xref: /openbmc/qemu/hw/arm/virt.c (revision 8072aae3)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/sysemu.h"
48 #include "sysemu/kvm.h"
49 #include "hw/loader.h"
50 #include "exec/address-spaces.h"
51 #include "qemu/bitops.h"
52 #include "qemu/error-report.h"
53 #include "qemu/module.h"
54 #include "hw/pci-host/gpex.h"
55 #include "hw/arm/sysbus-fdt.h"
56 #include "hw/platform-bus.h"
57 #include "hw/arm/fdt.h"
58 #include "hw/intc/arm_gic.h"
59 #include "hw/intc/arm_gicv3_common.h"
60 #include "kvm_arm.h"
61 #include "hw/firmware/smbios.h"
62 #include "qapi/visitor.h"
63 #include "standard-headers/linux/input.h"
64 #include "hw/arm/smmuv3.h"
65 #include "hw/acpi/acpi.h"
66 #include "target/arm/internals.h"
67 
68 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
69     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
70                                                     void *data) \
71     { \
72         MachineClass *mc = MACHINE_CLASS(oc); \
73         virt_machine_##major##_##minor##_options(mc); \
74         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
75         if (latest) { \
76             mc->alias = "virt"; \
77         } \
78     } \
79     static const TypeInfo machvirt_##major##_##minor##_info = { \
80         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
81         .parent = TYPE_VIRT_MACHINE, \
82         .class_init = virt_##major##_##minor##_class_init, \
83     }; \
84     static void machvirt_machine_##major##_##minor##_init(void) \
85     { \
86         type_register_static(&machvirt_##major##_##minor##_info); \
87     } \
88     type_init(machvirt_machine_##major##_##minor##_init);
89 
90 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
91     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
92 #define DEFINE_VIRT_MACHINE(major, minor) \
93     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
94 
95 
96 /* Number of external interrupt lines to configure the GIC with */
97 #define NUM_IRQS 256
98 
99 #define PLATFORM_BUS_NUM_IRQS 64
100 
101 /* Legacy RAM limit in GB (< version 4.0) */
102 #define LEGACY_RAMLIMIT_GB 255
103 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
104 
105 /* Addresses and sizes of our components.
106  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
107  * 128MB..256MB is used for miscellaneous device I/O.
108  * 256MB..1GB is reserved for possible future PCI support (ie where the
109  * PCI memory window will go if we add a PCI host controller).
110  * 1GB and up is RAM (which may happily spill over into the
111  * high memory region beyond 4GB).
112  * This represents a compromise between how much RAM can be given to
113  * a 32 bit VM and leaving space for expansion and in particular for PCI.
114  * Note that devices should generally be placed at multiples of 0x10000,
115  * to accommodate guests using 64K pages.
116  */
117 static const MemMapEntry base_memmap[] = {
118     /* Space up to 0x8000000 is reserved for a boot ROM */
119     [VIRT_FLASH] =              {          0, 0x08000000 },
120     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
121     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
122     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
123     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
124     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
125     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
126     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
127     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
128     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
129     /* This redistributor space allows up to 2*64kB*123 CPUs */
130     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
131     [VIRT_UART] =               { 0x09000000, 0x00001000 },
132     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
133     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
134     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
135     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
136     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
137     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
138     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
139     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
140     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
141     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
142     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
143     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
144     /* Actual RAM size depends on initial RAM and device memory settings */
145     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
146 };
147 
148 /*
149  * Highmem IO Regions: This memory map is floating, located after the RAM.
150  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
151  * top of the RAM, so that its base get the same alignment as the size,
152  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
153  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
154  * Note the extended_memmap is sized so that it eventually also includes the
155  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
156  * index of base_memmap).
157  */
158 static MemMapEntry extended_memmap[] = {
159     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
160     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
161     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
162     /* Second PCIe window */
163     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
164 };
165 
166 static const int a15irqmap[] = {
167     [VIRT_UART] = 1,
168     [VIRT_RTC] = 2,
169     [VIRT_PCIE] = 3, /* ... to 6 */
170     [VIRT_GPIO] = 7,
171     [VIRT_SECURE_UART] = 8,
172     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
173     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
174     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
175     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
176 };
177 
178 static const char *valid_cpus[] = {
179     ARM_CPU_TYPE_NAME("cortex-a7"),
180     ARM_CPU_TYPE_NAME("cortex-a15"),
181     ARM_CPU_TYPE_NAME("cortex-a53"),
182     ARM_CPU_TYPE_NAME("cortex-a57"),
183     ARM_CPU_TYPE_NAME("cortex-a72"),
184     ARM_CPU_TYPE_NAME("host"),
185     ARM_CPU_TYPE_NAME("max"),
186 };
187 
188 static bool cpu_type_valid(const char *cpu)
189 {
190     int i;
191 
192     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
193         if (strcmp(cpu, valid_cpus[i]) == 0) {
194             return true;
195         }
196     }
197     return false;
198 }
199 
200 static void create_fdt(VirtMachineState *vms)
201 {
202     void *fdt = create_device_tree(&vms->fdt_size);
203 
204     if (!fdt) {
205         error_report("create_device_tree() failed");
206         exit(1);
207     }
208 
209     vms->fdt = fdt;
210 
211     /* Header */
212     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
213     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
214     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
215 
216     /* /chosen must exist for load_dtb to fill in necessary properties later */
217     qemu_fdt_add_subnode(fdt, "/chosen");
218 
219     /* Clock node, for the benefit of the UART. The kernel device tree
220      * binding documentation claims the PL011 node clock properties are
221      * optional but in practice if you omit them the kernel refuses to
222      * probe for the device.
223      */
224     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
225     qemu_fdt_add_subnode(fdt, "/apb-pclk");
226     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
227     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
228     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
229     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
230                                 "clk24mhz");
231     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
232 
233     if (have_numa_distance) {
234         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
235         uint32_t *matrix = g_malloc0(size);
236         int idx, i, j;
237 
238         for (i = 0; i < nb_numa_nodes; i++) {
239             for (j = 0; j < nb_numa_nodes; j++) {
240                 idx = (i * nb_numa_nodes + j) * 3;
241                 matrix[idx + 0] = cpu_to_be32(i);
242                 matrix[idx + 1] = cpu_to_be32(j);
243                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
244             }
245         }
246 
247         qemu_fdt_add_subnode(fdt, "/distance-map");
248         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
249                                 "numa-distance-map-v1");
250         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
251                          matrix, size);
252         g_free(matrix);
253     }
254 }
255 
256 static void fdt_add_timer_nodes(const VirtMachineState *vms)
257 {
258     /* On real hardware these interrupts are level-triggered.
259      * On KVM they were edge-triggered before host kernel version 4.4,
260      * and level-triggered afterwards.
261      * On emulated QEMU they are level-triggered.
262      *
263      * Getting the DTB info about them wrong is awkward for some
264      * guest kernels:
265      *  pre-4.8 ignore the DT and leave the interrupt configured
266      *   with whatever the GIC reset value (or the bootloader) left it at
267      *  4.8 before rc6 honour the incorrect data by programming it back
268      *   into the GIC, causing problems
269      *  4.8rc6 and later ignore the DT and always write "level triggered"
270      *   into the GIC
271      *
272      * For backwards-compatibility, virt-2.8 and earlier will continue
273      * to say these are edge-triggered, but later machines will report
274      * the correct information.
275      */
276     ARMCPU *armcpu;
277     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
278     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
279 
280     if (vmc->claim_edge_triggered_timers) {
281         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
282     }
283 
284     if (vms->gic_version == 2) {
285         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
286                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
287                              (1 << vms->smp_cpus) - 1);
288     }
289 
290     qemu_fdt_add_subnode(vms->fdt, "/timer");
291 
292     armcpu = ARM_CPU(qemu_get_cpu(0));
293     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
294         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
295         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
296                          compat, sizeof(compat));
297     } else {
298         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
299                                 "arm,armv7-timer");
300     }
301     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
302     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
303                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
304                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
305                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
306                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
307 }
308 
309 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
310 {
311     int cpu;
312     int addr_cells = 1;
313     const MachineState *ms = MACHINE(vms);
314 
315     /*
316      * From Documentation/devicetree/bindings/arm/cpus.txt
317      *  On ARM v8 64-bit systems value should be set to 2,
318      *  that corresponds to the MPIDR_EL1 register size.
319      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
320      *  in the system, #address-cells can be set to 1, since
321      *  MPIDR_EL1[63:32] bits are not used for CPUs
322      *  identification.
323      *
324      *  Here we actually don't know whether our system is 32- or 64-bit one.
325      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
326      *  at least one of them has Aff3 populated, we set #address-cells to 2.
327      */
328     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
329         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
330 
331         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
332             addr_cells = 2;
333             break;
334         }
335     }
336 
337     qemu_fdt_add_subnode(vms->fdt, "/cpus");
338     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
339     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
340 
341     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
342         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
343         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
344         CPUState *cs = CPU(armcpu);
345 
346         qemu_fdt_add_subnode(vms->fdt, nodename);
347         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
348         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
349                                     armcpu->dtb_compatible);
350 
351         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
352             && vms->smp_cpus > 1) {
353             qemu_fdt_setprop_string(vms->fdt, nodename,
354                                         "enable-method", "psci");
355         }
356 
357         if (addr_cells == 2) {
358             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
359                                  armcpu->mp_affinity);
360         } else {
361             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
362                                   armcpu->mp_affinity);
363         }
364 
365         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
366             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
367                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
368         }
369 
370         g_free(nodename);
371     }
372 }
373 
374 static void fdt_add_its_gic_node(VirtMachineState *vms)
375 {
376     char *nodename;
377 
378     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
379     nodename = g_strdup_printf("/intc/its@%" PRIx64,
380                                vms->memmap[VIRT_GIC_ITS].base);
381     qemu_fdt_add_subnode(vms->fdt, nodename);
382     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
383                             "arm,gic-v3-its");
384     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
385     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
386                                  2, vms->memmap[VIRT_GIC_ITS].base,
387                                  2, vms->memmap[VIRT_GIC_ITS].size);
388     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
389     g_free(nodename);
390 }
391 
392 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
393 {
394     char *nodename;
395 
396     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
397                                vms->memmap[VIRT_GIC_V2M].base);
398     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
399     qemu_fdt_add_subnode(vms->fdt, nodename);
400     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
401                             "arm,gic-v2m-frame");
402     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
403     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
404                                  2, vms->memmap[VIRT_GIC_V2M].base,
405                                  2, vms->memmap[VIRT_GIC_V2M].size);
406     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
407     g_free(nodename);
408 }
409 
410 static void fdt_add_gic_node(VirtMachineState *vms)
411 {
412     char *nodename;
413 
414     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
415     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
416 
417     nodename = g_strdup_printf("/intc@%" PRIx64,
418                                vms->memmap[VIRT_GIC_DIST].base);
419     qemu_fdt_add_subnode(vms->fdt, nodename);
420     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
421     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
422     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
423     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
424     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
425     if (vms->gic_version == 3) {
426         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
427 
428         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
429                                 "arm,gic-v3");
430 
431         qemu_fdt_setprop_cell(vms->fdt, nodename,
432                               "#redistributor-regions", nb_redist_regions);
433 
434         if (nb_redist_regions == 1) {
435             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
436                                          2, vms->memmap[VIRT_GIC_DIST].base,
437                                          2, vms->memmap[VIRT_GIC_DIST].size,
438                                          2, vms->memmap[VIRT_GIC_REDIST].base,
439                                          2, vms->memmap[VIRT_GIC_REDIST].size);
440         } else {
441             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
442                                  2, vms->memmap[VIRT_GIC_DIST].base,
443                                  2, vms->memmap[VIRT_GIC_DIST].size,
444                                  2, vms->memmap[VIRT_GIC_REDIST].base,
445                                  2, vms->memmap[VIRT_GIC_REDIST].size,
446                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
447                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
448         }
449 
450         if (vms->virt) {
451             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
452                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
453                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
454         }
455     } else {
456         /* 'cortex-a15-gic' means 'GIC v2' */
457         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
458                                 "arm,cortex-a15-gic");
459         if (!vms->virt) {
460             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
461                                          2, vms->memmap[VIRT_GIC_DIST].base,
462                                          2, vms->memmap[VIRT_GIC_DIST].size,
463                                          2, vms->memmap[VIRT_GIC_CPU].base,
464                                          2, vms->memmap[VIRT_GIC_CPU].size);
465         } else {
466             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
467                                          2, vms->memmap[VIRT_GIC_DIST].base,
468                                          2, vms->memmap[VIRT_GIC_DIST].size,
469                                          2, vms->memmap[VIRT_GIC_CPU].base,
470                                          2, vms->memmap[VIRT_GIC_CPU].size,
471                                          2, vms->memmap[VIRT_GIC_HYP].base,
472                                          2, vms->memmap[VIRT_GIC_HYP].size,
473                                          2, vms->memmap[VIRT_GIC_VCPU].base,
474                                          2, vms->memmap[VIRT_GIC_VCPU].size);
475             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
476                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
477                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
478         }
479     }
480 
481     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
482     g_free(nodename);
483 }
484 
485 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
486 {
487     CPUState *cpu;
488     ARMCPU *armcpu;
489     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
490 
491     CPU_FOREACH(cpu) {
492         armcpu = ARM_CPU(cpu);
493         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
494             return;
495         }
496         if (kvm_enabled()) {
497             if (kvm_irqchip_in_kernel()) {
498                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
499             }
500             kvm_arm_pmu_init(cpu);
501         }
502     }
503 
504     if (vms->gic_version == 2) {
505         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
506                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
507                              (1 << vms->smp_cpus) - 1);
508     }
509 
510     armcpu = ARM_CPU(qemu_get_cpu(0));
511     qemu_fdt_add_subnode(vms->fdt, "/pmu");
512     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
513         const char compat[] = "arm,armv8-pmuv3";
514         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
515                          compat, sizeof(compat));
516         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
517                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
518     }
519 }
520 
521 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
522 {
523     const char *itsclass = its_class_name();
524     DeviceState *dev;
525 
526     if (!itsclass) {
527         /* Do nothing if not supported */
528         return;
529     }
530 
531     dev = qdev_create(NULL, itsclass);
532 
533     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
534                              &error_abort);
535     qdev_init_nofail(dev);
536     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
537 
538     fdt_add_its_gic_node(vms);
539 }
540 
541 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
542 {
543     int i;
544     int irq = vms->irqmap[VIRT_GIC_V2M];
545     DeviceState *dev;
546 
547     dev = qdev_create(NULL, "arm-gicv2m");
548     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
549     qdev_prop_set_uint32(dev, "base-spi", irq);
550     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
551     qdev_init_nofail(dev);
552 
553     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
554         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
555     }
556 
557     fdt_add_v2m_gic_node(vms);
558 }
559 
560 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
561 {
562     MachineState *ms = MACHINE(vms);
563     /* We create a standalone GIC */
564     DeviceState *gicdev;
565     SysBusDevice *gicbusdev;
566     const char *gictype;
567     int type = vms->gic_version, i;
568     unsigned int smp_cpus = ms->smp.cpus;
569     uint32_t nb_redist_regions = 0;
570 
571     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
572 
573     gicdev = qdev_create(NULL, gictype);
574     qdev_prop_set_uint32(gicdev, "revision", type);
575     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
576     /* Note that the num-irq property counts both internal and external
577      * interrupts; there are always 32 of the former (mandated by GIC spec).
578      */
579     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
580     if (!kvm_irqchip_in_kernel()) {
581         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
582     }
583 
584     if (type == 3) {
585         uint32_t redist0_capacity =
586                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
587         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
588 
589         nb_redist_regions = virt_gicv3_redist_region_count(vms);
590 
591         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
592                              nb_redist_regions);
593         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
594 
595         if (nb_redist_regions == 2) {
596             uint32_t redist1_capacity =
597                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
598 
599             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
600                 MIN(smp_cpus - redist0_count, redist1_capacity));
601         }
602     } else {
603         if (!kvm_irqchip_in_kernel()) {
604             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
605                               vms->virt);
606         }
607     }
608     qdev_init_nofail(gicdev);
609     gicbusdev = SYS_BUS_DEVICE(gicdev);
610     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
611     if (type == 3) {
612         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
613         if (nb_redist_regions == 2) {
614             sysbus_mmio_map(gicbusdev, 2,
615                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
616         }
617     } else {
618         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
619         if (vms->virt) {
620             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
621             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
622         }
623     }
624 
625     /* Wire the outputs from each CPU's generic timer and the GICv3
626      * maintenance interrupt signal to the appropriate GIC PPI inputs,
627      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
628      */
629     for (i = 0; i < smp_cpus; i++) {
630         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
631         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
632         int irq;
633         /* Mapping from the output timer irq lines from the CPU to the
634          * GIC PPI inputs we use for the virt board.
635          */
636         const int timer_irq[] = {
637             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
638             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
639             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
640             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
641         };
642 
643         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
644             qdev_connect_gpio_out(cpudev, irq,
645                                   qdev_get_gpio_in(gicdev,
646                                                    ppibase + timer_irq[irq]));
647         }
648 
649         if (type == 3) {
650             qemu_irq irq = qdev_get_gpio_in(gicdev,
651                                             ppibase + ARCH_GIC_MAINT_IRQ);
652             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
653                                         0, irq);
654         } else if (vms->virt) {
655             qemu_irq irq = qdev_get_gpio_in(gicdev,
656                                             ppibase + ARCH_GIC_MAINT_IRQ);
657             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
658         }
659 
660         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
661                                     qdev_get_gpio_in(gicdev, ppibase
662                                                      + VIRTUAL_PMU_IRQ));
663 
664         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
665         sysbus_connect_irq(gicbusdev, i + smp_cpus,
666                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
667         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
668                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
669         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
670                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
671     }
672 
673     for (i = 0; i < NUM_IRQS; i++) {
674         pic[i] = qdev_get_gpio_in(gicdev, i);
675     }
676 
677     fdt_add_gic_node(vms);
678 
679     if (type == 3 && vms->its) {
680         create_its(vms, gicdev);
681     } else if (type == 2) {
682         create_v2m(vms, pic);
683     }
684 }
685 
686 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
687                         MemoryRegion *mem, Chardev *chr)
688 {
689     char *nodename;
690     hwaddr base = vms->memmap[uart].base;
691     hwaddr size = vms->memmap[uart].size;
692     int irq = vms->irqmap[uart];
693     const char compat[] = "arm,pl011\0arm,primecell";
694     const char clocknames[] = "uartclk\0apb_pclk";
695     DeviceState *dev = qdev_create(NULL, "pl011");
696     SysBusDevice *s = SYS_BUS_DEVICE(dev);
697 
698     qdev_prop_set_chr(dev, "chardev", chr);
699     qdev_init_nofail(dev);
700     memory_region_add_subregion(mem, base,
701                                 sysbus_mmio_get_region(s, 0));
702     sysbus_connect_irq(s, 0, pic[irq]);
703 
704     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
705     qemu_fdt_add_subnode(vms->fdt, nodename);
706     /* Note that we can't use setprop_string because of the embedded NUL */
707     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
708                          compat, sizeof(compat));
709     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
710                                      2, base, 2, size);
711     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
712                                GIC_FDT_IRQ_TYPE_SPI, irq,
713                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
714     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
715                                vms->clock_phandle, vms->clock_phandle);
716     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
717                          clocknames, sizeof(clocknames));
718 
719     if (uart == VIRT_UART) {
720         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
721     } else {
722         /* Mark as not usable by the normal world */
723         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
724         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
725 
726         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
727         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
728                                 nodename);
729     }
730 
731     g_free(nodename);
732 }
733 
734 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
735 {
736     char *nodename;
737     hwaddr base = vms->memmap[VIRT_RTC].base;
738     hwaddr size = vms->memmap[VIRT_RTC].size;
739     int irq = vms->irqmap[VIRT_RTC];
740     const char compat[] = "arm,pl031\0arm,primecell";
741 
742     sysbus_create_simple("pl031", base, pic[irq]);
743 
744     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
745     qemu_fdt_add_subnode(vms->fdt, nodename);
746     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
747     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
748                                  2, base, 2, size);
749     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
750                            GIC_FDT_IRQ_TYPE_SPI, irq,
751                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
752     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
753     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
754     g_free(nodename);
755 }
756 
757 static DeviceState *gpio_key_dev;
758 static void virt_powerdown_req(Notifier *n, void *opaque)
759 {
760     /* use gpio Pin 3 for power button event */
761     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
762 }
763 
764 static Notifier virt_system_powerdown_notifier = {
765     .notify = virt_powerdown_req
766 };
767 
768 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
769 {
770     char *nodename;
771     DeviceState *pl061_dev;
772     hwaddr base = vms->memmap[VIRT_GPIO].base;
773     hwaddr size = vms->memmap[VIRT_GPIO].size;
774     int irq = vms->irqmap[VIRT_GPIO];
775     const char compat[] = "arm,pl061\0arm,primecell";
776 
777     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
778 
779     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
780     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
781     qemu_fdt_add_subnode(vms->fdt, nodename);
782     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
783                                  2, base, 2, size);
784     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
785     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
786     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
787     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
788                            GIC_FDT_IRQ_TYPE_SPI, irq,
789                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
790     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
791     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
792     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
793 
794     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
795                                         qdev_get_gpio_in(pl061_dev, 3));
796     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
797     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
798     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
799     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
800 
801     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
802     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
803                             "label", "GPIO Key Poweroff");
804     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
805                           KEY_POWER);
806     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
807                            "gpios", phandle, 3, 0);
808 
809     /* connect powerdown request */
810     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
811 
812     g_free(nodename);
813 }
814 
815 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
816 {
817     int i;
818     hwaddr size = vms->memmap[VIRT_MMIO].size;
819 
820     /* We create the transports in forwards order. Since qbus_realize()
821      * prepends (not appends) new child buses, the incrementing loop below will
822      * create a list of virtio-mmio buses with decreasing base addresses.
823      *
824      * When a -device option is processed from the command line,
825      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
826      * order. The upshot is that -device options in increasing command line
827      * order are mapped to virtio-mmio buses with decreasing base addresses.
828      *
829      * When this code was originally written, that arrangement ensured that the
830      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
831      * the first -device on the command line. (The end-to-end order is a
832      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
833      * guest kernel's name-to-address assignment strategy.)
834      *
835      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
836      * the message, if not necessarily the code, of commit 70161ff336.
837      * Therefore the loop now establishes the inverse of the original intent.
838      *
839      * Unfortunately, we can't counteract the kernel change by reversing the
840      * loop; it would break existing command lines.
841      *
842      * In any case, the kernel makes no guarantee about the stability of
843      * enumeration order of virtio devices (as demonstrated by it changing
844      * between kernel versions). For reliable and stable identification
845      * of disks users must use UUIDs or similar mechanisms.
846      */
847     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
848         int irq = vms->irqmap[VIRT_MMIO] + i;
849         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
850 
851         sysbus_create_simple("virtio-mmio", base, pic[irq]);
852     }
853 
854     /* We add dtb nodes in reverse order so that they appear in the finished
855      * device tree lowest address first.
856      *
857      * Note that this mapping is independent of the loop above. The previous
858      * loop influences virtio device to virtio transport assignment, whereas
859      * this loop controls how virtio transports are laid out in the dtb.
860      */
861     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
862         char *nodename;
863         int irq = vms->irqmap[VIRT_MMIO] + i;
864         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
865 
866         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
867         qemu_fdt_add_subnode(vms->fdt, nodename);
868         qemu_fdt_setprop_string(vms->fdt, nodename,
869                                 "compatible", "virtio,mmio");
870         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
871                                      2, base, 2, size);
872         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
873                                GIC_FDT_IRQ_TYPE_SPI, irq,
874                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
875         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
876         g_free(nodename);
877     }
878 }
879 
880 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
881 
882 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
883                                         const char *name,
884                                         const char *alias_prop_name)
885 {
886     /*
887      * Create a single flash device.  We use the same parameters as
888      * the flash devices on the Versatile Express board.
889      */
890     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
891 
892     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
893     qdev_prop_set_uint8(dev, "width", 4);
894     qdev_prop_set_uint8(dev, "device-width", 2);
895     qdev_prop_set_bit(dev, "big-endian", false);
896     qdev_prop_set_uint16(dev, "id0", 0x89);
897     qdev_prop_set_uint16(dev, "id1", 0x18);
898     qdev_prop_set_uint16(dev, "id2", 0x00);
899     qdev_prop_set_uint16(dev, "id3", 0x00);
900     qdev_prop_set_string(dev, "name", name);
901     object_property_add_child(OBJECT(vms), name, OBJECT(dev),
902                               &error_abort);
903     object_property_add_alias(OBJECT(vms), alias_prop_name,
904                               OBJECT(dev), "drive", &error_abort);
905     return PFLASH_CFI01(dev);
906 }
907 
908 static void virt_flash_create(VirtMachineState *vms)
909 {
910     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
911     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
912 }
913 
914 static void virt_flash_map1(PFlashCFI01 *flash,
915                             hwaddr base, hwaddr size,
916                             MemoryRegion *sysmem)
917 {
918     DeviceState *dev = DEVICE(flash);
919 
920     assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
921     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
922     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
923     qdev_init_nofail(dev);
924 
925     memory_region_add_subregion(sysmem, base,
926                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
927                                                        0));
928 }
929 
930 static void virt_flash_map(VirtMachineState *vms,
931                            MemoryRegion *sysmem,
932                            MemoryRegion *secure_sysmem)
933 {
934     /*
935      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
936      * sysmem is the system memory space. secure_sysmem is the secure view
937      * of the system, and the first flash device should be made visible only
938      * there. The second flash device is visible to both secure and nonsecure.
939      * If sysmem == secure_sysmem this means there is no separate Secure
940      * address space and both flash devices are generally visible.
941      */
942     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
943     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
944 
945     virt_flash_map1(vms->flash[0], flashbase, flashsize,
946                     secure_sysmem);
947     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
948                     sysmem);
949 }
950 
951 static void virt_flash_fdt(VirtMachineState *vms,
952                            MemoryRegion *sysmem,
953                            MemoryRegion *secure_sysmem)
954 {
955     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
956     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
957     char *nodename;
958 
959     if (sysmem == secure_sysmem) {
960         /* Report both flash devices as a single node in the DT */
961         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
962         qemu_fdt_add_subnode(vms->fdt, nodename);
963         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
964         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
965                                      2, flashbase, 2, flashsize,
966                                      2, flashbase + flashsize, 2, flashsize);
967         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
968         g_free(nodename);
969     } else {
970         /*
971          * Report the devices as separate nodes so we can mark one as
972          * only visible to the secure world.
973          */
974         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
975         qemu_fdt_add_subnode(vms->fdt, nodename);
976         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
977         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
978                                      2, flashbase, 2, flashsize);
979         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
980         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
981         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
982         g_free(nodename);
983 
984         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
985         qemu_fdt_add_subnode(vms->fdt, nodename);
986         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
987         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
988                                      2, flashbase + flashsize, 2, flashsize);
989         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
990         g_free(nodename);
991     }
992 }
993 
994 static bool virt_firmware_init(VirtMachineState *vms,
995                                MemoryRegion *sysmem,
996                                MemoryRegion *secure_sysmem)
997 {
998     int i;
999     BlockBackend *pflash_blk0;
1000 
1001     /* Map legacy -drive if=pflash to machine properties */
1002     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1003         pflash_cfi01_legacy_drive(vms->flash[i],
1004                                   drive_get(IF_PFLASH, 0, i));
1005     }
1006 
1007     virt_flash_map(vms, sysmem, secure_sysmem);
1008 
1009     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1010 
1011     if (bios_name) {
1012         char *fname;
1013         MemoryRegion *mr;
1014         int image_size;
1015 
1016         if (pflash_blk0) {
1017             error_report("The contents of the first flash device may be "
1018                          "specified with -bios or with -drive if=pflash... "
1019                          "but you cannot use both options at once");
1020             exit(1);
1021         }
1022 
1023         /* Fall back to -bios */
1024 
1025         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1026         if (!fname) {
1027             error_report("Could not find ROM image '%s'", bios_name);
1028             exit(1);
1029         }
1030         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1031         image_size = load_image_mr(fname, mr);
1032         g_free(fname);
1033         if (image_size < 0) {
1034             error_report("Could not load ROM image '%s'", bios_name);
1035             exit(1);
1036         }
1037     }
1038 
1039     return pflash_blk0 || bios_name;
1040 }
1041 
1042 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1043 {
1044     MachineState *ms = MACHINE(vms);
1045     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1046     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1047     FWCfgState *fw_cfg;
1048     char *nodename;
1049 
1050     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1051     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1052 
1053     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1054     qemu_fdt_add_subnode(vms->fdt, nodename);
1055     qemu_fdt_setprop_string(vms->fdt, nodename,
1056                             "compatible", "qemu,fw-cfg-mmio");
1057     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1058                                  2, base, 2, size);
1059     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1060     g_free(nodename);
1061     return fw_cfg;
1062 }
1063 
1064 static void create_pcie_irq_map(const VirtMachineState *vms,
1065                                 uint32_t gic_phandle,
1066                                 int first_irq, const char *nodename)
1067 {
1068     int devfn, pin;
1069     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1070     uint32_t *irq_map = full_irq_map;
1071 
1072     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1073         for (pin = 0; pin < 4; pin++) {
1074             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1075             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1076             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1077             int i;
1078 
1079             uint32_t map[] = {
1080                 devfn << 8, 0, 0,                           /* devfn */
1081                 pin + 1,                                    /* PCI pin */
1082                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1083 
1084             /* Convert map to big endian */
1085             for (i = 0; i < 10; i++) {
1086                 irq_map[i] = cpu_to_be32(map[i]);
1087             }
1088             irq_map += 10;
1089         }
1090     }
1091 
1092     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1093                      full_irq_map, sizeof(full_irq_map));
1094 
1095     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1096                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1097                            0x7           /* PCI irq */);
1098 }
1099 
1100 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1101                         PCIBus *bus)
1102 {
1103     char *node;
1104     const char compat[] = "arm,smmu-v3";
1105     int irq =  vms->irqmap[VIRT_SMMU];
1106     int i;
1107     hwaddr base = vms->memmap[VIRT_SMMU].base;
1108     hwaddr size = vms->memmap[VIRT_SMMU].size;
1109     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1110     DeviceState *dev;
1111 
1112     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1113         return;
1114     }
1115 
1116     dev = qdev_create(NULL, "arm-smmuv3");
1117 
1118     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1119                              &error_abort);
1120     qdev_init_nofail(dev);
1121     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1122     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1123         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1124     }
1125 
1126     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1127     qemu_fdt_add_subnode(vms->fdt, node);
1128     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1129     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1130 
1131     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1132             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1133             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1134             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1135             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1136 
1137     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1138                      sizeof(irq_names));
1139 
1140     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1141     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1142     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1143 
1144     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1145 
1146     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1147     g_free(node);
1148 }
1149 
1150 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1151 {
1152     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1153     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1154     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1155     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1156     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1157     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1158     hwaddr base_ecam, size_ecam;
1159     hwaddr base = base_mmio;
1160     int nr_pcie_buses;
1161     int irq = vms->irqmap[VIRT_PCIE];
1162     MemoryRegion *mmio_alias;
1163     MemoryRegion *mmio_reg;
1164     MemoryRegion *ecam_alias;
1165     MemoryRegion *ecam_reg;
1166     DeviceState *dev;
1167     char *nodename;
1168     int i, ecam_id;
1169     PCIHostState *pci;
1170 
1171     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1172     qdev_init_nofail(dev);
1173 
1174     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1175     base_ecam = vms->memmap[ecam_id].base;
1176     size_ecam = vms->memmap[ecam_id].size;
1177     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1178     /* Map only the first size_ecam bytes of ECAM space */
1179     ecam_alias = g_new0(MemoryRegion, 1);
1180     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1181     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1182                              ecam_reg, 0, size_ecam);
1183     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1184 
1185     /* Map the MMIO window into system address space so as to expose
1186      * the section of PCI MMIO space which starts at the same base address
1187      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1188      * the window).
1189      */
1190     mmio_alias = g_new0(MemoryRegion, 1);
1191     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1192     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1193                              mmio_reg, base_mmio, size_mmio);
1194     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1195 
1196     if (vms->highmem) {
1197         /* Map high MMIO space */
1198         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1199 
1200         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1201                                  mmio_reg, base_mmio_high, size_mmio_high);
1202         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1203                                     high_mmio_alias);
1204     }
1205 
1206     /* Map IO port space */
1207     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1208 
1209     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1210         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1211         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1212     }
1213 
1214     pci = PCI_HOST_BRIDGE(dev);
1215     if (pci->bus) {
1216         for (i = 0; i < nb_nics; i++) {
1217             NICInfo *nd = &nd_table[i];
1218 
1219             if (!nd->model) {
1220                 nd->model = g_strdup("virtio");
1221             }
1222 
1223             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1224         }
1225     }
1226 
1227     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1228     qemu_fdt_add_subnode(vms->fdt, nodename);
1229     qemu_fdt_setprop_string(vms->fdt, nodename,
1230                             "compatible", "pci-host-ecam-generic");
1231     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1232     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1233     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1234     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1235     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1236                            nr_pcie_buses - 1);
1237     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1238 
1239     if (vms->msi_phandle) {
1240         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1241                                vms->msi_phandle);
1242     }
1243 
1244     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1245                                  2, base_ecam, 2, size_ecam);
1246 
1247     if (vms->highmem) {
1248         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1249                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1250                                      2, base_pio, 2, size_pio,
1251                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1252                                      2, base_mmio, 2, size_mmio,
1253                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1254                                      2, base_mmio_high,
1255                                      2, base_mmio_high, 2, size_mmio_high);
1256     } else {
1257         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1258                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1259                                      2, base_pio, 2, size_pio,
1260                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1261                                      2, base_mmio, 2, size_mmio);
1262     }
1263 
1264     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1265     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1266 
1267     if (vms->iommu) {
1268         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1269 
1270         create_smmu(vms, pic, pci->bus);
1271 
1272         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1273                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1274     }
1275 
1276     g_free(nodename);
1277 }
1278 
1279 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1280 {
1281     DeviceState *dev;
1282     SysBusDevice *s;
1283     int i;
1284     MemoryRegion *sysmem = get_system_memory();
1285 
1286     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1287     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1288     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1289     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1290     qdev_init_nofail(dev);
1291     vms->platform_bus_dev = dev;
1292 
1293     s = SYS_BUS_DEVICE(dev);
1294     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1295         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1296         sysbus_connect_irq(s, i, pic[irqn]);
1297     }
1298 
1299     memory_region_add_subregion(sysmem,
1300                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1301                                 sysbus_mmio_get_region(s, 0));
1302 }
1303 
1304 static void create_secure_ram(VirtMachineState *vms,
1305                               MemoryRegion *secure_sysmem)
1306 {
1307     MemoryRegion *secram = g_new(MemoryRegion, 1);
1308     char *nodename;
1309     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1310     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1311 
1312     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1313                            &error_fatal);
1314     memory_region_add_subregion(secure_sysmem, base, secram);
1315 
1316     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1317     qemu_fdt_add_subnode(vms->fdt, nodename);
1318     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1319     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1320     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1321     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1322 
1323     g_free(nodename);
1324 }
1325 
1326 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1327 {
1328     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1329                                                  bootinfo);
1330 
1331     *fdt_size = board->fdt_size;
1332     return board->fdt;
1333 }
1334 
1335 static void virt_build_smbios(VirtMachineState *vms)
1336 {
1337     MachineClass *mc = MACHINE_GET_CLASS(vms);
1338     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1339     uint8_t *smbios_tables, *smbios_anchor;
1340     size_t smbios_tables_len, smbios_anchor_len;
1341     const char *product = "QEMU Virtual Machine";
1342 
1343     if (kvm_enabled()) {
1344         product = "KVM Virtual Machine";
1345     }
1346 
1347     smbios_set_defaults("QEMU", product,
1348                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1349                         true, SMBIOS_ENTRY_POINT_30);
1350 
1351     smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1352                       &smbios_anchor, &smbios_anchor_len);
1353 
1354     if (smbios_anchor) {
1355         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1356                         smbios_tables, smbios_tables_len);
1357         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1358                         smbios_anchor, smbios_anchor_len);
1359     }
1360 }
1361 
1362 static
1363 void virt_machine_done(Notifier *notifier, void *data)
1364 {
1365     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1366                                          machine_done);
1367     ARMCPU *cpu = ARM_CPU(first_cpu);
1368     struct arm_boot_info *info = &vms->bootinfo;
1369     AddressSpace *as = arm_boot_address_space(cpu, info);
1370 
1371     /*
1372      * If the user provided a dtb, we assume the dynamic sysbus nodes
1373      * already are integrated there. This corresponds to a use case where
1374      * the dynamic sysbus nodes are complex and their generation is not yet
1375      * supported. In that case the user can take charge of the guest dt
1376      * while qemu takes charge of the qom stuff.
1377      */
1378     if (info->dtb_filename == NULL) {
1379         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1380                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1381                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1382                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1383     }
1384     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1385         exit(1);
1386     }
1387 
1388     virt_acpi_setup(vms);
1389     virt_build_smbios(vms);
1390 }
1391 
1392 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1393 {
1394     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1395     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1396 
1397     if (!vmc->disallow_affinity_adjustment) {
1398         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1399          * GIC's target-list limitations. 32-bit KVM hosts currently
1400          * always create clusters of 4 CPUs, but that is expected to
1401          * change when they gain support for gicv3. When KVM is enabled
1402          * it will override the changes we make here, therefore our
1403          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1404          * and to improve SGI efficiency.
1405          */
1406         if (vms->gic_version == 3) {
1407             clustersz = GICV3_TARGETLIST_BITS;
1408         } else {
1409             clustersz = GIC_TARGETLIST_BITS;
1410         }
1411     }
1412     return arm_cpu_mp_affinity(idx, clustersz);
1413 }
1414 
1415 static void virt_set_memmap(VirtMachineState *vms)
1416 {
1417     MachineState *ms = MACHINE(vms);
1418     hwaddr base, device_memory_base, device_memory_size;
1419     int i;
1420 
1421     vms->memmap = extended_memmap;
1422 
1423     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1424         vms->memmap[i] = base_memmap[i];
1425     }
1426 
1427     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1428         error_report("unsupported number of memory slots: %"PRIu64,
1429                      ms->ram_slots);
1430         exit(EXIT_FAILURE);
1431     }
1432 
1433     /*
1434      * We compute the base of the high IO region depending on the
1435      * amount of initial and device memory. The device memory start/size
1436      * is aligned on 1GiB. We never put the high IO region below 256GiB
1437      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1438      * The device region size assumes 1GiB page max alignment per slot.
1439      */
1440     device_memory_base =
1441         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1442     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1443 
1444     /* Base address of the high IO region */
1445     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1446     if (base < device_memory_base) {
1447         error_report("maxmem/slots too huge");
1448         exit(EXIT_FAILURE);
1449     }
1450     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1451         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1452     }
1453 
1454     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1455         hwaddr size = extended_memmap[i].size;
1456 
1457         base = ROUND_UP(base, size);
1458         vms->memmap[i].base = base;
1459         vms->memmap[i].size = size;
1460         base += size;
1461     }
1462     vms->highest_gpa = base - 1;
1463     if (device_memory_size > 0) {
1464         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1465         ms->device_memory->base = device_memory_base;
1466         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1467                            "device-memory", device_memory_size);
1468     }
1469 }
1470 
1471 static void machvirt_init(MachineState *machine)
1472 {
1473     VirtMachineState *vms = VIRT_MACHINE(machine);
1474     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1475     MachineClass *mc = MACHINE_GET_CLASS(machine);
1476     const CPUArchIdList *possible_cpus;
1477     qemu_irq pic[NUM_IRQS];
1478     MemoryRegion *sysmem = get_system_memory();
1479     MemoryRegion *secure_sysmem = NULL;
1480     int n, virt_max_cpus;
1481     MemoryRegion *ram = g_new(MemoryRegion, 1);
1482     bool firmware_loaded;
1483     bool aarch64 = true;
1484     unsigned int smp_cpus = machine->smp.cpus;
1485     unsigned int max_cpus = machine->smp.max_cpus;
1486 
1487     /*
1488      * In accelerated mode, the memory map is computed earlier in kvm_type()
1489      * to create a VM with the right number of IPA bits.
1490      */
1491     if (!vms->memmap) {
1492         virt_set_memmap(vms);
1493     }
1494 
1495     /* We can probe only here because during property set
1496      * KVM is not available yet
1497      */
1498     if (vms->gic_version <= 0) {
1499         /* "host" or "max" */
1500         if (!kvm_enabled()) {
1501             if (vms->gic_version == 0) {
1502                 error_report("gic-version=host requires KVM");
1503                 exit(1);
1504             } else {
1505                 /* "max": currently means 3 for TCG */
1506                 vms->gic_version = 3;
1507             }
1508         } else {
1509             vms->gic_version = kvm_arm_vgic_probe();
1510             if (!vms->gic_version) {
1511                 error_report(
1512                     "Unable to determine GIC version supported by host");
1513                 exit(1);
1514             }
1515         }
1516     }
1517 
1518     if (!cpu_type_valid(machine->cpu_type)) {
1519         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1520         exit(1);
1521     }
1522 
1523     if (vms->secure) {
1524         if (kvm_enabled()) {
1525             error_report("mach-virt: KVM does not support Security extensions");
1526             exit(1);
1527         }
1528 
1529         /*
1530          * The Secure view of the world is the same as the NonSecure,
1531          * but with a few extra devices. Create it as a container region
1532          * containing the system memory at low priority; any secure-only
1533          * devices go in at higher priority and take precedence.
1534          */
1535         secure_sysmem = g_new(MemoryRegion, 1);
1536         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1537                            UINT64_MAX);
1538         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1539     }
1540 
1541     firmware_loaded = virt_firmware_init(vms, sysmem,
1542                                          secure_sysmem ?: sysmem);
1543 
1544     /* If we have an EL3 boot ROM then the assumption is that it will
1545      * implement PSCI itself, so disable QEMU's internal implementation
1546      * so it doesn't get in the way. Instead of starting secondary
1547      * CPUs in PSCI powerdown state we will start them all running and
1548      * let the boot ROM sort them out.
1549      * The usual case is that we do use QEMU's PSCI implementation;
1550      * if the guest has EL2 then we will use SMC as the conduit,
1551      * and otherwise we will use HVC (for backwards compatibility and
1552      * because if we're using KVM then we must use HVC).
1553      */
1554     if (vms->secure && firmware_loaded) {
1555         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1556     } else if (vms->virt) {
1557         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1558     } else {
1559         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1560     }
1561 
1562     /* The maximum number of CPUs depends on the GIC version, or on how
1563      * many redistributors we can fit into the memory map.
1564      */
1565     if (vms->gic_version == 3) {
1566         virt_max_cpus =
1567             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1568         virt_max_cpus +=
1569             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1570     } else {
1571         virt_max_cpus = GIC_NCPU;
1572     }
1573 
1574     if (max_cpus > virt_max_cpus) {
1575         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1576                      "supported by machine 'mach-virt' (%d)",
1577                      max_cpus, virt_max_cpus);
1578         exit(1);
1579     }
1580 
1581     vms->smp_cpus = smp_cpus;
1582 
1583     if (vms->virt && kvm_enabled()) {
1584         error_report("mach-virt: KVM does not support providing "
1585                      "Virtualization extensions to the guest CPU");
1586         exit(1);
1587     }
1588 
1589     create_fdt(vms);
1590 
1591     possible_cpus = mc->possible_cpu_arch_ids(machine);
1592     for (n = 0; n < possible_cpus->len; n++) {
1593         Object *cpuobj;
1594         CPUState *cs;
1595 
1596         if (n >= smp_cpus) {
1597             break;
1598         }
1599 
1600         cpuobj = object_new(possible_cpus->cpus[n].type);
1601         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1602                                 "mp-affinity", NULL);
1603 
1604         cs = CPU(cpuobj);
1605         cs->cpu_index = n;
1606 
1607         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1608                           &error_fatal);
1609 
1610         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1611 
1612         if (!vms->secure) {
1613             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1614         }
1615 
1616         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1617             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1618         }
1619 
1620         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1621             object_property_set_int(cpuobj, vms->psci_conduit,
1622                                     "psci-conduit", NULL);
1623 
1624             /* Secondary CPUs start in PSCI powered-down state */
1625             if (n > 0) {
1626                 object_property_set_bool(cpuobj, true,
1627                                          "start-powered-off", NULL);
1628             }
1629         }
1630 
1631         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1632             object_property_set_bool(cpuobj, false, "pmu", NULL);
1633         }
1634 
1635         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1636             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1637                                     "reset-cbar", &error_abort);
1638         }
1639 
1640         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1641                                  &error_abort);
1642         if (vms->secure) {
1643             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1644                                      "secure-memory", &error_abort);
1645         }
1646 
1647         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1648         object_unref(cpuobj);
1649     }
1650     fdt_add_timer_nodes(vms);
1651     fdt_add_cpu_nodes(vms);
1652 
1653    if (!kvm_enabled()) {
1654         ARMCPU *cpu = ARM_CPU(first_cpu);
1655         bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1656 
1657         if (aarch64 && vms->highmem) {
1658             int requested_pa_size, pamax = arm_pamax(cpu);
1659 
1660             requested_pa_size = 64 - clz64(vms->highest_gpa);
1661             if (pamax < requested_pa_size) {
1662                 error_report("VCPU supports less PA bits (%d) than requested "
1663                             "by the memory map (%d)", pamax, requested_pa_size);
1664                 exit(1);
1665             }
1666         }
1667     }
1668 
1669     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1670                                          machine->ram_size);
1671     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1672     if (machine->device_memory) {
1673         memory_region_add_subregion(sysmem, machine->device_memory->base,
1674                                     &machine->device_memory->mr);
1675     }
1676 
1677     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1678 
1679     create_gic(vms, pic);
1680 
1681     fdt_add_pmu_nodes(vms);
1682 
1683     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1684 
1685     if (vms->secure) {
1686         create_secure_ram(vms, secure_sysmem);
1687         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1688     }
1689 
1690     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1691 
1692     create_rtc(vms, pic);
1693 
1694     create_pcie(vms, pic);
1695 
1696     create_gpio(vms, pic);
1697 
1698     /* Create mmio transports, so the user can create virtio backends
1699      * (which will be automatically plugged in to the transports). If
1700      * no backend is created the transport will just sit harmlessly idle.
1701      */
1702     create_virtio_devices(vms, pic);
1703 
1704     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1705     rom_set_fw(vms->fw_cfg);
1706 
1707     create_platform_bus(vms, pic);
1708 
1709     vms->bootinfo.ram_size = machine->ram_size;
1710     vms->bootinfo.kernel_filename = machine->kernel_filename;
1711     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1712     vms->bootinfo.initrd_filename = machine->initrd_filename;
1713     vms->bootinfo.nb_cpus = smp_cpus;
1714     vms->bootinfo.board_id = -1;
1715     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1716     vms->bootinfo.get_dtb = machvirt_dtb;
1717     vms->bootinfo.skip_dtb_autoload = true;
1718     vms->bootinfo.firmware_loaded = firmware_loaded;
1719     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1720 
1721     vms->machine_done.notify = virt_machine_done;
1722     qemu_add_machine_init_done_notifier(&vms->machine_done);
1723 }
1724 
1725 static bool virt_get_secure(Object *obj, Error **errp)
1726 {
1727     VirtMachineState *vms = VIRT_MACHINE(obj);
1728 
1729     return vms->secure;
1730 }
1731 
1732 static void virt_set_secure(Object *obj, bool value, Error **errp)
1733 {
1734     VirtMachineState *vms = VIRT_MACHINE(obj);
1735 
1736     vms->secure = value;
1737 }
1738 
1739 static bool virt_get_virt(Object *obj, Error **errp)
1740 {
1741     VirtMachineState *vms = VIRT_MACHINE(obj);
1742 
1743     return vms->virt;
1744 }
1745 
1746 static void virt_set_virt(Object *obj, bool value, Error **errp)
1747 {
1748     VirtMachineState *vms = VIRT_MACHINE(obj);
1749 
1750     vms->virt = value;
1751 }
1752 
1753 static bool virt_get_highmem(Object *obj, Error **errp)
1754 {
1755     VirtMachineState *vms = VIRT_MACHINE(obj);
1756 
1757     return vms->highmem;
1758 }
1759 
1760 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1761 {
1762     VirtMachineState *vms = VIRT_MACHINE(obj);
1763 
1764     vms->highmem = value;
1765 }
1766 
1767 static bool virt_get_its(Object *obj, Error **errp)
1768 {
1769     VirtMachineState *vms = VIRT_MACHINE(obj);
1770 
1771     return vms->its;
1772 }
1773 
1774 static void virt_set_its(Object *obj, bool value, Error **errp)
1775 {
1776     VirtMachineState *vms = VIRT_MACHINE(obj);
1777 
1778     vms->its = value;
1779 }
1780 
1781 static char *virt_get_gic_version(Object *obj, Error **errp)
1782 {
1783     VirtMachineState *vms = VIRT_MACHINE(obj);
1784     const char *val = vms->gic_version == 3 ? "3" : "2";
1785 
1786     return g_strdup(val);
1787 }
1788 
1789 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1790 {
1791     VirtMachineState *vms = VIRT_MACHINE(obj);
1792 
1793     if (!strcmp(value, "3")) {
1794         vms->gic_version = 3;
1795     } else if (!strcmp(value, "2")) {
1796         vms->gic_version = 2;
1797     } else if (!strcmp(value, "host")) {
1798         vms->gic_version = 0; /* Will probe later */
1799     } else if (!strcmp(value, "max")) {
1800         vms->gic_version = -1; /* Will probe later */
1801     } else {
1802         error_setg(errp, "Invalid gic-version value");
1803         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1804     }
1805 }
1806 
1807 static char *virt_get_iommu(Object *obj, Error **errp)
1808 {
1809     VirtMachineState *vms = VIRT_MACHINE(obj);
1810 
1811     switch (vms->iommu) {
1812     case VIRT_IOMMU_NONE:
1813         return g_strdup("none");
1814     case VIRT_IOMMU_SMMUV3:
1815         return g_strdup("smmuv3");
1816     default:
1817         g_assert_not_reached();
1818     }
1819 }
1820 
1821 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1822 {
1823     VirtMachineState *vms = VIRT_MACHINE(obj);
1824 
1825     if (!strcmp(value, "smmuv3")) {
1826         vms->iommu = VIRT_IOMMU_SMMUV3;
1827     } else if (!strcmp(value, "none")) {
1828         vms->iommu = VIRT_IOMMU_NONE;
1829     } else {
1830         error_setg(errp, "Invalid iommu value");
1831         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1832     }
1833 }
1834 
1835 static CpuInstanceProperties
1836 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1837 {
1838     MachineClass *mc = MACHINE_GET_CLASS(ms);
1839     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1840 
1841     assert(cpu_index < possible_cpus->len);
1842     return possible_cpus->cpus[cpu_index].props;
1843 }
1844 
1845 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1846 {
1847     return idx % nb_numa_nodes;
1848 }
1849 
1850 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1851 {
1852     int n;
1853     unsigned int max_cpus = ms->smp.max_cpus;
1854     VirtMachineState *vms = VIRT_MACHINE(ms);
1855 
1856     if (ms->possible_cpus) {
1857         assert(ms->possible_cpus->len == max_cpus);
1858         return ms->possible_cpus;
1859     }
1860 
1861     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1862                                   sizeof(CPUArchId) * max_cpus);
1863     ms->possible_cpus->len = max_cpus;
1864     for (n = 0; n < ms->possible_cpus->len; n++) {
1865         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1866         ms->possible_cpus->cpus[n].arch_id =
1867             virt_cpu_mp_affinity(vms, n);
1868         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1869         ms->possible_cpus->cpus[n].props.thread_id = n;
1870     }
1871     return ms->possible_cpus;
1872 }
1873 
1874 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1875                                         DeviceState *dev, Error **errp)
1876 {
1877     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1878 
1879     if (vms->platform_bus_dev) {
1880         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1881             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1882                                      SYS_BUS_DEVICE(dev));
1883         }
1884     }
1885 }
1886 
1887 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1888                                                         DeviceState *dev)
1889 {
1890     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1891         return HOTPLUG_HANDLER(machine);
1892     }
1893 
1894     return NULL;
1895 }
1896 
1897 /*
1898  * for arm64 kvm_type [7-0] encodes the requested number of bits
1899  * in the IPA address space
1900  */
1901 static int virt_kvm_type(MachineState *ms, const char *type_str)
1902 {
1903     VirtMachineState *vms = VIRT_MACHINE(ms);
1904     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1905     int requested_pa_size;
1906 
1907     /* we freeze the memory map to compute the highest gpa */
1908     virt_set_memmap(vms);
1909 
1910     requested_pa_size = 64 - clz64(vms->highest_gpa);
1911 
1912     if (requested_pa_size > max_vm_pa_size) {
1913         error_report("-m and ,maxmem option values "
1914                      "require an IPA range (%d bits) larger than "
1915                      "the one supported by the host (%d bits)",
1916                      requested_pa_size, max_vm_pa_size);
1917        exit(1);
1918     }
1919     /*
1920      * By default we return 0 which corresponds to an implicit legacy
1921      * 40b IPA setting. Otherwise we return the actual requested PA
1922      * logsize
1923      */
1924     return requested_pa_size > 40 ? requested_pa_size : 0;
1925 }
1926 
1927 static void virt_machine_class_init(ObjectClass *oc, void *data)
1928 {
1929     MachineClass *mc = MACHINE_CLASS(oc);
1930     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1931 
1932     mc->init = machvirt_init;
1933     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1934      * The value may be reduced later when we have more information about the
1935      * configuration of the particular instance.
1936      */
1937     mc->max_cpus = 512;
1938     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1939     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1940     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1941     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1942     mc->block_default_type = IF_VIRTIO;
1943     mc->no_cdrom = 1;
1944     mc->pci_allow_0_address = true;
1945     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1946     mc->minimum_page_bits = 12;
1947     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1948     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1949     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1950     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1951     mc->kvm_type = virt_kvm_type;
1952     assert(!mc->get_hotplug_handler);
1953     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1954     hc->plug = virt_machine_device_plug_cb;
1955     mc->numa_mem_supported = true;
1956 }
1957 
1958 static void virt_instance_init(Object *obj)
1959 {
1960     VirtMachineState *vms = VIRT_MACHINE(obj);
1961     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1962 
1963     /* EL3 is disabled by default on virt: this makes us consistent
1964      * between KVM and TCG for this board, and it also allows us to
1965      * boot UEFI blobs which assume no TrustZone support.
1966      */
1967     vms->secure = false;
1968     object_property_add_bool(obj, "secure", virt_get_secure,
1969                              virt_set_secure, NULL);
1970     object_property_set_description(obj, "secure",
1971                                     "Set on/off to enable/disable the ARM "
1972                                     "Security Extensions (TrustZone)",
1973                                     NULL);
1974 
1975     /* EL2 is also disabled by default, for similar reasons */
1976     vms->virt = false;
1977     object_property_add_bool(obj, "virtualization", virt_get_virt,
1978                              virt_set_virt, NULL);
1979     object_property_set_description(obj, "virtualization",
1980                                     "Set on/off to enable/disable emulating a "
1981                                     "guest CPU which implements the ARM "
1982                                     "Virtualization Extensions",
1983                                     NULL);
1984 
1985     /* High memory is enabled by default */
1986     vms->highmem = true;
1987     object_property_add_bool(obj, "highmem", virt_get_highmem,
1988                              virt_set_highmem, NULL);
1989     object_property_set_description(obj, "highmem",
1990                                     "Set on/off to enable/disable using "
1991                                     "physical address space above 32 bits",
1992                                     NULL);
1993     /* Default GIC type is v2 */
1994     vms->gic_version = 2;
1995     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1996                         virt_set_gic_version, NULL);
1997     object_property_set_description(obj, "gic-version",
1998                                     "Set GIC version. "
1999                                     "Valid values are 2, 3 and host", NULL);
2000 
2001     vms->highmem_ecam = !vmc->no_highmem_ecam;
2002 
2003     if (vmc->no_its) {
2004         vms->its = false;
2005     } else {
2006         /* Default allows ITS instantiation */
2007         vms->its = true;
2008         object_property_add_bool(obj, "its", virt_get_its,
2009                                  virt_set_its, NULL);
2010         object_property_set_description(obj, "its",
2011                                         "Set on/off to enable/disable "
2012                                         "ITS instantiation",
2013                                         NULL);
2014     }
2015 
2016     /* Default disallows iommu instantiation */
2017     vms->iommu = VIRT_IOMMU_NONE;
2018     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2019     object_property_set_description(obj, "iommu",
2020                                     "Set the IOMMU type. "
2021                                     "Valid values are none and smmuv3",
2022                                     NULL);
2023 
2024     vms->irqmap = a15irqmap;
2025 
2026     virt_flash_create(vms);
2027 }
2028 
2029 static const TypeInfo virt_machine_info = {
2030     .name          = TYPE_VIRT_MACHINE,
2031     .parent        = TYPE_MACHINE,
2032     .abstract      = true,
2033     .instance_size = sizeof(VirtMachineState),
2034     .class_size    = sizeof(VirtMachineClass),
2035     .class_init    = virt_machine_class_init,
2036     .instance_init = virt_instance_init,
2037     .interfaces = (InterfaceInfo[]) {
2038          { TYPE_HOTPLUG_HANDLER },
2039          { }
2040     },
2041 };
2042 
2043 static void machvirt_machine_init(void)
2044 {
2045     type_register_static(&virt_machine_info);
2046 }
2047 type_init(machvirt_machine_init);
2048 
2049 static void virt_machine_4_1_options(MachineClass *mc)
2050 {
2051 }
2052 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2053 
2054 static void virt_machine_4_0_options(MachineClass *mc)
2055 {
2056     virt_machine_4_1_options(mc);
2057     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2058 }
2059 DEFINE_VIRT_MACHINE(4, 0)
2060 
2061 static void virt_machine_3_1_options(MachineClass *mc)
2062 {
2063     virt_machine_4_0_options(mc);
2064     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2065 }
2066 DEFINE_VIRT_MACHINE(3, 1)
2067 
2068 static void virt_machine_3_0_options(MachineClass *mc)
2069 {
2070     virt_machine_3_1_options(mc);
2071     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2072 }
2073 DEFINE_VIRT_MACHINE(3, 0)
2074 
2075 static void virt_machine_2_12_options(MachineClass *mc)
2076 {
2077     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2078 
2079     virt_machine_3_0_options(mc);
2080     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2081     vmc->no_highmem_ecam = true;
2082     mc->max_cpus = 255;
2083 }
2084 DEFINE_VIRT_MACHINE(2, 12)
2085 
2086 static void virt_machine_2_11_options(MachineClass *mc)
2087 {
2088     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2089 
2090     virt_machine_2_12_options(mc);
2091     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2092     vmc->smbios_old_sys_ver = true;
2093 }
2094 DEFINE_VIRT_MACHINE(2, 11)
2095 
2096 static void virt_machine_2_10_options(MachineClass *mc)
2097 {
2098     virt_machine_2_11_options(mc);
2099     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2100     /* before 2.11 we never faulted accesses to bad addresses */
2101     mc->ignore_memory_transaction_failures = true;
2102 }
2103 DEFINE_VIRT_MACHINE(2, 10)
2104 
2105 static void virt_machine_2_9_options(MachineClass *mc)
2106 {
2107     virt_machine_2_10_options(mc);
2108     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2109 }
2110 DEFINE_VIRT_MACHINE(2, 9)
2111 
2112 static void virt_machine_2_8_options(MachineClass *mc)
2113 {
2114     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2115 
2116     virt_machine_2_9_options(mc);
2117     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2118     /* For 2.8 and earlier we falsely claimed in the DT that
2119      * our timers were edge-triggered, not level-triggered.
2120      */
2121     vmc->claim_edge_triggered_timers = true;
2122 }
2123 DEFINE_VIRT_MACHINE(2, 8)
2124 
2125 static void virt_machine_2_7_options(MachineClass *mc)
2126 {
2127     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2128 
2129     virt_machine_2_8_options(mc);
2130     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2131     /* ITS was introduced with 2.8 */
2132     vmc->no_its = true;
2133     /* Stick with 1K pages for migration compatibility */
2134     mc->minimum_page_bits = 0;
2135 }
2136 DEFINE_VIRT_MACHINE(2, 7)
2137 
2138 static void virt_machine_2_6_options(MachineClass *mc)
2139 {
2140     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2141 
2142     virt_machine_2_7_options(mc);
2143     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2144     vmc->disallow_affinity_adjustment = true;
2145     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2146     vmc->no_pmu = true;
2147 }
2148 DEFINE_VIRT_MACHINE(2, 6)
2149