                 "numa-distance-map-v1");
246         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
247                          matrix, size);
248         g_free(matrix);
249     }
250 }
251 
252 static void fdt_add_timer_nodes(const VirtMachineState *vms)
253 {
254     /* On real hardware these interrupts are level-triggered.
255      * On KVM they were edge-triggered before host kernel version 4.4,
256      * and level-triggered afterwards.
257      * On emulated QEMU they are level-triggered.
258      *
259      * Getting the DTB info about them wrong is awkward for some
260      * guest kernels:
261      *  pre-4.8 ignore the DT and leave the interrupt configured
262      *   with whatever the GIC reset value (or the bootloader) left it at
263      *  4.8 before rc6 honour the incorrect data by programming it back
264      *   into the GIC, causing problems
265      *  4.8rc6 and later ignore the DT and always write "level triggered"
266      *   into the GIC
267      *
268      * For backwards-compatibility, virt-2.8 and earlier will continue
269      * to say these are edge-triggered, but later machines will report
270      * the correct information.
271      */
272     ARMCPU *armcpu;
273     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
274     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
275 
276     if (vmc->claim_edge_triggered_timers) {
277         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
278     }
279 
280     if (vms->gic_version == 2) {
281         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
282                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
283                              (1 << vms->smp_cpus) - 1);
284     }
285 
286     qemu_fdt_add_subnode(vms->fdt, "/timer");
287 
288     armcpu = ARM_CPU(qemu_get_cpu(0));
289     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
290         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
291         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
292                          compat, sizeof(compat));
293     } else {
294         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
295                                 "arm,armv7-timer");
296     }
297     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
298     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
299                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
300                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
301                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
302                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
303 }
304 
305 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
306 {
307     int cpu;
308     int addr_cells = 1;
309     const MachineState *ms = MACHINE(vms);
310 
311     /*
312      * From Documentation/devicetree/bindings/arm/cpus.txt
313      *  On ARM v8 64-bit systems value should be set to 2,
314      *  that corresponds to the MPIDR_EL1 register size.
315      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
316      *  in the system, #address-cells can be set to 1, since
317      *  MPIDR_EL1[63:32] bits are not used for CPUs
318      *  identification.
319      *
320      *  Here we actually don't know whether our system is 32- or 64-bit one.
321      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
322      *  at least one of them has Aff3 populated, we set #address-cells to 2.
323      */
324     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
325         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
326 
327         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
328             addr_cells = 2;
329             break;
330         }
331     }
332 
333     qemu_fdt_add_subnode(vms->fdt, "/cpus");
334     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
335     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
336 
337     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
338         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
339         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
340         CPUState *cs = CPU(armcpu);
341 
342         qemu_fdt_add_subnode(vms->fdt, nodename);
343         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
344         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
345                                     armcpu->dtb_compatible);
346 
347         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
348             && vms->smp_cpus > 1) {
349             qemu_fdt_setprop_string(vms->fdt, nodename,
350                                         "enable-method", "psci");
351         }
352 
353         if (addr_cells == 2) {
354             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
355                                  armcpu->mp_affinity);
356         } else {
357             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
358                                   armcpu->mp_affinity);
359         }
360 
361         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
362             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
363                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
364         }
365 
366         g_free(nodename);
367     }
368 }
369 
370 static void fdt_add_its_gic_node(VirtMachineState *vms)
371 {
372     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
373     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
374     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
375                             "arm,gic-v3-its");
376     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
377     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
378                                  2, vms->memmap[VIRT_GIC_ITS].base,
379                                  2, vms->memmap[VIRT_GIC_ITS].size);
380     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
381 }
382 
383 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
384 {
385     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
386     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
387     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
388                             "arm,gic-v2m-frame");
389     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
390     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
391                                  2, vms->memmap[VIRT_GIC_V2M].base,
392                                  2, vms->memmap[VIRT_GIC_V2M].size);
393     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
394 }
395 
396 static void fdt_add_gic_node(VirtMachineState *vms)
397 {
398     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
399     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
400 
401     qemu_fdt_add_subnode(vms->fdt, "/intc");
402     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
403     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
404     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
405     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
406     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
407     if (vms->gic_version == 3) {
408         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
409 
410         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
411                                 "arm,gic-v3");
412 
413         qemu_fdt_setprop_cell(vms->fdt, "/intc",
414                               "#redistributor-regions", nb_redist_regions);
415 
416         if (nb_redist_regions == 1) {
417             qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
418                                          2, vms->memmap[VIRT_GIC_DIST].base,
419                                          2, vms->memmap[VIRT_GIC_DIST].size,
420                                          2, vms->memmap[VIRT_GIC_REDIST].base,
421                                          2, vms->memmap[VIRT_GIC_REDIST].size);
422         } else {
423             qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
424                                          2, vms->memmap[VIRT_GIC_DIST].base,
425                                          2, vms->memmap[VIRT_GIC_DIST].size,
426                                          2, vms->memmap[VIRT_GIC_REDIST].base,
427                                          2, vms->memmap[VIRT_GIC_REDIST].size,
428                                          2, vms->memmap[VIRT_GIC_REDIST2].base,
429                                          2, vms->memmap[VIRT_GIC_REDIST2].size);
430         }
431 
432         if (vms->virt) {
433             qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
434                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
435                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
436         }
437     } else {
438         /* 'cortex-a15-gic' means 'GIC v2' */
439         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
440                                 "arm,cortex-a15-gic");
441         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
442                                       2, vms->memmap[VIRT_GIC_DIST].base,
443                                       2, vms->memmap[VIRT_GIC_DIST].size,
444                                       2, vms->memmap[VIRT_GIC_CPU].base,
445                                       2, vms->memmap[VIRT_GIC_CPU].size);
446     }
447 
448     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
449 }
450 
451 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
452 {
453     CPUState *cpu;
454     ARMCPU *armcpu;
455     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
456 
457     CPU_FOREACH(cpu) {
458         armcpu = ARM_CPU(cpu);
459         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
460             return;
461         }
462         if (kvm_enabled()) {
463             if (kvm_irqchip_in_kernel()) {
464                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
465             }
466             kvm_arm_pmu_init(cpu);
467         }
468     }
469 
470     if (vms->gic_version == 2) {
471         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
472                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
473                              (1 << vms->smp_cpus) - 1);
474     }
475 
476     armcpu = ARM_CPU(qemu_get_cpu(0));
477     qemu_fdt_add_subnode(vms->fdt, "/pmu");
478     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
479         const char compat[] = "arm,armv8-pmuv3";
480         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
481                          compat, sizeof(compat));
482         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
483                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
484     }
485 }
486 
487 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
488 {
489     const char *itsclass = its_class_name();
490     DeviceState *dev;
491 
492     if (!itsclass) {
493         /* Do nothing if not supported */
494         return;
495     }
496 
497     dev = qdev_create(NULL, itsclass);
498 
499     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
500                              &error_abort);
501     qdev_init_nofail(dev);
502     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
503 
504     fdt_add_its_gic_node(vms);
505 }
506 
507 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
508 {
509     int i;
510     int irq = vms->irqmap[VIRT_GIC_V2M];
511     DeviceState *dev;
512 
513     dev = qdev_create(NULL, "arm-gicv2m");
514     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
515     qdev_prop_set_uint32(dev, "base-spi", irq);
516     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
517     qdev_init_nofail(dev);
518 
519     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
520         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
521     }
522 
523     fdt_add_v2m_gic_node(vms);
524 }
525 
526 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
527 {
528     /* We create a standalone GIC */
529     DeviceState *gicdev;
530     SysBusDevice *gicbusdev;
531     const char *gictype;
532     int type = vms->gic_version, i;
533     uint32_t nb_redist_regions = 0;
534 
535     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
536 
537     gicdev = qdev_create(NULL, gictype);
538     qdev_prop_set_uint32(gicdev, "revision", type);
539     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
540     /* Note that the num-irq property counts both internal and external
541      * interrupts; there are always 32 of the former (mandated by GIC spec).
542      */
543     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
544     if (!kvm_irqchip_in_kernel()) {
545         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
546     }
547 
548     if (type == 3) {
549         uint32_t redist0_capacity =
550                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
551         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
552 
553         nb_redist_regions = virt_gicv3_redist_region_count(vms);
554 
555         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
556                              nb_redist_regions);
557         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
558 
559         if (nb_redist_regions == 2) {
560             uint32_t redist1_capacity =
561                         vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
562 
563             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
564                 MIN(smp_cpus - redist0_count, redist1_capacity));
565         }
566     }
567     qdev_init_nofail(gicdev);
568     gicbusdev = SYS_BUS_DEVICE(gicdev);
569     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
570     if (type == 3) {
571         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
572         if (nb_redist_regions == 2) {
573             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
574         }
575     } else {
576         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
577     }
578 
579     /* Wire the outputs from each CPU's generic timer and the GICv3
580      * maintenance interrupt signal to the appropriate GIC PPI inputs,
581      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
582      */
583     for (i = 0; i < smp_cpus; i++) {
584         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
585         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
586         int irq;
587         /* Mapping from the output timer irq lines from the CPU to the
588          * GIC PPI inputs we use for the virt board.
589          */
590         const int timer_irq[] = {
591             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
592             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
593             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
594             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
595         };
596 
597         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
598             qdev_connect_gpio_out(cpudev, irq,
599                                   qdev_get_gpio_in(gicdev,
600                                                    ppibase + timer_irq[irq]));
601         }
602 
603         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
604                                     qdev_get_gpio_in(gicdev, ppibase
605                                                      + ARCH_GICV3_MAINT_IRQ));
606         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
607                                     qdev_get_gpio_in(gicdev, ppibase
608                                                      + VIRTUAL_PMU_IRQ));
609 
610         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
611         sysbus_connect_irq(gicbusdev, i + smp_cpus,
612                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
613         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
614                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
615         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
616                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
617     }
618 
619     for (i = 0; i < NUM_IRQS; i++) {
620         pic[i] = qdev_get_gpio_in(gicdev, i);
621     }
622 
623     fdt_add_gic_node(vms);
624 
625     if (type == 3 && vms->its) {
626         create_its(vms, gicdev);
627     } else if (type == 2) {
628         create_v2m(vms, pic);
629     }
630 }
631 
632 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
633                         MemoryRegion *mem, Chardev *chr)
634 {
635     char *nodename;
636     hwaddr base = vms->memmap[uart].base;
637     hwaddr size = vms->memmap[uart].size;
638     int irq = vms->irqmap[uart];
639     const char compat[] = "arm,pl011\0arm,primecell";
640     const char clocknames[] = "uartclk\0apb_pclk";
641     DeviceState *dev = qdev_create(NULL, "pl011");
642     SysBusDevice *s = SYS_BUS_DEVICE(dev);
643 
644     qdev_prop_set_chr(dev, "chardev", chr);
645     qdev_init_nofail(dev);
646     memory_region_add_subregion(mem, base,
647                                 sysbus_mmio_get_region(s, 0));
648     sysbus_connect_irq(s, 0, pic[irq]);
649 
650     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
651     qemu_fdt_add_subnode(vms->fdt, nodename);
652     /* Note that we can't use setprop_string because of the embedded NUL */
653     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
654                          compat, sizeof(compat));
655     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
656                                      2, base, 2, size);
657     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
658                                GIC_FDT_IRQ_TYPE_SPI, irq,
659                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
660     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
661                                vms->clock_phandle, vms->clock_phandle);
662     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
663                          clocknames, sizeof(clocknames));
664 
665     if (uart == VIRT_UART) {
666         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
667     } else {
668         /* Mark as not usable by the normal world */
669         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
670         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
671     }
672 
673     g_free(nodename);
674 }
675 
676 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
677 {
678     char *nodename;
679     hwaddr base = vms->memmap[VIRT_RTC].base;
680     hwaddr size = vms->memmap[VIRT_RTC].size;
681     int irq = vms->irqmap[VIRT_RTC];
682     const char compat[] = "arm,pl031\0arm,primecell";
683 
684     sysbus_create_simple("pl031", base, pic[irq]);
685 
686     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
687     qemu_fdt_add_subnode(vms->fdt, nodename);
688     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
689     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
690                                  2, base, 2, size);
691     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
692                            GIC_FDT_IRQ_TYPE_SPI, irq,
693                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
694     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
695     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
696     g_free(nodename);
697 }
698 
699 static DeviceState *gpio_key_dev;
700 static void virt_powerdown_req(Notifier *n, void *opaque)
701 {
702     /* use gpio Pin 3 for power button event */
703     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
704 }
705 
706 static Notifier virt_system_powerdown_notifier = {
707     .notify = virt_powerdown_req
708 };
709 
710 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
711 {
712     char *nodename;
713     DeviceState *pl061_dev;
714     hwaddr base = vms->memmap[VIRT_GPIO].base;
715     hwaddr size = vms->memmap[VIRT_GPIO].size;
716     int irq = vms->irqmap[VIRT_GPIO];
717     const char compat[] = "arm,pl061\0arm,primecell";
718 
719     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
720 
721     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
722     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
723     qemu_fdt_add_subnode(vms->fdt, nodename);
724     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
725                                  2, base, 2, size);
726     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
727     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
728     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
729     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
730                            GIC_FDT_IRQ_TYPE_SPI, irq,
731                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
732     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
733     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
734     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
735 
736     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
737                                         qdev_get_gpio_in(pl061_dev, 3));
738     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
739     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
740     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
741     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
742 
743     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
744     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
745                             "label", "GPIO Key Poweroff");
746     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
747                           KEY_POWER);
748     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
749                            "gpios", phandle, 3, 0);
750 
751     /* connect powerdown request */
752     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
753 
754     g_free(nodename);
755 }
756 
757 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
758 {
759     int i;
760     hwaddr size = vms->memmap[VIRT_MMIO].size;
761 
762     /* We create the transports in forwards order. Since qbus_realize()
763      * prepends (not appends) new child buses, the incrementing loop below will
764      * create a list of virtio-mmio buses with decreasing base addresses.
765      *
766      * When a -device option is processed from the command line,
767      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
768      * order. The upshot is that -device options in increasing command line
769      * order are mapped to virtio-mmio buses with decreasing base addresses.
770      *
771      * When this code was originally written, that arrangement ensured that the
772      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
773      * the first -device on the command line. (The end-to-end order is a
774      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
775      * guest kernel's name-to-address assignment strategy.)
776      *
777      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
778      * the message, if not necessarily the code, of commit 70161ff336.
779      * Therefore the loop now establishes the inverse of the original intent.
780      *
781      * Unfortunately, we can't counteract the kernel change by reversing the
782      * loop; it would break existing command lines.
783      *
784      * In any case, the kernel makes no guarantee about the stability of
785      * enumeration order of virtio devices (as demonstrated by it changing
786      * between kernel versions). For reliable and stable identification
787      * of disks users must use UUIDs or similar mechanisms.
788      */
789     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
790         int irq = vms->irqmap[VIRT_MMIO] + i;
791         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
792 
793         sysbus_create_simple("virtio-mmio", base, pic[irq]);
794     }
795 
796     /* We add dtb nodes in reverse order so that they appear in the finished
797      * device tree lowest address first.
798      *
799      * Note that this mapping is independent of the loop above. The previous
800      * loop influences virtio device to virtio transport assignment, whereas
801      * this loop controls how virtio transports are laid out in the dtb.
802      */
803     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
804         char *nodename;
805         int irq = vms->irqmap[VIRT_MMIO] + i;
806         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
807 
808         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
809         qemu_fdt_add_subnode(vms->fdt, nodename);
810         qemu_fdt_setprop_string(vms->fdt, nodename,
811                                 "compatible", "virtio,mmio");
812         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
813                                      2, base, 2, size);
814         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
815                                GIC_FDT_IRQ_TYPE_SPI, irq,
816                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
817         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
818         g_free(nodename);
819     }
820 }
821 
822 static void create_one_flash(const char *name, hwaddr flashbase,
823                              hwaddr flashsize, const char *file,
824                              MemoryRegion *sysmem)
825 {
826     /* Create and map a single flash device. We use the same
827      * parameters as the flash devices on the Versatile Express board.
828      */
829     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
830     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
831     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
832     const uint64_t sectorlength = 256 * 1024;
833 
834     if (dinfo) {
835         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
836                             &error_abort);
837     }
838 
839     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
840     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
841     qdev_prop_set_uint8(dev, "width", 4);
842     qdev_prop_set_uint8(dev, "device-width", 2);
843     qdev_prop_set_bit(dev, "big-endian", false);
844     qdev_prop_set_uint16(dev, "id0", 0x89);
845     qdev_prop_set_uint16(dev, "id1", 0x18);
846     qdev_prop_set_uint16(dev, "id2", 0x00);
847     qdev_prop_set_uint16(dev, "id3", 0x00);
848     qdev_prop_set_string(dev, "name", name);
849     qdev_init_nofail(dev);
850 
851     memory_region_add_subregion(sysmem, flashbase,
852                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
853 
854     if (file) {
855         char *fn;
856         int image_size;
857 
858         if (drive_get(IF_PFLASH, 0, 0)) {
859             error_report("The contents of the first flash device may be "
860                          "specified with -bios or with -drive if=pflash... "
861                          "but you cannot use both options at once");
862             exit(1);
863         }
864         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
865         if (!fn) {
866             error_report("Could not find ROM image '%s'", file);
867             exit(1);
868         }
869         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
870         g_free(fn);
871         if (image_size < 0) {
872             error_report("Could not load ROM image '%s'", file);
873             exit(1);
874         }
875     }
876 }
877 
878 static void create_flash(const VirtMachineState *vms,
879                          MemoryRegion *sysmem,
880                          MemoryRegion *secure_sysmem)
881 {
882     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
883      * Any file passed via -bios goes in the first of these.
884      * sysmem is the system memory space. secure_sysmem is the secure view
885      * of the system, and the first flash device should be made visible only
886      * there. The second flash device is visible to both secure and nonsecure.
887      * If sysmem == secure_sysmem this means there is no separate Secure
888      * address space and both flash devices are generally visible.
889      */
890     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
891     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
892     char *nodename;
893 
894     create_one_flash("virt.flash0", flashbase, flashsize,
895                      bios_name, secure_sysmem);
896     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
897                      NULL, sysmem);
898 
899     if (sysmem == secure_sysmem) {
900         /* Report both flash devices as a single node in the DT */
901         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
902         qemu_fdt_add_subnode(vms->fdt, nodename);
903         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
904         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
905                                      2, flashbase, 2, flashsize,
906                                      2, flashbase + flashsize, 2, flashsize);
907         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
908         g_free(nodename);
909     } else {
910         /* Report the devices as separate nodes so we can mark one as
911          * only visible to the secure world.
912          */
913         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
914         qemu_fdt_add_subnode(vms->fdt, nodename);
915         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
916         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
917                                      2, flashbase, 2, flashsize);
918         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
919         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
920         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
921         g_free(nodename);
922 
923         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
924         qemu_fdt_add_subnode(vms->fdt, nodename);
925         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
926         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
927                                      2, flashbase + flashsize, 2, flashsize);
928         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
929         g_free(nodename);
930     }
931 }
932 
933 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
934 {
935     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
936     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
937     FWCfgState *fw_cfg;
938     char *nodename;
939 
940     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
941     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
942 
943     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
944     qemu_fdt_add_subnode(vms->fdt, nodename);
945     qemu_fdt_setprop_string(vms->fdt, nodename,
946                             "compatible", "qemu,fw-cfg-mmio");
947     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
948                                  2, base, 2, size);
949     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
950     g_free(nodename);
951     return fw_cfg;
952 }
953 
954 static void create_pcie_irq_map(const VirtMachineState *vms,
955                                 uint32_t gic_phandle,
956                                 int first_irq, const char *nodename)
957 {
958     int devfn, pin;
959     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
960     uint32_t *irq_map = full_irq_map;
961 
962     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
963         for (pin = 0; pin < 4; pin++) {
964             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
965             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
966             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
967             int i;
968 
969             uint32_t map[] = {
970                 devfn << 8, 0, 0,                           /* devfn */
971                 pin + 1,                                    /* PCI pin */
972                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
973 
974             /* Convert map to big endian */
975             for (i = 0; i < 10; i++) {
976                 irq_map[i] = cpu_to_be32(map[i]);
977             }
978             irq_map += 10;
979         }
980     }
981 
982     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
983                      full_irq_map, sizeof(full_irq_map));
984 
985     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
986                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
987                            0x7           /* PCI irq */);
988 }
989 
990 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
991                         PCIBus *bus)
992 {
993     char *node;
994     const char compat[] = "arm,smmu-v3";
995     int irq =  vms->irqmap[VIRT_SMMU];
996     int i;
997     hwaddr base = vms->memmap[VIRT_SMMU].base;
998     hwaddr size = vms->memmap[VIRT_SMMU].size;
999     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1000     DeviceState *dev;
1001 
1002     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1003         return;
1004     }
1005 
1006     dev = qdev_create(NULL, "arm-smmuv3");
1007 
1008     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1009                              &error_abort);
1010     qdev_init_nofail(dev);
1011     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1012     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1013         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1014     }
1015 
1016     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1017     qemu_fdt_add_subnode(vms->fdt, node);
1018     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1019     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1020 
1021     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1022             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1023             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1024             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1025             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1026 
1027     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1028                      sizeof(irq_names));
1029 
1030     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1031     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1032     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1033 
1034     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1035 
1036     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1037     g_free(node);
1038 }
1039 
1040 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1041 {
1042     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1043     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1044     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1045     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1046     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1047     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1048     hwaddr base_ecam, size_ecam;
1049     hwaddr base = base_mmio;
1050     int nr_pcie_buses;
1051     int irq = vms->irqmap[VIRT_PCIE];
1052     MemoryRegion *mmio_alias;
1053     MemoryRegion *mmio_reg;
1054     MemoryRegion *ecam_alias;
1055     MemoryRegion *ecam_reg;
1056     DeviceState *dev;
1057     char *nodename;
1058     int i, ecam_id;
1059     PCIHostState *pci;
1060 
1061     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1062     qdev_init_nofail(dev);
1063 
1064     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1065     base_ecam = vms->memmap[ecam_id].base;
1066     size_ecam = vms->memmap[ecam_id].size;
1067     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1068     /* Map only the first size_ecam bytes of ECAM space */
1069     ecam_alias = g_new0(MemoryRegion, 1);
1070     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1071     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1072                              ecam_reg, 0, size_ecam);
1073     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1074 
1075     /* Map the MMIO window into system address space so as to expose
1076      * the section of PCI MMIO space which starts at the same base address
1077      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1078      * the window).
1079      */
1080     mmio_alias = g_new0(MemoryRegion, 1);
1081     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1082     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1083                              mmio_reg, base_mmio, size_mmio);
1084     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1085 
1086     if (vms->highmem) {
1087         /* Map high MMIO space */
1088         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1089 
1090         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1091                                  mmio_reg, base_mmio_high, size_mmio_high);
1092         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1093                                     high_mmio_alias);
1094     }
1095 
1096     /* Map IO port space */
1097     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1098 
1099     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1100         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1101         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1102     }
1103 
1104     pci = PCI_HOST_BRIDGE(dev);
1105     if (pci->bus) {
1106         for (i = 0; i < nb_nics; i++) {
1107             NICInfo *nd = &nd_table[i];
1108 
1109             if (!nd->model) {
1110                 nd->model = g_strdup("virtio");
1111             }
1112 
1113             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1114         }
1115     }
1116 
1117     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1118     qemu_fdt_add_subnode(vms->fdt, nodename);
1119     qemu_fdt_setprop_string(vms->fdt, nodename,
1120                             "compatible", "pci-host-ecam-generic");
1121     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1122     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1123     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1124     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1125     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1126                            nr_pcie_buses - 1);
1127     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1128 
1129     if (vms->msi_phandle) {
1130         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1131                                vms->msi_phandle);
1132     }
1133 
1134     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1135                                  2, base_ecam, 2, size_ecam);
1136 
1137     if (vms->highmem) {
1138         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1139                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1140                                      2, base_pio, 2, size_pio,
1141                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1142                                      2, base_mmio, 2, size_mmio,
1143                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1144                                      2, base_mmio_high,
1145                                      2, base_mmio_high, 2, size_mmio_high);
1146     } else {
1147         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1148                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1149                                      2, base_pio, 2, size_pio,
1150                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1151                                      2, base_mmio, 2, size_mmio);
1152     }
1153 
1154     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1155     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1156 
1157     if (vms->iommu) {
1158         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1159 
1160         create_smmu(vms, pic, pci->bus);
1161 
1162         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1163                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1164     }
1165 
1166     g_free(nodename);
1167 }
1168 
1169 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1170 {
1171     DeviceState *dev;
1172     SysBusDevice *s;
1173     int i;
1174     MemoryRegion *sysmem = get_system_memory();
1175 
1176     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1177     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1178     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1179     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1180     qdev_init_nofail(dev);
1181     vms->platform_bus_dev = dev;
1182 
1183     s = SYS_BUS_DEVICE(dev);
1184     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1185         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1186         sysbus_connect_irq(s, i, pic[irqn]);
1187     }
1188 
1189     memory_region_add_subregion(sysmem,
1190                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1191                                 sysbus_mmio_get_region(s, 0));
1192 }
1193 
1194 static void create_secure_ram(VirtMachineState *vms,
1195                               MemoryRegion *secure_sysmem)
1196 {
1197     MemoryRegion *secram = g_new(MemoryRegion, 1);
1198     char *nodename;
1199     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1200     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1201 
1202     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1203                            &error_fatal);
1204     memory_region_add_subregion(secure_sysmem, base, secram);
1205 
1206     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1207     qemu_fdt_add_subnode(vms->fdt, nodename);
1208     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1209     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1210     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1211     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1212 
1213     g_free(nodename);
1214 }
1215 
1216 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1217 {
1218     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1219                                                  bootinfo);
1220 
1221     *fdt_size = board->fdt_size;
1222     return board->fdt;
1223 }
1224 
1225 static void virt_build_smbios(VirtMachineState *vms)
1226 {
1227     MachineClass *mc = MACHINE_GET_CLASS(vms);
1228     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1229     uint8_t *smbios_tables, *smbios_anchor;
1230     size_t smbios_tables_len, smbios_anchor_len;
1231     const char *product = "QEMU Virtual Machine";
1232 
1233     if (!vms->fw_cfg) {
1234         return;
1235     }
1236 
1237     if (kvm_enabled()) {
1238         product = "KVM Virtual Machine";
1239     }
1240 
1241     smbios_set_defaults("QEMU", product,
1242                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1243                         true, SMBIOS_ENTRY_POINT_30);
1244 
1245     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1246                       &smbios_anchor, &smbios_anchor_len);
1247 
1248     if (smbios_anchor) {
1249         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1250                         smbios_tables, smbios_tables_len);
1251         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1252                         smbios_anchor, smbios_anchor_len);
1253     }
1254 }
1255 
1256 static
1257 void virt_machine_done(Notifier *notifier, void *data)
1258 {
1259     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1260                                          machine_done);
1261     ARMCPU *cpu = ARM_CPU(first_cpu);
1262     struct arm_boot_info *info = &vms->bootinfo;
1263     AddressSpace *as = arm_boot_address_space(cpu, info);
1264 
1265     /*
1266      * If the user provided a dtb, we assume the dynamic sysbus nodes
1267      * already are integrated there. This corresponds to a use case where
1268      * the dynamic sysbus nodes are complex and their generation is not yet
1269      * supported. In that case the user can take charge of the guest dt
1270      * while qemu takes charge of the qom stuff.
1271      */
1272     if (info->dtb_filename == NULL) {
1273         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1274                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1275                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1276                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1277     }
1278     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1279         exit(1);
1280     }
1281 
1282     virt_acpi_setup(vms);
1283     virt_build_smbios(vms);
1284 }
1285 
1286 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1287 {
1288     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1289     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1290 
1291     if (!vmc->disallow_affinity_adjustment) {
1292         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1293          * GIC's target-list limitations. 32-bit KVM hosts currently
1294          * always create clusters of 4 CPUs, but that is expected to
1295          * change when they gain support for gicv3. When KVM is enabled
1296          * it will override the changes we make here, therefore our
1297          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1298          * and to improve SGI efficiency.
1299          */
1300         if (vms->gic_version == 3) {
1301             clustersz = GICV3_TARGETLIST_BITS;
1302         } else {
1303             clustersz = GIC_TARGETLIST_BITS;
1304         }
1305     }
1306     return arm_cpu_mp_affinity(idx, clustersz);
1307 }
1308 
1309 static void machvirt_init(MachineState *machine)
1310 {
1311     VirtMachineState *vms = VIRT_MACHINE(machine);
1312     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1313     MachineClass *mc = MACHINE_GET_CLASS(machine);
1314     const CPUArchIdList *possible_cpus;
1315     qemu_irq pic[NUM_IRQS];
1316     MemoryRegion *sysmem = get_system_memory();
1317     MemoryRegion *secure_sysmem = NULL;
1318     int n, virt_max_cpus;
1319     MemoryRegion *ram = g_new(MemoryRegion, 1);
1320     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1321     bool aarch64 = true;
1322 
1323     /* We can probe only here because during property set
1324      * KVM is not available yet
1325      */
1326     if (vms->gic_version <= 0) {
1327         /* "host" or "max" */
1328         if (!kvm_enabled()) {
1329             if (vms->gic_version == 0) {
1330                 error_report("gic-version=host requires KVM");
1331                 exit(1);
1332             } else {
1333                 /* "max": currently means 3 for TCG */
1334                 vms->gic_version = 3;
1335             }
1336         } else {
1337             vms->gic_version = kvm_arm_vgic_probe();
1338             if (!vms->gic_version) {
1339                 error_report(
1340                     "Unable to determine GIC version supported by host");
1341                 exit(1);
1342             }
1343         }
1344     }
1345 
1346     if (!cpu_type_valid(machine->cpu_type)) {
1347         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1348         exit(1);
1349     }
1350 
1351     /* If we have an EL3 boot ROM then the assumption is that it will
1352      * implement PSCI itself, so disable QEMU's internal implementation
1353      * so it doesn't get in the way. Instead of starting secondary
1354      * CPUs in PSCI powerdown state we will start them all running and
1355      * let the boot ROM sort them out.
1356      * The usual case is that we do use QEMU's PSCI implementation;
1357      * if the guest has EL2 then we will use SMC as the conduit,
1358      * and otherwise we will use HVC (for backwards compatibility and
1359      * because if we're using KVM then we must use HVC).
1360      */
1361     if (vms->secure && firmware_loaded) {
1362         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1363     } else if (vms->virt) {
1364         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1365     } else {
1366         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1367     }
1368 
1369     /* The maximum number of CPUs depends on the GIC version, or on how
1370      * many redistributors we can fit into the memory map.
1371      */
1372     if (vms->gic_version == 3) {
1373         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1374         virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1375     } else {
1376         virt_max_cpus = GIC_NCPU;
1377     }
1378 
1379     if (max_cpus > virt_max_cpus) {
1380         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1381                      "supported by machine 'mach-virt' (%d)",
1382                      max_cpus, virt_max_cpus);
1383         exit(1);
1384     }
1385 
1386     vms->smp_cpus = smp_cpus;
1387 
1388     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1389         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1390         exit(1);
1391     }
1392 
1393     if (vms->virt && kvm_enabled()) {
1394         error_report("mach-virt: KVM does not support providing "
1395                      "Virtualization extensions to the guest CPU");
1396         exit(1);
1397     }
1398 
1399     if (vms->secure) {
1400         if (kvm_enabled()) {
1401             error_report("mach-virt: KVM does not support Security extensions");
1402             exit(1);
1403         }
1404 
1405         /* The Secure view of the world is the same as the NonSecure,
1406          * but with a few extra devices. Create it as a container region
1407          * containing the system memory at low priority; any secure-only
1408          * devices go in at higher priority and take precedence.
1409          */
1410         secure_sysmem = g_new(MemoryRegion, 1);
1411         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1412                            UINT64_MAX);
1413         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1414     }
1415 
1416     create_fdt(vms);
1417 
1418     possible_cpus = mc->possible_cpu_arch_ids(machine);
1419     for (n = 0; n < possible_cpus->len; n++) {
1420         Object *cpuobj;
1421         CPUState *cs;
1422 
1423         if (n >= smp_cpus) {
1424             break;
1425         }
1426 
1427         cpuobj = object_new(possible_cpus->cpus[n].type);
1428         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1429                                 "mp-affinity", NULL);
1430 
1431         cs = CPU(cpuobj);
1432         cs->cpu_index = n;
1433 
1434         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1435                           &error_fatal);
1436 
1437         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1438 
1439         if (!vms->secure) {
1440             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1441         }
1442 
1443         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1444             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1445         }
1446 
1447         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1448             object_property_set_int(cpuobj, vms->psci_conduit,
1449                                     "psci-conduit", NULL);
1450 
1451             /* Secondary CPUs start in PSCI powered-down state */
1452             if (n > 0) {
1453                 object_property_set_bool(cpuobj, true,
1454                                          "start-powered-off", NULL);
1455             }
1456         }
1457 
1458         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1459             object_property_set_bool(cpuobj, false, "pmu", NULL);
1460         }
1461 
1462         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1463             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1464                                     "reset-cbar", &error_abort);
1465         }
1466 
1467         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1468                                  &error_abort);
1469         if (vms->secure) {
1470             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1471                                      "secure-memory", &error_abort);
1472         }
1473 
1474         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1475         object_unref(cpuobj);
1476     }
1477     fdt_add_timer_nodes(vms);
1478     fdt_add_cpu_nodes(vms);
1479 
1480     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1481                                          machine->ram_size);
1482     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1483 
1484     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1485 
1486     create_gic(vms, pic);
1487 
1488     fdt_add_pmu_nodes(vms);
1489 
1490     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1491 
1492     if (vms->secure) {
1493         create_secure_ram(vms, secure_sysmem);
1494         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1495     }
1496 
1497     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1498 
1499     create_rtc(vms, pic);
1500 
1501     create_pcie(vms, pic);
1502 
1503     create_gpio(vms, pic);
1504 
1505     /* Create mmio transports, so the user can create virtio backends
1506      * (which will be automatically plugged in to the transports). If
1507      * no backend is created the transport will just sit harmlessly idle.
1508      */
1509     create_virtio_devices(vms, pic);
1510 
1511     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1512     rom_set_fw(vms->fw_cfg);
1513 
1514     create_platform_bus(vms, pic);
1515 
1516     vms->bootinfo.ram_size = machine->ram_size;
1517     vms->bootinfo.kernel_filename = machine->kernel_filename;
1518     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1519     vms->bootinfo.initrd_filename = machine->initrd_filename;
1520     vms->bootinfo.nb_cpus = smp_cpus;
1521     vms->bootinfo.board_id = -1;
1522     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1523     vms->bootinfo.get_dtb = machvirt_dtb;
1524     vms->bootinfo.skip_dtb_autoload = true;
1525     vms->bootinfo.firmware_loaded = firmware_loaded;
1526     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1527 
1528     vms->machine_done.notify = virt_machine_done;
1529     qemu_add_machine_init_done_notifier(&vms->machine_done);
1530 }
1531 
1532 static bool virt_get_secure(Object *obj, Error **errp)
1533 {
1534     VirtMachineState *vms = VIRT_MACHINE(obj);
1535 
1536     return vms->secure;
1537 }
1538 
1539 static void virt_set_secure(Object *obj, bool value, Error **errp)
1540 {
1541     VirtMachineState *vms = VIRT_MACHINE(obj);
1542 
1543     vms->secure = value;
1544 }
1545 
1546 static bool virt_get_virt(Object *obj, Error **errp)
1547 {
1548     VirtMachineState *vms = VIRT_MACHINE(obj);
1549 
1550     return vms->virt;
1551 }
1552 
1553 static void virt_set_virt(Object *obj, bool value, Error **errp)
1554 {
1555     VirtMachineState *vms = VIRT_MACHINE(obj);
1556 
1557     vms->virt = value;
1558 }
1559 
1560 static bool virt_get_highmem(Object *obj, Error **errp)
1561 {
1562     VirtMachineState *vms = VIRT_MACHINE(obj);
1563 
1564     return vms->highmem;
1565 }
1566 
1567 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1568 {
1569     VirtMachineState *vms = VIRT_MACHINE(obj);
1570 
1571     vms->highmem = value;
1572 }
1573 
1574 static bool virt_get_its(Object *obj, Error **errp)
1575 {
1576     VirtMachineState *vms = VIRT_MACHINE(obj);
1577 
1578     return vms->its;
1579 }
1580 
1581 static void virt_set_its(Object *obj, bool value, Error **errp)
1582 {
1583     VirtMachineState *vms = VIRT_MACHINE(obj);
1584 
1585     vms->its = value;
1586 }
1587 
1588 static char *virt_get_gic_version(Object *obj, Error **errp)
1589 {
1590     VirtMachineState *vms = VIRT_MACHINE(obj);
1591     const char *val = vms->gic_version == 3 ? "3" : "2";
1592 
1593     return g_strdup(val);
1594 }
1595 
1596 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1597 {
1598     VirtMachineState *vms = VIRT_MACHINE(obj);
1599 
1600     if (!strcmp(value, "3")) {
1601         vms->gic_version = 3;
1602     } else if (!strcmp(value, "2")) {
1603         vms->gic_version = 2;
1604     } else if (!strcmp(value, "host")) {
1605         vms->gic_version = 0; /* Will probe later */
1606     } else if (!strcmp(value, "max")) {
1607         vms->gic_version = -1; /* Will probe later */
1608     } else {
1609         error_setg(errp, "Invalid gic-version value");
1610         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1611     }
1612 }
1613 
1614 static char *virt_get_iommu(Object *obj, Error **errp)
1615 {
1616     VirtMachineState *vms = VIRT_MACHINE(obj);
1617 
1618     switch (vms->iommu) {
1619     case VIRT_IOMMU_NONE:
1620         return g_strdup("none");
1621     case VIRT_IOMMU_SMMUV3:
1622         return g_strdup("smmuv3");
1623     default:
1624         g_assert_not_reached();
1625     }
1626 }
1627 
1628 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1629 {
1630     VirtMachineState *vms = VIRT_MACHINE(obj);
1631 
1632     if (!strcmp(value, "smmuv3")) {
1633         vms->iommu = VIRT_IOMMU_SMMUV3;
1634     } else if (!strcmp(value, "none")) {
1635         vms->iommu = VIRT_IOMMU_NONE;
1636     } else {
1637         error_setg(errp, "Invalid iommu value");
1638         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1639     }
1640 }
1641 
1642 static CpuInstanceProperties
1643 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1644 {
1645     MachineClass *mc = MACHINE_GET_CLASS(ms);
1646     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1647 
1648     assert(cpu_index < possible_cpus->len);
1649     return possible_cpus->cpus[cpu_index].props;
1650 }
1651 
1652 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1653 {
1654     return idx % nb_numa_nodes;
1655 }
1656 
1657 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1658 {
1659     int n;
1660     VirtMachineState *vms = VIRT_MACHINE(ms);
1661 
1662     if (ms->possible_cpus) {
1663         assert(ms->possible_cpus->len == max_cpus);
1664         return ms->possible_cpus;
1665     }
1666 
1667     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1668                                   sizeof(CPUArchId) * max_cpus);
1669     ms->possible_cpus->len = max_cpus;
1670     for (n = 0; n < ms->possible_cpus->len; n++) {
1671         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1672         ms->possible_cpus->cpus[n].arch_id =
1673             virt_cpu_mp_affinity(vms, n);
1674         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1675         ms->possible_cpus->cpus[n].props.thread_id = n;
1676     }
1677     return ms->possible_cpus;
1678 }
1679 
1680 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1681                                         DeviceState *dev, Error **errp)
1682 {
1683     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1684 
1685     if (vms->platform_bus_dev) {
1686         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1687             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1688                                      SYS_BUS_DEVICE(dev));
1689         }
1690     }
1691 }
1692 
1693 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1694                                                         DeviceState *dev)
1695 {
1696     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1697         return HOTPLUG_HANDLER(machine);
1698     }
1699 
1700     return NULL;
1701 }
1702 
1703 static void virt_machine_class_init(ObjectClass *oc, void *data)
1704 {
1705     MachineClass *mc = MACHINE_CLASS(oc);
1706     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1707 
1708     mc->init = machvirt_init;
1709     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1710      * The value may be reduced later when we have more information about the
1711      * configuration of the particular instance.
1712      */
1713     mc->max_cpus = 512;
1714     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1715     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1716     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1717     mc->block_default_type = IF_VIRTIO;
1718     mc->no_cdrom = 1;
1719     mc->pci_allow_0_address = true;
1720     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1721     mc->minimum_page_bits = 12;
1722     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1723     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1724     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1725     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1726     assert(!mc->get_hotplug_handler);
1727     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1728     hc->plug = virt_machine_device_plug_cb;
1729 }
1730 
1731 static const TypeInfo virt_machine_info = {
1732     .name          = TYPE_VIRT_MACHINE,
1733     .parent        = TYPE_MACHINE,
1734     .abstract      = true,
1735     .instance_size = sizeof(VirtMachineState),
1736     .class_size    = sizeof(VirtMachineClass),
1737     .class_init    = virt_machine_class_init,
1738     .interfaces = (InterfaceInfo[]) {
1739          { TYPE_HOTPLUG_HANDLER },
1740          { }
1741     },
1742 };
1743 
1744 static void machvirt_machine_init(void)
1745 {
1746     type_register_static(&virt_machine_info);
1747 }
1748 type_init(machvirt_machine_init);
1749 
1750 #define VIRT_COMPAT_2_12 \
1751     HW_COMPAT_2_12
1752 
1753 static void virt_3_0_instance_init(Object *obj)
1754 {
1755     VirtMachineState *vms = VIRT_MACHINE(obj);
1756     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1757 
1758     /* EL3 is disabled by default on virt: this makes us consistent
1759      * between KVM and TCG for this board, and it also allows us to
1760      * boot UEFI blobs which assume no TrustZone support.
1761      */
1762     vms->secure = false;
1763     object_property_add_bool(obj, "secure", virt_get_secure,
1764                              virt_set_secure, NULL);
1765     object_property_set_description(obj, "secure",
1766                                     "Set on/off to enable/disable the ARM "
1767                                     "Security Extensions (TrustZone)",
1768                                     NULL);
1769 
1770     /* EL2 is also disabled by default, for similar reasons */
1771     vms->virt = false;
1772     object_property_add_bool(obj, "virtualization", virt_get_virt,
1773                              virt_set_virt, NULL);
1774     object_property_set_description(obj, "virtualization",
1775                                     "Set on/off to enable/disable emulating a "
1776                                     "guest CPU which implements the ARM "
1777                                     "Virtualization Extensions",
1778                                     NULL);
1779 
1780     /* High memory is enabled by default */
1781     vms->highmem = true;
1782     object_property_add_bool(obj, "highmem", virt_get_highmem,
1783                              virt_set_highmem, NULL);
1784     object_property_set_description(obj, "highmem",
1785                                     "Set on/off to enable/disable using "
1786                                     "physical address space above 32 bits",
1787                                     NULL);
1788     /* Default GIC type is v2 */
1789     vms->gic_version = 2;
1790     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1791                         virt_set_gic_version, NULL);
1792     object_property_set_description(obj, "gic-version",
1793                                     "Set GIC version. "
1794                                     "Valid values are 2, 3 and host", NULL);
1795 
1796     vms->highmem_ecam = !vmc->no_highmem_ecam;
1797 
1798     if (vmc->no_its) {
1799         vms->its = false;
1800     } else {
1801         /* Default allows ITS instantiation */
1802         vms->its = true;
1803         object_property_add_bool(obj, "its", virt_get_its,
1804                                  virt_set_its, NULL);
1805         object_property_set_description(obj, "its",
1806                                         "Set on/off to enable/disable "
1807                                         "ITS instantiation",
1808                                         NULL);
1809     }
1810 
1811     /* Default disallows iommu instantiation */
1812     vms->iommu = VIRT_IOMMU_NONE;
1813     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1814     object_property_set_description(obj, "iommu",
1815                                     "Set the IOMMU type. "
1816                                     "Valid values are none and smmuv3",
1817                                     NULL);
1818 
1819     vms->memmap = a15memmap;
1820     vms->irqmap = a15irqmap;
1821 }
1822 
1823 static void virt_machine_3_0_options(MachineClass *mc)
1824 {
1825 }
1826 DEFINE_VIRT_MACHINE_AS_LATEST(3, 0)
1827 
1828 static void virt_2_12_instance_init(Object *obj)
1829 {
1830     virt_3_0_instance_init(obj);
1831 }
1832 
1833 static void virt_machine_2_12_options(MachineClass *mc)
1834 {
1835     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1836 
1837     virt_machine_3_0_options(mc);
1838     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
1839     vmc->no_highmem_ecam = true;
1840     mc->max_cpus = 255;
1841 }
1842 DEFINE_VIRT_MACHINE(2, 12)
1843 
1844 #define VIRT_COMPAT_2_11 \
1845     HW_COMPAT_2_11
1846 
1847 static void virt_2_11_instance_init(Object *obj)
1848 {
1849     virt_2_12_instance_init(obj);
1850 }
1851 
1852 static void virt_machine_2_11_options(MachineClass *mc)
1853 {
1854     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1855 
1856     virt_machine_2_12_options(mc);
1857     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1858     vmc->smbios_old_sys_ver = true;
1859 }
1860 DEFINE_VIRT_MACHINE(2, 11)
1861 
1862 #define VIRT_COMPAT_2_10 \
1863     HW_COMPAT_2_10
1864 
1865 static void virt_2_10_instance_init(Object *obj)
1866 {
1867     virt_2_11_instance_init(obj);
1868 }
1869 
1870 static void virt_machine_2_10_options(MachineClass *mc)
1871 {
1872     virt_machine_2_11_options(mc);
1873     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1874 }
1875 DEFINE_VIRT_MACHINE(2, 10)
1876 
1877 #define VIRT_COMPAT_2_9 \
1878     HW_COMPAT_2_9
1879 
1880 static void virt_2_9_instance_init(Object *obj)
1881 {
1882     virt_2_10_instance_init(obj);
1883 }
1884 
1885 static void virt_machine_2_9_options(MachineClass *mc)
1886 {
1887     virt_machine_2_10_options(mc);
1888     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1889 }
1890 DEFINE_VIRT_MACHINE(2, 9)
1891 
1892 #define VIRT_COMPAT_2_8 \
1893     HW_COMPAT_2_8
1894 
1895 static void virt_2_8_instance_init(Object *obj)
1896 {
1897     virt_2_9_instance_init(obj);
1898 }
1899 
1900 static void virt_machine_2_8_options(MachineClass *mc)
1901 {
1902     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1903 
1904     virt_machine_2_9_options(mc);
1905     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1906     /* For 2.8 and earlier we falsely claimed in the DT that
1907      * our timers were edge-triggered, not level-triggered.
1908      */
1909     vmc->claim_edge_triggered_timers = true;
1910 }
1911 DEFINE_VIRT_MACHINE(2, 8)
1912 
1913 #define VIRT_COMPAT_2_7 \
1914     HW_COMPAT_2_7
1915 
1916 static void virt_2_7_instance_init(Object *obj)
1917 {
1918     virt_2_8_instance_init(obj);
1919 }
1920 
1921 static void virt_machine_2_7_options(MachineClass *mc)
1922 {
1923     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1924 
1925     virt_machine_2_8_options(mc);
1926     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1927     /* ITS was introduced with 2.8 */
1928     vmc->no_its = true;
1929     /* Stick with 1K pages for migration compatibility */
1930     mc->minimum_page_bits = 0;
1931 }
1932 DEFINE_VIRT_MACHINE(2, 7)
1933 
1934 #define VIRT_COMPAT_2_6 \
1935     HW_COMPAT_2_6
1936 
1937 static void virt_2_6_instance_init(Object *obj)
1938 {
1939     virt_2_7_instance_init(obj);
1940 }
1941 
1942 static void virt_machine_2_6_options(MachineClass *mc)
1943 {
1944     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1945 
1946     virt_machine_2_7_options(mc);
1947     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1948     vmc->disallow_affinity_adjustment = true;
1949     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1950     vmc->no_pmu = true;
1951 }
1952 DEFINE_VIRT_MACHINE(2, 6)
1953