xref: /openbmc/qemu/hw/arm/virt.c (revision 80e5db30)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
59 
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62                                                     void *data) \
63     { \
64         MachineClass *mc = MACHINE_CLASS(oc); \
65         virt_machine_##major##_##minor##_options(mc); \
66         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67         if (latest) { \
68             mc->alias = "virt"; \
69         } \
70     } \
71     static const TypeInfo machvirt_##major##_##minor##_info = { \
72         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73         .parent = TYPE_VIRT_MACHINE, \
74         .instance_init = virt_##major##_##minor##_instance_init, \
75         .class_init = virt_##major##_##minor##_class_init, \
76     }; \
77     static void machvirt_machine_##major##_##minor##_init(void) \
78     { \
79         type_register_static(&machvirt_##major##_##minor##_info); \
80     } \
81     type_init(machvirt_machine_##major##_##minor##_init);
82 
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
87 
88 
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
91 
92 #define PLATFORM_BUS_NUM_IRQS 64
93 
94 static ARMPlatformBusSystemParams platform_bus_params;
95 
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97  * RAM can go up to the 256GB mark, leaving 256GB of the physical
98  * address space unallocated and free for future use between 256G and 512G.
99  * If we need to provide more RAM to VMs in the future then we need to:
100  *  * allocate a second bank of RAM starting at 2TB and working up
101  *  * fix the DT and ACPI table generation code in QEMU to correctly
102  *    report two split lumps of RAM to the guest
103  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
104  * (We don't want to fill all the way up to 512GB with RAM because
105  * we might want it for non-RAM purposes later. Conversely it seems
106  * reasonable to assume that anybody configuring a VM with a quarter
107  * of a terabyte of RAM will be doing it on a host with more than a
108  * terabyte of physical address space.)
109  */
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112 
113 /* Addresses and sizes of our components.
114  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115  * 128MB..256MB is used for miscellaneous device I/O.
116  * 256MB..1GB is reserved for possible future PCI support (ie where the
117  * PCI memory window will go if we add a PCI host controller).
118  * 1GB and up is RAM (which may happily spill over into the
119  * high memory region beyond 4GB).
120  * This represents a compromise between how much RAM can be given to
121  * a 32 bit VM and leaving space for expansion and in particular for PCI.
122  * Note that devices should generally be placed at multiples of 0x10000,
123  * to accommodate guests using 64K pages.
124  */
125 static const MemMapEntry a15memmap[] = {
126     /* Space up to 0x8000000 is reserved for a boot ROM */
127     [VIRT_FLASH] =              {          0, 0x08000000 },
128     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
129     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
131     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
132     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
133     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
135     /* This redistributor space allows up to 2*64kB*123 CPUs */
136     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
137     [VIRT_UART] =               { 0x09000000, 0x00001000 },
138     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
139     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
140     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
141     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
142     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
143     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
145     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
146     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
147     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
148     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
149     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
150     /* Second PCIe window, 512GB wide at the 512GB boundary */
151     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
152 };
153 
154 static const int a15irqmap[] = {
155     [VIRT_UART] = 1,
156     [VIRT_RTC] = 2,
157     [VIRT_PCIE] = 3, /* ... to 6 */
158     [VIRT_GPIO] = 7,
159     [VIRT_SECURE_UART] = 8,
160     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
163 };
164 
165 static const char *valid_cpus[] = {
166     "cortex-a15",
167     "cortex-a53",
168     "cortex-a57",
169     "host",
170 };
171 
172 static bool cpuname_valid(const char *cpu)
173 {
174     int i;
175 
176     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177         if (strcmp(cpu, valid_cpus[i]) == 0) {
178             return true;
179         }
180     }
181     return false;
182 }
183 
184 static void create_fdt(VirtMachineState *vms)
185 {
186     void *fdt = create_device_tree(&vms->fdt_size);
187 
188     if (!fdt) {
189         error_report("create_device_tree() failed");
190         exit(1);
191     }
192 
193     vms->fdt = fdt;
194 
195     /* Header */
196     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
199 
200     /*
201      * /chosen and /memory nodes must exist for load_dtb
202      * to fill in necessary properties later
203      */
204     qemu_fdt_add_subnode(fdt, "/chosen");
205     qemu_fdt_add_subnode(fdt, "/memory");
206     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
207 
208     /* Clock node, for the benefit of the UART. The kernel device tree
209      * binding documentation claims the PL011 node clock properties are
210      * optional but in practice if you omit them the kernel refuses to
211      * probe for the device.
212      */
213     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214     qemu_fdt_add_subnode(fdt, "/apb-pclk");
215     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219                                 "clk24mhz");
220     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
221 
222 }
223 
224 static void fdt_add_psci_node(const VirtMachineState *vms)
225 {
226     uint32_t cpu_suspend_fn;
227     uint32_t cpu_off_fn;
228     uint32_t cpu_on_fn;
229     uint32_t migrate_fn;
230     void *fdt = vms->fdt;
231     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
232     const char *psci_method;
233 
234     switch (vms->psci_conduit) {
235     case QEMU_PSCI_CONDUIT_DISABLED:
236         return;
237     case QEMU_PSCI_CONDUIT_HVC:
238         psci_method = "hvc";
239         break;
240     case QEMU_PSCI_CONDUIT_SMC:
241         psci_method = "smc";
242         break;
243     default:
244         g_assert_not_reached();
245     }
246 
247     qemu_fdt_add_subnode(fdt, "/psci");
248     if (armcpu->psci_version == 2) {
249         const char comp[] = "arm,psci-0.2\0arm,psci";
250         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
251 
252         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
253         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
254             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
255             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
256             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
257         } else {
258             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
259             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
260             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
261         }
262     } else {
263         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
264 
265         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
266         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
267         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
268         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
269     }
270 
271     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
272      * to the instruction that should be used to invoke PSCI functions.
273      * However, the device tree binding uses 'method' instead, so that is
274      * what we should use here.
275      */
276     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
277 
278     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
279     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
280     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
281     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
282 }
283 
284 static void fdt_add_timer_nodes(const VirtMachineState *vms)
285 {
286     /* On real hardware these interrupts are level-triggered.
287      * On KVM they were edge-triggered before host kernel version 4.4,
288      * and level-triggered afterwards.
289      * On emulated QEMU they are level-triggered.
290      *
291      * Getting the DTB info about them wrong is awkward for some
292      * guest kernels:
293      *  pre-4.8 ignore the DT and leave the interrupt configured
294      *   with whatever the GIC reset value (or the bootloader) left it at
295      *  4.8 before rc6 honour the incorrect data by programming it back
296      *   into the GIC, causing problems
297      *  4.8rc6 and later ignore the DT and always write "level triggered"
298      *   into the GIC
299      *
300      * For backwards-compatibility, virt-2.8 and earlier will continue
301      * to say these are edge-triggered, but later machines will report
302      * the correct information.
303      */
304     ARMCPU *armcpu;
305     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
306     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
307 
308     if (vmc->claim_edge_triggered_timers) {
309         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
310     }
311 
312     if (vms->gic_version == 2) {
313         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
314                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
315                              (1 << vms->smp_cpus) - 1);
316     }
317 
318     qemu_fdt_add_subnode(vms->fdt, "/timer");
319 
320     armcpu = ARM_CPU(qemu_get_cpu(0));
321     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
322         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
323         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
324                          compat, sizeof(compat));
325     } else {
326         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
327                                 "arm,armv7-timer");
328     }
329     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
330     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
331                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
332                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
333                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
334                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
335 }
336 
337 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
338 {
339     int cpu;
340     int addr_cells = 1;
341     unsigned int i;
342 
343     /*
344      * From Documentation/devicetree/bindings/arm/cpus.txt
345      *  On ARM v8 64-bit systems value should be set to 2,
346      *  that corresponds to the MPIDR_EL1 register size.
347      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
348      *  in the system, #address-cells can be set to 1, since
349      *  MPIDR_EL1[63:32] bits are not used for CPUs
350      *  identification.
351      *
352      *  Here we actually don't know whether our system is 32- or 64-bit one.
353      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
354      *  at least one of them has Aff3 populated, we set #address-cells to 2.
355      */
356     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
357         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
358 
359         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
360             addr_cells = 2;
361             break;
362         }
363     }
364 
365     qemu_fdt_add_subnode(vms->fdt, "/cpus");
366     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
367     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
368 
369     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
370         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
371         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
372 
373         qemu_fdt_add_subnode(vms->fdt, nodename);
374         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
375         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
376                                     armcpu->dtb_compatible);
377 
378         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
379             && vms->smp_cpus > 1) {
380             qemu_fdt_setprop_string(vms->fdt, nodename,
381                                         "enable-method", "psci");
382         }
383 
384         if (addr_cells == 2) {
385             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
386                                  armcpu->mp_affinity);
387         } else {
388             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
389                                   armcpu->mp_affinity);
390         }
391 
392         i = numa_get_node_for_cpu(cpu);
393         if (i < nb_numa_nodes) {
394             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
395         }
396 
397         g_free(nodename);
398     }
399 }
400 
401 static void fdt_add_its_gic_node(VirtMachineState *vms)
402 {
403     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
404     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
405     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
406                             "arm,gic-v3-its");
407     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
408     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
409                                  2, vms->memmap[VIRT_GIC_ITS].base,
410                                  2, vms->memmap[VIRT_GIC_ITS].size);
411     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
412 }
413 
414 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
415 {
416     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
418     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
419                             "arm,gic-v2m-frame");
420     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
421     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
422                                  2, vms->memmap[VIRT_GIC_V2M].base,
423                                  2, vms->memmap[VIRT_GIC_V2M].size);
424     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
425 }
426 
427 static void fdt_add_gic_node(VirtMachineState *vms)
428 {
429     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
430     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
431 
432     qemu_fdt_add_subnode(vms->fdt, "/intc");
433     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
434     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
435     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
436     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
437     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
438     if (vms->gic_version == 3) {
439         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
440                                 "arm,gic-v3");
441         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
442                                      2, vms->memmap[VIRT_GIC_DIST].base,
443                                      2, vms->memmap[VIRT_GIC_DIST].size,
444                                      2, vms->memmap[VIRT_GIC_REDIST].base,
445                                      2, vms->memmap[VIRT_GIC_REDIST].size);
446         if (vms->virt) {
447             qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
448                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
449                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
450         }
451     } else {
452         /* 'cortex-a15-gic' means 'GIC v2' */
453         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
454                                 "arm,cortex-a15-gic");
455         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
456                                       2, vms->memmap[VIRT_GIC_DIST].base,
457                                       2, vms->memmap[VIRT_GIC_DIST].size,
458                                       2, vms->memmap[VIRT_GIC_CPU].base,
459                                       2, vms->memmap[VIRT_GIC_CPU].size);
460     }
461 
462     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
463 }
464 
465 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
466 {
467     CPUState *cpu;
468     ARMCPU *armcpu;
469     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
470 
471     CPU_FOREACH(cpu) {
472         armcpu = ARM_CPU(cpu);
473         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
474             !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
475             return;
476         }
477     }
478 
479     if (vms->gic_version == 2) {
480         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
481                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
482                              (1 << vms->smp_cpus) - 1);
483     }
484 
485     armcpu = ARM_CPU(qemu_get_cpu(0));
486     qemu_fdt_add_subnode(vms->fdt, "/pmu");
487     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
488         const char compat[] = "arm,armv8-pmuv3";
489         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
490                          compat, sizeof(compat));
491         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
492                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
493     }
494 }
495 
496 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
497 {
498     const char *itsclass = its_class_name();
499     DeviceState *dev;
500 
501     if (!itsclass) {
502         /* Do nothing if not supported */
503         return;
504     }
505 
506     dev = qdev_create(NULL, itsclass);
507 
508     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
509                              &error_abort);
510     qdev_init_nofail(dev);
511     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
512 
513     fdt_add_its_gic_node(vms);
514 }
515 
516 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
517 {
518     int i;
519     int irq = vms->irqmap[VIRT_GIC_V2M];
520     DeviceState *dev;
521 
522     dev = qdev_create(NULL, "arm-gicv2m");
523     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
524     qdev_prop_set_uint32(dev, "base-spi", irq);
525     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
526     qdev_init_nofail(dev);
527 
528     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
529         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
530     }
531 
532     fdt_add_v2m_gic_node(vms);
533 }
534 
535 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
536 {
537     /* We create a standalone GIC */
538     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
539     DeviceState *gicdev;
540     SysBusDevice *gicbusdev;
541     const char *gictype;
542     int type = vms->gic_version, i;
543 
544     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
545 
546     gicdev = qdev_create(NULL, gictype);
547     qdev_prop_set_uint32(gicdev, "revision", type);
548     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
549     /* Note that the num-irq property counts both internal and external
550      * interrupts; there are always 32 of the former (mandated by GIC spec).
551      */
552     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
553     if (!kvm_irqchip_in_kernel()) {
554         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
555     }
556     qdev_init_nofail(gicdev);
557     gicbusdev = SYS_BUS_DEVICE(gicdev);
558     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
559     if (type == 3) {
560         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
561     } else {
562         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
563     }
564 
565     /* Wire the outputs from each CPU's generic timer and the GICv3
566      * maintenance interrupt signal to the appropriate GIC PPI inputs,
567      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
568      */
569     for (i = 0; i < smp_cpus; i++) {
570         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
571         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
572         int irq;
573         /* Mapping from the output timer irq lines from the CPU to the
574          * GIC PPI inputs we use for the virt board.
575          */
576         const int timer_irq[] = {
577             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
578             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
579             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
580             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
581         };
582 
583         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
584             qdev_connect_gpio_out(cpudev, irq,
585                                   qdev_get_gpio_in(gicdev,
586                                                    ppibase + timer_irq[irq]));
587         }
588 
589         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
590                                     qdev_get_gpio_in(gicdev, ppibase
591                                                      + ARCH_GICV3_MAINT_IRQ));
592 
593         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
594         sysbus_connect_irq(gicbusdev, i + smp_cpus,
595                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
596         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
597                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
598         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
599                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
600     }
601 
602     for (i = 0; i < NUM_IRQS; i++) {
603         pic[i] = qdev_get_gpio_in(gicdev, i);
604     }
605 
606     fdt_add_gic_node(vms);
607 
608     if (type == 3 && !vmc->no_its) {
609         create_its(vms, gicdev);
610     } else if (type == 2) {
611         create_v2m(vms, pic);
612     }
613 }
614 
615 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
616                         MemoryRegion *mem, CharDriverState *chr)
617 {
618     char *nodename;
619     hwaddr base = vms->memmap[uart].base;
620     hwaddr size = vms->memmap[uart].size;
621     int irq = vms->irqmap[uart];
622     const char compat[] = "arm,pl011\0arm,primecell";
623     const char clocknames[] = "uartclk\0apb_pclk";
624     DeviceState *dev = qdev_create(NULL, "pl011");
625     SysBusDevice *s = SYS_BUS_DEVICE(dev);
626 
627     qdev_prop_set_chr(dev, "chardev", chr);
628     qdev_init_nofail(dev);
629     memory_region_add_subregion(mem, base,
630                                 sysbus_mmio_get_region(s, 0));
631     sysbus_connect_irq(s, 0, pic[irq]);
632 
633     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
634     qemu_fdt_add_subnode(vms->fdt, nodename);
635     /* Note that we can't use setprop_string because of the embedded NUL */
636     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
637                          compat, sizeof(compat));
638     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
639                                      2, base, 2, size);
640     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
641                                GIC_FDT_IRQ_TYPE_SPI, irq,
642                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
643     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
644                                vms->clock_phandle, vms->clock_phandle);
645     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
646                          clocknames, sizeof(clocknames));
647 
648     if (uart == VIRT_UART) {
649         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
650     } else {
651         /* Mark as not usable by the normal world */
652         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
653         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
654     }
655 
656     g_free(nodename);
657 }
658 
659 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
660 {
661     char *nodename;
662     hwaddr base = vms->memmap[VIRT_RTC].base;
663     hwaddr size = vms->memmap[VIRT_RTC].size;
664     int irq = vms->irqmap[VIRT_RTC];
665     const char compat[] = "arm,pl031\0arm,primecell";
666 
667     sysbus_create_simple("pl031", base, pic[irq]);
668 
669     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
670     qemu_fdt_add_subnode(vms->fdt, nodename);
671     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
672     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
673                                  2, base, 2, size);
674     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
675                            GIC_FDT_IRQ_TYPE_SPI, irq,
676                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
677     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
678     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
679     g_free(nodename);
680 }
681 
682 static DeviceState *gpio_key_dev;
683 static void virt_powerdown_req(Notifier *n, void *opaque)
684 {
685     /* use gpio Pin 3 for power button event */
686     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
687 }
688 
689 static Notifier virt_system_powerdown_notifier = {
690     .notify = virt_powerdown_req
691 };
692 
693 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
694 {
695     char *nodename;
696     DeviceState *pl061_dev;
697     hwaddr base = vms->memmap[VIRT_GPIO].base;
698     hwaddr size = vms->memmap[VIRT_GPIO].size;
699     int irq = vms->irqmap[VIRT_GPIO];
700     const char compat[] = "arm,pl061\0arm,primecell";
701 
702     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
703 
704     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
705     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
706     qemu_fdt_add_subnode(vms->fdt, nodename);
707     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
708                                  2, base, 2, size);
709     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
710     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
711     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
712     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
713                            GIC_FDT_IRQ_TYPE_SPI, irq,
714                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
715     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
716     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
717     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
718 
719     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
720                                         qdev_get_gpio_in(pl061_dev, 3));
721     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
722     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
723     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
724     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
725 
726     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
727     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
728                             "label", "GPIO Key Poweroff");
729     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
730                           KEY_POWER);
731     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
732                            "gpios", phandle, 3, 0);
733 
734     /* connect powerdown request */
735     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
736 
737     g_free(nodename);
738 }
739 
740 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
741 {
742     int i;
743     hwaddr size = vms->memmap[VIRT_MMIO].size;
744 
745     /* We create the transports in forwards order. Since qbus_realize()
746      * prepends (not appends) new child buses, the incrementing loop below will
747      * create a list of virtio-mmio buses with decreasing base addresses.
748      *
749      * When a -device option is processed from the command line,
750      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
751      * order. The upshot is that -device options in increasing command line
752      * order are mapped to virtio-mmio buses with decreasing base addresses.
753      *
754      * When this code was originally written, that arrangement ensured that the
755      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
756      * the first -device on the command line. (The end-to-end order is a
757      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
758      * guest kernel's name-to-address assignment strategy.)
759      *
760      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
761      * the message, if not necessarily the code, of commit 70161ff336.
762      * Therefore the loop now establishes the inverse of the original intent.
763      *
764      * Unfortunately, we can't counteract the kernel change by reversing the
765      * loop; it would break existing command lines.
766      *
767      * In any case, the kernel makes no guarantee about the stability of
768      * enumeration order of virtio devices (as demonstrated by it changing
769      * between kernel versions). For reliable and stable identification
770      * of disks users must use UUIDs or similar mechanisms.
771      */
772     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
773         int irq = vms->irqmap[VIRT_MMIO] + i;
774         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
775 
776         sysbus_create_simple("virtio-mmio", base, pic[irq]);
777     }
778 
779     /* We add dtb nodes in reverse order so that they appear in the finished
780      * device tree lowest address first.
781      *
782      * Note that this mapping is independent of the loop above. The previous
783      * loop influences virtio device to virtio transport assignment, whereas
784      * this loop controls how virtio transports are laid out in the dtb.
785      */
786     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
787         char *nodename;
788         int irq = vms->irqmap[VIRT_MMIO] + i;
789         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
790 
791         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
792         qemu_fdt_add_subnode(vms->fdt, nodename);
793         qemu_fdt_setprop_string(vms->fdt, nodename,
794                                 "compatible", "virtio,mmio");
795         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
796                                      2, base, 2, size);
797         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
798                                GIC_FDT_IRQ_TYPE_SPI, irq,
799                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
800         g_free(nodename);
801     }
802 }
803 
804 static void create_one_flash(const char *name, hwaddr flashbase,
805                              hwaddr flashsize, const char *file,
806                              MemoryRegion *sysmem)
807 {
808     /* Create and map a single flash device. We use the same
809      * parameters as the flash devices on the Versatile Express board.
810      */
811     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
812     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
813     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
814     const uint64_t sectorlength = 256 * 1024;
815 
816     if (dinfo) {
817         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
818                             &error_abort);
819     }
820 
821     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
822     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
823     qdev_prop_set_uint8(dev, "width", 4);
824     qdev_prop_set_uint8(dev, "device-width", 2);
825     qdev_prop_set_bit(dev, "big-endian", false);
826     qdev_prop_set_uint16(dev, "id0", 0x89);
827     qdev_prop_set_uint16(dev, "id1", 0x18);
828     qdev_prop_set_uint16(dev, "id2", 0x00);
829     qdev_prop_set_uint16(dev, "id3", 0x00);
830     qdev_prop_set_string(dev, "name", name);
831     qdev_init_nofail(dev);
832 
833     memory_region_add_subregion(sysmem, flashbase,
834                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
835 
836     if (file) {
837         char *fn;
838         int image_size;
839 
840         if (drive_get(IF_PFLASH, 0, 0)) {
841             error_report("The contents of the first flash device may be "
842                          "specified with -bios or with -drive if=pflash... "
843                          "but you cannot use both options at once");
844             exit(1);
845         }
846         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
847         if (!fn) {
848             error_report("Could not find ROM image '%s'", file);
849             exit(1);
850         }
851         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
852         g_free(fn);
853         if (image_size < 0) {
854             error_report("Could not load ROM image '%s'", file);
855             exit(1);
856         }
857     }
858 }
859 
860 static void create_flash(const VirtMachineState *vms,
861                          MemoryRegion *sysmem,
862                          MemoryRegion *secure_sysmem)
863 {
864     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
865      * Any file passed via -bios goes in the first of these.
866      * sysmem is the system memory space. secure_sysmem is the secure view
867      * of the system, and the first flash device should be made visible only
868      * there. The second flash device is visible to both secure and nonsecure.
869      * If sysmem == secure_sysmem this means there is no separate Secure
870      * address space and both flash devices are generally visible.
871      */
872     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
873     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
874     char *nodename;
875 
876     create_one_flash("virt.flash0", flashbase, flashsize,
877                      bios_name, secure_sysmem);
878     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
879                      NULL, sysmem);
880 
881     if (sysmem == secure_sysmem) {
882         /* Report both flash devices as a single node in the DT */
883         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
884         qemu_fdt_add_subnode(vms->fdt, nodename);
885         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
886         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
887                                      2, flashbase, 2, flashsize,
888                                      2, flashbase + flashsize, 2, flashsize);
889         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
890         g_free(nodename);
891     } else {
892         /* Report the devices as separate nodes so we can mark one as
893          * only visible to the secure world.
894          */
895         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
896         qemu_fdt_add_subnode(vms->fdt, nodename);
897         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
898         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
899                                      2, flashbase, 2, flashsize);
900         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
901         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
902         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
903         g_free(nodename);
904 
905         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
906         qemu_fdt_add_subnode(vms->fdt, nodename);
907         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
908         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
909                                      2, flashbase + flashsize, 2, flashsize);
910         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
911         g_free(nodename);
912     }
913 }
914 
915 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
916 {
917     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
918     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
919     FWCfgState *fw_cfg;
920     char *nodename;
921 
922     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
923     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
924 
925     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
926     qemu_fdt_add_subnode(vms->fdt, nodename);
927     qemu_fdt_setprop_string(vms->fdt, nodename,
928                             "compatible", "qemu,fw-cfg-mmio");
929     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
930                                  2, base, 2, size);
931     g_free(nodename);
932     return fw_cfg;
933 }
934 
935 static void create_pcie_irq_map(const VirtMachineState *vms,
936                                 uint32_t gic_phandle,
937                                 int first_irq, const char *nodename)
938 {
939     int devfn, pin;
940     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
941     uint32_t *irq_map = full_irq_map;
942 
943     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
944         for (pin = 0; pin < 4; pin++) {
945             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
946             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
947             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
948             int i;
949 
950             uint32_t map[] = {
951                 devfn << 8, 0, 0,                           /* devfn */
952                 pin + 1,                                    /* PCI pin */
953                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
954 
955             /* Convert map to big endian */
956             for (i = 0; i < 10; i++) {
957                 irq_map[i] = cpu_to_be32(map[i]);
958             }
959             irq_map += 10;
960         }
961     }
962 
963     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
964                      full_irq_map, sizeof(full_irq_map));
965 
966     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
967                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
968                            0x7           /* PCI irq */);
969 }
970 
971 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
972 {
973     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
974     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
975     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
976     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
977     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
978     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
979     hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
980     hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
981     hwaddr base = base_mmio;
982     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
983     int irq = vms->irqmap[VIRT_PCIE];
984     MemoryRegion *mmio_alias;
985     MemoryRegion *mmio_reg;
986     MemoryRegion *ecam_alias;
987     MemoryRegion *ecam_reg;
988     DeviceState *dev;
989     char *nodename;
990     int i;
991     PCIHostState *pci;
992 
993     dev = qdev_create(NULL, TYPE_GPEX_HOST);
994     qdev_init_nofail(dev);
995 
996     /* Map only the first size_ecam bytes of ECAM space */
997     ecam_alias = g_new0(MemoryRegion, 1);
998     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
999     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1000                              ecam_reg, 0, size_ecam);
1001     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1002 
1003     /* Map the MMIO window into system address space so as to expose
1004      * the section of PCI MMIO space which starts at the same base address
1005      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1006      * the window).
1007      */
1008     mmio_alias = g_new0(MemoryRegion, 1);
1009     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1010     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1011                              mmio_reg, base_mmio, size_mmio);
1012     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1013 
1014     if (vms->highmem) {
1015         /* Map high MMIO space */
1016         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1017 
1018         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1019                                  mmio_reg, base_mmio_high, size_mmio_high);
1020         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1021                                     high_mmio_alias);
1022     }
1023 
1024     /* Map IO port space */
1025     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1026 
1027     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1028         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1029     }
1030 
1031     pci = PCI_HOST_BRIDGE(dev);
1032     if (pci->bus) {
1033         for (i = 0; i < nb_nics; i++) {
1034             NICInfo *nd = &nd_table[i];
1035 
1036             if (!nd->model) {
1037                 nd->model = g_strdup("virtio");
1038             }
1039 
1040             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1041         }
1042     }
1043 
1044     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1045     qemu_fdt_add_subnode(vms->fdt, nodename);
1046     qemu_fdt_setprop_string(vms->fdt, nodename,
1047                             "compatible", "pci-host-ecam-generic");
1048     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1049     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1050     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1051     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1052                            nr_pcie_buses - 1);
1053     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1054 
1055     if (vms->msi_phandle) {
1056         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1057                                vms->msi_phandle);
1058     }
1059 
1060     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1061                                  2, base_ecam, 2, size_ecam);
1062 
1063     if (vms->highmem) {
1064         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1065                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1066                                      2, base_pio, 2, size_pio,
1067                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1068                                      2, base_mmio, 2, size_mmio,
1069                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1070                                      2, base_mmio_high,
1071                                      2, base_mmio_high, 2, size_mmio_high);
1072     } else {
1073         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1074                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1075                                      2, base_pio, 2, size_pio,
1076                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1077                                      2, base_mmio, 2, size_mmio);
1078     }
1079 
1080     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1081     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1082 
1083     g_free(nodename);
1084 }
1085 
1086 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1087 {
1088     DeviceState *dev;
1089     SysBusDevice *s;
1090     int i;
1091     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1092     MemoryRegion *sysmem = get_system_memory();
1093 
1094     platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1095     platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1096     platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1097     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1098 
1099     fdt_params->system_params = &platform_bus_params;
1100     fdt_params->binfo = &vms->bootinfo;
1101     fdt_params->intc = "/intc";
1102     /*
1103      * register a machine init done notifier that creates the device tree
1104      * nodes of the platform bus and its children dynamic sysbus devices
1105      */
1106     arm_register_platform_bus_fdt_creator(fdt_params);
1107 
1108     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1109     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1110     qdev_prop_set_uint32(dev, "num_irqs",
1111         platform_bus_params.platform_bus_num_irqs);
1112     qdev_prop_set_uint32(dev, "mmio_size",
1113         platform_bus_params.platform_bus_size);
1114     qdev_init_nofail(dev);
1115     s = SYS_BUS_DEVICE(dev);
1116 
1117     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1118         int irqn = platform_bus_params.platform_bus_first_irq + i;
1119         sysbus_connect_irq(s, i, pic[irqn]);
1120     }
1121 
1122     memory_region_add_subregion(sysmem,
1123                                 platform_bus_params.platform_bus_base,
1124                                 sysbus_mmio_get_region(s, 0));
1125 }
1126 
1127 static void create_secure_ram(VirtMachineState *vms,
1128                               MemoryRegion *secure_sysmem)
1129 {
1130     MemoryRegion *secram = g_new(MemoryRegion, 1);
1131     char *nodename;
1132     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1133     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1134 
1135     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1136     vmstate_register_ram_global(secram);
1137     memory_region_add_subregion(secure_sysmem, base, secram);
1138 
1139     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1140     qemu_fdt_add_subnode(vms->fdt, nodename);
1141     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1142     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1143     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1144     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1145 
1146     g_free(nodename);
1147 }
1148 
1149 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1150 {
1151     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1152                                                  bootinfo);
1153 
1154     *fdt_size = board->fdt_size;
1155     return board->fdt;
1156 }
1157 
1158 static void virt_build_smbios(VirtMachineState *vms)
1159 {
1160     uint8_t *smbios_tables, *smbios_anchor;
1161     size_t smbios_tables_len, smbios_anchor_len;
1162     const char *product = "QEMU Virtual Machine";
1163 
1164     if (!vms->fw_cfg) {
1165         return;
1166     }
1167 
1168     if (kvm_enabled()) {
1169         product = "KVM Virtual Machine";
1170     }
1171 
1172     smbios_set_defaults("QEMU", product,
1173                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1174 
1175     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1176                       &smbios_anchor, &smbios_anchor_len);
1177 
1178     if (smbios_anchor) {
1179         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1180                         smbios_tables, smbios_tables_len);
1181         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1182                         smbios_anchor, smbios_anchor_len);
1183     }
1184 }
1185 
1186 static
1187 void virt_machine_done(Notifier *notifier, void *data)
1188 {
1189     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1190                                          machine_done);
1191 
1192     virt_acpi_setup(vms);
1193     virt_build_smbios(vms);
1194 }
1195 
1196 static void machvirt_init(MachineState *machine)
1197 {
1198     VirtMachineState *vms = VIRT_MACHINE(machine);
1199     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1200     qemu_irq pic[NUM_IRQS];
1201     MemoryRegion *sysmem = get_system_memory();
1202     MemoryRegion *secure_sysmem = NULL;
1203     int n, virt_max_cpus;
1204     MemoryRegion *ram = g_new(MemoryRegion, 1);
1205     const char *cpu_model = machine->cpu_model;
1206     char **cpustr;
1207     ObjectClass *oc;
1208     const char *typename;
1209     CPUClass *cc;
1210     Error *err = NULL;
1211     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1212     uint8_t clustersz;
1213 
1214     if (!cpu_model) {
1215         cpu_model = "cortex-a15";
1216     }
1217 
1218     /* We can probe only here because during property set
1219      * KVM is not available yet
1220      */
1221     if (!vms->gic_version) {
1222         if (!kvm_enabled()) {
1223             error_report("gic-version=host requires KVM");
1224             exit(1);
1225         }
1226 
1227         vms->gic_version = kvm_arm_vgic_probe();
1228         if (!vms->gic_version) {
1229             error_report("Unable to determine GIC version supported by host");
1230             exit(1);
1231         }
1232     }
1233 
1234     /* Separate the actual CPU model name from any appended features */
1235     cpustr = g_strsplit(cpu_model, ",", 2);
1236 
1237     if (!cpuname_valid(cpustr[0])) {
1238         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1239         exit(1);
1240     }
1241 
1242     /* If we have an EL3 boot ROM then the assumption is that it will
1243      * implement PSCI itself, so disable QEMU's internal implementation
1244      * so it doesn't get in the way. Instead of starting secondary
1245      * CPUs in PSCI powerdown state we will start them all running and
1246      * let the boot ROM sort them out.
1247      * The usual case is that we do use QEMU's PSCI implementation;
1248      * if the guest has EL2 then we will use SMC as the conduit,
1249      * and otherwise we will use HVC (for backwards compatibility and
1250      * because if we're using KVM then we must use HVC).
1251      */
1252     if (vms->secure && firmware_loaded) {
1253         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1254     } else if (vms->virt) {
1255         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1256     } else {
1257         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1258     }
1259 
1260     /* The maximum number of CPUs depends on the GIC version, or on how
1261      * many redistributors we can fit into the memory map.
1262      */
1263     if (vms->gic_version == 3) {
1264         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1265         clustersz = GICV3_TARGETLIST_BITS;
1266     } else {
1267         virt_max_cpus = GIC_NCPU;
1268         clustersz = GIC_TARGETLIST_BITS;
1269     }
1270 
1271     if (max_cpus > virt_max_cpus) {
1272         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1273                      "supported by machine 'mach-virt' (%d)",
1274                      max_cpus, virt_max_cpus);
1275         exit(1);
1276     }
1277 
1278     vms->smp_cpus = smp_cpus;
1279 
1280     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1281         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1282         exit(1);
1283     }
1284 
1285     if (vms->virt && kvm_enabled()) {
1286         error_report("mach-virt: KVM does not support providing "
1287                      "Virtualization extensions to the guest CPU");
1288         exit(1);
1289     }
1290 
1291     if (vms->secure) {
1292         if (kvm_enabled()) {
1293             error_report("mach-virt: KVM does not support Security extensions");
1294             exit(1);
1295         }
1296 
1297         /* The Secure view of the world is the same as the NonSecure,
1298          * but with a few extra devices. Create it as a container region
1299          * containing the system memory at low priority; any secure-only
1300          * devices go in at higher priority and take precedence.
1301          */
1302         secure_sysmem = g_new(MemoryRegion, 1);
1303         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1304                            UINT64_MAX);
1305         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1306     }
1307 
1308     create_fdt(vms);
1309 
1310     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1311     if (!oc) {
1312         error_report("Unable to find CPU definition");
1313         exit(1);
1314     }
1315     typename = object_class_get_name(oc);
1316 
1317     /* convert -smp CPU options specified by the user into global props */
1318     cc = CPU_CLASS(oc);
1319     cc->parse_features(typename, cpustr[1], &err);
1320     g_strfreev(cpustr);
1321     if (err) {
1322         error_report_err(err);
1323         exit(1);
1324     }
1325 
1326     for (n = 0; n < smp_cpus; n++) {
1327         Object *cpuobj = object_new(typename);
1328         if (!vmc->disallow_affinity_adjustment) {
1329             /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1330              * GIC's target-list limitations. 32-bit KVM hosts currently
1331              * always create clusters of 4 CPUs, but that is expected to
1332              * change when they gain support for gicv3. When KVM is enabled
1333              * it will override the changes we make here, therefore our
1334              * purposes are to make TCG consistent (with 64-bit KVM hosts)
1335              * and to improve SGI efficiency.
1336              */
1337             uint8_t aff1 = n / clustersz;
1338             uint8_t aff0 = n % clustersz;
1339             object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1340                                     "mp-affinity", NULL);
1341         }
1342 
1343         if (!vms->secure) {
1344             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1345         }
1346 
1347         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1348             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1349         }
1350 
1351         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1352             object_property_set_int(cpuobj, vms->psci_conduit,
1353                                     "psci-conduit", NULL);
1354 
1355             /* Secondary CPUs start in PSCI powered-down state */
1356             if (n > 0) {
1357                 object_property_set_bool(cpuobj, true,
1358                                          "start-powered-off", NULL);
1359             }
1360         }
1361 
1362         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1363             object_property_set_bool(cpuobj, false, "pmu", NULL);
1364         }
1365 
1366         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1367             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1368                                     "reset-cbar", &error_abort);
1369         }
1370 
1371         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1372                                  &error_abort);
1373         if (vms->secure) {
1374             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1375                                      "secure-memory", &error_abort);
1376         }
1377 
1378         object_property_set_bool(cpuobj, true, "realized", NULL);
1379     }
1380     fdt_add_timer_nodes(vms);
1381     fdt_add_cpu_nodes(vms);
1382     fdt_add_psci_node(vms);
1383 
1384     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1385                                          machine->ram_size);
1386     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1387 
1388     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1389 
1390     create_gic(vms, pic);
1391 
1392     fdt_add_pmu_nodes(vms);
1393 
1394     create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1395 
1396     if (vms->secure) {
1397         create_secure_ram(vms, secure_sysmem);
1398         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1399     }
1400 
1401     create_rtc(vms, pic);
1402 
1403     create_pcie(vms, pic);
1404 
1405     create_gpio(vms, pic);
1406 
1407     /* Create mmio transports, so the user can create virtio backends
1408      * (which will be automatically plugged in to the transports). If
1409      * no backend is created the transport will just sit harmlessly idle.
1410      */
1411     create_virtio_devices(vms, pic);
1412 
1413     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1414     rom_set_fw(vms->fw_cfg);
1415 
1416     vms->machine_done.notify = virt_machine_done;
1417     qemu_add_machine_init_done_notifier(&vms->machine_done);
1418 
1419     vms->bootinfo.ram_size = machine->ram_size;
1420     vms->bootinfo.kernel_filename = machine->kernel_filename;
1421     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1422     vms->bootinfo.initrd_filename = machine->initrd_filename;
1423     vms->bootinfo.nb_cpus = smp_cpus;
1424     vms->bootinfo.board_id = -1;
1425     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1426     vms->bootinfo.get_dtb = machvirt_dtb;
1427     vms->bootinfo.firmware_loaded = firmware_loaded;
1428     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1429 
1430     /*
1431      * arm_load_kernel machine init done notifier registration must
1432      * happen before the platform_bus_create call. In this latter,
1433      * another notifier is registered which adds platform bus nodes.
1434      * Notifiers are executed in registration reverse order.
1435      */
1436     create_platform_bus(vms, pic);
1437 }
1438 
1439 static bool virt_get_secure(Object *obj, Error **errp)
1440 {
1441     VirtMachineState *vms = VIRT_MACHINE(obj);
1442 
1443     return vms->secure;
1444 }
1445 
1446 static void virt_set_secure(Object *obj, bool value, Error **errp)
1447 {
1448     VirtMachineState *vms = VIRT_MACHINE(obj);
1449 
1450     vms->secure = value;
1451 }
1452 
1453 static bool virt_get_virt(Object *obj, Error **errp)
1454 {
1455     VirtMachineState *vms = VIRT_MACHINE(obj);
1456 
1457     return vms->virt;
1458 }
1459 
1460 static void virt_set_virt(Object *obj, bool value, Error **errp)
1461 {
1462     VirtMachineState *vms = VIRT_MACHINE(obj);
1463 
1464     vms->virt = value;
1465 }
1466 
1467 static bool virt_get_highmem(Object *obj, Error **errp)
1468 {
1469     VirtMachineState *vms = VIRT_MACHINE(obj);
1470 
1471     return vms->highmem;
1472 }
1473 
1474 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1475 {
1476     VirtMachineState *vms = VIRT_MACHINE(obj);
1477 
1478     vms->highmem = value;
1479 }
1480 
1481 static char *virt_get_gic_version(Object *obj, Error **errp)
1482 {
1483     VirtMachineState *vms = VIRT_MACHINE(obj);
1484     const char *val = vms->gic_version == 3 ? "3" : "2";
1485 
1486     return g_strdup(val);
1487 }
1488 
1489 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1490 {
1491     VirtMachineState *vms = VIRT_MACHINE(obj);
1492 
1493     if (!strcmp(value, "3")) {
1494         vms->gic_version = 3;
1495     } else if (!strcmp(value, "2")) {
1496         vms->gic_version = 2;
1497     } else if (!strcmp(value, "host")) {
1498         vms->gic_version = 0; /* Will probe later */
1499     } else {
1500         error_setg(errp, "Invalid gic-version value");
1501         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1502     }
1503 }
1504 
1505 static void virt_machine_class_init(ObjectClass *oc, void *data)
1506 {
1507     MachineClass *mc = MACHINE_CLASS(oc);
1508 
1509     mc->init = machvirt_init;
1510     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1511      * it later in machvirt_init, where we have more information about the
1512      * configuration of the particular instance.
1513      */
1514     mc->max_cpus = 255;
1515     mc->has_dynamic_sysbus = true;
1516     mc->block_default_type = IF_VIRTIO;
1517     mc->no_cdrom = 1;
1518     mc->pci_allow_0_address = true;
1519     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1520     mc->minimum_page_bits = 12;
1521 }
1522 
1523 static const TypeInfo virt_machine_info = {
1524     .name          = TYPE_VIRT_MACHINE,
1525     .parent        = TYPE_MACHINE,
1526     .abstract      = true,
1527     .instance_size = sizeof(VirtMachineState),
1528     .class_size    = sizeof(VirtMachineClass),
1529     .class_init    = virt_machine_class_init,
1530 };
1531 
1532 static void machvirt_machine_init(void)
1533 {
1534     type_register_static(&virt_machine_info);
1535 }
1536 type_init(machvirt_machine_init);
1537 
1538 static void virt_2_9_instance_init(Object *obj)
1539 {
1540     VirtMachineState *vms = VIRT_MACHINE(obj);
1541 
1542     /* EL3 is disabled by default on virt: this makes us consistent
1543      * between KVM and TCG for this board, and it also allows us to
1544      * boot UEFI blobs which assume no TrustZone support.
1545      */
1546     vms->secure = false;
1547     object_property_add_bool(obj, "secure", virt_get_secure,
1548                              virt_set_secure, NULL);
1549     object_property_set_description(obj, "secure",
1550                                     "Set on/off to enable/disable the ARM "
1551                                     "Security Extensions (TrustZone)",
1552                                     NULL);
1553 
1554     /* EL2 is also disabled by default, for similar reasons */
1555     vms->virt = false;
1556     object_property_add_bool(obj, "virtualization", virt_get_virt,
1557                              virt_set_virt, NULL);
1558     object_property_set_description(obj, "virtualization",
1559                                     "Set on/off to enable/disable emulating a "
1560                                     "guest CPU which implements the ARM "
1561                                     "Virtualization Extensions",
1562                                     NULL);
1563 
1564     /* High memory is enabled by default */
1565     vms->highmem = true;
1566     object_property_add_bool(obj, "highmem", virt_get_highmem,
1567                              virt_set_highmem, NULL);
1568     object_property_set_description(obj, "highmem",
1569                                     "Set on/off to enable/disable using "
1570                                     "physical address space above 32 bits",
1571                                     NULL);
1572     /* Default GIC type is v2 */
1573     vms->gic_version = 2;
1574     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1575                         virt_set_gic_version, NULL);
1576     object_property_set_description(obj, "gic-version",
1577                                     "Set GIC version. "
1578                                     "Valid values are 2, 3 and host", NULL);
1579 
1580     vms->memmap = a15memmap;
1581     vms->irqmap = a15irqmap;
1582 }
1583 
1584 static void virt_machine_2_9_options(MachineClass *mc)
1585 {
1586 }
1587 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1588 
1589 #define VIRT_COMPAT_2_8 \
1590     HW_COMPAT_2_8
1591 
1592 static void virt_2_8_instance_init(Object *obj)
1593 {
1594     virt_2_9_instance_init(obj);
1595 }
1596 
1597 static void virt_machine_2_8_options(MachineClass *mc)
1598 {
1599     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1600 
1601     virt_machine_2_9_options(mc);
1602     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1603     /* For 2.8 and earlier we falsely claimed in the DT that
1604      * our timers were edge-triggered, not level-triggered.
1605      */
1606     vmc->claim_edge_triggered_timers = true;
1607 }
1608 DEFINE_VIRT_MACHINE(2, 8)
1609 
1610 #define VIRT_COMPAT_2_7 \
1611     HW_COMPAT_2_7
1612 
1613 static void virt_2_7_instance_init(Object *obj)
1614 {
1615     virt_2_8_instance_init(obj);
1616 }
1617 
1618 static void virt_machine_2_7_options(MachineClass *mc)
1619 {
1620     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1621 
1622     virt_machine_2_8_options(mc);
1623     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1624     /* ITS was introduced with 2.8 */
1625     vmc->no_its = true;
1626     /* Stick with 1K pages for migration compatibility */
1627     mc->minimum_page_bits = 0;
1628 }
1629 DEFINE_VIRT_MACHINE(2, 7)
1630 
1631 #define VIRT_COMPAT_2_6 \
1632     HW_COMPAT_2_6
1633 
1634 static void virt_2_6_instance_init(Object *obj)
1635 {
1636     virt_2_7_instance_init(obj);
1637 }
1638 
1639 static void virt_machine_2_6_options(MachineClass *mc)
1640 {
1641     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1642 
1643     virt_machine_2_7_options(mc);
1644     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1645     vmc->disallow_affinity_adjustment = true;
1646     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1647     vmc->no_pmu = true;
1648 }
1649 DEFINE_VIRT_MACHINE(2, 6)
1650