1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "qapi/error.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/sysemu.h" 48 #include "sysemu/kvm.h" 49 #include "hw/loader.h" 50 #include "exec/address-spaces.h" 51 #include "qemu/bitops.h" 52 #include "qemu/error-report.h" 53 #include "qemu/module.h" 54 #include "hw/pci-host/gpex.h" 55 #include "hw/arm/sysbus-fdt.h" 56 #include "hw/platform-bus.h" 57 #include "hw/arm/fdt.h" 58 #include "hw/intc/arm_gic.h" 59 #include "hw/intc/arm_gicv3_common.h" 60 #include "kvm_arm.h" 61 #include "hw/firmware/smbios.h" 62 #include "qapi/visitor.h" 63 #include "standard-headers/linux/input.h" 64 #include "hw/arm/smmuv3.h" 65 #include "hw/acpi/acpi.h" 66 #include "target/arm/internals.h" 67 68 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 69 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 70 void *data) \ 71 { \ 72 MachineClass *mc = MACHINE_CLASS(oc); \ 73 virt_machine_##major##_##minor##_options(mc); \ 74 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 75 if (latest) { \ 76 mc->alias = "virt"; \ 77 } \ 78 } \ 79 static const TypeInfo machvirt_##major##_##minor##_info = { \ 80 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 81 .parent = TYPE_VIRT_MACHINE, \ 82 .class_init = virt_##major##_##minor##_class_init, \ 83 }; \ 84 static void machvirt_machine_##major##_##minor##_init(void) \ 85 { \ 86 type_register_static(&machvirt_##major##_##minor##_info); \ 87 } \ 88 type_init(machvirt_machine_##major##_##minor##_init); 89 90 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 91 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 92 #define DEFINE_VIRT_MACHINE(major, minor) \ 93 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 94 95 96 /* Number of external interrupt lines to configure the GIC with */ 97 #define NUM_IRQS 256 98 99 #define PLATFORM_BUS_NUM_IRQS 64 100 101 /* Legacy RAM limit in GB (< version 4.0) */ 102 #define LEGACY_RAMLIMIT_GB 255 103 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 104 105 /* Addresses and sizes of our components. 106 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 107 * 128MB..256MB is used for miscellaneous device I/O. 108 * 256MB..1GB is reserved for possible future PCI support (ie where the 109 * PCI memory window will go if we add a PCI host controller). 110 * 1GB and up is RAM (which may happily spill over into the 111 * high memory region beyond 4GB). 112 * This represents a compromise between how much RAM can be given to 113 * a 32 bit VM and leaving space for expansion and in particular for PCI. 114 * Note that devices should generally be placed at multiples of 0x10000, 115 * to accommodate guests using 64K pages. 116 */ 117 static const MemMapEntry base_memmap[] = { 118 /* Space up to 0x8000000 is reserved for a boot ROM */ 119 [VIRT_FLASH] = { 0, 0x08000000 }, 120 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 121 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 122 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 123 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 124 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 125 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 126 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 127 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 128 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 129 /* This redistributor space allows up to 2*64kB*123 CPUs */ 130 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 131 [VIRT_UART] = { 0x09000000, 0x00001000 }, 132 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 133 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 134 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 135 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 136 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 137 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 138 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 139 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 140 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 141 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 142 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 143 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 144 /* Actual RAM size depends on initial RAM and device memory settings */ 145 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 146 }; 147 148 /* 149 * Highmem IO Regions: This memory map is floating, located after the RAM. 150 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 151 * top of the RAM, so that its base get the same alignment as the size, 152 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 153 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 154 * Note the extended_memmap is sized so that it eventually also includes the 155 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 156 * index of base_memmap). 157 */ 158 static MemMapEntry extended_memmap[] = { 159 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 160 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 161 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 162 /* Second PCIe window */ 163 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 164 }; 165 166 static const int a15irqmap[] = { 167 [VIRT_UART] = 1, 168 [VIRT_RTC] = 2, 169 [VIRT_PCIE] = 3, /* ... to 6 */ 170 [VIRT_GPIO] = 7, 171 [VIRT_SECURE_UART] = 8, 172 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 173 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 174 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 175 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 176 }; 177 178 static const char *valid_cpus[] = { 179 ARM_CPU_TYPE_NAME("cortex-a7"), 180 ARM_CPU_TYPE_NAME("cortex-a15"), 181 ARM_CPU_TYPE_NAME("cortex-a53"), 182 ARM_CPU_TYPE_NAME("cortex-a57"), 183 ARM_CPU_TYPE_NAME("cortex-a72"), 184 ARM_CPU_TYPE_NAME("host"), 185 ARM_CPU_TYPE_NAME("max"), 186 }; 187 188 static bool cpu_type_valid(const char *cpu) 189 { 190 int i; 191 192 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 193 if (strcmp(cpu, valid_cpus[i]) == 0) { 194 return true; 195 } 196 } 197 return false; 198 } 199 200 static void create_fdt(VirtMachineState *vms) 201 { 202 void *fdt = create_device_tree(&vms->fdt_size); 203 204 if (!fdt) { 205 error_report("create_device_tree() failed"); 206 exit(1); 207 } 208 209 vms->fdt = fdt; 210 211 /* Header */ 212 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 213 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 214 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 215 216 /* /chosen must exist for load_dtb to fill in necessary properties later */ 217 qemu_fdt_add_subnode(fdt, "/chosen"); 218 219 /* Clock node, for the benefit of the UART. The kernel device tree 220 * binding documentation claims the PL011 node clock properties are 221 * optional but in practice if you omit them the kernel refuses to 222 * probe for the device. 223 */ 224 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 225 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 226 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 227 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 228 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 229 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 230 "clk24mhz"); 231 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 232 233 if (have_numa_distance) { 234 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 235 uint32_t *matrix = g_malloc0(size); 236 int idx, i, j; 237 238 for (i = 0; i < nb_numa_nodes; i++) { 239 for (j = 0; j < nb_numa_nodes; j++) { 240 idx = (i * nb_numa_nodes + j) * 3; 241 matrix[idx + 0] = cpu_to_be32(i); 242 matrix[idx + 1] = cpu_to_be32(j); 243 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); 244 } 245 } 246 247 qemu_fdt_add_subnode(fdt, "/distance-map"); 248 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 249 "numa-distance-map-v1"); 250 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 251 matrix, size); 252 g_free(matrix); 253 } 254 } 255 256 static void fdt_add_timer_nodes(const VirtMachineState *vms) 257 { 258 /* On real hardware these interrupts are level-triggered. 259 * On KVM they were edge-triggered before host kernel version 4.4, 260 * and level-triggered afterwards. 261 * On emulated QEMU they are level-triggered. 262 * 263 * Getting the DTB info about them wrong is awkward for some 264 * guest kernels: 265 * pre-4.8 ignore the DT and leave the interrupt configured 266 * with whatever the GIC reset value (or the bootloader) left it at 267 * 4.8 before rc6 honour the incorrect data by programming it back 268 * into the GIC, causing problems 269 * 4.8rc6 and later ignore the DT and always write "level triggered" 270 * into the GIC 271 * 272 * For backwards-compatibility, virt-2.8 and earlier will continue 273 * to say these are edge-triggered, but later machines will report 274 * the correct information. 275 */ 276 ARMCPU *armcpu; 277 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 278 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 279 280 if (vmc->claim_edge_triggered_timers) { 281 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 282 } 283 284 if (vms->gic_version == 2) { 285 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 286 GIC_FDT_IRQ_PPI_CPU_WIDTH, 287 (1 << vms->smp_cpus) - 1); 288 } 289 290 qemu_fdt_add_subnode(vms->fdt, "/timer"); 291 292 armcpu = ARM_CPU(qemu_get_cpu(0)); 293 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 294 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 295 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 296 compat, sizeof(compat)); 297 } else { 298 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 299 "arm,armv7-timer"); 300 } 301 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 302 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 303 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 304 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 305 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 306 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 307 } 308 309 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 310 { 311 int cpu; 312 int addr_cells = 1; 313 const MachineState *ms = MACHINE(vms); 314 315 /* 316 * From Documentation/devicetree/bindings/arm/cpus.txt 317 * On ARM v8 64-bit systems value should be set to 2, 318 * that corresponds to the MPIDR_EL1 register size. 319 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 320 * in the system, #address-cells can be set to 1, since 321 * MPIDR_EL1[63:32] bits are not used for CPUs 322 * identification. 323 * 324 * Here we actually don't know whether our system is 32- or 64-bit one. 325 * The simplest way to go is to examine affinity IDs of all our CPUs. If 326 * at least one of them has Aff3 populated, we set #address-cells to 2. 327 */ 328 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 329 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 330 331 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 332 addr_cells = 2; 333 break; 334 } 335 } 336 337 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 338 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 339 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 340 341 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 342 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 343 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 344 CPUState *cs = CPU(armcpu); 345 346 qemu_fdt_add_subnode(vms->fdt, nodename); 347 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 348 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 349 armcpu->dtb_compatible); 350 351 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 352 && vms->smp_cpus > 1) { 353 qemu_fdt_setprop_string(vms->fdt, nodename, 354 "enable-method", "psci"); 355 } 356 357 if (addr_cells == 2) { 358 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 359 armcpu->mp_affinity); 360 } else { 361 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 362 armcpu->mp_affinity); 363 } 364 365 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 366 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 367 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 368 } 369 370 g_free(nodename); 371 } 372 } 373 374 static void fdt_add_its_gic_node(VirtMachineState *vms) 375 { 376 char *nodename; 377 378 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 379 nodename = g_strdup_printf("/intc/its@%" PRIx64, 380 vms->memmap[VIRT_GIC_ITS].base); 381 qemu_fdt_add_subnode(vms->fdt, nodename); 382 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 383 "arm,gic-v3-its"); 384 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 385 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 386 2, vms->memmap[VIRT_GIC_ITS].base, 387 2, vms->memmap[VIRT_GIC_ITS].size); 388 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 389 g_free(nodename); 390 } 391 392 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 393 { 394 char *nodename; 395 396 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 397 vms->memmap[VIRT_GIC_V2M].base); 398 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 399 qemu_fdt_add_subnode(vms->fdt, nodename); 400 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 401 "arm,gic-v2m-frame"); 402 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 403 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 404 2, vms->memmap[VIRT_GIC_V2M].base, 405 2, vms->memmap[VIRT_GIC_V2M].size); 406 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 407 g_free(nodename); 408 } 409 410 static void fdt_add_gic_node(VirtMachineState *vms) 411 { 412 char *nodename; 413 414 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 415 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 416 417 nodename = g_strdup_printf("/intc@%" PRIx64, 418 vms->memmap[VIRT_GIC_DIST].base); 419 qemu_fdt_add_subnode(vms->fdt, nodename); 420 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 421 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 422 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 423 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 424 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 425 if (vms->gic_version == 3) { 426 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 427 428 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 429 "arm,gic-v3"); 430 431 qemu_fdt_setprop_cell(vms->fdt, nodename, 432 "#redistributor-regions", nb_redist_regions); 433 434 if (nb_redist_regions == 1) { 435 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 436 2, vms->memmap[VIRT_GIC_DIST].base, 437 2, vms->memmap[VIRT_GIC_DIST].size, 438 2, vms->memmap[VIRT_GIC_REDIST].base, 439 2, vms->memmap[VIRT_GIC_REDIST].size); 440 } else { 441 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 442 2, vms->memmap[VIRT_GIC_DIST].base, 443 2, vms->memmap[VIRT_GIC_DIST].size, 444 2, vms->memmap[VIRT_GIC_REDIST].base, 445 2, vms->memmap[VIRT_GIC_REDIST].size, 446 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 447 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 448 } 449 450 if (vms->virt) { 451 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 452 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 453 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 454 } 455 } else { 456 /* 'cortex-a15-gic' means 'GIC v2' */ 457 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 458 "arm,cortex-a15-gic"); 459 if (!vms->virt) { 460 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 461 2, vms->memmap[VIRT_GIC_DIST].base, 462 2, vms->memmap[VIRT_GIC_DIST].size, 463 2, vms->memmap[VIRT_GIC_CPU].base, 464 2, vms->memmap[VIRT_GIC_CPU].size); 465 } else { 466 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 467 2, vms->memmap[VIRT_GIC_DIST].base, 468 2, vms->memmap[VIRT_GIC_DIST].size, 469 2, vms->memmap[VIRT_GIC_CPU].base, 470 2, vms->memmap[VIRT_GIC_CPU].size, 471 2, vms->memmap[VIRT_GIC_HYP].base, 472 2, vms->memmap[VIRT_GIC_HYP].size, 473 2, vms->memmap[VIRT_GIC_VCPU].base, 474 2, vms->memmap[VIRT_GIC_VCPU].size); 475 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 476 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 477 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 478 } 479 } 480 481 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 482 g_free(nodename); 483 } 484 485 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 486 { 487 CPUState *cpu; 488 ARMCPU *armcpu; 489 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 490 491 CPU_FOREACH(cpu) { 492 armcpu = ARM_CPU(cpu); 493 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 494 return; 495 } 496 if (kvm_enabled()) { 497 if (kvm_irqchip_in_kernel()) { 498 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 499 } 500 kvm_arm_pmu_init(cpu); 501 } 502 } 503 504 if (vms->gic_version == 2) { 505 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 506 GIC_FDT_IRQ_PPI_CPU_WIDTH, 507 (1 << vms->smp_cpus) - 1); 508 } 509 510 armcpu = ARM_CPU(qemu_get_cpu(0)); 511 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 512 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 513 const char compat[] = "arm,armv8-pmuv3"; 514 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 515 compat, sizeof(compat)); 516 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 517 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 518 } 519 } 520 521 static void create_its(VirtMachineState *vms, DeviceState *gicdev) 522 { 523 const char *itsclass = its_class_name(); 524 DeviceState *dev; 525 526 if (!itsclass) { 527 /* Do nothing if not supported */ 528 return; 529 } 530 531 dev = qdev_create(NULL, itsclass); 532 533 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 534 &error_abort); 535 qdev_init_nofail(dev); 536 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 537 538 fdt_add_its_gic_node(vms); 539 } 540 541 static void create_v2m(VirtMachineState *vms, qemu_irq *pic) 542 { 543 int i; 544 int irq = vms->irqmap[VIRT_GIC_V2M]; 545 DeviceState *dev; 546 547 dev = qdev_create(NULL, "arm-gicv2m"); 548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 549 qdev_prop_set_uint32(dev, "base-spi", irq); 550 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 551 qdev_init_nofail(dev); 552 553 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 554 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 555 } 556 557 fdt_add_v2m_gic_node(vms); 558 } 559 560 static void create_gic(VirtMachineState *vms, qemu_irq *pic) 561 { 562 MachineState *ms = MACHINE(vms); 563 /* We create a standalone GIC */ 564 DeviceState *gicdev; 565 SysBusDevice *gicbusdev; 566 const char *gictype; 567 int type = vms->gic_version, i; 568 unsigned int smp_cpus = ms->smp.cpus; 569 uint32_t nb_redist_regions = 0; 570 571 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 572 573 gicdev = qdev_create(NULL, gictype); 574 qdev_prop_set_uint32(gicdev, "revision", type); 575 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 576 /* Note that the num-irq property counts both internal and external 577 * interrupts; there are always 32 of the former (mandated by GIC spec). 578 */ 579 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 580 if (!kvm_irqchip_in_kernel()) { 581 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); 582 } 583 584 if (type == 3) { 585 uint32_t redist0_capacity = 586 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 587 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 588 589 nb_redist_regions = virt_gicv3_redist_region_count(vms); 590 591 qdev_prop_set_uint32(gicdev, "len-redist-region-count", 592 nb_redist_regions); 593 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count); 594 595 if (nb_redist_regions == 2) { 596 uint32_t redist1_capacity = 597 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 598 599 qdev_prop_set_uint32(gicdev, "redist-region-count[1]", 600 MIN(smp_cpus - redist0_count, redist1_capacity)); 601 } 602 } else { 603 if (!kvm_irqchip_in_kernel()) { 604 qdev_prop_set_bit(gicdev, "has-virtualization-extensions", 605 vms->virt); 606 } 607 } 608 qdev_init_nofail(gicdev); 609 gicbusdev = SYS_BUS_DEVICE(gicdev); 610 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 611 if (type == 3) { 612 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 613 if (nb_redist_regions == 2) { 614 sysbus_mmio_map(gicbusdev, 2, 615 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 616 } 617 } else { 618 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 619 if (vms->virt) { 620 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 621 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 622 } 623 } 624 625 /* Wire the outputs from each CPU's generic timer and the GICv3 626 * maintenance interrupt signal to the appropriate GIC PPI inputs, 627 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 628 */ 629 for (i = 0; i < smp_cpus; i++) { 630 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 631 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 632 int irq; 633 /* Mapping from the output timer irq lines from the CPU to the 634 * GIC PPI inputs we use for the virt board. 635 */ 636 const int timer_irq[] = { 637 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 638 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 639 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 640 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 641 }; 642 643 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 644 qdev_connect_gpio_out(cpudev, irq, 645 qdev_get_gpio_in(gicdev, 646 ppibase + timer_irq[irq])); 647 } 648 649 if (type == 3) { 650 qemu_irq irq = qdev_get_gpio_in(gicdev, 651 ppibase + ARCH_GIC_MAINT_IRQ); 652 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 653 0, irq); 654 } else if (vms->virt) { 655 qemu_irq irq = qdev_get_gpio_in(gicdev, 656 ppibase + ARCH_GIC_MAINT_IRQ); 657 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 658 } 659 660 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 661 qdev_get_gpio_in(gicdev, ppibase 662 + VIRTUAL_PMU_IRQ)); 663 664 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 665 sysbus_connect_irq(gicbusdev, i + smp_cpus, 666 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 667 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 668 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 669 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 670 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 671 } 672 673 for (i = 0; i < NUM_IRQS; i++) { 674 pic[i] = qdev_get_gpio_in(gicdev, i); 675 } 676 677 fdt_add_gic_node(vms); 678 679 if (type == 3 && vms->its) { 680 create_its(vms, gicdev); 681 } else if (type == 2) { 682 create_v2m(vms, pic); 683 } 684 } 685 686 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, 687 MemoryRegion *mem, Chardev *chr) 688 { 689 char *nodename; 690 hwaddr base = vms->memmap[uart].base; 691 hwaddr size = vms->memmap[uart].size; 692 int irq = vms->irqmap[uart]; 693 const char compat[] = "arm,pl011\0arm,primecell"; 694 const char clocknames[] = "uartclk\0apb_pclk"; 695 DeviceState *dev = qdev_create(NULL, "pl011"); 696 SysBusDevice *s = SYS_BUS_DEVICE(dev); 697 698 qdev_prop_set_chr(dev, "chardev", chr); 699 qdev_init_nofail(dev); 700 memory_region_add_subregion(mem, base, 701 sysbus_mmio_get_region(s, 0)); 702 sysbus_connect_irq(s, 0, pic[irq]); 703 704 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 705 qemu_fdt_add_subnode(vms->fdt, nodename); 706 /* Note that we can't use setprop_string because of the embedded NUL */ 707 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 708 compat, sizeof(compat)); 709 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 710 2, base, 2, size); 711 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 712 GIC_FDT_IRQ_TYPE_SPI, irq, 713 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 714 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 715 vms->clock_phandle, vms->clock_phandle); 716 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 717 clocknames, sizeof(clocknames)); 718 719 if (uart == VIRT_UART) { 720 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 721 } else { 722 /* Mark as not usable by the normal world */ 723 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 724 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 725 726 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen"); 727 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 728 nodename); 729 } 730 731 g_free(nodename); 732 } 733 734 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) 735 { 736 char *nodename; 737 hwaddr base = vms->memmap[VIRT_RTC].base; 738 hwaddr size = vms->memmap[VIRT_RTC].size; 739 int irq = vms->irqmap[VIRT_RTC]; 740 const char compat[] = "arm,pl031\0arm,primecell"; 741 742 sysbus_create_simple("pl031", base, pic[irq]); 743 744 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 745 qemu_fdt_add_subnode(vms->fdt, nodename); 746 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 747 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 748 2, base, 2, size); 749 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 750 GIC_FDT_IRQ_TYPE_SPI, irq, 751 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 752 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 753 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 754 g_free(nodename); 755 } 756 757 static DeviceState *gpio_key_dev; 758 static void virt_powerdown_req(Notifier *n, void *opaque) 759 { 760 /* use gpio Pin 3 for power button event */ 761 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 762 } 763 764 static Notifier virt_system_powerdown_notifier = { 765 .notify = virt_powerdown_req 766 }; 767 768 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) 769 { 770 char *nodename; 771 DeviceState *pl061_dev; 772 hwaddr base = vms->memmap[VIRT_GPIO].base; 773 hwaddr size = vms->memmap[VIRT_GPIO].size; 774 int irq = vms->irqmap[VIRT_GPIO]; 775 const char compat[] = "arm,pl061\0arm,primecell"; 776 777 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 778 779 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 780 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 781 qemu_fdt_add_subnode(vms->fdt, nodename); 782 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 783 2, base, 2, size); 784 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 785 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 786 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 787 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 788 GIC_FDT_IRQ_TYPE_SPI, irq, 789 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 790 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 791 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 792 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 793 794 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 795 qdev_get_gpio_in(pl061_dev, 3)); 796 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 797 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 798 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 799 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 800 801 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 802 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 803 "label", "GPIO Key Poweroff"); 804 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 805 KEY_POWER); 806 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 807 "gpios", phandle, 3, 0); 808 809 /* connect powerdown request */ 810 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 811 812 g_free(nodename); 813 } 814 815 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) 816 { 817 int i; 818 hwaddr size = vms->memmap[VIRT_MMIO].size; 819 820 /* We create the transports in forwards order. Since qbus_realize() 821 * prepends (not appends) new child buses, the incrementing loop below will 822 * create a list of virtio-mmio buses with decreasing base addresses. 823 * 824 * When a -device option is processed from the command line, 825 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 826 * order. The upshot is that -device options in increasing command line 827 * order are mapped to virtio-mmio buses with decreasing base addresses. 828 * 829 * When this code was originally written, that arrangement ensured that the 830 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 831 * the first -device on the command line. (The end-to-end order is a 832 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 833 * guest kernel's name-to-address assignment strategy.) 834 * 835 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 836 * the message, if not necessarily the code, of commit 70161ff336. 837 * Therefore the loop now establishes the inverse of the original intent. 838 * 839 * Unfortunately, we can't counteract the kernel change by reversing the 840 * loop; it would break existing command lines. 841 * 842 * In any case, the kernel makes no guarantee about the stability of 843 * enumeration order of virtio devices (as demonstrated by it changing 844 * between kernel versions). For reliable and stable identification 845 * of disks users must use UUIDs or similar mechanisms. 846 */ 847 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 848 int irq = vms->irqmap[VIRT_MMIO] + i; 849 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 850 851 sysbus_create_simple("virtio-mmio", base, pic[irq]); 852 } 853 854 /* We add dtb nodes in reverse order so that they appear in the finished 855 * device tree lowest address first. 856 * 857 * Note that this mapping is independent of the loop above. The previous 858 * loop influences virtio device to virtio transport assignment, whereas 859 * this loop controls how virtio transports are laid out in the dtb. 860 */ 861 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 862 char *nodename; 863 int irq = vms->irqmap[VIRT_MMIO] + i; 864 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 865 866 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 867 qemu_fdt_add_subnode(vms->fdt, nodename); 868 qemu_fdt_setprop_string(vms->fdt, nodename, 869 "compatible", "virtio,mmio"); 870 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 871 2, base, 2, size); 872 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 873 GIC_FDT_IRQ_TYPE_SPI, irq, 874 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 875 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 876 g_free(nodename); 877 } 878 } 879 880 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 881 882 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 883 const char *name, 884 const char *alias_prop_name) 885 { 886 /* 887 * Create a single flash device. We use the same parameters as 888 * the flash devices on the Versatile Express board. 889 */ 890 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01); 891 892 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 893 qdev_prop_set_uint8(dev, "width", 4); 894 qdev_prop_set_uint8(dev, "device-width", 2); 895 qdev_prop_set_bit(dev, "big-endian", false); 896 qdev_prop_set_uint16(dev, "id0", 0x89); 897 qdev_prop_set_uint16(dev, "id1", 0x18); 898 qdev_prop_set_uint16(dev, "id2", 0x00); 899 qdev_prop_set_uint16(dev, "id3", 0x00); 900 qdev_prop_set_string(dev, "name", name); 901 object_property_add_child(OBJECT(vms), name, OBJECT(dev), 902 &error_abort); 903 object_property_add_alias(OBJECT(vms), alias_prop_name, 904 OBJECT(dev), "drive", &error_abort); 905 return PFLASH_CFI01(dev); 906 } 907 908 static void virt_flash_create(VirtMachineState *vms) 909 { 910 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 911 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 912 } 913 914 static void virt_flash_map1(PFlashCFI01 *flash, 915 hwaddr base, hwaddr size, 916 MemoryRegion *sysmem) 917 { 918 DeviceState *dev = DEVICE(flash); 919 920 assert(size % VIRT_FLASH_SECTOR_SIZE == 0); 921 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 922 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 923 qdev_init_nofail(dev); 924 925 memory_region_add_subregion(sysmem, base, 926 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 927 0)); 928 } 929 930 static void virt_flash_map(VirtMachineState *vms, 931 MemoryRegion *sysmem, 932 MemoryRegion *secure_sysmem) 933 { 934 /* 935 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 936 * sysmem is the system memory space. secure_sysmem is the secure view 937 * of the system, and the first flash device should be made visible only 938 * there. The second flash device is visible to both secure and nonsecure. 939 * If sysmem == secure_sysmem this means there is no separate Secure 940 * address space and both flash devices are generally visible. 941 */ 942 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 943 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 944 945 virt_flash_map1(vms->flash[0], flashbase, flashsize, 946 secure_sysmem); 947 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 948 sysmem); 949 } 950 951 static void virt_flash_fdt(VirtMachineState *vms, 952 MemoryRegion *sysmem, 953 MemoryRegion *secure_sysmem) 954 { 955 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 956 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 957 char *nodename; 958 959 if (sysmem == secure_sysmem) { 960 /* Report both flash devices as a single node in the DT */ 961 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 962 qemu_fdt_add_subnode(vms->fdt, nodename); 963 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 964 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 965 2, flashbase, 2, flashsize, 966 2, flashbase + flashsize, 2, flashsize); 967 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 968 g_free(nodename); 969 } else { 970 /* 971 * Report the devices as separate nodes so we can mark one as 972 * only visible to the secure world. 973 */ 974 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 975 qemu_fdt_add_subnode(vms->fdt, nodename); 976 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 977 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 978 2, flashbase, 2, flashsize); 979 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 980 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 981 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 982 g_free(nodename); 983 984 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 985 qemu_fdt_add_subnode(vms->fdt, nodename); 986 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 987 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 988 2, flashbase + flashsize, 2, flashsize); 989 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 990 g_free(nodename); 991 } 992 } 993 994 static bool virt_firmware_init(VirtMachineState *vms, 995 MemoryRegion *sysmem, 996 MemoryRegion *secure_sysmem) 997 { 998 int i; 999 BlockBackend *pflash_blk0; 1000 1001 /* Map legacy -drive if=pflash to machine properties */ 1002 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1003 pflash_cfi01_legacy_drive(vms->flash[i], 1004 drive_get(IF_PFLASH, 0, i)); 1005 } 1006 1007 virt_flash_map(vms, sysmem, secure_sysmem); 1008 1009 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1010 1011 if (bios_name) { 1012 char *fname; 1013 MemoryRegion *mr; 1014 int image_size; 1015 1016 if (pflash_blk0) { 1017 error_report("The contents of the first flash device may be " 1018 "specified with -bios or with -drive if=pflash... " 1019 "but you cannot use both options at once"); 1020 exit(1); 1021 } 1022 1023 /* Fall back to -bios */ 1024 1025 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1026 if (!fname) { 1027 error_report("Could not find ROM image '%s'", bios_name); 1028 exit(1); 1029 } 1030 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1031 image_size = load_image_mr(fname, mr); 1032 g_free(fname); 1033 if (image_size < 0) { 1034 error_report("Could not load ROM image '%s'", bios_name); 1035 exit(1); 1036 } 1037 } 1038 1039 return pflash_blk0 || bios_name; 1040 } 1041 1042 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1043 { 1044 MachineState *ms = MACHINE(vms); 1045 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1046 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1047 FWCfgState *fw_cfg; 1048 char *nodename; 1049 1050 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1051 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1052 1053 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1054 qemu_fdt_add_subnode(vms->fdt, nodename); 1055 qemu_fdt_setprop_string(vms->fdt, nodename, 1056 "compatible", "qemu,fw-cfg-mmio"); 1057 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1058 2, base, 2, size); 1059 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1060 g_free(nodename); 1061 return fw_cfg; 1062 } 1063 1064 static void create_pcie_irq_map(const VirtMachineState *vms, 1065 uint32_t gic_phandle, 1066 int first_irq, const char *nodename) 1067 { 1068 int devfn, pin; 1069 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1070 uint32_t *irq_map = full_irq_map; 1071 1072 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1073 for (pin = 0; pin < 4; pin++) { 1074 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1075 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1076 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1077 int i; 1078 1079 uint32_t map[] = { 1080 devfn << 8, 0, 0, /* devfn */ 1081 pin + 1, /* PCI pin */ 1082 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1083 1084 /* Convert map to big endian */ 1085 for (i = 0; i < 10; i++) { 1086 irq_map[i] = cpu_to_be32(map[i]); 1087 } 1088 irq_map += 10; 1089 } 1090 } 1091 1092 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1093 full_irq_map, sizeof(full_irq_map)); 1094 1095 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1096 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1097 0x7 /* PCI irq */); 1098 } 1099 1100 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, 1101 PCIBus *bus) 1102 { 1103 char *node; 1104 const char compat[] = "arm,smmu-v3"; 1105 int irq = vms->irqmap[VIRT_SMMU]; 1106 int i; 1107 hwaddr base = vms->memmap[VIRT_SMMU].base; 1108 hwaddr size = vms->memmap[VIRT_SMMU].size; 1109 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1110 DeviceState *dev; 1111 1112 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1113 return; 1114 } 1115 1116 dev = qdev_create(NULL, "arm-smmuv3"); 1117 1118 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1119 &error_abort); 1120 qdev_init_nofail(dev); 1121 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1122 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1123 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1124 } 1125 1126 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1127 qemu_fdt_add_subnode(vms->fdt, node); 1128 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1129 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1130 1131 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1132 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1133 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1134 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1135 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1136 1137 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1138 sizeof(irq_names)); 1139 1140 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1141 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1142 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1143 1144 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1145 1146 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1147 g_free(node); 1148 } 1149 1150 static void create_pcie(VirtMachineState *vms, qemu_irq *pic) 1151 { 1152 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1153 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1154 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1155 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1156 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1157 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1158 hwaddr base_ecam, size_ecam; 1159 hwaddr base = base_mmio; 1160 int nr_pcie_buses; 1161 int irq = vms->irqmap[VIRT_PCIE]; 1162 MemoryRegion *mmio_alias; 1163 MemoryRegion *mmio_reg; 1164 MemoryRegion *ecam_alias; 1165 MemoryRegion *ecam_reg; 1166 DeviceState *dev; 1167 char *nodename; 1168 int i, ecam_id; 1169 PCIHostState *pci; 1170 1171 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1172 qdev_init_nofail(dev); 1173 1174 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1175 base_ecam = vms->memmap[ecam_id].base; 1176 size_ecam = vms->memmap[ecam_id].size; 1177 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1178 /* Map only the first size_ecam bytes of ECAM space */ 1179 ecam_alias = g_new0(MemoryRegion, 1); 1180 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1181 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1182 ecam_reg, 0, size_ecam); 1183 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1184 1185 /* Map the MMIO window into system address space so as to expose 1186 * the section of PCI MMIO space which starts at the same base address 1187 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1188 * the window). 1189 */ 1190 mmio_alias = g_new0(MemoryRegion, 1); 1191 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1192 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1193 mmio_reg, base_mmio, size_mmio); 1194 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1195 1196 if (vms->highmem) { 1197 /* Map high MMIO space */ 1198 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1199 1200 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1201 mmio_reg, base_mmio_high, size_mmio_high); 1202 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1203 high_mmio_alias); 1204 } 1205 1206 /* Map IO port space */ 1207 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1208 1209 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1210 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1211 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1212 } 1213 1214 pci = PCI_HOST_BRIDGE(dev); 1215 if (pci->bus) { 1216 for (i = 0; i < nb_nics; i++) { 1217 NICInfo *nd = &nd_table[i]; 1218 1219 if (!nd->model) { 1220 nd->model = g_strdup("virtio"); 1221 } 1222 1223 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1224 } 1225 } 1226 1227 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1228 qemu_fdt_add_subnode(vms->fdt, nodename); 1229 qemu_fdt_setprop_string(vms->fdt, nodename, 1230 "compatible", "pci-host-ecam-generic"); 1231 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1232 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1233 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1234 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1235 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1236 nr_pcie_buses - 1); 1237 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1238 1239 if (vms->msi_phandle) { 1240 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1241 vms->msi_phandle); 1242 } 1243 1244 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1245 2, base_ecam, 2, size_ecam); 1246 1247 if (vms->highmem) { 1248 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1249 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1250 2, base_pio, 2, size_pio, 1251 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1252 2, base_mmio, 2, size_mmio, 1253 1, FDT_PCI_RANGE_MMIO_64BIT, 1254 2, base_mmio_high, 1255 2, base_mmio_high, 2, size_mmio_high); 1256 } else { 1257 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1258 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1259 2, base_pio, 2, size_pio, 1260 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1261 2, base_mmio, 2, size_mmio); 1262 } 1263 1264 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1265 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1266 1267 if (vms->iommu) { 1268 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1269 1270 create_smmu(vms, pic, pci->bus); 1271 1272 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1273 0x0, vms->iommu_phandle, 0x0, 0x10000); 1274 } 1275 1276 g_free(nodename); 1277 } 1278 1279 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) 1280 { 1281 DeviceState *dev; 1282 SysBusDevice *s; 1283 int i; 1284 MemoryRegion *sysmem = get_system_memory(); 1285 1286 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1287 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1288 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1289 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1290 qdev_init_nofail(dev); 1291 vms->platform_bus_dev = dev; 1292 1293 s = SYS_BUS_DEVICE(dev); 1294 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1295 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1296 sysbus_connect_irq(s, i, pic[irqn]); 1297 } 1298 1299 memory_region_add_subregion(sysmem, 1300 vms->memmap[VIRT_PLATFORM_BUS].base, 1301 sysbus_mmio_get_region(s, 0)); 1302 } 1303 1304 static void create_secure_ram(VirtMachineState *vms, 1305 MemoryRegion *secure_sysmem) 1306 { 1307 MemoryRegion *secram = g_new(MemoryRegion, 1); 1308 char *nodename; 1309 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1310 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1311 1312 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1313 &error_fatal); 1314 memory_region_add_subregion(secure_sysmem, base, secram); 1315 1316 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1317 qemu_fdt_add_subnode(vms->fdt, nodename); 1318 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1319 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1320 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1321 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1322 1323 g_free(nodename); 1324 } 1325 1326 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1327 { 1328 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1329 bootinfo); 1330 1331 *fdt_size = board->fdt_size; 1332 return board->fdt; 1333 } 1334 1335 static void virt_build_smbios(VirtMachineState *vms) 1336 { 1337 MachineClass *mc = MACHINE_GET_CLASS(vms); 1338 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1339 uint8_t *smbios_tables, *smbios_anchor; 1340 size_t smbios_tables_len, smbios_anchor_len; 1341 const char *product = "QEMU Virtual Machine"; 1342 1343 if (kvm_enabled()) { 1344 product = "KVM Virtual Machine"; 1345 } 1346 1347 smbios_set_defaults("QEMU", product, 1348 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1349 true, SMBIOS_ENTRY_POINT_30); 1350 1351 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1352 &smbios_anchor, &smbios_anchor_len); 1353 1354 if (smbios_anchor) { 1355 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1356 smbios_tables, smbios_tables_len); 1357 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1358 smbios_anchor, smbios_anchor_len); 1359 } 1360 } 1361 1362 static 1363 void virt_machine_done(Notifier *notifier, void *data) 1364 { 1365 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1366 machine_done); 1367 ARMCPU *cpu = ARM_CPU(first_cpu); 1368 struct arm_boot_info *info = &vms->bootinfo; 1369 AddressSpace *as = arm_boot_address_space(cpu, info); 1370 1371 /* 1372 * If the user provided a dtb, we assume the dynamic sysbus nodes 1373 * already are integrated there. This corresponds to a use case where 1374 * the dynamic sysbus nodes are complex and their generation is not yet 1375 * supported. In that case the user can take charge of the guest dt 1376 * while qemu takes charge of the qom stuff. 1377 */ 1378 if (info->dtb_filename == NULL) { 1379 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1380 vms->memmap[VIRT_PLATFORM_BUS].base, 1381 vms->memmap[VIRT_PLATFORM_BUS].size, 1382 vms->irqmap[VIRT_PLATFORM_BUS]); 1383 } 1384 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { 1385 exit(1); 1386 } 1387 1388 virt_acpi_setup(vms); 1389 virt_build_smbios(vms); 1390 } 1391 1392 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1393 { 1394 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1395 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1396 1397 if (!vmc->disallow_affinity_adjustment) { 1398 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1399 * GIC's target-list limitations. 32-bit KVM hosts currently 1400 * always create clusters of 4 CPUs, but that is expected to 1401 * change when they gain support for gicv3. When KVM is enabled 1402 * it will override the changes we make here, therefore our 1403 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1404 * and to improve SGI efficiency. 1405 */ 1406 if (vms->gic_version == 3) { 1407 clustersz = GICV3_TARGETLIST_BITS; 1408 } else { 1409 clustersz = GIC_TARGETLIST_BITS; 1410 } 1411 } 1412 return arm_cpu_mp_affinity(idx, clustersz); 1413 } 1414 1415 static void virt_set_memmap(VirtMachineState *vms) 1416 { 1417 MachineState *ms = MACHINE(vms); 1418 hwaddr base, device_memory_base, device_memory_size; 1419 int i; 1420 1421 vms->memmap = extended_memmap; 1422 1423 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1424 vms->memmap[i] = base_memmap[i]; 1425 } 1426 1427 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1428 error_report("unsupported number of memory slots: %"PRIu64, 1429 ms->ram_slots); 1430 exit(EXIT_FAILURE); 1431 } 1432 1433 /* 1434 * We compute the base of the high IO region depending on the 1435 * amount of initial and device memory. The device memory start/size 1436 * is aligned on 1GiB. We never put the high IO region below 256GiB 1437 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1438 * The device region size assumes 1GiB page max alignment per slot. 1439 */ 1440 device_memory_base = 1441 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1442 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1443 1444 /* Base address of the high IO region */ 1445 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1446 if (base < device_memory_base) { 1447 error_report("maxmem/slots too huge"); 1448 exit(EXIT_FAILURE); 1449 } 1450 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1451 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1452 } 1453 1454 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1455 hwaddr size = extended_memmap[i].size; 1456 1457 base = ROUND_UP(base, size); 1458 vms->memmap[i].base = base; 1459 vms->memmap[i].size = size; 1460 base += size; 1461 } 1462 vms->highest_gpa = base - 1; 1463 if (device_memory_size > 0) { 1464 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1465 ms->device_memory->base = device_memory_base; 1466 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1467 "device-memory", device_memory_size); 1468 } 1469 } 1470 1471 static void machvirt_init(MachineState *machine) 1472 { 1473 VirtMachineState *vms = VIRT_MACHINE(machine); 1474 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1475 MachineClass *mc = MACHINE_GET_CLASS(machine); 1476 const CPUArchIdList *possible_cpus; 1477 qemu_irq pic[NUM_IRQS]; 1478 MemoryRegion *sysmem = get_system_memory(); 1479 MemoryRegion *secure_sysmem = NULL; 1480 int n, virt_max_cpus; 1481 MemoryRegion *ram = g_new(MemoryRegion, 1); 1482 bool firmware_loaded; 1483 bool aarch64 = true; 1484 unsigned int smp_cpus = machine->smp.cpus; 1485 unsigned int max_cpus = machine->smp.max_cpus; 1486 1487 /* 1488 * In accelerated mode, the memory map is computed earlier in kvm_type() 1489 * to create a VM with the right number of IPA bits. 1490 */ 1491 if (!vms->memmap) { 1492 virt_set_memmap(vms); 1493 } 1494 1495 /* We can probe only here because during property set 1496 * KVM is not available yet 1497 */ 1498 if (vms->gic_version <= 0) { 1499 /* "host" or "max" */ 1500 if (!kvm_enabled()) { 1501 if (vms->gic_version == 0) { 1502 error_report("gic-version=host requires KVM"); 1503 exit(1); 1504 } else { 1505 /* "max": currently means 3 for TCG */ 1506 vms->gic_version = 3; 1507 } 1508 } else { 1509 vms->gic_version = kvm_arm_vgic_probe(); 1510 if (!vms->gic_version) { 1511 error_report( 1512 "Unable to determine GIC version supported by host"); 1513 exit(1); 1514 } 1515 } 1516 } 1517 1518 if (!cpu_type_valid(machine->cpu_type)) { 1519 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1520 exit(1); 1521 } 1522 1523 if (vms->secure) { 1524 if (kvm_enabled()) { 1525 error_report("mach-virt: KVM does not support Security extensions"); 1526 exit(1); 1527 } 1528 1529 /* 1530 * The Secure view of the world is the same as the NonSecure, 1531 * but with a few extra devices. Create it as a container region 1532 * containing the system memory at low priority; any secure-only 1533 * devices go in at higher priority and take precedence. 1534 */ 1535 secure_sysmem = g_new(MemoryRegion, 1); 1536 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1537 UINT64_MAX); 1538 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1539 } 1540 1541 firmware_loaded = virt_firmware_init(vms, sysmem, 1542 secure_sysmem ?: sysmem); 1543 1544 /* If we have an EL3 boot ROM then the assumption is that it will 1545 * implement PSCI itself, so disable QEMU's internal implementation 1546 * so it doesn't get in the way. Instead of starting secondary 1547 * CPUs in PSCI powerdown state we will start them all running and 1548 * let the boot ROM sort them out. 1549 * The usual case is that we do use QEMU's PSCI implementation; 1550 * if the guest has EL2 then we will use SMC as the conduit, 1551 * and otherwise we will use HVC (for backwards compatibility and 1552 * because if we're using KVM then we must use HVC). 1553 */ 1554 if (vms->secure && firmware_loaded) { 1555 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1556 } else if (vms->virt) { 1557 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1558 } else { 1559 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1560 } 1561 1562 /* The maximum number of CPUs depends on the GIC version, or on how 1563 * many redistributors we can fit into the memory map. 1564 */ 1565 if (vms->gic_version == 3) { 1566 virt_max_cpus = 1567 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1568 virt_max_cpus += 1569 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1570 } else { 1571 virt_max_cpus = GIC_NCPU; 1572 } 1573 1574 if (max_cpus > virt_max_cpus) { 1575 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1576 "supported by machine 'mach-virt' (%d)", 1577 max_cpus, virt_max_cpus); 1578 exit(1); 1579 } 1580 1581 vms->smp_cpus = smp_cpus; 1582 1583 if (vms->virt && kvm_enabled()) { 1584 error_report("mach-virt: KVM does not support providing " 1585 "Virtualization extensions to the guest CPU"); 1586 exit(1); 1587 } 1588 1589 create_fdt(vms); 1590 1591 possible_cpus = mc->possible_cpu_arch_ids(machine); 1592 for (n = 0; n < possible_cpus->len; n++) { 1593 Object *cpuobj; 1594 CPUState *cs; 1595 1596 if (n >= smp_cpus) { 1597 break; 1598 } 1599 1600 cpuobj = object_new(possible_cpus->cpus[n].type); 1601 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1602 "mp-affinity", NULL); 1603 1604 cs = CPU(cpuobj); 1605 cs->cpu_index = n; 1606 1607 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1608 &error_fatal); 1609 1610 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1611 1612 if (!vms->secure) { 1613 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1614 } 1615 1616 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1617 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1618 } 1619 1620 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1621 object_property_set_int(cpuobj, vms->psci_conduit, 1622 "psci-conduit", NULL); 1623 1624 /* Secondary CPUs start in PSCI powered-down state */ 1625 if (n > 0) { 1626 object_property_set_bool(cpuobj, true, 1627 "start-powered-off", NULL); 1628 } 1629 } 1630 1631 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1632 object_property_set_bool(cpuobj, false, "pmu", NULL); 1633 } 1634 1635 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1636 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1637 "reset-cbar", &error_abort); 1638 } 1639 1640 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1641 &error_abort); 1642 if (vms->secure) { 1643 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1644 "secure-memory", &error_abort); 1645 } 1646 1647 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1648 object_unref(cpuobj); 1649 } 1650 fdt_add_timer_nodes(vms); 1651 fdt_add_cpu_nodes(vms); 1652 1653 if (!kvm_enabled()) { 1654 ARMCPU *cpu = ARM_CPU(first_cpu); 1655 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL); 1656 1657 if (aarch64 && vms->highmem) { 1658 int requested_pa_size, pamax = arm_pamax(cpu); 1659 1660 requested_pa_size = 64 - clz64(vms->highest_gpa); 1661 if (pamax < requested_pa_size) { 1662 error_report("VCPU supports less PA bits (%d) than requested " 1663 "by the memory map (%d)", pamax, requested_pa_size); 1664 exit(1); 1665 } 1666 } 1667 } 1668 1669 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1670 machine->ram_size); 1671 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1672 if (machine->device_memory) { 1673 memory_region_add_subregion(sysmem, machine->device_memory->base, 1674 &machine->device_memory->mr); 1675 } 1676 1677 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 1678 1679 create_gic(vms, pic); 1680 1681 fdt_add_pmu_nodes(vms); 1682 1683 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); 1684 1685 if (vms->secure) { 1686 create_secure_ram(vms, secure_sysmem); 1687 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1688 } 1689 1690 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1691 1692 create_rtc(vms, pic); 1693 1694 create_pcie(vms, pic); 1695 1696 create_gpio(vms, pic); 1697 1698 /* Create mmio transports, so the user can create virtio backends 1699 * (which will be automatically plugged in to the transports). If 1700 * no backend is created the transport will just sit harmlessly idle. 1701 */ 1702 create_virtio_devices(vms, pic); 1703 1704 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1705 rom_set_fw(vms->fw_cfg); 1706 1707 create_platform_bus(vms, pic); 1708 1709 vms->bootinfo.ram_size = machine->ram_size; 1710 vms->bootinfo.kernel_filename = machine->kernel_filename; 1711 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1712 vms->bootinfo.initrd_filename = machine->initrd_filename; 1713 vms->bootinfo.nb_cpus = smp_cpus; 1714 vms->bootinfo.board_id = -1; 1715 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1716 vms->bootinfo.get_dtb = machvirt_dtb; 1717 vms->bootinfo.skip_dtb_autoload = true; 1718 vms->bootinfo.firmware_loaded = firmware_loaded; 1719 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); 1720 1721 vms->machine_done.notify = virt_machine_done; 1722 qemu_add_machine_init_done_notifier(&vms->machine_done); 1723 } 1724 1725 static bool virt_get_secure(Object *obj, Error **errp) 1726 { 1727 VirtMachineState *vms = VIRT_MACHINE(obj); 1728 1729 return vms->secure; 1730 } 1731 1732 static void virt_set_secure(Object *obj, bool value, Error **errp) 1733 { 1734 VirtMachineState *vms = VIRT_MACHINE(obj); 1735 1736 vms->secure = value; 1737 } 1738 1739 static bool virt_get_virt(Object *obj, Error **errp) 1740 { 1741 VirtMachineState *vms = VIRT_MACHINE(obj); 1742 1743 return vms->virt; 1744 } 1745 1746 static void virt_set_virt(Object *obj, bool value, Error **errp) 1747 { 1748 VirtMachineState *vms = VIRT_MACHINE(obj); 1749 1750 vms->virt = value; 1751 } 1752 1753 static bool virt_get_highmem(Object *obj, Error **errp) 1754 { 1755 VirtMachineState *vms = VIRT_MACHINE(obj); 1756 1757 return vms->highmem; 1758 } 1759 1760 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1761 { 1762 VirtMachineState *vms = VIRT_MACHINE(obj); 1763 1764 vms->highmem = value; 1765 } 1766 1767 static bool virt_get_its(Object *obj, Error **errp) 1768 { 1769 VirtMachineState *vms = VIRT_MACHINE(obj); 1770 1771 return vms->its; 1772 } 1773 1774 static void virt_set_its(Object *obj, bool value, Error **errp) 1775 { 1776 VirtMachineState *vms = VIRT_MACHINE(obj); 1777 1778 vms->its = value; 1779 } 1780 1781 static char *virt_get_gic_version(Object *obj, Error **errp) 1782 { 1783 VirtMachineState *vms = VIRT_MACHINE(obj); 1784 const char *val = vms->gic_version == 3 ? "3" : "2"; 1785 1786 return g_strdup(val); 1787 } 1788 1789 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1790 { 1791 VirtMachineState *vms = VIRT_MACHINE(obj); 1792 1793 if (!strcmp(value, "3")) { 1794 vms->gic_version = 3; 1795 } else if (!strcmp(value, "2")) { 1796 vms->gic_version = 2; 1797 } else if (!strcmp(value, "host")) { 1798 vms->gic_version = 0; /* Will probe later */ 1799 } else if (!strcmp(value, "max")) { 1800 vms->gic_version = -1; /* Will probe later */ 1801 } else { 1802 error_setg(errp, "Invalid gic-version value"); 1803 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1804 } 1805 } 1806 1807 static char *virt_get_iommu(Object *obj, Error **errp) 1808 { 1809 VirtMachineState *vms = VIRT_MACHINE(obj); 1810 1811 switch (vms->iommu) { 1812 case VIRT_IOMMU_NONE: 1813 return g_strdup("none"); 1814 case VIRT_IOMMU_SMMUV3: 1815 return g_strdup("smmuv3"); 1816 default: 1817 g_assert_not_reached(); 1818 } 1819 } 1820 1821 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1822 { 1823 VirtMachineState *vms = VIRT_MACHINE(obj); 1824 1825 if (!strcmp(value, "smmuv3")) { 1826 vms->iommu = VIRT_IOMMU_SMMUV3; 1827 } else if (!strcmp(value, "none")) { 1828 vms->iommu = VIRT_IOMMU_NONE; 1829 } else { 1830 error_setg(errp, "Invalid iommu value"); 1831 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1832 } 1833 } 1834 1835 static CpuInstanceProperties 1836 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1837 { 1838 MachineClass *mc = MACHINE_GET_CLASS(ms); 1839 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1840 1841 assert(cpu_index < possible_cpus->len); 1842 return possible_cpus->cpus[cpu_index].props; 1843 } 1844 1845 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1846 { 1847 return idx % nb_numa_nodes; 1848 } 1849 1850 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1851 { 1852 int n; 1853 unsigned int max_cpus = ms->smp.max_cpus; 1854 VirtMachineState *vms = VIRT_MACHINE(ms); 1855 1856 if (ms->possible_cpus) { 1857 assert(ms->possible_cpus->len == max_cpus); 1858 return ms->possible_cpus; 1859 } 1860 1861 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1862 sizeof(CPUArchId) * max_cpus); 1863 ms->possible_cpus->len = max_cpus; 1864 for (n = 0; n < ms->possible_cpus->len; n++) { 1865 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1866 ms->possible_cpus->cpus[n].arch_id = 1867 virt_cpu_mp_affinity(vms, n); 1868 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1869 ms->possible_cpus->cpus[n].props.thread_id = n; 1870 } 1871 return ms->possible_cpus; 1872 } 1873 1874 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1875 DeviceState *dev, Error **errp) 1876 { 1877 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1878 1879 if (vms->platform_bus_dev) { 1880 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1881 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1882 SYS_BUS_DEVICE(dev)); 1883 } 1884 } 1885 } 1886 1887 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1888 DeviceState *dev) 1889 { 1890 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1891 return HOTPLUG_HANDLER(machine); 1892 } 1893 1894 return NULL; 1895 } 1896 1897 /* 1898 * for arm64 kvm_type [7-0] encodes the requested number of bits 1899 * in the IPA address space 1900 */ 1901 static int virt_kvm_type(MachineState *ms, const char *type_str) 1902 { 1903 VirtMachineState *vms = VIRT_MACHINE(ms); 1904 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 1905 int requested_pa_size; 1906 1907 /* we freeze the memory map to compute the highest gpa */ 1908 virt_set_memmap(vms); 1909 1910 requested_pa_size = 64 - clz64(vms->highest_gpa); 1911 1912 if (requested_pa_size > max_vm_pa_size) { 1913 error_report("-m and ,maxmem option values " 1914 "require an IPA range (%d bits) larger than " 1915 "the one supported by the host (%d bits)", 1916 requested_pa_size, max_vm_pa_size); 1917 exit(1); 1918 } 1919 /* 1920 * By default we return 0 which corresponds to an implicit legacy 1921 * 40b IPA setting. Otherwise we return the actual requested PA 1922 * logsize 1923 */ 1924 return requested_pa_size > 40 ? requested_pa_size : 0; 1925 } 1926 1927 static void virt_machine_class_init(ObjectClass *oc, void *data) 1928 { 1929 MachineClass *mc = MACHINE_CLASS(oc); 1930 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 1931 1932 mc->init = machvirt_init; 1933 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 1934 * The value may be reduced later when we have more information about the 1935 * configuration of the particular instance. 1936 */ 1937 mc->max_cpus = 512; 1938 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 1939 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 1940 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 1941 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 1942 mc->block_default_type = IF_VIRTIO; 1943 mc->no_cdrom = 1; 1944 mc->pci_allow_0_address = true; 1945 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 1946 mc->minimum_page_bits = 12; 1947 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 1948 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 1949 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 1950 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 1951 mc->kvm_type = virt_kvm_type; 1952 assert(!mc->get_hotplug_handler); 1953 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 1954 hc->plug = virt_machine_device_plug_cb; 1955 mc->numa_mem_supported = true; 1956 } 1957 1958 static void virt_instance_init(Object *obj) 1959 { 1960 VirtMachineState *vms = VIRT_MACHINE(obj); 1961 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1962 1963 /* EL3 is disabled by default on virt: this makes us consistent 1964 * between KVM and TCG for this board, and it also allows us to 1965 * boot UEFI blobs which assume no TrustZone support. 1966 */ 1967 vms->secure = false; 1968 object_property_add_bool(obj, "secure", virt_get_secure, 1969 virt_set_secure, NULL); 1970 object_property_set_description(obj, "secure", 1971 "Set on/off to enable/disable the ARM " 1972 "Security Extensions (TrustZone)", 1973 NULL); 1974 1975 /* EL2 is also disabled by default, for similar reasons */ 1976 vms->virt = false; 1977 object_property_add_bool(obj, "virtualization", virt_get_virt, 1978 virt_set_virt, NULL); 1979 object_property_set_description(obj, "virtualization", 1980 "Set on/off to enable/disable emulating a " 1981 "guest CPU which implements the ARM " 1982 "Virtualization Extensions", 1983 NULL); 1984 1985 /* High memory is enabled by default */ 1986 vms->highmem = true; 1987 object_property_add_bool(obj, "highmem", virt_get_highmem, 1988 virt_set_highmem, NULL); 1989 object_property_set_description(obj, "highmem", 1990 "Set on/off to enable/disable using " 1991 "physical address space above 32 bits", 1992 NULL); 1993 /* Default GIC type is v2 */ 1994 vms->gic_version = 2; 1995 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1996 virt_set_gic_version, NULL); 1997 object_property_set_description(obj, "gic-version", 1998 "Set GIC version. " 1999 "Valid values are 2, 3 and host", NULL); 2000 2001 vms->highmem_ecam = !vmc->no_highmem_ecam; 2002 2003 if (vmc->no_its) { 2004 vms->its = false; 2005 } else { 2006 /* Default allows ITS instantiation */ 2007 vms->its = true; 2008 object_property_add_bool(obj, "its", virt_get_its, 2009 virt_set_its, NULL); 2010 object_property_set_description(obj, "its", 2011 "Set on/off to enable/disable " 2012 "ITS instantiation", 2013 NULL); 2014 } 2015 2016 /* Default disallows iommu instantiation */ 2017 vms->iommu = VIRT_IOMMU_NONE; 2018 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 2019 object_property_set_description(obj, "iommu", 2020 "Set the IOMMU type. " 2021 "Valid values are none and smmuv3", 2022 NULL); 2023 2024 vms->irqmap = a15irqmap; 2025 2026 virt_flash_create(vms); 2027 } 2028 2029 static const TypeInfo virt_machine_info = { 2030 .name = TYPE_VIRT_MACHINE, 2031 .parent = TYPE_MACHINE, 2032 .abstract = true, 2033 .instance_size = sizeof(VirtMachineState), 2034 .class_size = sizeof(VirtMachineClass), 2035 .class_init = virt_machine_class_init, 2036 .instance_init = virt_instance_init, 2037 .interfaces = (InterfaceInfo[]) { 2038 { TYPE_HOTPLUG_HANDLER }, 2039 { } 2040 }, 2041 }; 2042 2043 static void machvirt_machine_init(void) 2044 { 2045 type_register_static(&virt_machine_info); 2046 } 2047 type_init(machvirt_machine_init); 2048 2049 static void virt_machine_4_1_options(MachineClass *mc) 2050 { 2051 } 2052 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1) 2053 2054 static void virt_machine_4_0_options(MachineClass *mc) 2055 { 2056 virt_machine_4_1_options(mc); 2057 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2058 } 2059 DEFINE_VIRT_MACHINE(4, 0) 2060 2061 static void virt_machine_3_1_options(MachineClass *mc) 2062 { 2063 virt_machine_4_0_options(mc); 2064 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2065 } 2066 DEFINE_VIRT_MACHINE(3, 1) 2067 2068 static void virt_machine_3_0_options(MachineClass *mc) 2069 { 2070 virt_machine_3_1_options(mc); 2071 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2072 } 2073 DEFINE_VIRT_MACHINE(3, 0) 2074 2075 static void virt_machine_2_12_options(MachineClass *mc) 2076 { 2077 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2078 2079 virt_machine_3_0_options(mc); 2080 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2081 vmc->no_highmem_ecam = true; 2082 mc->max_cpus = 255; 2083 } 2084 DEFINE_VIRT_MACHINE(2, 12) 2085 2086 static void virt_machine_2_11_options(MachineClass *mc) 2087 { 2088 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2089 2090 virt_machine_2_12_options(mc); 2091 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2092 vmc->smbios_old_sys_ver = true; 2093 } 2094 DEFINE_VIRT_MACHINE(2, 11) 2095 2096 static void virt_machine_2_10_options(MachineClass *mc) 2097 { 2098 virt_machine_2_11_options(mc); 2099 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2100 /* before 2.11 we never faulted accesses to bad addresses */ 2101 mc->ignore_memory_transaction_failures = true; 2102 } 2103 DEFINE_VIRT_MACHINE(2, 10) 2104 2105 static void virt_machine_2_9_options(MachineClass *mc) 2106 { 2107 virt_machine_2_10_options(mc); 2108 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2109 } 2110 DEFINE_VIRT_MACHINE(2, 9) 2111 2112 static void virt_machine_2_8_options(MachineClass *mc) 2113 { 2114 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2115 2116 virt_machine_2_9_options(mc); 2117 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2118 /* For 2.8 and earlier we falsely claimed in the DT that 2119 * our timers were edge-triggered, not level-triggered. 2120 */ 2121 vmc->claim_edge_triggered_timers = true; 2122 } 2123 DEFINE_VIRT_MACHINE(2, 8) 2124 2125 static void virt_machine_2_7_options(MachineClass *mc) 2126 { 2127 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2128 2129 virt_machine_2_8_options(mc); 2130 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2131 /* ITS was introduced with 2.8 */ 2132 vmc->no_its = true; 2133 /* Stick with 1K pages for migration compatibility */ 2134 mc->minimum_page_bits = 0; 2135 } 2136 DEFINE_VIRT_MACHINE(2, 7) 2137 2138 static void virt_machine_2_6_options(MachineClass *mc) 2139 { 2140 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2141 2142 virt_machine_2_7_options(mc); 2143 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2144 vmc->disallow_affinity_adjustment = true; 2145 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2146 vmc->no_pmu = true; 2147 } 2148 DEFINE_VIRT_MACHINE(2, 6) 2149