xref: /openbmc/qemu/hw/arm/virt.c (revision 7cc25f6c)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/boards.h"
40 #include "hw/arm/boot.h"
41 #include "hw/arm/primecell.h"
42 #include "hw/arm/virt.h"
43 #include "hw/block/flash.h"
44 #include "hw/vfio/vfio-calxeda-xgmac.h"
45 #include "hw/vfio/vfio-amd-xgbe.h"
46 #include "hw/display/ramfb.h"
47 #include "net/net.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/runstate.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/tpm.h"
53 #include "sysemu/kvm.h"
54 #include "hw/loader.h"
55 #include "exec/address-spaces.h"
56 #include "qemu/bitops.h"
57 #include "qemu/error-report.h"
58 #include "qemu/module.h"
59 #include "hw/pci-host/gpex.h"
60 #include "hw/virtio/virtio-pci.h"
61 #include "hw/arm/sysbus-fdt.h"
62 #include "hw/platform-bus.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/arm/fdt.h"
65 #include "hw/intc/arm_gic.h"
66 #include "hw/intc/arm_gicv3_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
82 
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85                                                     void *data) \
86     { \
87         MachineClass *mc = MACHINE_CLASS(oc); \
88         virt_machine_##major##_##minor##_options(mc); \
89         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90         if (latest) { \
91             mc->alias = "virt"; \
92         } \
93     } \
94     static const TypeInfo machvirt_##major##_##minor##_info = { \
95         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96         .parent = TYPE_VIRT_MACHINE, \
97         .class_init = virt_##major##_##minor##_class_init, \
98     }; \
99     static void machvirt_machine_##major##_##minor##_init(void) \
100     { \
101         type_register_static(&machvirt_##major##_##minor##_info); \
102     } \
103     type_init(machvirt_machine_##major##_##minor##_init);
104 
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109 
110 
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
113 
114 #define PLATFORM_BUS_NUM_IRQS 64
115 
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119 
120 /* Addresses and sizes of our components.
121  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122  * 128MB..256MB is used for miscellaneous device I/O.
123  * 256MB..1GB is reserved for possible future PCI support (ie where the
124  * PCI memory window will go if we add a PCI host controller).
125  * 1GB and up is RAM (which may happily spill over into the
126  * high memory region beyond 4GB).
127  * This represents a compromise between how much RAM can be given to
128  * a 32 bit VM and leaving space for expansion and in particular for PCI.
129  * Note that devices should generally be placed at multiples of 0x10000,
130  * to accommodate guests using 64K pages.
131  */
132 static const MemMapEntry base_memmap[] = {
133     /* Space up to 0x8000000 is reserved for a boot ROM */
134     [VIRT_FLASH] =              {          0, 0x08000000 },
135     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
136     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
138     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
139     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
140     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
141     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
142     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
144     /* This redistributor space allows up to 2*64kB*123 CPUs */
145     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
146     [VIRT_UART] =               { 0x09000000, 0x00001000 },
147     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
148     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
149     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
150     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
151     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
152     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
155     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
156     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
157     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
158     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
159     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
160     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
161     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
162     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
163     /* Actual RAM size depends on initial RAM and device memory settings */
164     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
165 };
166 
167 /*
168  * Highmem IO Regions: This memory map is floating, located after the RAM.
169  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
170  * top of the RAM, so that its base get the same alignment as the size,
171  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
172  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
173  * Note the extended_memmap is sized so that it eventually also includes the
174  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
175  * index of base_memmap).
176  */
177 static MemMapEntry extended_memmap[] = {
178     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
179     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
180     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
181     /* Second PCIe window */
182     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
183 };
184 
185 static const int a15irqmap[] = {
186     [VIRT_UART] = 1,
187     [VIRT_RTC] = 2,
188     [VIRT_PCIE] = 3, /* ... to 6 */
189     [VIRT_GPIO] = 7,
190     [VIRT_SECURE_UART] = 8,
191     [VIRT_ACPI_GED] = 9,
192     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
193     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
194     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
195     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
196 };
197 
198 static const char *valid_cpus[] = {
199     ARM_CPU_TYPE_NAME("cortex-a7"),
200     ARM_CPU_TYPE_NAME("cortex-a15"),
201     ARM_CPU_TYPE_NAME("cortex-a53"),
202     ARM_CPU_TYPE_NAME("cortex-a57"),
203     ARM_CPU_TYPE_NAME("cortex-a72"),
204     ARM_CPU_TYPE_NAME("host"),
205     ARM_CPU_TYPE_NAME("max"),
206 };
207 
208 static bool cpu_type_valid(const char *cpu)
209 {
210     int i;
211 
212     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
213         if (strcmp(cpu, valid_cpus[i]) == 0) {
214             return true;
215         }
216     }
217     return false;
218 }
219 
220 static void create_kaslr_seed(VirtMachineState *vms, const char *node)
221 {
222     uint64_t seed;
223 
224     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
225         return;
226     }
227     qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
228 }
229 
230 static void create_fdt(VirtMachineState *vms)
231 {
232     MachineState *ms = MACHINE(vms);
233     int nb_numa_nodes = ms->numa_state->num_nodes;
234     void *fdt = create_device_tree(&vms->fdt_size);
235 
236     if (!fdt) {
237         error_report("create_device_tree() failed");
238         exit(1);
239     }
240 
241     vms->fdt = fdt;
242 
243     /* Header */
244     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
245     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
246     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
247 
248     /* /chosen must exist for load_dtb to fill in necessary properties later */
249     qemu_fdt_add_subnode(fdt, "/chosen");
250     create_kaslr_seed(vms, "/chosen");
251 
252     if (vms->secure) {
253         qemu_fdt_add_subnode(fdt, "/secure-chosen");
254         create_kaslr_seed(vms, "/secure-chosen");
255     }
256 
257     /* Clock node, for the benefit of the UART. The kernel device tree
258      * binding documentation claims the PL011 node clock properties are
259      * optional but in practice if you omit them the kernel refuses to
260      * probe for the device.
261      */
262     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
263     qemu_fdt_add_subnode(fdt, "/apb-pclk");
264     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
265     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
266     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
267     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
268                                 "clk24mhz");
269     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
270 
271     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
272         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
273         uint32_t *matrix = g_malloc0(size);
274         int idx, i, j;
275 
276         for (i = 0; i < nb_numa_nodes; i++) {
277             for (j = 0; j < nb_numa_nodes; j++) {
278                 idx = (i * nb_numa_nodes + j) * 3;
279                 matrix[idx + 0] = cpu_to_be32(i);
280                 matrix[idx + 1] = cpu_to_be32(j);
281                 matrix[idx + 2] =
282                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
283             }
284         }
285 
286         qemu_fdt_add_subnode(fdt, "/distance-map");
287         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
288                                 "numa-distance-map-v1");
289         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
290                          matrix, size);
291         g_free(matrix);
292     }
293 }
294 
295 static void fdt_add_timer_nodes(const VirtMachineState *vms)
296 {
297     /* On real hardware these interrupts are level-triggered.
298      * On KVM they were edge-triggered before host kernel version 4.4,
299      * and level-triggered afterwards.
300      * On emulated QEMU they are level-triggered.
301      *
302      * Getting the DTB info about them wrong is awkward for some
303      * guest kernels:
304      *  pre-4.8 ignore the DT and leave the interrupt configured
305      *   with whatever the GIC reset value (or the bootloader) left it at
306      *  4.8 before rc6 honour the incorrect data by programming it back
307      *   into the GIC, causing problems
308      *  4.8rc6 and later ignore the DT and always write "level triggered"
309      *   into the GIC
310      *
311      * For backwards-compatibility, virt-2.8 and earlier will continue
312      * to say these are edge-triggered, but later machines will report
313      * the correct information.
314      */
315     ARMCPU *armcpu;
316     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
317     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
318 
319     if (vmc->claim_edge_triggered_timers) {
320         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
321     }
322 
323     if (vms->gic_version == VIRT_GIC_VERSION_2) {
324         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
325                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
326                              (1 << vms->smp_cpus) - 1);
327     }
328 
329     qemu_fdt_add_subnode(vms->fdt, "/timer");
330 
331     armcpu = ARM_CPU(qemu_get_cpu(0));
332     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
333         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
334         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
335                          compat, sizeof(compat));
336     } else {
337         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
338                                 "arm,armv7-timer");
339     }
340     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
341     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
342                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
343                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
344                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
345                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
346 }
347 
348 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
349 {
350     int cpu;
351     int addr_cells = 1;
352     const MachineState *ms = MACHINE(vms);
353 
354     /*
355      * From Documentation/devicetree/bindings/arm/cpus.txt
356      *  On ARM v8 64-bit systems value should be set to 2,
357      *  that corresponds to the MPIDR_EL1 register size.
358      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
359      *  in the system, #address-cells can be set to 1, since
360      *  MPIDR_EL1[63:32] bits are not used for CPUs
361      *  identification.
362      *
363      *  Here we actually don't know whether our system is 32- or 64-bit one.
364      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
365      *  at least one of them has Aff3 populated, we set #address-cells to 2.
366      */
367     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
368         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
369 
370         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
371             addr_cells = 2;
372             break;
373         }
374     }
375 
376     qemu_fdt_add_subnode(vms->fdt, "/cpus");
377     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
378     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
379 
380     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
381         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
382         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
383         CPUState *cs = CPU(armcpu);
384 
385         qemu_fdt_add_subnode(vms->fdt, nodename);
386         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
387         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
388                                     armcpu->dtb_compatible);
389 
390         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
391             && vms->smp_cpus > 1) {
392             qemu_fdt_setprop_string(vms->fdt, nodename,
393                                         "enable-method", "psci");
394         }
395 
396         if (addr_cells == 2) {
397             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
398                                  armcpu->mp_affinity);
399         } else {
400             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
401                                   armcpu->mp_affinity);
402         }
403 
404         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
405             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
406                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
407         }
408 
409         g_free(nodename);
410     }
411 }
412 
413 static void fdt_add_its_gic_node(VirtMachineState *vms)
414 {
415     char *nodename;
416 
417     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
418     nodename = g_strdup_printf("/intc/its@%" PRIx64,
419                                vms->memmap[VIRT_GIC_ITS].base);
420     qemu_fdt_add_subnode(vms->fdt, nodename);
421     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
422                             "arm,gic-v3-its");
423     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
424     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
425                                  2, vms->memmap[VIRT_GIC_ITS].base,
426                                  2, vms->memmap[VIRT_GIC_ITS].size);
427     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
428     g_free(nodename);
429 }
430 
431 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
432 {
433     char *nodename;
434 
435     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
436                                vms->memmap[VIRT_GIC_V2M].base);
437     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
438     qemu_fdt_add_subnode(vms->fdt, nodename);
439     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
440                             "arm,gic-v2m-frame");
441     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
442     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
443                                  2, vms->memmap[VIRT_GIC_V2M].base,
444                                  2, vms->memmap[VIRT_GIC_V2M].size);
445     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
446     g_free(nodename);
447 }
448 
449 static void fdt_add_gic_node(VirtMachineState *vms)
450 {
451     char *nodename;
452 
453     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
454     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
455 
456     nodename = g_strdup_printf("/intc@%" PRIx64,
457                                vms->memmap[VIRT_GIC_DIST].base);
458     qemu_fdt_add_subnode(vms->fdt, nodename);
459     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
460     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
461     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
462     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
463     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
464     if (vms->gic_version == VIRT_GIC_VERSION_3) {
465         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
466 
467         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
468                                 "arm,gic-v3");
469 
470         qemu_fdt_setprop_cell(vms->fdt, nodename,
471                               "#redistributor-regions", nb_redist_regions);
472 
473         if (nb_redist_regions == 1) {
474             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
475                                          2, vms->memmap[VIRT_GIC_DIST].base,
476                                          2, vms->memmap[VIRT_GIC_DIST].size,
477                                          2, vms->memmap[VIRT_GIC_REDIST].base,
478                                          2, vms->memmap[VIRT_GIC_REDIST].size);
479         } else {
480             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
481                                  2, vms->memmap[VIRT_GIC_DIST].base,
482                                  2, vms->memmap[VIRT_GIC_DIST].size,
483                                  2, vms->memmap[VIRT_GIC_REDIST].base,
484                                  2, vms->memmap[VIRT_GIC_REDIST].size,
485                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
486                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
487         }
488 
489         if (vms->virt) {
490             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
491                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
492                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
493         }
494     } else {
495         /* 'cortex-a15-gic' means 'GIC v2' */
496         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
497                                 "arm,cortex-a15-gic");
498         if (!vms->virt) {
499             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
500                                          2, vms->memmap[VIRT_GIC_DIST].base,
501                                          2, vms->memmap[VIRT_GIC_DIST].size,
502                                          2, vms->memmap[VIRT_GIC_CPU].base,
503                                          2, vms->memmap[VIRT_GIC_CPU].size);
504         } else {
505             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
506                                          2, vms->memmap[VIRT_GIC_DIST].base,
507                                          2, vms->memmap[VIRT_GIC_DIST].size,
508                                          2, vms->memmap[VIRT_GIC_CPU].base,
509                                          2, vms->memmap[VIRT_GIC_CPU].size,
510                                          2, vms->memmap[VIRT_GIC_HYP].base,
511                                          2, vms->memmap[VIRT_GIC_HYP].size,
512                                          2, vms->memmap[VIRT_GIC_VCPU].base,
513                                          2, vms->memmap[VIRT_GIC_VCPU].size);
514             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
515                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
516                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
517         }
518     }
519 
520     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
521     g_free(nodename);
522 }
523 
524 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
525 {
526     ARMCPU *armcpu = ARM_CPU(first_cpu);
527     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
528 
529     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
530         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
531         return;
532     }
533 
534     if (vms->gic_version == VIRT_GIC_VERSION_2) {
535         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
536                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
537                              (1 << vms->smp_cpus) - 1);
538     }
539 
540     qemu_fdt_add_subnode(vms->fdt, "/pmu");
541     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
542         const char compat[] = "arm,armv8-pmuv3";
543         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
544                          compat, sizeof(compat));
545         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
546                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
547     }
548 }
549 
550 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
551 {
552     DeviceState *dev;
553     MachineState *ms = MACHINE(vms);
554     int irq = vms->irqmap[VIRT_ACPI_GED];
555     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
556 
557     if (ms->ram_slots) {
558         event |= ACPI_GED_MEM_HOTPLUG_EVT;
559     }
560 
561     if (ms->nvdimms_state->is_enabled) {
562         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
563     }
564 
565     dev = qdev_new(TYPE_ACPI_GED);
566     qdev_prop_set_uint32(dev, "ged-event", event);
567 
568     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
569     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
570     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
571 
572     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
573 
574     return dev;
575 }
576 
577 static void create_its(VirtMachineState *vms)
578 {
579     const char *itsclass = its_class_name();
580     DeviceState *dev;
581 
582     if (!itsclass) {
583         /* Do nothing if not supported */
584         return;
585     }
586 
587     dev = qdev_new(itsclass);
588 
589     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
590                              &error_abort);
591     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
592     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
593 
594     fdt_add_its_gic_node(vms);
595     vms->msi_controller = VIRT_MSI_CTRL_ITS;
596 }
597 
598 static void create_v2m(VirtMachineState *vms)
599 {
600     int i;
601     int irq = vms->irqmap[VIRT_GIC_V2M];
602     DeviceState *dev;
603 
604     dev = qdev_new("arm-gicv2m");
605     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
606     qdev_prop_set_uint32(dev, "base-spi", irq);
607     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
608     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
609 
610     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
611         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
612                            qdev_get_gpio_in(vms->gic, irq + i));
613     }
614 
615     fdt_add_v2m_gic_node(vms);
616     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
617 }
618 
619 static void create_gic(VirtMachineState *vms)
620 {
621     MachineState *ms = MACHINE(vms);
622     /* We create a standalone GIC */
623     SysBusDevice *gicbusdev;
624     const char *gictype;
625     int type = vms->gic_version, i;
626     unsigned int smp_cpus = ms->smp.cpus;
627     uint32_t nb_redist_regions = 0;
628 
629     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
630 
631     vms->gic = qdev_new(gictype);
632     qdev_prop_set_uint32(vms->gic, "revision", type);
633     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
634     /* Note that the num-irq property counts both internal and external
635      * interrupts; there are always 32 of the former (mandated by GIC spec).
636      */
637     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
638     if (!kvm_irqchip_in_kernel()) {
639         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
640     }
641 
642     if (type == 3) {
643         uint32_t redist0_capacity =
644                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
645         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
646 
647         nb_redist_regions = virt_gicv3_redist_region_count(vms);
648 
649         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
650                              nb_redist_regions);
651         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
652 
653         if (nb_redist_regions == 2) {
654             uint32_t redist1_capacity =
655                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
656 
657             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
658                 MIN(smp_cpus - redist0_count, redist1_capacity));
659         }
660     } else {
661         if (!kvm_irqchip_in_kernel()) {
662             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
663                               vms->virt);
664         }
665     }
666     gicbusdev = SYS_BUS_DEVICE(vms->gic);
667     sysbus_realize_and_unref(gicbusdev, &error_fatal);
668     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
669     if (type == 3) {
670         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
671         if (nb_redist_regions == 2) {
672             sysbus_mmio_map(gicbusdev, 2,
673                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
674         }
675     } else {
676         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
677         if (vms->virt) {
678             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
679             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
680         }
681     }
682 
683     /* Wire the outputs from each CPU's generic timer and the GICv3
684      * maintenance interrupt signal to the appropriate GIC PPI inputs,
685      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
686      */
687     for (i = 0; i < smp_cpus; i++) {
688         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
689         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
690         int irq;
691         /* Mapping from the output timer irq lines from the CPU to the
692          * GIC PPI inputs we use for the virt board.
693          */
694         const int timer_irq[] = {
695             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
696             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
697             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
698             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
699         };
700 
701         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
702             qdev_connect_gpio_out(cpudev, irq,
703                                   qdev_get_gpio_in(vms->gic,
704                                                    ppibase + timer_irq[irq]));
705         }
706 
707         if (type == 3) {
708             qemu_irq irq = qdev_get_gpio_in(vms->gic,
709                                             ppibase + ARCH_GIC_MAINT_IRQ);
710             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
711                                         0, irq);
712         } else if (vms->virt) {
713             qemu_irq irq = qdev_get_gpio_in(vms->gic,
714                                             ppibase + ARCH_GIC_MAINT_IRQ);
715             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
716         }
717 
718         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
719                                     qdev_get_gpio_in(vms->gic, ppibase
720                                                      + VIRTUAL_PMU_IRQ));
721 
722         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
723         sysbus_connect_irq(gicbusdev, i + smp_cpus,
724                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
725         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
726                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
727         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
728                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
729     }
730 
731     fdt_add_gic_node(vms);
732 
733     if (type == 3 && vms->its) {
734         create_its(vms);
735     } else if (type == 2) {
736         create_v2m(vms);
737     }
738 }
739 
740 static void create_uart(const VirtMachineState *vms, int uart,
741                         MemoryRegion *mem, Chardev *chr)
742 {
743     char *nodename;
744     hwaddr base = vms->memmap[uart].base;
745     hwaddr size = vms->memmap[uart].size;
746     int irq = vms->irqmap[uart];
747     const char compat[] = "arm,pl011\0arm,primecell";
748     const char clocknames[] = "uartclk\0apb_pclk";
749     DeviceState *dev = qdev_new(TYPE_PL011);
750     SysBusDevice *s = SYS_BUS_DEVICE(dev);
751 
752     qdev_prop_set_chr(dev, "chardev", chr);
753     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
754     memory_region_add_subregion(mem, base,
755                                 sysbus_mmio_get_region(s, 0));
756     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
757 
758     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
759     qemu_fdt_add_subnode(vms->fdt, nodename);
760     /* Note that we can't use setprop_string because of the embedded NUL */
761     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
762                          compat, sizeof(compat));
763     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
764                                      2, base, 2, size);
765     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
766                                GIC_FDT_IRQ_TYPE_SPI, irq,
767                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
768     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
769                                vms->clock_phandle, vms->clock_phandle);
770     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
771                          clocknames, sizeof(clocknames));
772 
773     if (uart == VIRT_UART) {
774         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
775     } else {
776         /* Mark as not usable by the normal world */
777         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
778         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
779 
780         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
781                                 nodename);
782     }
783 
784     g_free(nodename);
785 }
786 
787 static void create_rtc(const VirtMachineState *vms)
788 {
789     char *nodename;
790     hwaddr base = vms->memmap[VIRT_RTC].base;
791     hwaddr size = vms->memmap[VIRT_RTC].size;
792     int irq = vms->irqmap[VIRT_RTC];
793     const char compat[] = "arm,pl031\0arm,primecell";
794 
795     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
796 
797     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
798     qemu_fdt_add_subnode(vms->fdt, nodename);
799     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
800     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
801                                  2, base, 2, size);
802     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
803                            GIC_FDT_IRQ_TYPE_SPI, irq,
804                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
805     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
806     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
807     g_free(nodename);
808 }
809 
810 static DeviceState *gpio_key_dev;
811 static void virt_powerdown_req(Notifier *n, void *opaque)
812 {
813     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
814 
815     if (s->acpi_dev) {
816         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
817     } else {
818         /* use gpio Pin 3 for power button event */
819         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
820     }
821 }
822 
823 static void create_gpio(const VirtMachineState *vms)
824 {
825     char *nodename;
826     DeviceState *pl061_dev;
827     hwaddr base = vms->memmap[VIRT_GPIO].base;
828     hwaddr size = vms->memmap[VIRT_GPIO].size;
829     int irq = vms->irqmap[VIRT_GPIO];
830     const char compat[] = "arm,pl061\0arm,primecell";
831 
832     pl061_dev = sysbus_create_simple("pl061", base,
833                                      qdev_get_gpio_in(vms->gic, irq));
834 
835     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
836     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
837     qemu_fdt_add_subnode(vms->fdt, nodename);
838     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
839                                  2, base, 2, size);
840     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
841     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
842     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
843     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
844                            GIC_FDT_IRQ_TYPE_SPI, irq,
845                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
846     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
847     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
848     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
849 
850     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
851                                         qdev_get_gpio_in(pl061_dev, 3));
852     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
853     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
854     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
855     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
856 
857     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
858     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
859                             "label", "GPIO Key Poweroff");
860     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
861                           KEY_POWER);
862     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
863                            "gpios", phandle, 3, 0);
864     g_free(nodename);
865 }
866 
867 static void create_virtio_devices(const VirtMachineState *vms)
868 {
869     int i;
870     hwaddr size = vms->memmap[VIRT_MMIO].size;
871 
872     /* We create the transports in forwards order. Since qbus_realize()
873      * prepends (not appends) new child buses, the incrementing loop below will
874      * create a list of virtio-mmio buses with decreasing base addresses.
875      *
876      * When a -device option is processed from the command line,
877      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
878      * order. The upshot is that -device options in increasing command line
879      * order are mapped to virtio-mmio buses with decreasing base addresses.
880      *
881      * When this code was originally written, that arrangement ensured that the
882      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
883      * the first -device on the command line. (The end-to-end order is a
884      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
885      * guest kernel's name-to-address assignment strategy.)
886      *
887      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
888      * the message, if not necessarily the code, of commit 70161ff336.
889      * Therefore the loop now establishes the inverse of the original intent.
890      *
891      * Unfortunately, we can't counteract the kernel change by reversing the
892      * loop; it would break existing command lines.
893      *
894      * In any case, the kernel makes no guarantee about the stability of
895      * enumeration order of virtio devices (as demonstrated by it changing
896      * between kernel versions). For reliable and stable identification
897      * of disks users must use UUIDs or similar mechanisms.
898      */
899     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
900         int irq = vms->irqmap[VIRT_MMIO] + i;
901         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
902 
903         sysbus_create_simple("virtio-mmio", base,
904                              qdev_get_gpio_in(vms->gic, irq));
905     }
906 
907     /* We add dtb nodes in reverse order so that they appear in the finished
908      * device tree lowest address first.
909      *
910      * Note that this mapping is independent of the loop above. The previous
911      * loop influences virtio device to virtio transport assignment, whereas
912      * this loop controls how virtio transports are laid out in the dtb.
913      */
914     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
915         char *nodename;
916         int irq = vms->irqmap[VIRT_MMIO] + i;
917         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
918 
919         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
920         qemu_fdt_add_subnode(vms->fdt, nodename);
921         qemu_fdt_setprop_string(vms->fdt, nodename,
922                                 "compatible", "virtio,mmio");
923         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
924                                      2, base, 2, size);
925         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
926                                GIC_FDT_IRQ_TYPE_SPI, irq,
927                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
928         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
929         g_free(nodename);
930     }
931 }
932 
933 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
934 
935 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
936                                         const char *name,
937                                         const char *alias_prop_name)
938 {
939     /*
940      * Create a single flash device.  We use the same parameters as
941      * the flash devices on the Versatile Express board.
942      */
943     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
944 
945     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
946     qdev_prop_set_uint8(dev, "width", 4);
947     qdev_prop_set_uint8(dev, "device-width", 2);
948     qdev_prop_set_bit(dev, "big-endian", false);
949     qdev_prop_set_uint16(dev, "id0", 0x89);
950     qdev_prop_set_uint16(dev, "id1", 0x18);
951     qdev_prop_set_uint16(dev, "id2", 0x00);
952     qdev_prop_set_uint16(dev, "id3", 0x00);
953     qdev_prop_set_string(dev, "name", name);
954     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
955     object_property_add_alias(OBJECT(vms), alias_prop_name,
956                               OBJECT(dev), "drive");
957     return PFLASH_CFI01(dev);
958 }
959 
960 static void virt_flash_create(VirtMachineState *vms)
961 {
962     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
963     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
964 }
965 
966 static void virt_flash_map1(PFlashCFI01 *flash,
967                             hwaddr base, hwaddr size,
968                             MemoryRegion *sysmem)
969 {
970     DeviceState *dev = DEVICE(flash);
971 
972     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
973     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
974     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
975     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
976 
977     memory_region_add_subregion(sysmem, base,
978                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
979                                                        0));
980 }
981 
982 static void virt_flash_map(VirtMachineState *vms,
983                            MemoryRegion *sysmem,
984                            MemoryRegion *secure_sysmem)
985 {
986     /*
987      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
988      * sysmem is the system memory space. secure_sysmem is the secure view
989      * of the system, and the first flash device should be made visible only
990      * there. The second flash device is visible to both secure and nonsecure.
991      * If sysmem == secure_sysmem this means there is no separate Secure
992      * address space and both flash devices are generally visible.
993      */
994     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
995     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
996 
997     virt_flash_map1(vms->flash[0], flashbase, flashsize,
998                     secure_sysmem);
999     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1000                     sysmem);
1001 }
1002 
1003 static void virt_flash_fdt(VirtMachineState *vms,
1004                            MemoryRegion *sysmem,
1005                            MemoryRegion *secure_sysmem)
1006 {
1007     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1008     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1009     char *nodename;
1010 
1011     if (sysmem == secure_sysmem) {
1012         /* Report both flash devices as a single node in the DT */
1013         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1014         qemu_fdt_add_subnode(vms->fdt, nodename);
1015         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1016         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1017                                      2, flashbase, 2, flashsize,
1018                                      2, flashbase + flashsize, 2, flashsize);
1019         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1020         g_free(nodename);
1021     } else {
1022         /*
1023          * Report the devices as separate nodes so we can mark one as
1024          * only visible to the secure world.
1025          */
1026         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1027         qemu_fdt_add_subnode(vms->fdt, nodename);
1028         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1029         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1030                                      2, flashbase, 2, flashsize);
1031         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1032         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1033         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1034         g_free(nodename);
1035 
1036         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1037         qemu_fdt_add_subnode(vms->fdt, nodename);
1038         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1039         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1040                                      2, flashbase + flashsize, 2, flashsize);
1041         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1042         g_free(nodename);
1043     }
1044 }
1045 
1046 static bool virt_firmware_init(VirtMachineState *vms,
1047                                MemoryRegion *sysmem,
1048                                MemoryRegion *secure_sysmem)
1049 {
1050     int i;
1051     const char *bios_name;
1052     BlockBackend *pflash_blk0;
1053 
1054     /* Map legacy -drive if=pflash to machine properties */
1055     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1056         pflash_cfi01_legacy_drive(vms->flash[i],
1057                                   drive_get(IF_PFLASH, 0, i));
1058     }
1059 
1060     virt_flash_map(vms, sysmem, secure_sysmem);
1061 
1062     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1063 
1064     bios_name = MACHINE(vms)->firmware;
1065     if (bios_name) {
1066         char *fname;
1067         MemoryRegion *mr;
1068         int image_size;
1069 
1070         if (pflash_blk0) {
1071             error_report("The contents of the first flash device may be "
1072                          "specified with -bios or with -drive if=pflash... "
1073                          "but you cannot use both options at once");
1074             exit(1);
1075         }
1076 
1077         /* Fall back to -bios */
1078 
1079         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1080         if (!fname) {
1081             error_report("Could not find ROM image '%s'", bios_name);
1082             exit(1);
1083         }
1084         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1085         image_size = load_image_mr(fname, mr);
1086         g_free(fname);
1087         if (image_size < 0) {
1088             error_report("Could not load ROM image '%s'", bios_name);
1089             exit(1);
1090         }
1091     }
1092 
1093     return pflash_blk0 || bios_name;
1094 }
1095 
1096 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1097 {
1098     MachineState *ms = MACHINE(vms);
1099     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1100     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1101     FWCfgState *fw_cfg;
1102     char *nodename;
1103 
1104     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1105     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1106 
1107     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1108     qemu_fdt_add_subnode(vms->fdt, nodename);
1109     qemu_fdt_setprop_string(vms->fdt, nodename,
1110                             "compatible", "qemu,fw-cfg-mmio");
1111     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1112                                  2, base, 2, size);
1113     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1114     g_free(nodename);
1115     return fw_cfg;
1116 }
1117 
1118 static void create_pcie_irq_map(const VirtMachineState *vms,
1119                                 uint32_t gic_phandle,
1120                                 int first_irq, const char *nodename)
1121 {
1122     int devfn, pin;
1123     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1124     uint32_t *irq_map = full_irq_map;
1125 
1126     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1127         for (pin = 0; pin < 4; pin++) {
1128             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1129             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1130             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1131             int i;
1132 
1133             uint32_t map[] = {
1134                 devfn << 8, 0, 0,                           /* devfn */
1135                 pin + 1,                                    /* PCI pin */
1136                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1137 
1138             /* Convert map to big endian */
1139             for (i = 0; i < 10; i++) {
1140                 irq_map[i] = cpu_to_be32(map[i]);
1141             }
1142             irq_map += 10;
1143         }
1144     }
1145 
1146     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1147                      full_irq_map, sizeof(full_irq_map));
1148 
1149     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1150                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1151                            0x7           /* PCI irq */);
1152 }
1153 
1154 static void create_smmu(const VirtMachineState *vms,
1155                         PCIBus *bus)
1156 {
1157     char *node;
1158     const char compat[] = "arm,smmu-v3";
1159     int irq =  vms->irqmap[VIRT_SMMU];
1160     int i;
1161     hwaddr base = vms->memmap[VIRT_SMMU].base;
1162     hwaddr size = vms->memmap[VIRT_SMMU].size;
1163     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1164     DeviceState *dev;
1165 
1166     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1167         return;
1168     }
1169 
1170     dev = qdev_new("arm-smmuv3");
1171 
1172     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1173                              &error_abort);
1174     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1175     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1176     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1177         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1178                            qdev_get_gpio_in(vms->gic, irq + i));
1179     }
1180 
1181     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1182     qemu_fdt_add_subnode(vms->fdt, node);
1183     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1184     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1185 
1186     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1187             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1188             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1189             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1190             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1191 
1192     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1193                      sizeof(irq_names));
1194 
1195     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1196     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1197     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1198 
1199     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1200 
1201     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1202     g_free(node);
1203 }
1204 
1205 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1206 {
1207     const char compat[] = "virtio,pci-iommu";
1208     uint16_t bdf = vms->virtio_iommu_bdf;
1209     char *node;
1210 
1211     vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1212 
1213     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1214     qemu_fdt_add_subnode(vms->fdt, node);
1215     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1216     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1217                                  1, bdf << 8, 1, 0, 1, 0,
1218                                  1, 0, 1, 0);
1219 
1220     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1221     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1222     g_free(node);
1223 
1224     qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1225                            0x0, vms->iommu_phandle, 0x0, bdf,
1226                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1227 }
1228 
1229 static void create_pcie(VirtMachineState *vms)
1230 {
1231     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1232     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1233     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1234     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1235     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1236     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1237     hwaddr base_ecam, size_ecam;
1238     hwaddr base = base_mmio;
1239     int nr_pcie_buses;
1240     int irq = vms->irqmap[VIRT_PCIE];
1241     MemoryRegion *mmio_alias;
1242     MemoryRegion *mmio_reg;
1243     MemoryRegion *ecam_alias;
1244     MemoryRegion *ecam_reg;
1245     DeviceState *dev;
1246     char *nodename;
1247     int i, ecam_id;
1248     PCIHostState *pci;
1249 
1250     dev = qdev_new(TYPE_GPEX_HOST);
1251     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1252 
1253     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1254     base_ecam = vms->memmap[ecam_id].base;
1255     size_ecam = vms->memmap[ecam_id].size;
1256     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1257     /* Map only the first size_ecam bytes of ECAM space */
1258     ecam_alias = g_new0(MemoryRegion, 1);
1259     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1260     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1261                              ecam_reg, 0, size_ecam);
1262     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1263 
1264     /* Map the MMIO window into system address space so as to expose
1265      * the section of PCI MMIO space which starts at the same base address
1266      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1267      * the window).
1268      */
1269     mmio_alias = g_new0(MemoryRegion, 1);
1270     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1271     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1272                              mmio_reg, base_mmio, size_mmio);
1273     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1274 
1275     if (vms->highmem) {
1276         /* Map high MMIO space */
1277         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1278 
1279         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1280                                  mmio_reg, base_mmio_high, size_mmio_high);
1281         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1282                                     high_mmio_alias);
1283     }
1284 
1285     /* Map IO port space */
1286     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1287 
1288     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1289         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1290                            qdev_get_gpio_in(vms->gic, irq + i));
1291         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1292     }
1293 
1294     pci = PCI_HOST_BRIDGE(dev);
1295     vms->bus = pci->bus;
1296     if (vms->bus) {
1297         for (i = 0; i < nb_nics; i++) {
1298             NICInfo *nd = &nd_table[i];
1299 
1300             if (!nd->model) {
1301                 nd->model = g_strdup("virtio");
1302             }
1303 
1304             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1305         }
1306     }
1307 
1308     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1309     qemu_fdt_add_subnode(vms->fdt, nodename);
1310     qemu_fdt_setprop_string(vms->fdt, nodename,
1311                             "compatible", "pci-host-ecam-generic");
1312     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1313     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1314     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1315     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1316     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1317                            nr_pcie_buses - 1);
1318     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1319 
1320     if (vms->msi_phandle) {
1321         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1322                                vms->msi_phandle);
1323     }
1324 
1325     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1326                                  2, base_ecam, 2, size_ecam);
1327 
1328     if (vms->highmem) {
1329         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1330                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1331                                      2, base_pio, 2, size_pio,
1332                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1333                                      2, base_mmio, 2, size_mmio,
1334                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1335                                      2, base_mmio_high,
1336                                      2, base_mmio_high, 2, size_mmio_high);
1337     } else {
1338         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1339                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1340                                      2, base_pio, 2, size_pio,
1341                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1342                                      2, base_mmio, 2, size_mmio);
1343     }
1344 
1345     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1346     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1347 
1348     if (vms->iommu) {
1349         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1350 
1351         switch (vms->iommu) {
1352         case VIRT_IOMMU_SMMUV3:
1353             create_smmu(vms, vms->bus);
1354             qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1355                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1356             break;
1357         default:
1358             g_assert_not_reached();
1359         }
1360     }
1361 }
1362 
1363 static void create_platform_bus(VirtMachineState *vms)
1364 {
1365     DeviceState *dev;
1366     SysBusDevice *s;
1367     int i;
1368     MemoryRegion *sysmem = get_system_memory();
1369 
1370     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1371     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1372     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1373     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1374     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1375     vms->platform_bus_dev = dev;
1376 
1377     s = SYS_BUS_DEVICE(dev);
1378     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1379         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1380         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1381     }
1382 
1383     memory_region_add_subregion(sysmem,
1384                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1385                                 sysbus_mmio_get_region(s, 0));
1386 }
1387 
1388 static void create_tag_ram(MemoryRegion *tag_sysmem,
1389                            hwaddr base, hwaddr size,
1390                            const char *name)
1391 {
1392     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1393 
1394     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1395     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1396 }
1397 
1398 static void create_secure_ram(VirtMachineState *vms,
1399                               MemoryRegion *secure_sysmem,
1400                               MemoryRegion *secure_tag_sysmem)
1401 {
1402     MemoryRegion *secram = g_new(MemoryRegion, 1);
1403     char *nodename;
1404     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1405     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1406 
1407     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1408                            &error_fatal);
1409     memory_region_add_subregion(secure_sysmem, base, secram);
1410 
1411     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1412     qemu_fdt_add_subnode(vms->fdt, nodename);
1413     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1414     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1415     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1416     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1417 
1418     if (secure_tag_sysmem) {
1419         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1420     }
1421 
1422     g_free(nodename);
1423 }
1424 
1425 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1426 {
1427     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1428                                                  bootinfo);
1429 
1430     *fdt_size = board->fdt_size;
1431     return board->fdt;
1432 }
1433 
1434 static void virt_build_smbios(VirtMachineState *vms)
1435 {
1436     MachineClass *mc = MACHINE_GET_CLASS(vms);
1437     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1438     uint8_t *smbios_tables, *smbios_anchor;
1439     size_t smbios_tables_len, smbios_anchor_len;
1440     const char *product = "QEMU Virtual Machine";
1441 
1442     if (kvm_enabled()) {
1443         product = "KVM Virtual Machine";
1444     }
1445 
1446     smbios_set_defaults("QEMU", product,
1447                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1448                         true, SMBIOS_ENTRY_POINT_30);
1449 
1450     smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1451                       &smbios_anchor, &smbios_anchor_len);
1452 
1453     if (smbios_anchor) {
1454         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1455                         smbios_tables, smbios_tables_len);
1456         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1457                         smbios_anchor, smbios_anchor_len);
1458     }
1459 }
1460 
1461 static
1462 void virt_machine_done(Notifier *notifier, void *data)
1463 {
1464     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1465                                          machine_done);
1466     MachineState *ms = MACHINE(vms);
1467     ARMCPU *cpu = ARM_CPU(first_cpu);
1468     struct arm_boot_info *info = &vms->bootinfo;
1469     AddressSpace *as = arm_boot_address_space(cpu, info);
1470 
1471     /*
1472      * If the user provided a dtb, we assume the dynamic sysbus nodes
1473      * already are integrated there. This corresponds to a use case where
1474      * the dynamic sysbus nodes are complex and their generation is not yet
1475      * supported. In that case the user can take charge of the guest dt
1476      * while qemu takes charge of the qom stuff.
1477      */
1478     if (info->dtb_filename == NULL) {
1479         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1480                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1481                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1482                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1483     }
1484     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1485         exit(1);
1486     }
1487 
1488     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1489 
1490     virt_acpi_setup(vms);
1491     virt_build_smbios(vms);
1492 }
1493 
1494 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1495 {
1496     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1497     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1498 
1499     if (!vmc->disallow_affinity_adjustment) {
1500         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1501          * GIC's target-list limitations. 32-bit KVM hosts currently
1502          * always create clusters of 4 CPUs, but that is expected to
1503          * change when they gain support for gicv3. When KVM is enabled
1504          * it will override the changes we make here, therefore our
1505          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1506          * and to improve SGI efficiency.
1507          */
1508         if (vms->gic_version == VIRT_GIC_VERSION_3) {
1509             clustersz = GICV3_TARGETLIST_BITS;
1510         } else {
1511             clustersz = GIC_TARGETLIST_BITS;
1512         }
1513     }
1514     return arm_cpu_mp_affinity(idx, clustersz);
1515 }
1516 
1517 static void virt_set_memmap(VirtMachineState *vms)
1518 {
1519     MachineState *ms = MACHINE(vms);
1520     hwaddr base, device_memory_base, device_memory_size;
1521     int i;
1522 
1523     vms->memmap = extended_memmap;
1524 
1525     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1526         vms->memmap[i] = base_memmap[i];
1527     }
1528 
1529     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1530         error_report("unsupported number of memory slots: %"PRIu64,
1531                      ms->ram_slots);
1532         exit(EXIT_FAILURE);
1533     }
1534 
1535     /*
1536      * We compute the base of the high IO region depending on the
1537      * amount of initial and device memory. The device memory start/size
1538      * is aligned on 1GiB. We never put the high IO region below 256GiB
1539      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1540      * The device region size assumes 1GiB page max alignment per slot.
1541      */
1542     device_memory_base =
1543         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1544     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1545 
1546     /* Base address of the high IO region */
1547     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1548     if (base < device_memory_base) {
1549         error_report("maxmem/slots too huge");
1550         exit(EXIT_FAILURE);
1551     }
1552     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1553         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1554     }
1555 
1556     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1557         hwaddr size = extended_memmap[i].size;
1558 
1559         base = ROUND_UP(base, size);
1560         vms->memmap[i].base = base;
1561         vms->memmap[i].size = size;
1562         base += size;
1563     }
1564     vms->highest_gpa = base - 1;
1565     if (device_memory_size > 0) {
1566         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1567         ms->device_memory->base = device_memory_base;
1568         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1569                            "device-memory", device_memory_size);
1570     }
1571 }
1572 
1573 /*
1574  * finalize_gic_version - Determines the final gic_version
1575  * according to the gic-version property
1576  *
1577  * Default GIC type is v2
1578  */
1579 static void finalize_gic_version(VirtMachineState *vms)
1580 {
1581     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1582 
1583     if (kvm_enabled()) {
1584         int probe_bitmap;
1585 
1586         if (!kvm_irqchip_in_kernel()) {
1587             switch (vms->gic_version) {
1588             case VIRT_GIC_VERSION_HOST:
1589                 warn_report(
1590                     "gic-version=host not relevant with kernel-irqchip=off "
1591                      "as only userspace GICv2 is supported. Using v2 ...");
1592                 return;
1593             case VIRT_GIC_VERSION_MAX:
1594             case VIRT_GIC_VERSION_NOSEL:
1595                 vms->gic_version = VIRT_GIC_VERSION_2;
1596                 return;
1597             case VIRT_GIC_VERSION_2:
1598                 return;
1599             case VIRT_GIC_VERSION_3:
1600                 error_report(
1601                     "gic-version=3 is not supported with kernel-irqchip=off");
1602                 exit(1);
1603             }
1604         }
1605 
1606         probe_bitmap = kvm_arm_vgic_probe();
1607         if (!probe_bitmap) {
1608             error_report("Unable to determine GIC version supported by host");
1609             exit(1);
1610         }
1611 
1612         switch (vms->gic_version) {
1613         case VIRT_GIC_VERSION_HOST:
1614         case VIRT_GIC_VERSION_MAX:
1615             if (probe_bitmap & KVM_ARM_VGIC_V3) {
1616                 vms->gic_version = VIRT_GIC_VERSION_3;
1617             } else {
1618                 vms->gic_version = VIRT_GIC_VERSION_2;
1619             }
1620             return;
1621         case VIRT_GIC_VERSION_NOSEL:
1622             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1623                 vms->gic_version = VIRT_GIC_VERSION_2;
1624             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1625                 /*
1626                  * in case the host does not support v2 in-kernel emulation or
1627                  * the end-user requested more than 8 VCPUs we now default
1628                  * to v3. In any case defaulting to v2 would be broken.
1629                  */
1630                 vms->gic_version = VIRT_GIC_VERSION_3;
1631             } else if (max_cpus > GIC_NCPU) {
1632                 error_report("host only supports in-kernel GICv2 emulation "
1633                              "but more than 8 vcpus are requested");
1634                 exit(1);
1635             }
1636             break;
1637         case VIRT_GIC_VERSION_2:
1638         case VIRT_GIC_VERSION_3:
1639             break;
1640         }
1641 
1642         /* Check chosen version is effectively supported by the host */
1643         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1644             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1645             error_report("host does not support in-kernel GICv2 emulation");
1646             exit(1);
1647         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1648                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1649             error_report("host does not support in-kernel GICv3 emulation");
1650             exit(1);
1651         }
1652         return;
1653     }
1654 
1655     /* TCG mode */
1656     switch (vms->gic_version) {
1657     case VIRT_GIC_VERSION_NOSEL:
1658         vms->gic_version = VIRT_GIC_VERSION_2;
1659         break;
1660     case VIRT_GIC_VERSION_MAX:
1661         vms->gic_version = VIRT_GIC_VERSION_3;
1662         break;
1663     case VIRT_GIC_VERSION_HOST:
1664         error_report("gic-version=host requires KVM");
1665         exit(1);
1666     case VIRT_GIC_VERSION_2:
1667     case VIRT_GIC_VERSION_3:
1668         break;
1669     }
1670 }
1671 
1672 /*
1673  * virt_cpu_post_init() must be called after the CPUs have
1674  * been realized and the GIC has been created.
1675  */
1676 static void virt_cpu_post_init(VirtMachineState *vms, int max_cpus,
1677                                MemoryRegion *sysmem)
1678 {
1679     bool aarch64, pmu, steal_time;
1680     CPUState *cpu;
1681 
1682     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1683     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1684     steal_time = object_property_get_bool(OBJECT(first_cpu),
1685                                           "kvm-steal-time", NULL);
1686 
1687     if (kvm_enabled()) {
1688         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1689         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1690 
1691         if (steal_time) {
1692             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1693             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1694 
1695             /* The memory region size must be a multiple of host page size. */
1696             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1697 
1698             if (pvtime_size > pvtime_reg_size) {
1699                 error_report("pvtime requires a %" HWADDR_PRId
1700                              " byte memory region for %d CPUs,"
1701                              " but only %" HWADDR_PRId " has been reserved",
1702                              pvtime_size, max_cpus, pvtime_reg_size);
1703                 exit(1);
1704             }
1705 
1706             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1707             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1708         }
1709 
1710         CPU_FOREACH(cpu) {
1711             if (pmu) {
1712                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1713                 if (kvm_irqchip_in_kernel()) {
1714                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1715                 }
1716                 kvm_arm_pmu_init(cpu);
1717             }
1718             if (steal_time) {
1719                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1720                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1721             }
1722         }
1723     } else {
1724         if (aarch64 && vms->highmem) {
1725             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1726             int pamax = arm_pamax(ARM_CPU(first_cpu));
1727 
1728             if (pamax < requested_pa_size) {
1729                 error_report("VCPU supports less PA bits (%d) than "
1730                              "requested by the memory map (%d)",
1731                              pamax, requested_pa_size);
1732                 exit(1);
1733             }
1734         }
1735     }
1736 }
1737 
1738 static void machvirt_init(MachineState *machine)
1739 {
1740     VirtMachineState *vms = VIRT_MACHINE(machine);
1741     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1742     MachineClass *mc = MACHINE_GET_CLASS(machine);
1743     const CPUArchIdList *possible_cpus;
1744     MemoryRegion *sysmem = get_system_memory();
1745     MemoryRegion *secure_sysmem = NULL;
1746     MemoryRegion *tag_sysmem = NULL;
1747     MemoryRegion *secure_tag_sysmem = NULL;
1748     int n, virt_max_cpus;
1749     bool firmware_loaded;
1750     bool aarch64 = true;
1751     bool has_ged = !vmc->no_ged;
1752     unsigned int smp_cpus = machine->smp.cpus;
1753     unsigned int max_cpus = machine->smp.max_cpus;
1754 
1755     /*
1756      * In accelerated mode, the memory map is computed earlier in kvm_type()
1757      * to create a VM with the right number of IPA bits.
1758      */
1759     if (!vms->memmap) {
1760         virt_set_memmap(vms);
1761     }
1762 
1763     /* We can probe only here because during property set
1764      * KVM is not available yet
1765      */
1766     finalize_gic_version(vms);
1767 
1768     if (!cpu_type_valid(machine->cpu_type)) {
1769         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1770         exit(1);
1771     }
1772 
1773     if (vms->secure) {
1774         if (kvm_enabled()) {
1775             error_report("mach-virt: KVM does not support Security extensions");
1776             exit(1);
1777         }
1778 
1779         /*
1780          * The Secure view of the world is the same as the NonSecure,
1781          * but with a few extra devices. Create it as a container region
1782          * containing the system memory at low priority; any secure-only
1783          * devices go in at higher priority and take precedence.
1784          */
1785         secure_sysmem = g_new(MemoryRegion, 1);
1786         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1787                            UINT64_MAX);
1788         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1789     }
1790 
1791     firmware_loaded = virt_firmware_init(vms, sysmem,
1792                                          secure_sysmem ?: sysmem);
1793 
1794     /* If we have an EL3 boot ROM then the assumption is that it will
1795      * implement PSCI itself, so disable QEMU's internal implementation
1796      * so it doesn't get in the way. Instead of starting secondary
1797      * CPUs in PSCI powerdown state we will start them all running and
1798      * let the boot ROM sort them out.
1799      * The usual case is that we do use QEMU's PSCI implementation;
1800      * if the guest has EL2 then we will use SMC as the conduit,
1801      * and otherwise we will use HVC (for backwards compatibility and
1802      * because if we're using KVM then we must use HVC).
1803      */
1804     if (vms->secure && firmware_loaded) {
1805         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1806     } else if (vms->virt) {
1807         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1808     } else {
1809         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1810     }
1811 
1812     /* The maximum number of CPUs depends on the GIC version, or on how
1813      * many redistributors we can fit into the memory map.
1814      */
1815     if (vms->gic_version == VIRT_GIC_VERSION_3) {
1816         virt_max_cpus =
1817             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1818         virt_max_cpus +=
1819             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1820     } else {
1821         virt_max_cpus = GIC_NCPU;
1822     }
1823 
1824     if (max_cpus > virt_max_cpus) {
1825         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1826                      "supported by machine 'mach-virt' (%d)",
1827                      max_cpus, virt_max_cpus);
1828         exit(1);
1829     }
1830 
1831     vms->smp_cpus = smp_cpus;
1832 
1833     if (vms->virt && kvm_enabled()) {
1834         error_report("mach-virt: KVM does not support providing "
1835                      "Virtualization extensions to the guest CPU");
1836         exit(1);
1837     }
1838 
1839     if (vms->mte && kvm_enabled()) {
1840         error_report("mach-virt: KVM does not support providing "
1841                      "MTE to the guest CPU");
1842         exit(1);
1843     }
1844 
1845     create_fdt(vms);
1846 
1847     possible_cpus = mc->possible_cpu_arch_ids(machine);
1848     for (n = 0; n < possible_cpus->len; n++) {
1849         Object *cpuobj;
1850         CPUState *cs;
1851 
1852         if (n >= smp_cpus) {
1853             break;
1854         }
1855 
1856         cpuobj = object_new(possible_cpus->cpus[n].type);
1857         object_property_set_int(cpuobj, "mp-affinity",
1858                                 possible_cpus->cpus[n].arch_id, NULL);
1859 
1860         cs = CPU(cpuobj);
1861         cs->cpu_index = n;
1862 
1863         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1864                           &error_fatal);
1865 
1866         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1867 
1868         if (!vms->secure) {
1869             object_property_set_bool(cpuobj, "has_el3", false, NULL);
1870         }
1871 
1872         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1873             object_property_set_bool(cpuobj, "has_el2", false, NULL);
1874         }
1875 
1876         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1877             object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1878                                     NULL);
1879 
1880             /* Secondary CPUs start in PSCI powered-down state */
1881             if (n > 0) {
1882                 object_property_set_bool(cpuobj, "start-powered-off", true,
1883                                          NULL);
1884             }
1885         }
1886 
1887         if (vmc->kvm_no_adjvtime &&
1888             object_property_find(cpuobj, "kvm-no-adjvtime")) {
1889             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1890         }
1891 
1892         if (vmc->no_kvm_steal_time &&
1893             object_property_find(cpuobj, "kvm-steal-time")) {
1894             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1895         }
1896 
1897         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1898             object_property_set_bool(cpuobj, "pmu", false, NULL);
1899         }
1900 
1901         if (object_property_find(cpuobj, "reset-cbar")) {
1902             object_property_set_int(cpuobj, "reset-cbar",
1903                                     vms->memmap[VIRT_CPUPERIPHS].base,
1904                                     &error_abort);
1905         }
1906 
1907         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1908                                  &error_abort);
1909         if (vms->secure) {
1910             object_property_set_link(cpuobj, "secure-memory",
1911                                      OBJECT(secure_sysmem), &error_abort);
1912         }
1913 
1914         if (vms->mte) {
1915             /* Create the memory region only once, but link to all cpus. */
1916             if (!tag_sysmem) {
1917                 /*
1918                  * The property exists only if MemTag is supported.
1919                  * If it is, we must allocate the ram to back that up.
1920                  */
1921                 if (!object_property_find(cpuobj, "tag-memory")) {
1922                     error_report("MTE requested, but not supported "
1923                                  "by the guest CPU");
1924                     exit(1);
1925                 }
1926 
1927                 tag_sysmem = g_new(MemoryRegion, 1);
1928                 memory_region_init(tag_sysmem, OBJECT(machine),
1929                                    "tag-memory", UINT64_MAX / 32);
1930 
1931                 if (vms->secure) {
1932                     secure_tag_sysmem = g_new(MemoryRegion, 1);
1933                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
1934                                        "secure-tag-memory", UINT64_MAX / 32);
1935 
1936                     /* As with ram, secure-tag takes precedence over tag.  */
1937                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
1938                                                         tag_sysmem, -1);
1939                 }
1940             }
1941 
1942             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
1943                                      &error_abort);
1944             if (vms->secure) {
1945                 object_property_set_link(cpuobj, "secure-tag-memory",
1946                                          OBJECT(secure_tag_sysmem),
1947                                          &error_abort);
1948             }
1949         }
1950 
1951         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
1952         object_unref(cpuobj);
1953     }
1954     fdt_add_timer_nodes(vms);
1955     fdt_add_cpu_nodes(vms);
1956 
1957     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
1958                                 machine->ram);
1959     if (machine->device_memory) {
1960         memory_region_add_subregion(sysmem, machine->device_memory->base,
1961                                     &machine->device_memory->mr);
1962     }
1963 
1964     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1965 
1966     create_gic(vms);
1967 
1968     virt_cpu_post_init(vms, possible_cpus->len, sysmem);
1969 
1970     fdt_add_pmu_nodes(vms);
1971 
1972     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
1973 
1974     if (vms->secure) {
1975         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
1976         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1977     }
1978 
1979     if (tag_sysmem) {
1980         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
1981                        machine->ram_size, "mach-virt.tag");
1982     }
1983 
1984     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1985 
1986     create_rtc(vms);
1987 
1988     create_pcie(vms);
1989 
1990     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
1991         vms->acpi_dev = create_acpi_ged(vms);
1992     } else {
1993         create_gpio(vms);
1994     }
1995 
1996      /* connect powerdown request */
1997      vms->powerdown_notifier.notify = virt_powerdown_req;
1998      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1999 
2000     /* Create mmio transports, so the user can create virtio backends
2001      * (which will be automatically plugged in to the transports). If
2002      * no backend is created the transport will just sit harmlessly idle.
2003      */
2004     create_virtio_devices(vms);
2005 
2006     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2007     rom_set_fw(vms->fw_cfg);
2008 
2009     create_platform_bus(vms);
2010 
2011     if (machine->nvdimms_state->is_enabled) {
2012         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2013             .space_id = AML_AS_SYSTEM_MEMORY,
2014             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2015             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2016         };
2017 
2018         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2019                                arm_virt_nvdimm_acpi_dsmio,
2020                                vms->fw_cfg, OBJECT(vms));
2021     }
2022 
2023     vms->bootinfo.ram_size = machine->ram_size;
2024     vms->bootinfo.nb_cpus = smp_cpus;
2025     vms->bootinfo.board_id = -1;
2026     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2027     vms->bootinfo.get_dtb = machvirt_dtb;
2028     vms->bootinfo.skip_dtb_autoload = true;
2029     vms->bootinfo.firmware_loaded = firmware_loaded;
2030     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2031 
2032     vms->machine_done.notify = virt_machine_done;
2033     qemu_add_machine_init_done_notifier(&vms->machine_done);
2034 }
2035 
2036 static bool virt_get_secure(Object *obj, Error **errp)
2037 {
2038     VirtMachineState *vms = VIRT_MACHINE(obj);
2039 
2040     return vms->secure;
2041 }
2042 
2043 static void virt_set_secure(Object *obj, bool value, Error **errp)
2044 {
2045     VirtMachineState *vms = VIRT_MACHINE(obj);
2046 
2047     vms->secure = value;
2048 }
2049 
2050 static bool virt_get_virt(Object *obj, Error **errp)
2051 {
2052     VirtMachineState *vms = VIRT_MACHINE(obj);
2053 
2054     return vms->virt;
2055 }
2056 
2057 static void virt_set_virt(Object *obj, bool value, Error **errp)
2058 {
2059     VirtMachineState *vms = VIRT_MACHINE(obj);
2060 
2061     vms->virt = value;
2062 }
2063 
2064 static bool virt_get_highmem(Object *obj, Error **errp)
2065 {
2066     VirtMachineState *vms = VIRT_MACHINE(obj);
2067 
2068     return vms->highmem;
2069 }
2070 
2071 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2072 {
2073     VirtMachineState *vms = VIRT_MACHINE(obj);
2074 
2075     vms->highmem = value;
2076 }
2077 
2078 static bool virt_get_its(Object *obj, Error **errp)
2079 {
2080     VirtMachineState *vms = VIRT_MACHINE(obj);
2081 
2082     return vms->its;
2083 }
2084 
2085 static void virt_set_its(Object *obj, bool value, Error **errp)
2086 {
2087     VirtMachineState *vms = VIRT_MACHINE(obj);
2088 
2089     vms->its = value;
2090 }
2091 
2092 bool virt_is_acpi_enabled(VirtMachineState *vms)
2093 {
2094     if (vms->acpi == ON_OFF_AUTO_OFF) {
2095         return false;
2096     }
2097     return true;
2098 }
2099 
2100 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2101                           void *opaque, Error **errp)
2102 {
2103     VirtMachineState *vms = VIRT_MACHINE(obj);
2104     OnOffAuto acpi = vms->acpi;
2105 
2106     visit_type_OnOffAuto(v, name, &acpi, errp);
2107 }
2108 
2109 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2110                           void *opaque, Error **errp)
2111 {
2112     VirtMachineState *vms = VIRT_MACHINE(obj);
2113 
2114     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2115 }
2116 
2117 static bool virt_get_ras(Object *obj, Error **errp)
2118 {
2119     VirtMachineState *vms = VIRT_MACHINE(obj);
2120 
2121     return vms->ras;
2122 }
2123 
2124 static void virt_set_ras(Object *obj, bool value, Error **errp)
2125 {
2126     VirtMachineState *vms = VIRT_MACHINE(obj);
2127 
2128     vms->ras = value;
2129 }
2130 
2131 static bool virt_get_mte(Object *obj, Error **errp)
2132 {
2133     VirtMachineState *vms = VIRT_MACHINE(obj);
2134 
2135     return vms->mte;
2136 }
2137 
2138 static void virt_set_mte(Object *obj, bool value, Error **errp)
2139 {
2140     VirtMachineState *vms = VIRT_MACHINE(obj);
2141 
2142     vms->mte = value;
2143 }
2144 
2145 static char *virt_get_gic_version(Object *obj, Error **errp)
2146 {
2147     VirtMachineState *vms = VIRT_MACHINE(obj);
2148     const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2149 
2150     return g_strdup(val);
2151 }
2152 
2153 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2154 {
2155     VirtMachineState *vms = VIRT_MACHINE(obj);
2156 
2157     if (!strcmp(value, "3")) {
2158         vms->gic_version = VIRT_GIC_VERSION_3;
2159     } else if (!strcmp(value, "2")) {
2160         vms->gic_version = VIRT_GIC_VERSION_2;
2161     } else if (!strcmp(value, "host")) {
2162         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2163     } else if (!strcmp(value, "max")) {
2164         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2165     } else {
2166         error_setg(errp, "Invalid gic-version value");
2167         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2168     }
2169 }
2170 
2171 static char *virt_get_iommu(Object *obj, Error **errp)
2172 {
2173     VirtMachineState *vms = VIRT_MACHINE(obj);
2174 
2175     switch (vms->iommu) {
2176     case VIRT_IOMMU_NONE:
2177         return g_strdup("none");
2178     case VIRT_IOMMU_SMMUV3:
2179         return g_strdup("smmuv3");
2180     default:
2181         g_assert_not_reached();
2182     }
2183 }
2184 
2185 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2186 {
2187     VirtMachineState *vms = VIRT_MACHINE(obj);
2188 
2189     if (!strcmp(value, "smmuv3")) {
2190         vms->iommu = VIRT_IOMMU_SMMUV3;
2191     } else if (!strcmp(value, "none")) {
2192         vms->iommu = VIRT_IOMMU_NONE;
2193     } else {
2194         error_setg(errp, "Invalid iommu value");
2195         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2196     }
2197 }
2198 
2199 static CpuInstanceProperties
2200 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2201 {
2202     MachineClass *mc = MACHINE_GET_CLASS(ms);
2203     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2204 
2205     assert(cpu_index < possible_cpus->len);
2206     return possible_cpus->cpus[cpu_index].props;
2207 }
2208 
2209 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2210 {
2211     return idx % ms->numa_state->num_nodes;
2212 }
2213 
2214 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2215 {
2216     int n;
2217     unsigned int max_cpus = ms->smp.max_cpus;
2218     VirtMachineState *vms = VIRT_MACHINE(ms);
2219 
2220     if (ms->possible_cpus) {
2221         assert(ms->possible_cpus->len == max_cpus);
2222         return ms->possible_cpus;
2223     }
2224 
2225     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2226                                   sizeof(CPUArchId) * max_cpus);
2227     ms->possible_cpus->len = max_cpus;
2228     for (n = 0; n < ms->possible_cpus->len; n++) {
2229         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2230         ms->possible_cpus->cpus[n].arch_id =
2231             virt_cpu_mp_affinity(vms, n);
2232         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2233         ms->possible_cpus->cpus[n].props.thread_id = n;
2234     }
2235     return ms->possible_cpus;
2236 }
2237 
2238 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2239                                  Error **errp)
2240 {
2241     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2242     const MachineState *ms = MACHINE(hotplug_dev);
2243     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2244 
2245     if (!vms->acpi_dev) {
2246         error_setg(errp,
2247                    "memory hotplug is not enabled: missing acpi-ged device");
2248         return;
2249     }
2250 
2251     if (vms->mte) {
2252         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2253         return;
2254     }
2255 
2256     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2257         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2258         return;
2259     }
2260 
2261     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2262 }
2263 
2264 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2265                              DeviceState *dev, Error **errp)
2266 {
2267     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2268     MachineState *ms = MACHINE(hotplug_dev);
2269     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2270 
2271     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2272 
2273     if (is_nvdimm) {
2274         nvdimm_plug(ms->nvdimms_state);
2275     }
2276 
2277     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2278                          dev, &error_abort);
2279 }
2280 
2281 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2282                                             DeviceState *dev, Error **errp)
2283 {
2284     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2285 
2286     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2287         virt_memory_pre_plug(hotplug_dev, dev, errp);
2288     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2289         hwaddr db_start = 0, db_end = 0;
2290         char *resv_prop_str;
2291 
2292         switch (vms->msi_controller) {
2293         case VIRT_MSI_CTRL_NONE:
2294             return;
2295         case VIRT_MSI_CTRL_ITS:
2296             /* GITS_TRANSLATER page */
2297             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2298             db_end = base_memmap[VIRT_GIC_ITS].base +
2299                      base_memmap[VIRT_GIC_ITS].size - 1;
2300             break;
2301         case VIRT_MSI_CTRL_GICV2M:
2302             /* MSI_SETSPI_NS page */
2303             db_start = base_memmap[VIRT_GIC_V2M].base;
2304             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2305             break;
2306         }
2307         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2308                                         db_start, db_end,
2309                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2310 
2311         qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2312         qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2313         g_free(resv_prop_str);
2314     }
2315 }
2316 
2317 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2318                                         DeviceState *dev, Error **errp)
2319 {
2320     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2321 
2322     if (vms->platform_bus_dev) {
2323         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2324             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2325                                      SYS_BUS_DEVICE(dev));
2326         }
2327     }
2328     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2329         virt_memory_plug(hotplug_dev, dev, errp);
2330     }
2331     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2332         PCIDevice *pdev = PCI_DEVICE(dev);
2333 
2334         vms->iommu = VIRT_IOMMU_VIRTIO;
2335         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2336         create_virtio_iommu_dt_bindings(vms);
2337     }
2338 }
2339 
2340 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2341                                      DeviceState *dev, Error **errp)
2342 {
2343     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2344     Error *local_err = NULL;
2345 
2346     if (!vms->acpi_dev) {
2347         error_setg(&local_err,
2348                    "memory hotplug is not enabled: missing acpi-ged device");
2349         goto out;
2350     }
2351 
2352     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2353         error_setg(&local_err,
2354                    "nvdimm device hot unplug is not supported yet.");
2355         goto out;
2356     }
2357 
2358     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2359                                    &local_err);
2360 out:
2361     error_propagate(errp, local_err);
2362 }
2363 
2364 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2365                              DeviceState *dev, Error **errp)
2366 {
2367     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2368     Error *local_err = NULL;
2369 
2370     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2371     if (local_err) {
2372         goto out;
2373     }
2374 
2375     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2376     qdev_unrealize(dev);
2377 
2378 out:
2379     error_propagate(errp, local_err);
2380 }
2381 
2382 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2383                                           DeviceState *dev, Error **errp)
2384 {
2385     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2386         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2387     } else {
2388         error_setg(errp, "device unplug request for unsupported device"
2389                    " type: %s", object_get_typename(OBJECT(dev)));
2390     }
2391 }
2392 
2393 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2394                                           DeviceState *dev, Error **errp)
2395 {
2396     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2397         virt_dimm_unplug(hotplug_dev, dev, errp);
2398     } else {
2399         error_setg(errp, "virt: device unplug for unsupported device"
2400                    " type: %s", object_get_typename(OBJECT(dev)));
2401     }
2402 }
2403 
2404 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2405                                                         DeviceState *dev)
2406 {
2407     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2408        (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2409         return HOTPLUG_HANDLER(machine);
2410     }
2411     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2412         VirtMachineState *vms = VIRT_MACHINE(machine);
2413 
2414         if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2415             return HOTPLUG_HANDLER(machine);
2416         }
2417     }
2418     return NULL;
2419 }
2420 
2421 /*
2422  * for arm64 kvm_type [7-0] encodes the requested number of bits
2423  * in the IPA address space
2424  */
2425 static int virt_kvm_type(MachineState *ms, const char *type_str)
2426 {
2427     VirtMachineState *vms = VIRT_MACHINE(ms);
2428     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2429     int requested_pa_size;
2430 
2431     /* we freeze the memory map to compute the highest gpa */
2432     virt_set_memmap(vms);
2433 
2434     requested_pa_size = 64 - clz64(vms->highest_gpa);
2435 
2436     if (requested_pa_size > max_vm_pa_size) {
2437         error_report("-m and ,maxmem option values "
2438                      "require an IPA range (%d bits) larger than "
2439                      "the one supported by the host (%d bits)",
2440                      requested_pa_size, max_vm_pa_size);
2441        exit(1);
2442     }
2443     /*
2444      * By default we return 0 which corresponds to an implicit legacy
2445      * 40b IPA setting. Otherwise we return the actual requested PA
2446      * logsize
2447      */
2448     return requested_pa_size > 40 ? requested_pa_size : 0;
2449 }
2450 
2451 static void virt_machine_class_init(ObjectClass *oc, void *data)
2452 {
2453     MachineClass *mc = MACHINE_CLASS(oc);
2454     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2455 
2456     mc->init = machvirt_init;
2457     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2458      * The value may be reduced later when we have more information about the
2459      * configuration of the particular instance.
2460      */
2461     mc->max_cpus = 512;
2462     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2463     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2464     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2465     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2466     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2467     mc->block_default_type = IF_VIRTIO;
2468     mc->no_cdrom = 1;
2469     mc->pci_allow_0_address = true;
2470     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2471     mc->minimum_page_bits = 12;
2472     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2473     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2474     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2475     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2476     mc->kvm_type = virt_kvm_type;
2477     assert(!mc->get_hotplug_handler);
2478     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2479     hc->pre_plug = virt_machine_device_pre_plug_cb;
2480     hc->plug = virt_machine_device_plug_cb;
2481     hc->unplug_request = virt_machine_device_unplug_request_cb;
2482     hc->unplug = virt_machine_device_unplug_cb;
2483     mc->nvdimm_supported = true;
2484     mc->auto_enable_numa_with_memhp = true;
2485     mc->auto_enable_numa_with_memdev = true;
2486     mc->default_ram_id = "mach-virt.ram";
2487 
2488     object_class_property_add(oc, "acpi", "OnOffAuto",
2489         virt_get_acpi, virt_set_acpi,
2490         NULL, NULL);
2491     object_class_property_set_description(oc, "acpi",
2492         "Enable ACPI");
2493 }
2494 
2495 static void virt_instance_init(Object *obj)
2496 {
2497     VirtMachineState *vms = VIRT_MACHINE(obj);
2498     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2499 
2500     /* EL3 is disabled by default on virt: this makes us consistent
2501      * between KVM and TCG for this board, and it also allows us to
2502      * boot UEFI blobs which assume no TrustZone support.
2503      */
2504     vms->secure = false;
2505     object_property_add_bool(obj, "secure", virt_get_secure,
2506                              virt_set_secure);
2507     object_property_set_description(obj, "secure",
2508                                     "Set on/off to enable/disable the ARM "
2509                                     "Security Extensions (TrustZone)");
2510 
2511     /* EL2 is also disabled by default, for similar reasons */
2512     vms->virt = false;
2513     object_property_add_bool(obj, "virtualization", virt_get_virt,
2514                              virt_set_virt);
2515     object_property_set_description(obj, "virtualization",
2516                                     "Set on/off to enable/disable emulating a "
2517                                     "guest CPU which implements the ARM "
2518                                     "Virtualization Extensions");
2519 
2520     /* High memory is enabled by default */
2521     vms->highmem = true;
2522     object_property_add_bool(obj, "highmem", virt_get_highmem,
2523                              virt_set_highmem);
2524     object_property_set_description(obj, "highmem",
2525                                     "Set on/off to enable/disable using "
2526                                     "physical address space above 32 bits");
2527     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2528     object_property_add_str(obj, "gic-version", virt_get_gic_version,
2529                         virt_set_gic_version);
2530     object_property_set_description(obj, "gic-version",
2531                                     "Set GIC version. "
2532                                     "Valid values are 2, 3, host and max");
2533 
2534     vms->highmem_ecam = !vmc->no_highmem_ecam;
2535 
2536     if (vmc->no_its) {
2537         vms->its = false;
2538     } else {
2539         /* Default allows ITS instantiation */
2540         vms->its = true;
2541         object_property_add_bool(obj, "its", virt_get_its,
2542                                  virt_set_its);
2543         object_property_set_description(obj, "its",
2544                                         "Set on/off to enable/disable "
2545                                         "ITS instantiation");
2546     }
2547 
2548     /* Default disallows iommu instantiation */
2549     vms->iommu = VIRT_IOMMU_NONE;
2550     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu);
2551     object_property_set_description(obj, "iommu",
2552                                     "Set the IOMMU type. "
2553                                     "Valid values are none and smmuv3");
2554 
2555     /* Default disallows RAS instantiation */
2556     vms->ras = false;
2557     object_property_add_bool(obj, "ras", virt_get_ras,
2558                              virt_set_ras);
2559     object_property_set_description(obj, "ras",
2560                                     "Set on/off to enable/disable reporting host memory errors "
2561                                     "to a KVM guest using ACPI and guest external abort exceptions");
2562 
2563     /* MTE is disabled by default.  */
2564     vms->mte = false;
2565     object_property_add_bool(obj, "mte", virt_get_mte, virt_set_mte);
2566     object_property_set_description(obj, "mte",
2567                                     "Set on/off to enable/disable emulating a "
2568                                     "guest CPU which implements the ARM "
2569                                     "Memory Tagging Extension");
2570 
2571     vms->irqmap = a15irqmap;
2572 
2573     virt_flash_create(vms);
2574 }
2575 
2576 static const TypeInfo virt_machine_info = {
2577     .name          = TYPE_VIRT_MACHINE,
2578     .parent        = TYPE_MACHINE,
2579     .abstract      = true,
2580     .instance_size = sizeof(VirtMachineState),
2581     .class_size    = sizeof(VirtMachineClass),
2582     .class_init    = virt_machine_class_init,
2583     .instance_init = virt_instance_init,
2584     .interfaces = (InterfaceInfo[]) {
2585          { TYPE_HOTPLUG_HANDLER },
2586          { }
2587     },
2588 };
2589 
2590 static void machvirt_machine_init(void)
2591 {
2592     type_register_static(&virt_machine_info);
2593 }
2594 type_init(machvirt_machine_init);
2595 
2596 static void virt_machine_6_0_options(MachineClass *mc)
2597 {
2598 }
2599 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
2600 
2601 static void virt_machine_5_2_options(MachineClass *mc)
2602 {
2603     virt_machine_6_0_options(mc);
2604     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2605 }
2606 DEFINE_VIRT_MACHINE(5, 2)
2607 
2608 static void virt_machine_5_1_options(MachineClass *mc)
2609 {
2610     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2611 
2612     virt_machine_5_2_options(mc);
2613     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2614     vmc->no_kvm_steal_time = true;
2615 }
2616 DEFINE_VIRT_MACHINE(5, 1)
2617 
2618 static void virt_machine_5_0_options(MachineClass *mc)
2619 {
2620     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2621 
2622     virt_machine_5_1_options(mc);
2623     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2624     mc->numa_mem_supported = true;
2625     vmc->acpi_expose_flash = true;
2626     mc->auto_enable_numa_with_memdev = false;
2627 }
2628 DEFINE_VIRT_MACHINE(5, 0)
2629 
2630 static void virt_machine_4_2_options(MachineClass *mc)
2631 {
2632     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2633 
2634     virt_machine_5_0_options(mc);
2635     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2636     vmc->kvm_no_adjvtime = true;
2637 }
2638 DEFINE_VIRT_MACHINE(4, 2)
2639 
2640 static void virt_machine_4_1_options(MachineClass *mc)
2641 {
2642     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2643 
2644     virt_machine_4_2_options(mc);
2645     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2646     vmc->no_ged = true;
2647     mc->auto_enable_numa_with_memhp = false;
2648 }
2649 DEFINE_VIRT_MACHINE(4, 1)
2650 
2651 static void virt_machine_4_0_options(MachineClass *mc)
2652 {
2653     virt_machine_4_1_options(mc);
2654     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2655 }
2656 DEFINE_VIRT_MACHINE(4, 0)
2657 
2658 static void virt_machine_3_1_options(MachineClass *mc)
2659 {
2660     virt_machine_4_0_options(mc);
2661     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2662 }
2663 DEFINE_VIRT_MACHINE(3, 1)
2664 
2665 static void virt_machine_3_0_options(MachineClass *mc)
2666 {
2667     virt_machine_3_1_options(mc);
2668     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2669 }
2670 DEFINE_VIRT_MACHINE(3, 0)
2671 
2672 static void virt_machine_2_12_options(MachineClass *mc)
2673 {
2674     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2675 
2676     virt_machine_3_0_options(mc);
2677     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2678     vmc->no_highmem_ecam = true;
2679     mc->max_cpus = 255;
2680 }
2681 DEFINE_VIRT_MACHINE(2, 12)
2682 
2683 static void virt_machine_2_11_options(MachineClass *mc)
2684 {
2685     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2686 
2687     virt_machine_2_12_options(mc);
2688     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2689     vmc->smbios_old_sys_ver = true;
2690 }
2691 DEFINE_VIRT_MACHINE(2, 11)
2692 
2693 static void virt_machine_2_10_options(MachineClass *mc)
2694 {
2695     virt_machine_2_11_options(mc);
2696     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2697     /* before 2.11 we never faulted accesses to bad addresses */
2698     mc->ignore_memory_transaction_failures = true;
2699 }
2700 DEFINE_VIRT_MACHINE(2, 10)
2701 
2702 static void virt_machine_2_9_options(MachineClass *mc)
2703 {
2704     virt_machine_2_10_options(mc);
2705     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2706 }
2707 DEFINE_VIRT_MACHINE(2, 9)
2708 
2709 static void virt_machine_2_8_options(MachineClass *mc)
2710 {
2711     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2712 
2713     virt_machine_2_9_options(mc);
2714     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2715     /* For 2.8 and earlier we falsely claimed in the DT that
2716      * our timers were edge-triggered, not level-triggered.
2717      */
2718     vmc->claim_edge_triggered_timers = true;
2719 }
2720 DEFINE_VIRT_MACHINE(2, 8)
2721 
2722 static void virt_machine_2_7_options(MachineClass *mc)
2723 {
2724     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2725 
2726     virt_machine_2_8_options(mc);
2727     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2728     /* ITS was introduced with 2.8 */
2729     vmc->no_its = true;
2730     /* Stick with 1K pages for migration compatibility */
2731     mc->minimum_page_bits = 0;
2732 }
2733 DEFINE_VIRT_MACHINE(2, 7)
2734 
2735 static void virt_machine_2_6_options(MachineClass *mc)
2736 {
2737     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2738 
2739     virt_machine_2_7_options(mc);
2740     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2741     vmc->disallow_affinity_adjustment = true;
2742     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2743     vmc->no_pmu = true;
2744 }
2745 DEFINE_VIRT_MACHINE(2, 6)
2746