1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "hw/sysbus.h" 34 #include "hw/arm/arm.h" 35 #include "hw/arm/primecell.h" 36 #include "hw/arm/virt.h" 37 #include "hw/vfio/vfio-calxeda-xgmac.h" 38 #include "hw/vfio/vfio-amd-xgbe.h" 39 #include "hw/display/ramfb.h" 40 #include "hw/devices.h" 41 #include "net/net.h" 42 #include "sysemu/device_tree.h" 43 #include "sysemu/numa.h" 44 #include "sysemu/sysemu.h" 45 #include "sysemu/kvm.h" 46 #include "hw/compat.h" 47 #include "hw/loader.h" 48 #include "exec/address-spaces.h" 49 #include "qemu/bitops.h" 50 #include "qemu/error-report.h" 51 #include "hw/pci-host/gpex.h" 52 #include "hw/arm/sysbus-fdt.h" 53 #include "hw/platform-bus.h" 54 #include "hw/arm/fdt.h" 55 #include "hw/intc/arm_gic.h" 56 #include "hw/intc/arm_gicv3_common.h" 57 #include "kvm_arm.h" 58 #include "hw/smbios/smbios.h" 59 #include "qapi/visitor.h" 60 #include "standard-headers/linux/input.h" 61 #include "hw/arm/smmuv3.h" 62 63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 65 void *data) \ 66 { \ 67 MachineClass *mc = MACHINE_CLASS(oc); \ 68 virt_machine_##major##_##minor##_options(mc); \ 69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 70 if (latest) { \ 71 mc->alias = "virt"; \ 72 } \ 73 } \ 74 static const TypeInfo machvirt_##major##_##minor##_info = { \ 75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 76 .parent = TYPE_VIRT_MACHINE, \ 77 .instance_init = virt_##major##_##minor##_instance_init, \ 78 .class_init = virt_##major##_##minor##_class_init, \ 79 }; \ 80 static void machvirt_machine_##major##_##minor##_init(void) \ 81 { \ 82 type_register_static(&machvirt_##major##_##minor##_info); \ 83 } \ 84 type_init(machvirt_machine_##major##_##minor##_init); 85 86 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 88 #define DEFINE_VIRT_MACHINE(major, minor) \ 89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 90 91 92 /* Number of external interrupt lines to configure the GIC with */ 93 #define NUM_IRQS 256 94 95 #define PLATFORM_BUS_NUM_IRQS 64 96 97 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 98 * RAM can go up to the 256GB mark, leaving 256GB of the physical 99 * address space unallocated and free for future use between 256G and 512G. 100 * If we need to provide more RAM to VMs in the future then we need to: 101 * * allocate a second bank of RAM starting at 2TB and working up 102 * * fix the DT and ACPI table generation code in QEMU to correctly 103 * report two split lumps of RAM to the guest 104 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 105 * (We don't want to fill all the way up to 512GB with RAM because 106 * we might want it for non-RAM purposes later. Conversely it seems 107 * reasonable to assume that anybody configuring a VM with a quarter 108 * of a terabyte of RAM will be doing it on a host with more than a 109 * terabyte of physical address space.) 110 */ 111 #define RAMLIMIT_GB 255 112 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 113 114 /* Addresses and sizes of our components. 115 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 116 * 128MB..256MB is used for miscellaneous device I/O. 117 * 256MB..1GB is reserved for possible future PCI support (ie where the 118 * PCI memory window will go if we add a PCI host controller). 119 * 1GB and up is RAM (which may happily spill over into the 120 * high memory region beyond 4GB). 121 * This represents a compromise between how much RAM can be given to 122 * a 32 bit VM and leaving space for expansion and in particular for PCI. 123 * Note that devices should generally be placed at multiples of 0x10000, 124 * to accommodate guests using 64K pages. 125 */ 126 static const MemMapEntry a15memmap[] = { 127 /* Space up to 0x8000000 is reserved for a boot ROM */ 128 [VIRT_FLASH] = { 0, 0x08000000 }, 129 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 130 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 131 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 132 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 133 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 134 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 135 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 136 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 137 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 138 /* This redistributor space allows up to 2*64kB*123 CPUs */ 139 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 140 [VIRT_UART] = { 0x09000000, 0x00001000 }, 141 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 142 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 143 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 144 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 145 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 153 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 154 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 155 [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 }, 156 [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 }, 157 /* Second PCIe window, 512GB wide at the 512GB boundary */ 158 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 159 }; 160 161 static const int a15irqmap[] = { 162 [VIRT_UART] = 1, 163 [VIRT_RTC] = 2, 164 [VIRT_PCIE] = 3, /* ... to 6 */ 165 [VIRT_GPIO] = 7, 166 [VIRT_SECURE_UART] = 8, 167 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 168 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 169 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 170 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 171 }; 172 173 static const char *valid_cpus[] = { 174 ARM_CPU_TYPE_NAME("cortex-a15"), 175 ARM_CPU_TYPE_NAME("cortex-a53"), 176 ARM_CPU_TYPE_NAME("cortex-a57"), 177 ARM_CPU_TYPE_NAME("host"), 178 ARM_CPU_TYPE_NAME("max"), 179 }; 180 181 static bool cpu_type_valid(const char *cpu) 182 { 183 int i; 184 185 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 186 if (strcmp(cpu, valid_cpus[i]) == 0) { 187 return true; 188 } 189 } 190 return false; 191 } 192 193 static void create_fdt(VirtMachineState *vms) 194 { 195 void *fdt = create_device_tree(&vms->fdt_size); 196 197 if (!fdt) { 198 error_report("create_device_tree() failed"); 199 exit(1); 200 } 201 202 vms->fdt = fdt; 203 204 /* Header */ 205 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 206 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 207 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 208 209 /* /chosen must exist for load_dtb to fill in necessary properties later */ 210 qemu_fdt_add_subnode(fdt, "/chosen"); 211 212 /* Clock node, for the benefit of the UART. The kernel device tree 213 * binding documentation claims the PL011 node clock properties are 214 * optional but in practice if you omit them the kernel refuses to 215 * probe for the device. 216 */ 217 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 218 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 219 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 221 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 222 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 223 "clk24mhz"); 224 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 225 226 if (have_numa_distance) { 227 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 228 uint32_t *matrix = g_malloc0(size); 229 int idx, i, j; 230 231 for (i = 0; i < nb_numa_nodes; i++) { 232 for (j = 0; j < nb_numa_nodes; j++) { 233 idx = (i * nb_numa_nodes + j) * 3; 234 matrix[idx + 0] = cpu_to_be32(i); 235 matrix[idx + 1] = cpu_to_be32(j); 236 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); 237 } 238 } 239 240 qemu_fdt_add_subnode(fdt, "/distance-map"); 241 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 242 "numa-distance-map-v1"); 243 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 244 matrix, size); 245 g_free(matrix); 246 } 247 } 248 249 static void fdt_add_timer_nodes(const VirtMachineState *vms) 250 { 251 /* On real hardware these interrupts are level-triggered. 252 * On KVM they were edge-triggered before host kernel version 4.4, 253 * and level-triggered afterwards. 254 * On emulated QEMU they are level-triggered. 255 * 256 * Getting the DTB info about them wrong is awkward for some 257 * guest kernels: 258 * pre-4.8 ignore the DT and leave the interrupt configured 259 * with whatever the GIC reset value (or the bootloader) left it at 260 * 4.8 before rc6 honour the incorrect data by programming it back 261 * into the GIC, causing problems 262 * 4.8rc6 and later ignore the DT and always write "level triggered" 263 * into the GIC 264 * 265 * For backwards-compatibility, virt-2.8 and earlier will continue 266 * to say these are edge-triggered, but later machines will report 267 * the correct information. 268 */ 269 ARMCPU *armcpu; 270 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 271 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 272 273 if (vmc->claim_edge_triggered_timers) { 274 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 275 } 276 277 if (vms->gic_version == 2) { 278 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 279 GIC_FDT_IRQ_PPI_CPU_WIDTH, 280 (1 << vms->smp_cpus) - 1); 281 } 282 283 qemu_fdt_add_subnode(vms->fdt, "/timer"); 284 285 armcpu = ARM_CPU(qemu_get_cpu(0)); 286 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 287 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 288 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 289 compat, sizeof(compat)); 290 } else { 291 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 292 "arm,armv7-timer"); 293 } 294 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 295 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 300 } 301 302 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 303 { 304 int cpu; 305 int addr_cells = 1; 306 const MachineState *ms = MACHINE(vms); 307 308 /* 309 * From Documentation/devicetree/bindings/arm/cpus.txt 310 * On ARM v8 64-bit systems value should be set to 2, 311 * that corresponds to the MPIDR_EL1 register size. 312 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 313 * in the system, #address-cells can be set to 1, since 314 * MPIDR_EL1[63:32] bits are not used for CPUs 315 * identification. 316 * 317 * Here we actually don't know whether our system is 32- or 64-bit one. 318 * The simplest way to go is to examine affinity IDs of all our CPUs. If 319 * at least one of them has Aff3 populated, we set #address-cells to 2. 320 */ 321 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 322 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 323 324 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 325 addr_cells = 2; 326 break; 327 } 328 } 329 330 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 331 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 332 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 333 334 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 335 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 336 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 337 CPUState *cs = CPU(armcpu); 338 339 qemu_fdt_add_subnode(vms->fdt, nodename); 340 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 341 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 342 armcpu->dtb_compatible); 343 344 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 345 && vms->smp_cpus > 1) { 346 qemu_fdt_setprop_string(vms->fdt, nodename, 347 "enable-method", "psci"); 348 } 349 350 if (addr_cells == 2) { 351 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 352 armcpu->mp_affinity); 353 } else { 354 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 355 armcpu->mp_affinity); 356 } 357 358 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 359 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 360 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 361 } 362 363 g_free(nodename); 364 } 365 } 366 367 static void fdt_add_its_gic_node(VirtMachineState *vms) 368 { 369 char *nodename; 370 371 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 372 nodename = g_strdup_printf("/intc/its@%" PRIx64, 373 vms->memmap[VIRT_GIC_ITS].base); 374 qemu_fdt_add_subnode(vms->fdt, nodename); 375 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 376 "arm,gic-v3-its"); 377 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 378 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 379 2, vms->memmap[VIRT_GIC_ITS].base, 380 2, vms->memmap[VIRT_GIC_ITS].size); 381 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 382 g_free(nodename); 383 } 384 385 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 386 { 387 char *nodename; 388 389 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 390 vms->memmap[VIRT_GIC_V2M].base); 391 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 392 qemu_fdt_add_subnode(vms->fdt, nodename); 393 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 394 "arm,gic-v2m-frame"); 395 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 396 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 397 2, vms->memmap[VIRT_GIC_V2M].base, 398 2, vms->memmap[VIRT_GIC_V2M].size); 399 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 400 g_free(nodename); 401 } 402 403 static void fdt_add_gic_node(VirtMachineState *vms) 404 { 405 char *nodename; 406 407 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 408 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 409 410 nodename = g_strdup_printf("/intc@%" PRIx64, 411 vms->memmap[VIRT_GIC_DIST].base); 412 qemu_fdt_add_subnode(vms->fdt, nodename); 413 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 414 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 415 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 416 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 417 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 418 if (vms->gic_version == 3) { 419 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 420 421 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 422 "arm,gic-v3"); 423 424 qemu_fdt_setprop_cell(vms->fdt, nodename, 425 "#redistributor-regions", nb_redist_regions); 426 427 if (nb_redist_regions == 1) { 428 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 429 2, vms->memmap[VIRT_GIC_DIST].base, 430 2, vms->memmap[VIRT_GIC_DIST].size, 431 2, vms->memmap[VIRT_GIC_REDIST].base, 432 2, vms->memmap[VIRT_GIC_REDIST].size); 433 } else { 434 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 435 2, vms->memmap[VIRT_GIC_DIST].base, 436 2, vms->memmap[VIRT_GIC_DIST].size, 437 2, vms->memmap[VIRT_GIC_REDIST].base, 438 2, vms->memmap[VIRT_GIC_REDIST].size, 439 2, vms->memmap[VIRT_GIC_REDIST2].base, 440 2, vms->memmap[VIRT_GIC_REDIST2].size); 441 } 442 443 if (vms->virt) { 444 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 445 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 446 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 447 } 448 } else { 449 /* 'cortex-a15-gic' means 'GIC v2' */ 450 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 451 "arm,cortex-a15-gic"); 452 if (!vms->virt) { 453 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 454 2, vms->memmap[VIRT_GIC_DIST].base, 455 2, vms->memmap[VIRT_GIC_DIST].size, 456 2, vms->memmap[VIRT_GIC_CPU].base, 457 2, vms->memmap[VIRT_GIC_CPU].size); 458 } else { 459 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 460 2, vms->memmap[VIRT_GIC_DIST].base, 461 2, vms->memmap[VIRT_GIC_DIST].size, 462 2, vms->memmap[VIRT_GIC_CPU].base, 463 2, vms->memmap[VIRT_GIC_CPU].size, 464 2, vms->memmap[VIRT_GIC_HYP].base, 465 2, vms->memmap[VIRT_GIC_HYP].size, 466 2, vms->memmap[VIRT_GIC_VCPU].base, 467 2, vms->memmap[VIRT_GIC_VCPU].size); 468 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 469 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 470 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 471 } 472 } 473 474 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 475 g_free(nodename); 476 } 477 478 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 479 { 480 CPUState *cpu; 481 ARMCPU *armcpu; 482 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 483 484 CPU_FOREACH(cpu) { 485 armcpu = ARM_CPU(cpu); 486 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 487 return; 488 } 489 if (kvm_enabled()) { 490 if (kvm_irqchip_in_kernel()) { 491 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 492 } 493 kvm_arm_pmu_init(cpu); 494 } 495 } 496 497 if (vms->gic_version == 2) { 498 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 499 GIC_FDT_IRQ_PPI_CPU_WIDTH, 500 (1 << vms->smp_cpus) - 1); 501 } 502 503 armcpu = ARM_CPU(qemu_get_cpu(0)); 504 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 505 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 506 const char compat[] = "arm,armv8-pmuv3"; 507 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 508 compat, sizeof(compat)); 509 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 510 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 511 } 512 } 513 514 static void create_its(VirtMachineState *vms, DeviceState *gicdev) 515 { 516 const char *itsclass = its_class_name(); 517 DeviceState *dev; 518 519 if (!itsclass) { 520 /* Do nothing if not supported */ 521 return; 522 } 523 524 dev = qdev_create(NULL, itsclass); 525 526 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 527 &error_abort); 528 qdev_init_nofail(dev); 529 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 530 531 fdt_add_its_gic_node(vms); 532 } 533 534 static void create_v2m(VirtMachineState *vms, qemu_irq *pic) 535 { 536 int i; 537 int irq = vms->irqmap[VIRT_GIC_V2M]; 538 DeviceState *dev; 539 540 dev = qdev_create(NULL, "arm-gicv2m"); 541 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 542 qdev_prop_set_uint32(dev, "base-spi", irq); 543 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 544 qdev_init_nofail(dev); 545 546 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 547 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 548 } 549 550 fdt_add_v2m_gic_node(vms); 551 } 552 553 static void create_gic(VirtMachineState *vms, qemu_irq *pic) 554 { 555 /* We create a standalone GIC */ 556 DeviceState *gicdev; 557 SysBusDevice *gicbusdev; 558 const char *gictype; 559 int type = vms->gic_version, i; 560 uint32_t nb_redist_regions = 0; 561 562 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 563 564 gicdev = qdev_create(NULL, gictype); 565 qdev_prop_set_uint32(gicdev, "revision", type); 566 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 567 /* Note that the num-irq property counts both internal and external 568 * interrupts; there are always 32 of the former (mandated by GIC spec). 569 */ 570 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 571 if (!kvm_irqchip_in_kernel()) { 572 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); 573 } 574 575 if (type == 3) { 576 uint32_t redist0_capacity = 577 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 578 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 579 580 nb_redist_regions = virt_gicv3_redist_region_count(vms); 581 582 qdev_prop_set_uint32(gicdev, "len-redist-region-count", 583 nb_redist_regions); 584 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count); 585 586 if (nb_redist_regions == 2) { 587 uint32_t redist1_capacity = 588 vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE; 589 590 qdev_prop_set_uint32(gicdev, "redist-region-count[1]", 591 MIN(smp_cpus - redist0_count, redist1_capacity)); 592 } 593 } else { 594 if (!kvm_irqchip_in_kernel()) { 595 qdev_prop_set_bit(gicdev, "has-virtualization-extensions", 596 vms->virt); 597 } 598 } 599 qdev_init_nofail(gicdev); 600 gicbusdev = SYS_BUS_DEVICE(gicdev); 601 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 602 if (type == 3) { 603 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 604 if (nb_redist_regions == 2) { 605 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base); 606 } 607 } else { 608 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 609 if (vms->virt) { 610 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 611 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 612 } 613 } 614 615 /* Wire the outputs from each CPU's generic timer and the GICv3 616 * maintenance interrupt signal to the appropriate GIC PPI inputs, 617 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 618 */ 619 for (i = 0; i < smp_cpus; i++) { 620 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 621 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 622 int irq; 623 /* Mapping from the output timer irq lines from the CPU to the 624 * GIC PPI inputs we use for the virt board. 625 */ 626 const int timer_irq[] = { 627 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 628 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 629 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 630 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 631 }; 632 633 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 634 qdev_connect_gpio_out(cpudev, irq, 635 qdev_get_gpio_in(gicdev, 636 ppibase + timer_irq[irq])); 637 } 638 639 if (type == 3) { 640 qemu_irq irq = qdev_get_gpio_in(gicdev, 641 ppibase + ARCH_GIC_MAINT_IRQ); 642 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 643 0, irq); 644 } else if (vms->virt) { 645 qemu_irq irq = qdev_get_gpio_in(gicdev, 646 ppibase + ARCH_GIC_MAINT_IRQ); 647 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 648 } 649 650 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 651 qdev_get_gpio_in(gicdev, ppibase 652 + VIRTUAL_PMU_IRQ)); 653 654 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 655 sysbus_connect_irq(gicbusdev, i + smp_cpus, 656 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 657 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 658 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 659 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 660 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 661 } 662 663 for (i = 0; i < NUM_IRQS; i++) { 664 pic[i] = qdev_get_gpio_in(gicdev, i); 665 } 666 667 fdt_add_gic_node(vms); 668 669 if (type == 3 && vms->its) { 670 create_its(vms, gicdev); 671 } else if (type == 2) { 672 create_v2m(vms, pic); 673 } 674 } 675 676 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, 677 MemoryRegion *mem, Chardev *chr) 678 { 679 char *nodename; 680 hwaddr base = vms->memmap[uart].base; 681 hwaddr size = vms->memmap[uart].size; 682 int irq = vms->irqmap[uart]; 683 const char compat[] = "arm,pl011\0arm,primecell"; 684 const char clocknames[] = "uartclk\0apb_pclk"; 685 DeviceState *dev = qdev_create(NULL, "pl011"); 686 SysBusDevice *s = SYS_BUS_DEVICE(dev); 687 688 qdev_prop_set_chr(dev, "chardev", chr); 689 qdev_init_nofail(dev); 690 memory_region_add_subregion(mem, base, 691 sysbus_mmio_get_region(s, 0)); 692 sysbus_connect_irq(s, 0, pic[irq]); 693 694 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 695 qemu_fdt_add_subnode(vms->fdt, nodename); 696 /* Note that we can't use setprop_string because of the embedded NUL */ 697 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 698 compat, sizeof(compat)); 699 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 700 2, base, 2, size); 701 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 702 GIC_FDT_IRQ_TYPE_SPI, irq, 703 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 704 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 705 vms->clock_phandle, vms->clock_phandle); 706 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 707 clocknames, sizeof(clocknames)); 708 709 if (uart == VIRT_UART) { 710 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 711 } else { 712 /* Mark as not usable by the normal world */ 713 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 714 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 715 } 716 717 g_free(nodename); 718 } 719 720 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) 721 { 722 char *nodename; 723 hwaddr base = vms->memmap[VIRT_RTC].base; 724 hwaddr size = vms->memmap[VIRT_RTC].size; 725 int irq = vms->irqmap[VIRT_RTC]; 726 const char compat[] = "arm,pl031\0arm,primecell"; 727 728 sysbus_create_simple("pl031", base, pic[irq]); 729 730 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 731 qemu_fdt_add_subnode(vms->fdt, nodename); 732 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 733 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 734 2, base, 2, size); 735 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 736 GIC_FDT_IRQ_TYPE_SPI, irq, 737 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 738 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 739 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 740 g_free(nodename); 741 } 742 743 static DeviceState *gpio_key_dev; 744 static void virt_powerdown_req(Notifier *n, void *opaque) 745 { 746 /* use gpio Pin 3 for power button event */ 747 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 748 } 749 750 static Notifier virt_system_powerdown_notifier = { 751 .notify = virt_powerdown_req 752 }; 753 754 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) 755 { 756 char *nodename; 757 DeviceState *pl061_dev; 758 hwaddr base = vms->memmap[VIRT_GPIO].base; 759 hwaddr size = vms->memmap[VIRT_GPIO].size; 760 int irq = vms->irqmap[VIRT_GPIO]; 761 const char compat[] = "arm,pl061\0arm,primecell"; 762 763 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 764 765 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 766 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 767 qemu_fdt_add_subnode(vms->fdt, nodename); 768 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 769 2, base, 2, size); 770 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 771 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 772 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 773 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 774 GIC_FDT_IRQ_TYPE_SPI, irq, 775 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 776 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 777 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 778 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 779 780 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 781 qdev_get_gpio_in(pl061_dev, 3)); 782 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 783 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 784 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 785 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 786 787 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 788 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 789 "label", "GPIO Key Poweroff"); 790 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 791 KEY_POWER); 792 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 793 "gpios", phandle, 3, 0); 794 795 /* connect powerdown request */ 796 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 797 798 g_free(nodename); 799 } 800 801 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) 802 { 803 int i; 804 hwaddr size = vms->memmap[VIRT_MMIO].size; 805 806 /* We create the transports in forwards order. Since qbus_realize() 807 * prepends (not appends) new child buses, the incrementing loop below will 808 * create a list of virtio-mmio buses with decreasing base addresses. 809 * 810 * When a -device option is processed from the command line, 811 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 812 * order. The upshot is that -device options in increasing command line 813 * order are mapped to virtio-mmio buses with decreasing base addresses. 814 * 815 * When this code was originally written, that arrangement ensured that the 816 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 817 * the first -device on the command line. (The end-to-end order is a 818 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 819 * guest kernel's name-to-address assignment strategy.) 820 * 821 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 822 * the message, if not necessarily the code, of commit 70161ff336. 823 * Therefore the loop now establishes the inverse of the original intent. 824 * 825 * Unfortunately, we can't counteract the kernel change by reversing the 826 * loop; it would break existing command lines. 827 * 828 * In any case, the kernel makes no guarantee about the stability of 829 * enumeration order of virtio devices (as demonstrated by it changing 830 * between kernel versions). For reliable and stable identification 831 * of disks users must use UUIDs or similar mechanisms. 832 */ 833 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 834 int irq = vms->irqmap[VIRT_MMIO] + i; 835 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 836 837 sysbus_create_simple("virtio-mmio", base, pic[irq]); 838 } 839 840 /* We add dtb nodes in reverse order so that they appear in the finished 841 * device tree lowest address first. 842 * 843 * Note that this mapping is independent of the loop above. The previous 844 * loop influences virtio device to virtio transport assignment, whereas 845 * this loop controls how virtio transports are laid out in the dtb. 846 */ 847 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 848 char *nodename; 849 int irq = vms->irqmap[VIRT_MMIO] + i; 850 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 851 852 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 853 qemu_fdt_add_subnode(vms->fdt, nodename); 854 qemu_fdt_setprop_string(vms->fdt, nodename, 855 "compatible", "virtio,mmio"); 856 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 857 2, base, 2, size); 858 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 859 GIC_FDT_IRQ_TYPE_SPI, irq, 860 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 861 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 862 g_free(nodename); 863 } 864 } 865 866 static void create_one_flash(const char *name, hwaddr flashbase, 867 hwaddr flashsize, const char *file, 868 MemoryRegion *sysmem) 869 { 870 /* Create and map a single flash device. We use the same 871 * parameters as the flash devices on the Versatile Express board. 872 */ 873 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 874 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 875 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 876 const uint64_t sectorlength = 256 * 1024; 877 878 if (dinfo) { 879 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 880 &error_abort); 881 } 882 883 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 884 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 885 qdev_prop_set_uint8(dev, "width", 4); 886 qdev_prop_set_uint8(dev, "device-width", 2); 887 qdev_prop_set_bit(dev, "big-endian", false); 888 qdev_prop_set_uint16(dev, "id0", 0x89); 889 qdev_prop_set_uint16(dev, "id1", 0x18); 890 qdev_prop_set_uint16(dev, "id2", 0x00); 891 qdev_prop_set_uint16(dev, "id3", 0x00); 892 qdev_prop_set_string(dev, "name", name); 893 qdev_init_nofail(dev); 894 895 memory_region_add_subregion(sysmem, flashbase, 896 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 897 898 if (file) { 899 char *fn; 900 int image_size; 901 902 if (drive_get(IF_PFLASH, 0, 0)) { 903 error_report("The contents of the first flash device may be " 904 "specified with -bios or with -drive if=pflash... " 905 "but you cannot use both options at once"); 906 exit(1); 907 } 908 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 909 if (!fn) { 910 error_report("Could not find ROM image '%s'", file); 911 exit(1); 912 } 913 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 914 g_free(fn); 915 if (image_size < 0) { 916 error_report("Could not load ROM image '%s'", file); 917 exit(1); 918 } 919 } 920 } 921 922 static void create_flash(const VirtMachineState *vms, 923 MemoryRegion *sysmem, 924 MemoryRegion *secure_sysmem) 925 { 926 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 927 * Any file passed via -bios goes in the first of these. 928 * sysmem is the system memory space. secure_sysmem is the secure view 929 * of the system, and the first flash device should be made visible only 930 * there. The second flash device is visible to both secure and nonsecure. 931 * If sysmem == secure_sysmem this means there is no separate Secure 932 * address space and both flash devices are generally visible. 933 */ 934 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 935 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 936 char *nodename; 937 938 create_one_flash("virt.flash0", flashbase, flashsize, 939 bios_name, secure_sysmem); 940 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 941 NULL, sysmem); 942 943 if (sysmem == secure_sysmem) { 944 /* Report both flash devices as a single node in the DT */ 945 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 946 qemu_fdt_add_subnode(vms->fdt, nodename); 947 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 948 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 949 2, flashbase, 2, flashsize, 950 2, flashbase + flashsize, 2, flashsize); 951 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 952 g_free(nodename); 953 } else { 954 /* Report the devices as separate nodes so we can mark one as 955 * only visible to the secure world. 956 */ 957 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 958 qemu_fdt_add_subnode(vms->fdt, nodename); 959 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 960 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 961 2, flashbase, 2, flashsize); 962 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 963 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 964 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 965 g_free(nodename); 966 967 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 968 qemu_fdt_add_subnode(vms->fdt, nodename); 969 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 970 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 971 2, flashbase + flashsize, 2, flashsize); 972 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 973 g_free(nodename); 974 } 975 } 976 977 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 978 { 979 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 980 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 981 FWCfgState *fw_cfg; 982 char *nodename; 983 984 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 985 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 986 987 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 988 qemu_fdt_add_subnode(vms->fdt, nodename); 989 qemu_fdt_setprop_string(vms->fdt, nodename, 990 "compatible", "qemu,fw-cfg-mmio"); 991 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 992 2, base, 2, size); 993 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 994 g_free(nodename); 995 return fw_cfg; 996 } 997 998 static void create_pcie_irq_map(const VirtMachineState *vms, 999 uint32_t gic_phandle, 1000 int first_irq, const char *nodename) 1001 { 1002 int devfn, pin; 1003 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1004 uint32_t *irq_map = full_irq_map; 1005 1006 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1007 for (pin = 0; pin < 4; pin++) { 1008 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1009 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1010 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1011 int i; 1012 1013 uint32_t map[] = { 1014 devfn << 8, 0, 0, /* devfn */ 1015 pin + 1, /* PCI pin */ 1016 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1017 1018 /* Convert map to big endian */ 1019 for (i = 0; i < 10; i++) { 1020 irq_map[i] = cpu_to_be32(map[i]); 1021 } 1022 irq_map += 10; 1023 } 1024 } 1025 1026 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1027 full_irq_map, sizeof(full_irq_map)); 1028 1029 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1030 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1031 0x7 /* PCI irq */); 1032 } 1033 1034 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, 1035 PCIBus *bus) 1036 { 1037 char *node; 1038 const char compat[] = "arm,smmu-v3"; 1039 int irq = vms->irqmap[VIRT_SMMU]; 1040 int i; 1041 hwaddr base = vms->memmap[VIRT_SMMU].base; 1042 hwaddr size = vms->memmap[VIRT_SMMU].size; 1043 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1044 DeviceState *dev; 1045 1046 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1047 return; 1048 } 1049 1050 dev = qdev_create(NULL, "arm-smmuv3"); 1051 1052 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1053 &error_abort); 1054 qdev_init_nofail(dev); 1055 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1056 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1057 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1058 } 1059 1060 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1061 qemu_fdt_add_subnode(vms->fdt, node); 1062 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1063 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1064 1065 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1066 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1067 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1068 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1069 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1070 1071 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1072 sizeof(irq_names)); 1073 1074 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1075 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1076 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1077 1078 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1079 1080 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1081 g_free(node); 1082 } 1083 1084 static void create_pcie(VirtMachineState *vms, qemu_irq *pic) 1085 { 1086 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1087 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1088 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base; 1089 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size; 1090 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1091 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1092 hwaddr base_ecam, size_ecam; 1093 hwaddr base = base_mmio; 1094 int nr_pcie_buses; 1095 int irq = vms->irqmap[VIRT_PCIE]; 1096 MemoryRegion *mmio_alias; 1097 MemoryRegion *mmio_reg; 1098 MemoryRegion *ecam_alias; 1099 MemoryRegion *ecam_reg; 1100 DeviceState *dev; 1101 char *nodename; 1102 int i, ecam_id; 1103 PCIHostState *pci; 1104 1105 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1106 qdev_init_nofail(dev); 1107 1108 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1109 base_ecam = vms->memmap[ecam_id].base; 1110 size_ecam = vms->memmap[ecam_id].size; 1111 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1112 /* Map only the first size_ecam bytes of ECAM space */ 1113 ecam_alias = g_new0(MemoryRegion, 1); 1114 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1115 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1116 ecam_reg, 0, size_ecam); 1117 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1118 1119 /* Map the MMIO window into system address space so as to expose 1120 * the section of PCI MMIO space which starts at the same base address 1121 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1122 * the window). 1123 */ 1124 mmio_alias = g_new0(MemoryRegion, 1); 1125 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1126 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1127 mmio_reg, base_mmio, size_mmio); 1128 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1129 1130 if (vms->highmem) { 1131 /* Map high MMIO space */ 1132 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1133 1134 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1135 mmio_reg, base_mmio_high, size_mmio_high); 1136 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1137 high_mmio_alias); 1138 } 1139 1140 /* Map IO port space */ 1141 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1142 1143 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1144 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1145 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1146 } 1147 1148 pci = PCI_HOST_BRIDGE(dev); 1149 if (pci->bus) { 1150 for (i = 0; i < nb_nics; i++) { 1151 NICInfo *nd = &nd_table[i]; 1152 1153 if (!nd->model) { 1154 nd->model = g_strdup("virtio"); 1155 } 1156 1157 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1158 } 1159 } 1160 1161 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1162 qemu_fdt_add_subnode(vms->fdt, nodename); 1163 qemu_fdt_setprop_string(vms->fdt, nodename, 1164 "compatible", "pci-host-ecam-generic"); 1165 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1166 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1167 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1168 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1169 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1170 nr_pcie_buses - 1); 1171 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1172 1173 if (vms->msi_phandle) { 1174 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1175 vms->msi_phandle); 1176 } 1177 1178 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1179 2, base_ecam, 2, size_ecam); 1180 1181 if (vms->highmem) { 1182 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1183 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1184 2, base_pio, 2, size_pio, 1185 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1186 2, base_mmio, 2, size_mmio, 1187 1, FDT_PCI_RANGE_MMIO_64BIT, 1188 2, base_mmio_high, 1189 2, base_mmio_high, 2, size_mmio_high); 1190 } else { 1191 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1192 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1193 2, base_pio, 2, size_pio, 1194 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1195 2, base_mmio, 2, size_mmio); 1196 } 1197 1198 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1199 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1200 1201 if (vms->iommu) { 1202 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1203 1204 create_smmu(vms, pic, pci->bus); 1205 1206 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1207 0x0, vms->iommu_phandle, 0x0, 0x10000); 1208 } 1209 1210 g_free(nodename); 1211 } 1212 1213 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) 1214 { 1215 DeviceState *dev; 1216 SysBusDevice *s; 1217 int i; 1218 MemoryRegion *sysmem = get_system_memory(); 1219 1220 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1221 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1222 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1223 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1224 qdev_init_nofail(dev); 1225 vms->platform_bus_dev = dev; 1226 1227 s = SYS_BUS_DEVICE(dev); 1228 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1229 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1230 sysbus_connect_irq(s, i, pic[irqn]); 1231 } 1232 1233 memory_region_add_subregion(sysmem, 1234 vms->memmap[VIRT_PLATFORM_BUS].base, 1235 sysbus_mmio_get_region(s, 0)); 1236 } 1237 1238 static void create_secure_ram(VirtMachineState *vms, 1239 MemoryRegion *secure_sysmem) 1240 { 1241 MemoryRegion *secram = g_new(MemoryRegion, 1); 1242 char *nodename; 1243 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1244 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1245 1246 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1247 &error_fatal); 1248 memory_region_add_subregion(secure_sysmem, base, secram); 1249 1250 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1251 qemu_fdt_add_subnode(vms->fdt, nodename); 1252 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1253 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1254 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1255 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1256 1257 g_free(nodename); 1258 } 1259 1260 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1261 { 1262 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1263 bootinfo); 1264 1265 *fdt_size = board->fdt_size; 1266 return board->fdt; 1267 } 1268 1269 static void virt_build_smbios(VirtMachineState *vms) 1270 { 1271 MachineClass *mc = MACHINE_GET_CLASS(vms); 1272 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1273 uint8_t *smbios_tables, *smbios_anchor; 1274 size_t smbios_tables_len, smbios_anchor_len; 1275 const char *product = "QEMU Virtual Machine"; 1276 1277 if (!vms->fw_cfg) { 1278 return; 1279 } 1280 1281 if (kvm_enabled()) { 1282 product = "KVM Virtual Machine"; 1283 } 1284 1285 smbios_set_defaults("QEMU", product, 1286 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1287 true, SMBIOS_ENTRY_POINT_30); 1288 1289 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1290 &smbios_anchor, &smbios_anchor_len); 1291 1292 if (smbios_anchor) { 1293 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1294 smbios_tables, smbios_tables_len); 1295 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1296 smbios_anchor, smbios_anchor_len); 1297 } 1298 } 1299 1300 static 1301 void virt_machine_done(Notifier *notifier, void *data) 1302 { 1303 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1304 machine_done); 1305 ARMCPU *cpu = ARM_CPU(first_cpu); 1306 struct arm_boot_info *info = &vms->bootinfo; 1307 AddressSpace *as = arm_boot_address_space(cpu, info); 1308 1309 /* 1310 * If the user provided a dtb, we assume the dynamic sysbus nodes 1311 * already are integrated there. This corresponds to a use case where 1312 * the dynamic sysbus nodes are complex and their generation is not yet 1313 * supported. In that case the user can take charge of the guest dt 1314 * while qemu takes charge of the qom stuff. 1315 */ 1316 if (info->dtb_filename == NULL) { 1317 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1318 vms->memmap[VIRT_PLATFORM_BUS].base, 1319 vms->memmap[VIRT_PLATFORM_BUS].size, 1320 vms->irqmap[VIRT_PLATFORM_BUS]); 1321 } 1322 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { 1323 exit(1); 1324 } 1325 1326 virt_acpi_setup(vms); 1327 virt_build_smbios(vms); 1328 } 1329 1330 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1331 { 1332 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1333 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1334 1335 if (!vmc->disallow_affinity_adjustment) { 1336 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1337 * GIC's target-list limitations. 32-bit KVM hosts currently 1338 * always create clusters of 4 CPUs, but that is expected to 1339 * change when they gain support for gicv3. When KVM is enabled 1340 * it will override the changes we make here, therefore our 1341 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1342 * and to improve SGI efficiency. 1343 */ 1344 if (vms->gic_version == 3) { 1345 clustersz = GICV3_TARGETLIST_BITS; 1346 } else { 1347 clustersz = GIC_TARGETLIST_BITS; 1348 } 1349 } 1350 return arm_cpu_mp_affinity(idx, clustersz); 1351 } 1352 1353 static void machvirt_init(MachineState *machine) 1354 { 1355 VirtMachineState *vms = VIRT_MACHINE(machine); 1356 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1357 MachineClass *mc = MACHINE_GET_CLASS(machine); 1358 const CPUArchIdList *possible_cpus; 1359 qemu_irq pic[NUM_IRQS]; 1360 MemoryRegion *sysmem = get_system_memory(); 1361 MemoryRegion *secure_sysmem = NULL; 1362 int n, virt_max_cpus; 1363 MemoryRegion *ram = g_new(MemoryRegion, 1); 1364 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1365 bool aarch64 = true; 1366 1367 /* We can probe only here because during property set 1368 * KVM is not available yet 1369 */ 1370 if (vms->gic_version <= 0) { 1371 /* "host" or "max" */ 1372 if (!kvm_enabled()) { 1373 if (vms->gic_version == 0) { 1374 error_report("gic-version=host requires KVM"); 1375 exit(1); 1376 } else { 1377 /* "max": currently means 3 for TCG */ 1378 vms->gic_version = 3; 1379 } 1380 } else { 1381 vms->gic_version = kvm_arm_vgic_probe(); 1382 if (!vms->gic_version) { 1383 error_report( 1384 "Unable to determine GIC version supported by host"); 1385 exit(1); 1386 } 1387 } 1388 } 1389 1390 if (!cpu_type_valid(machine->cpu_type)) { 1391 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1392 exit(1); 1393 } 1394 1395 /* If we have an EL3 boot ROM then the assumption is that it will 1396 * implement PSCI itself, so disable QEMU's internal implementation 1397 * so it doesn't get in the way. Instead of starting secondary 1398 * CPUs in PSCI powerdown state we will start them all running and 1399 * let the boot ROM sort them out. 1400 * The usual case is that we do use QEMU's PSCI implementation; 1401 * if the guest has EL2 then we will use SMC as the conduit, 1402 * and otherwise we will use HVC (for backwards compatibility and 1403 * because if we're using KVM then we must use HVC). 1404 */ 1405 if (vms->secure && firmware_loaded) { 1406 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1407 } else if (vms->virt) { 1408 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1409 } else { 1410 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1411 } 1412 1413 /* The maximum number of CPUs depends on the GIC version, or on how 1414 * many redistributors we can fit into the memory map. 1415 */ 1416 if (vms->gic_version == 3) { 1417 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1418 virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1419 } else { 1420 virt_max_cpus = GIC_NCPU; 1421 } 1422 1423 if (max_cpus > virt_max_cpus) { 1424 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1425 "supported by machine 'mach-virt' (%d)", 1426 max_cpus, virt_max_cpus); 1427 exit(1); 1428 } 1429 1430 vms->smp_cpus = smp_cpus; 1431 1432 if (machine->ram_size > vms->memmap[VIRT_MEM].size) { 1433 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1434 exit(1); 1435 } 1436 1437 if (vms->virt && kvm_enabled()) { 1438 error_report("mach-virt: KVM does not support providing " 1439 "Virtualization extensions to the guest CPU"); 1440 exit(1); 1441 } 1442 1443 if (vms->secure) { 1444 if (kvm_enabled()) { 1445 error_report("mach-virt: KVM does not support Security extensions"); 1446 exit(1); 1447 } 1448 1449 /* The Secure view of the world is the same as the NonSecure, 1450 * but with a few extra devices. Create it as a container region 1451 * containing the system memory at low priority; any secure-only 1452 * devices go in at higher priority and take precedence. 1453 */ 1454 secure_sysmem = g_new(MemoryRegion, 1); 1455 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1456 UINT64_MAX); 1457 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1458 } 1459 1460 create_fdt(vms); 1461 1462 possible_cpus = mc->possible_cpu_arch_ids(machine); 1463 for (n = 0; n < possible_cpus->len; n++) { 1464 Object *cpuobj; 1465 CPUState *cs; 1466 1467 if (n >= smp_cpus) { 1468 break; 1469 } 1470 1471 cpuobj = object_new(possible_cpus->cpus[n].type); 1472 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1473 "mp-affinity", NULL); 1474 1475 cs = CPU(cpuobj); 1476 cs->cpu_index = n; 1477 1478 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1479 &error_fatal); 1480 1481 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1482 1483 if (!vms->secure) { 1484 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1485 } 1486 1487 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1488 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1489 } 1490 1491 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1492 object_property_set_int(cpuobj, vms->psci_conduit, 1493 "psci-conduit", NULL); 1494 1495 /* Secondary CPUs start in PSCI powered-down state */ 1496 if (n > 0) { 1497 object_property_set_bool(cpuobj, true, 1498 "start-powered-off", NULL); 1499 } 1500 } 1501 1502 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1503 object_property_set_bool(cpuobj, false, "pmu", NULL); 1504 } 1505 1506 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1507 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1508 "reset-cbar", &error_abort); 1509 } 1510 1511 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1512 &error_abort); 1513 if (vms->secure) { 1514 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1515 "secure-memory", &error_abort); 1516 } 1517 1518 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1519 object_unref(cpuobj); 1520 } 1521 fdt_add_timer_nodes(vms); 1522 fdt_add_cpu_nodes(vms); 1523 1524 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1525 machine->ram_size); 1526 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1527 1528 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1529 1530 create_gic(vms, pic); 1531 1532 fdt_add_pmu_nodes(vms); 1533 1534 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); 1535 1536 if (vms->secure) { 1537 create_secure_ram(vms, secure_sysmem); 1538 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1539 } 1540 1541 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1542 1543 create_rtc(vms, pic); 1544 1545 create_pcie(vms, pic); 1546 1547 create_gpio(vms, pic); 1548 1549 /* Create mmio transports, so the user can create virtio backends 1550 * (which will be automatically plugged in to the transports). If 1551 * no backend is created the transport will just sit harmlessly idle. 1552 */ 1553 create_virtio_devices(vms, pic); 1554 1555 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1556 rom_set_fw(vms->fw_cfg); 1557 1558 create_platform_bus(vms, pic); 1559 1560 vms->bootinfo.ram_size = machine->ram_size; 1561 vms->bootinfo.kernel_filename = machine->kernel_filename; 1562 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1563 vms->bootinfo.initrd_filename = machine->initrd_filename; 1564 vms->bootinfo.nb_cpus = smp_cpus; 1565 vms->bootinfo.board_id = -1; 1566 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1567 vms->bootinfo.get_dtb = machvirt_dtb; 1568 vms->bootinfo.skip_dtb_autoload = true; 1569 vms->bootinfo.firmware_loaded = firmware_loaded; 1570 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); 1571 1572 vms->machine_done.notify = virt_machine_done; 1573 qemu_add_machine_init_done_notifier(&vms->machine_done); 1574 } 1575 1576 static bool virt_get_secure(Object *obj, Error **errp) 1577 { 1578 VirtMachineState *vms = VIRT_MACHINE(obj); 1579 1580 return vms->secure; 1581 } 1582 1583 static void virt_set_secure(Object *obj, bool value, Error **errp) 1584 { 1585 VirtMachineState *vms = VIRT_MACHINE(obj); 1586 1587 vms->secure = value; 1588 } 1589 1590 static bool virt_get_virt(Object *obj, Error **errp) 1591 { 1592 VirtMachineState *vms = VIRT_MACHINE(obj); 1593 1594 return vms->virt; 1595 } 1596 1597 static void virt_set_virt(Object *obj, bool value, Error **errp) 1598 { 1599 VirtMachineState *vms = VIRT_MACHINE(obj); 1600 1601 vms->virt = value; 1602 } 1603 1604 static bool virt_get_highmem(Object *obj, Error **errp) 1605 { 1606 VirtMachineState *vms = VIRT_MACHINE(obj); 1607 1608 return vms->highmem; 1609 } 1610 1611 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1612 { 1613 VirtMachineState *vms = VIRT_MACHINE(obj); 1614 1615 vms->highmem = value; 1616 } 1617 1618 static bool virt_get_its(Object *obj, Error **errp) 1619 { 1620 VirtMachineState *vms = VIRT_MACHINE(obj); 1621 1622 return vms->its; 1623 } 1624 1625 static void virt_set_its(Object *obj, bool value, Error **errp) 1626 { 1627 VirtMachineState *vms = VIRT_MACHINE(obj); 1628 1629 vms->its = value; 1630 } 1631 1632 static char *virt_get_gic_version(Object *obj, Error **errp) 1633 { 1634 VirtMachineState *vms = VIRT_MACHINE(obj); 1635 const char *val = vms->gic_version == 3 ? "3" : "2"; 1636 1637 return g_strdup(val); 1638 } 1639 1640 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1641 { 1642 VirtMachineState *vms = VIRT_MACHINE(obj); 1643 1644 if (!strcmp(value, "3")) { 1645 vms->gic_version = 3; 1646 } else if (!strcmp(value, "2")) { 1647 vms->gic_version = 2; 1648 } else if (!strcmp(value, "host")) { 1649 vms->gic_version = 0; /* Will probe later */ 1650 } else if (!strcmp(value, "max")) { 1651 vms->gic_version = -1; /* Will probe later */ 1652 } else { 1653 error_setg(errp, "Invalid gic-version value"); 1654 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1655 } 1656 } 1657 1658 static char *virt_get_iommu(Object *obj, Error **errp) 1659 { 1660 VirtMachineState *vms = VIRT_MACHINE(obj); 1661 1662 switch (vms->iommu) { 1663 case VIRT_IOMMU_NONE: 1664 return g_strdup("none"); 1665 case VIRT_IOMMU_SMMUV3: 1666 return g_strdup("smmuv3"); 1667 default: 1668 g_assert_not_reached(); 1669 } 1670 } 1671 1672 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1673 { 1674 VirtMachineState *vms = VIRT_MACHINE(obj); 1675 1676 if (!strcmp(value, "smmuv3")) { 1677 vms->iommu = VIRT_IOMMU_SMMUV3; 1678 } else if (!strcmp(value, "none")) { 1679 vms->iommu = VIRT_IOMMU_NONE; 1680 } else { 1681 error_setg(errp, "Invalid iommu value"); 1682 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1683 } 1684 } 1685 1686 static CpuInstanceProperties 1687 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1688 { 1689 MachineClass *mc = MACHINE_GET_CLASS(ms); 1690 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1691 1692 assert(cpu_index < possible_cpus->len); 1693 return possible_cpus->cpus[cpu_index].props; 1694 } 1695 1696 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1697 { 1698 return idx % nb_numa_nodes; 1699 } 1700 1701 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1702 { 1703 int n; 1704 VirtMachineState *vms = VIRT_MACHINE(ms); 1705 1706 if (ms->possible_cpus) { 1707 assert(ms->possible_cpus->len == max_cpus); 1708 return ms->possible_cpus; 1709 } 1710 1711 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1712 sizeof(CPUArchId) * max_cpus); 1713 ms->possible_cpus->len = max_cpus; 1714 for (n = 0; n < ms->possible_cpus->len; n++) { 1715 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1716 ms->possible_cpus->cpus[n].arch_id = 1717 virt_cpu_mp_affinity(vms, n); 1718 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1719 ms->possible_cpus->cpus[n].props.thread_id = n; 1720 } 1721 return ms->possible_cpus; 1722 } 1723 1724 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1725 DeviceState *dev, Error **errp) 1726 { 1727 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1728 1729 if (vms->platform_bus_dev) { 1730 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1731 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1732 SYS_BUS_DEVICE(dev)); 1733 } 1734 } 1735 } 1736 1737 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1738 DeviceState *dev) 1739 { 1740 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1741 return HOTPLUG_HANDLER(machine); 1742 } 1743 1744 return NULL; 1745 } 1746 1747 static void virt_machine_class_init(ObjectClass *oc, void *data) 1748 { 1749 MachineClass *mc = MACHINE_CLASS(oc); 1750 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 1751 1752 mc->init = machvirt_init; 1753 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 1754 * The value may be reduced later when we have more information about the 1755 * configuration of the particular instance. 1756 */ 1757 mc->max_cpus = 512; 1758 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 1759 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 1760 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 1761 mc->block_default_type = IF_VIRTIO; 1762 mc->no_cdrom = 1; 1763 mc->pci_allow_0_address = true; 1764 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 1765 mc->minimum_page_bits = 12; 1766 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 1767 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 1768 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 1769 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 1770 assert(!mc->get_hotplug_handler); 1771 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 1772 hc->plug = virt_machine_device_plug_cb; 1773 } 1774 1775 static const TypeInfo virt_machine_info = { 1776 .name = TYPE_VIRT_MACHINE, 1777 .parent = TYPE_MACHINE, 1778 .abstract = true, 1779 .instance_size = sizeof(VirtMachineState), 1780 .class_size = sizeof(VirtMachineClass), 1781 .class_init = virt_machine_class_init, 1782 .interfaces = (InterfaceInfo[]) { 1783 { TYPE_HOTPLUG_HANDLER }, 1784 { } 1785 }, 1786 }; 1787 1788 static void machvirt_machine_init(void) 1789 { 1790 type_register_static(&virt_machine_info); 1791 } 1792 type_init(machvirt_machine_init); 1793 1794 static void virt_3_1_instance_init(Object *obj) 1795 { 1796 VirtMachineState *vms = VIRT_MACHINE(obj); 1797 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1798 1799 /* EL3 is disabled by default on virt: this makes us consistent 1800 * between KVM and TCG for this board, and it also allows us to 1801 * boot UEFI blobs which assume no TrustZone support. 1802 */ 1803 vms->secure = false; 1804 object_property_add_bool(obj, "secure", virt_get_secure, 1805 virt_set_secure, NULL); 1806 object_property_set_description(obj, "secure", 1807 "Set on/off to enable/disable the ARM " 1808 "Security Extensions (TrustZone)", 1809 NULL); 1810 1811 /* EL2 is also disabled by default, for similar reasons */ 1812 vms->virt = false; 1813 object_property_add_bool(obj, "virtualization", virt_get_virt, 1814 virt_set_virt, NULL); 1815 object_property_set_description(obj, "virtualization", 1816 "Set on/off to enable/disable emulating a " 1817 "guest CPU which implements the ARM " 1818 "Virtualization Extensions", 1819 NULL); 1820 1821 /* High memory is enabled by default */ 1822 vms->highmem = true; 1823 object_property_add_bool(obj, "highmem", virt_get_highmem, 1824 virt_set_highmem, NULL); 1825 object_property_set_description(obj, "highmem", 1826 "Set on/off to enable/disable using " 1827 "physical address space above 32 bits", 1828 NULL); 1829 /* Default GIC type is v2 */ 1830 vms->gic_version = 2; 1831 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1832 virt_set_gic_version, NULL); 1833 object_property_set_description(obj, "gic-version", 1834 "Set GIC version. " 1835 "Valid values are 2, 3 and host", NULL); 1836 1837 vms->highmem_ecam = !vmc->no_highmem_ecam; 1838 1839 if (vmc->no_its) { 1840 vms->its = false; 1841 } else { 1842 /* Default allows ITS instantiation */ 1843 vms->its = true; 1844 object_property_add_bool(obj, "its", virt_get_its, 1845 virt_set_its, NULL); 1846 object_property_set_description(obj, "its", 1847 "Set on/off to enable/disable " 1848 "ITS instantiation", 1849 NULL); 1850 } 1851 1852 /* Default disallows iommu instantiation */ 1853 vms->iommu = VIRT_IOMMU_NONE; 1854 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 1855 object_property_set_description(obj, "iommu", 1856 "Set the IOMMU type. " 1857 "Valid values are none and smmuv3", 1858 NULL); 1859 1860 vms->memmap = a15memmap; 1861 vms->irqmap = a15irqmap; 1862 } 1863 1864 static void virt_machine_3_1_options(MachineClass *mc) 1865 { 1866 } 1867 DEFINE_VIRT_MACHINE_AS_LATEST(3, 1) 1868 1869 static void virt_3_0_instance_init(Object *obj) 1870 { 1871 virt_3_1_instance_init(obj); 1872 } 1873 1874 static void virt_machine_3_0_options(MachineClass *mc) 1875 { 1876 virt_machine_3_1_options(mc); 1877 } 1878 DEFINE_VIRT_MACHINE(3, 0) 1879 1880 #define VIRT_COMPAT_2_12 \ 1881 HW_COMPAT_2_12 1882 1883 static void virt_2_12_instance_init(Object *obj) 1884 { 1885 virt_3_0_instance_init(obj); 1886 } 1887 1888 static void virt_machine_2_12_options(MachineClass *mc) 1889 { 1890 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1891 1892 virt_machine_3_0_options(mc); 1893 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12); 1894 vmc->no_highmem_ecam = true; 1895 mc->max_cpus = 255; 1896 } 1897 DEFINE_VIRT_MACHINE(2, 12) 1898 1899 #define VIRT_COMPAT_2_11 \ 1900 HW_COMPAT_2_11 1901 1902 static void virt_2_11_instance_init(Object *obj) 1903 { 1904 virt_2_12_instance_init(obj); 1905 } 1906 1907 static void virt_machine_2_11_options(MachineClass *mc) 1908 { 1909 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1910 1911 virt_machine_2_12_options(mc); 1912 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11); 1913 vmc->smbios_old_sys_ver = true; 1914 } 1915 DEFINE_VIRT_MACHINE(2, 11) 1916 1917 #define VIRT_COMPAT_2_10 \ 1918 HW_COMPAT_2_10 1919 1920 static void virt_2_10_instance_init(Object *obj) 1921 { 1922 virt_2_11_instance_init(obj); 1923 } 1924 1925 static void virt_machine_2_10_options(MachineClass *mc) 1926 { 1927 virt_machine_2_11_options(mc); 1928 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10); 1929 /* before 2.11 we never faulted accesses to bad addresses */ 1930 mc->ignore_memory_transaction_failures = true; 1931 } 1932 DEFINE_VIRT_MACHINE(2, 10) 1933 1934 #define VIRT_COMPAT_2_9 \ 1935 HW_COMPAT_2_9 1936 1937 static void virt_2_9_instance_init(Object *obj) 1938 { 1939 virt_2_10_instance_init(obj); 1940 } 1941 1942 static void virt_machine_2_9_options(MachineClass *mc) 1943 { 1944 virt_machine_2_10_options(mc); 1945 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9); 1946 } 1947 DEFINE_VIRT_MACHINE(2, 9) 1948 1949 #define VIRT_COMPAT_2_8 \ 1950 HW_COMPAT_2_8 1951 1952 static void virt_2_8_instance_init(Object *obj) 1953 { 1954 virt_2_9_instance_init(obj); 1955 } 1956 1957 static void virt_machine_2_8_options(MachineClass *mc) 1958 { 1959 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1960 1961 virt_machine_2_9_options(mc); 1962 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8); 1963 /* For 2.8 and earlier we falsely claimed in the DT that 1964 * our timers were edge-triggered, not level-triggered. 1965 */ 1966 vmc->claim_edge_triggered_timers = true; 1967 } 1968 DEFINE_VIRT_MACHINE(2, 8) 1969 1970 #define VIRT_COMPAT_2_7 \ 1971 HW_COMPAT_2_7 1972 1973 static void virt_2_7_instance_init(Object *obj) 1974 { 1975 virt_2_8_instance_init(obj); 1976 } 1977 1978 static void virt_machine_2_7_options(MachineClass *mc) 1979 { 1980 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1981 1982 virt_machine_2_8_options(mc); 1983 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7); 1984 /* ITS was introduced with 2.8 */ 1985 vmc->no_its = true; 1986 /* Stick with 1K pages for migration compatibility */ 1987 mc->minimum_page_bits = 0; 1988 } 1989 DEFINE_VIRT_MACHINE(2, 7) 1990 1991 #define VIRT_COMPAT_2_6 \ 1992 HW_COMPAT_2_6 1993 1994 static void virt_2_6_instance_init(Object *obj) 1995 { 1996 virt_2_7_instance_init(obj); 1997 } 1998 1999 static void virt_machine_2_6_options(MachineClass *mc) 2000 { 2001 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2002 2003 virt_machine_2_7_options(mc); 2004 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6); 2005 vmc->disallow_affinity_adjustment = true; 2006 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2007 vmc->no_pmu = true; 2008 } 2009 DEFINE_VIRT_MACHINE(2, 6) 2010