xref: /openbmc/qemu/hw/arm/virt.c (revision 7b95a50858502485b0e159a1adabfa9912214147)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/kvm.h"
40 #include "hw/boards.h"
41 #include "hw/loader.h"
42 #include "exec/address-spaces.h"
43 #include "qemu/bitops.h"
44 #include "qemu/error-report.h"
45 
46 #define NUM_VIRTIO_TRANSPORTS 32
47 
48 /* Number of external interrupt lines to configure the GIC with */
49 #define NUM_IRQS 128
50 
51 #define GIC_FDT_IRQ_TYPE_SPI 0
52 #define GIC_FDT_IRQ_TYPE_PPI 1
53 
54 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
56 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
58 
59 #define GIC_FDT_IRQ_PPI_CPU_START 8
60 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
61 
62 enum {
63     VIRT_FLASH,
64     VIRT_MEM,
65     VIRT_CPUPERIPHS,
66     VIRT_GIC_DIST,
67     VIRT_GIC_CPU,
68     VIRT_UART,
69     VIRT_MMIO,
70     VIRT_RTC,
71 };
72 
73 typedef struct MemMapEntry {
74     hwaddr base;
75     hwaddr size;
76 } MemMapEntry;
77 
78 typedef struct VirtBoardInfo {
79     struct arm_boot_info bootinfo;
80     const char *cpu_model;
81     const MemMapEntry *memmap;
82     const int *irqmap;
83     int smp_cpus;
84     void *fdt;
85     int fdt_size;
86     uint32_t clock_phandle;
87 } VirtBoardInfo;
88 
89 /* Addresses and sizes of our components.
90  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
91  * 128MB..256MB is used for miscellaneous device I/O.
92  * 256MB..1GB is reserved for possible future PCI support (ie where the
93  * PCI memory window will go if we add a PCI host controller).
94  * 1GB and up is RAM (which may happily spill over into the
95  * high memory region beyond 4GB).
96  * This represents a compromise between how much RAM can be given to
97  * a 32 bit VM and leaving space for expansion and in particular for PCI.
98  * Note that devices should generally be placed at multiples of 0x10000,
99  * to accommodate guests using 64K pages.
100  */
101 static const MemMapEntry a15memmap[] = {
102     /* Space up to 0x8000000 is reserved for a boot ROM */
103     [VIRT_FLASH] =      {          0, 0x08000000 },
104     [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
105     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
106     [VIRT_GIC_DIST] =   { 0x08000000, 0x00010000 },
107     [VIRT_GIC_CPU] =    { 0x08010000, 0x00010000 },
108     [VIRT_UART] =       { 0x09000000, 0x00001000 },
109     [VIRT_RTC] =        { 0x09010000, 0x00001000 },
110     [VIRT_MMIO] =       { 0x0a000000, 0x00000200 },
111     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
112     /* 0x10000000 .. 0x40000000 reserved for PCI */
113     [VIRT_MEM] =        { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
114 };
115 
116 static const int a15irqmap[] = {
117     [VIRT_UART] = 1,
118     [VIRT_RTC] = 2,
119     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
120 };
121 
122 static VirtBoardInfo machines[] = {
123     {
124         .cpu_model = "cortex-a15",
125         .memmap = a15memmap,
126         .irqmap = a15irqmap,
127     },
128     {
129         .cpu_model = "cortex-a57",
130         .memmap = a15memmap,
131         .irqmap = a15irqmap,
132     },
133     {
134         .cpu_model = "host",
135         .memmap = a15memmap,
136         .irqmap = a15irqmap,
137     },
138 };
139 
140 static VirtBoardInfo *find_machine_info(const char *cpu)
141 {
142     int i;
143 
144     for (i = 0; i < ARRAY_SIZE(machines); i++) {
145         if (strcmp(cpu, machines[i].cpu_model) == 0) {
146             return &machines[i];
147         }
148     }
149     return NULL;
150 }
151 
152 static void create_fdt(VirtBoardInfo *vbi)
153 {
154     void *fdt = create_device_tree(&vbi->fdt_size);
155 
156     if (!fdt) {
157         error_report("create_device_tree() failed");
158         exit(1);
159     }
160 
161     vbi->fdt = fdt;
162 
163     /* Header */
164     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
165     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
166     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
167 
168     /*
169      * /chosen and /memory nodes must exist for load_dtb
170      * to fill in necessary properties later
171      */
172     qemu_fdt_add_subnode(fdt, "/chosen");
173     qemu_fdt_add_subnode(fdt, "/memory");
174     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
175 
176     /* Clock node, for the benefit of the UART. The kernel device tree
177      * binding documentation claims the PL011 node clock properties are
178      * optional but in practice if you omit them the kernel refuses to
179      * probe for the device.
180      */
181     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
182     qemu_fdt_add_subnode(fdt, "/apb-pclk");
183     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
184     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
185     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
186     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
187                                 "clk24mhz");
188     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
189 
190 }
191 
192 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
193 {
194     void *fdt = vbi->fdt;
195     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
196 
197     /* No PSCI for TCG yet */
198     if (kvm_enabled()) {
199         uint32_t cpu_suspend_fn;
200         uint32_t cpu_off_fn;
201         uint32_t cpu_on_fn;
202         uint32_t migrate_fn;
203 
204         qemu_fdt_add_subnode(fdt, "/psci");
205         if (armcpu->psci_version == 2) {
206             const char comp[] = "arm,psci-0.2\0arm,psci";
207             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
208 
209             cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
210             if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
211                 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
212                 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
213                 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
214             } else {
215                 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
216                 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
217                 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
218             }
219         } else {
220             qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
221 
222             cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
223             cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
224             cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
225             migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
226         }
227 
228         qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
229 
230         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
231         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
232         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
233         qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
234     }
235 }
236 
237 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
238 {
239     /* Note that on A15 h/w these interrupts are level-triggered,
240      * but for the GIC implementation provided by both QEMU and KVM
241      * they are edge-triggered.
242      */
243     ARMCPU *armcpu;
244     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
245 
246     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
247                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
248 
249     qemu_fdt_add_subnode(vbi->fdt, "/timer");
250 
251     armcpu = ARM_CPU(qemu_get_cpu(0));
252     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
253         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
254         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
255                          compat, sizeof(compat));
256     } else {
257         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
258                                 "arm,armv7-timer");
259     }
260     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
261                                GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
262                                GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
263                                GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
264                                GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
265 }
266 
267 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
268 {
269     int cpu;
270 
271     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
272     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
273     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
274 
275     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
276         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
277         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
278 
279         qemu_fdt_add_subnode(vbi->fdt, nodename);
280         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
281         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
282                                     armcpu->dtb_compatible);
283 
284         if (vbi->smp_cpus > 1) {
285             qemu_fdt_setprop_string(vbi->fdt, nodename,
286                                         "enable-method", "psci");
287         }
288 
289         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
290         g_free(nodename);
291     }
292 }
293 
294 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
295 {
296     uint32_t gic_phandle;
297 
298     gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
299     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
300 
301     qemu_fdt_add_subnode(vbi->fdt, "/intc");
302     /* 'cortex-a15-gic' means 'GIC v2' */
303     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
304                             "arm,cortex-a15-gic");
305     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
306     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
307     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
308                                      2, vbi->memmap[VIRT_GIC_DIST].base,
309                                      2, vbi->memmap[VIRT_GIC_DIST].size,
310                                      2, vbi->memmap[VIRT_GIC_CPU].base,
311                                      2, vbi->memmap[VIRT_GIC_CPU].size);
312     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
313 }
314 
315 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
316 {
317     /* We create a standalone GIC v2 */
318     DeviceState *gicdev;
319     SysBusDevice *gicbusdev;
320     const char *gictype = "arm_gic";
321     int i;
322 
323     if (kvm_irqchip_in_kernel()) {
324         gictype = "kvm-arm-gic";
325     }
326 
327     gicdev = qdev_create(NULL, gictype);
328     qdev_prop_set_uint32(gicdev, "revision", 2);
329     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
330     /* Note that the num-irq property counts both internal and external
331      * interrupts; there are always 32 of the former (mandated by GIC spec).
332      */
333     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
334     qdev_init_nofail(gicdev);
335     gicbusdev = SYS_BUS_DEVICE(gicdev);
336     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
337     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
338 
339     /* Wire the outputs from each CPU's generic timer to the
340      * appropriate GIC PPI inputs, and the GIC's IRQ output to
341      * the CPU's IRQ input.
342      */
343     for (i = 0; i < smp_cpus; i++) {
344         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
345         int ppibase = NUM_IRQS + i * 32;
346         /* physical timer; we wire it up to the non-secure timer's ID,
347          * since a real A15 always has TrustZone but QEMU doesn't.
348          */
349         qdev_connect_gpio_out(cpudev, 0,
350                               qdev_get_gpio_in(gicdev, ppibase + 30));
351         /* virtual timer */
352         qdev_connect_gpio_out(cpudev, 1,
353                               qdev_get_gpio_in(gicdev, ppibase + 27));
354 
355         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
356     }
357 
358     for (i = 0; i < NUM_IRQS; i++) {
359         pic[i] = qdev_get_gpio_in(gicdev, i);
360     }
361 
362     fdt_add_gic_node(vbi);
363 }
364 
365 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
366 {
367     char *nodename;
368     hwaddr base = vbi->memmap[VIRT_UART].base;
369     hwaddr size = vbi->memmap[VIRT_UART].size;
370     int irq = vbi->irqmap[VIRT_UART];
371     const char compat[] = "arm,pl011\0arm,primecell";
372     const char clocknames[] = "uartclk\0apb_pclk";
373 
374     sysbus_create_simple("pl011", base, pic[irq]);
375 
376     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
377     qemu_fdt_add_subnode(vbi->fdt, nodename);
378     /* Note that we can't use setprop_string because of the embedded NUL */
379     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
380                          compat, sizeof(compat));
381     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
382                                      2, base, 2, size);
383     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
384                                GIC_FDT_IRQ_TYPE_SPI, irq,
385                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
386     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
387                                vbi->clock_phandle, vbi->clock_phandle);
388     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
389                          clocknames, sizeof(clocknames));
390 
391     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "linux,stdout-path", nodename);
392     g_free(nodename);
393 }
394 
395 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
396 {
397     char *nodename;
398     hwaddr base = vbi->memmap[VIRT_RTC].base;
399     hwaddr size = vbi->memmap[VIRT_RTC].size;
400     int irq = vbi->irqmap[VIRT_RTC];
401     const char compat[] = "arm,pl031\0arm,primecell";
402 
403     sysbus_create_simple("pl031", base, pic[irq]);
404 
405     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
406     qemu_fdt_add_subnode(vbi->fdt, nodename);
407     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
408     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
409                                  2, base, 2, size);
410     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
411                            GIC_FDT_IRQ_TYPE_SPI, irq,
412                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
413     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
414     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
415     g_free(nodename);
416 }
417 
418 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
419 {
420     int i;
421     hwaddr size = vbi->memmap[VIRT_MMIO].size;
422 
423     /* Note that we have to create the transports in forwards order
424      * so that command line devices are inserted lowest address first,
425      * and then add dtb nodes in reverse order so that they appear in
426      * the finished device tree lowest address first.
427      */
428     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
429         int irq = vbi->irqmap[VIRT_MMIO] + i;
430         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
431 
432         sysbus_create_simple("virtio-mmio", base, pic[irq]);
433     }
434 
435     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
436         char *nodename;
437         int irq = vbi->irqmap[VIRT_MMIO] + i;
438         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
439 
440         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
441         qemu_fdt_add_subnode(vbi->fdt, nodename);
442         qemu_fdt_setprop_string(vbi->fdt, nodename,
443                                 "compatible", "virtio,mmio");
444         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
445                                      2, base, 2, size);
446         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
447                                GIC_FDT_IRQ_TYPE_SPI, irq,
448                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
449         g_free(nodename);
450     }
451 }
452 
453 static void create_one_flash(const char *name, hwaddr flashbase,
454                              hwaddr flashsize)
455 {
456     /* Create and map a single flash device. We use the same
457      * parameters as the flash devices on the Versatile Express board.
458      */
459     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
460     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
461     const uint64_t sectorlength = 256 * 1024;
462 
463     if (dinfo && qdev_prop_set_drive(dev, "drive",
464                                      blk_by_legacy_dinfo(dinfo))) {
465         abort();
466     }
467 
468     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
469     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
470     qdev_prop_set_uint8(dev, "width", 4);
471     qdev_prop_set_uint8(dev, "device-width", 2);
472     qdev_prop_set_uint8(dev, "big-endian", 0);
473     qdev_prop_set_uint16(dev, "id0", 0x89);
474     qdev_prop_set_uint16(dev, "id1", 0x18);
475     qdev_prop_set_uint16(dev, "id2", 0x00);
476     qdev_prop_set_uint16(dev, "id3", 0x00);
477     qdev_prop_set_string(dev, "name", name);
478     qdev_init_nofail(dev);
479 
480     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
481 }
482 
483 static void create_flash(const VirtBoardInfo *vbi)
484 {
485     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
486      * Any file passed via -bios goes in the first of these.
487      */
488     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
489     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
490     char *nodename;
491 
492     if (bios_name) {
493         const char *fn;
494 
495         if (drive_get(IF_PFLASH, 0, 0)) {
496             error_report("The contents of the first flash device may be "
497                          "specified with -bios or with -drive if=pflash... "
498                          "but you cannot use both options at once");
499             exit(1);
500         }
501         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
502         if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) {
503             error_report("Could not load ROM image '%s'", bios_name);
504             exit(1);
505         }
506     }
507 
508     create_one_flash("virt.flash0", flashbase, flashsize);
509     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
510 
511     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
512     qemu_fdt_add_subnode(vbi->fdt, nodename);
513     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
514     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
515                                  2, flashbase, 2, flashsize,
516                                  2, flashbase + flashsize, 2, flashsize);
517     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
518     g_free(nodename);
519 }
520 
521 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
522 {
523     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
524 
525     *fdt_size = board->fdt_size;
526     return board->fdt;
527 }
528 
529 static void machvirt_init(MachineState *machine)
530 {
531     qemu_irq pic[NUM_IRQS];
532     MemoryRegion *sysmem = get_system_memory();
533     int n;
534     MemoryRegion *ram = g_new(MemoryRegion, 1);
535     const char *cpu_model = machine->cpu_model;
536     VirtBoardInfo *vbi;
537 
538     if (!cpu_model) {
539         cpu_model = "cortex-a15";
540     }
541 
542     vbi = find_machine_info(cpu_model);
543 
544     if (!vbi) {
545         error_report("mach-virt: CPU %s not supported", cpu_model);
546         exit(1);
547     }
548 
549     vbi->smp_cpus = smp_cpus;
550 
551     /*
552      * Only supported method of starting secondary CPUs is PSCI and
553      * PSCI is not yet supported with TCG, so limit smp_cpus to 1
554      * if we're not using KVM.
555      */
556     if (!kvm_enabled() && smp_cpus > 1) {
557         error_report("mach-virt: must enable KVM to use multiple CPUs");
558         exit(1);
559     }
560 
561     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
562         error_report("mach-virt: cannot model more than 30GB RAM");
563         exit(1);
564     }
565 
566     create_fdt(vbi);
567 
568     for (n = 0; n < smp_cpus; n++) {
569         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
570         Object *cpuobj;
571 
572         if (!oc) {
573             fprintf(stderr, "Unable to find CPU definition\n");
574             exit(1);
575         }
576         cpuobj = object_new(object_class_get_name(oc));
577 
578         /* Secondary CPUs start in PSCI powered-down state */
579         if (n > 0) {
580             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
581         }
582 
583         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
584             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
585                                     "reset-cbar", &error_abort);
586         }
587 
588         object_property_set_bool(cpuobj, true, "realized", NULL);
589     }
590     fdt_add_timer_nodes(vbi);
591     fdt_add_cpu_nodes(vbi);
592     fdt_add_psci_node(vbi);
593 
594     memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size,
595                            &error_abort);
596     vmstate_register_ram_global(ram);
597     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
598 
599     create_flash(vbi);
600 
601     create_gic(vbi, pic);
602 
603     create_uart(vbi, pic);
604 
605     create_rtc(vbi, pic);
606 
607     /* Create mmio transports, so the user can create virtio backends
608      * (which will be automatically plugged in to the transports). If
609      * no backend is created the transport will just sit harmlessly idle.
610      */
611     create_virtio_devices(vbi, pic);
612 
613     vbi->bootinfo.ram_size = machine->ram_size;
614     vbi->bootinfo.kernel_filename = machine->kernel_filename;
615     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
616     vbi->bootinfo.initrd_filename = machine->initrd_filename;
617     vbi->bootinfo.nb_cpus = smp_cpus;
618     vbi->bootinfo.board_id = -1;
619     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
620     vbi->bootinfo.get_dtb = machvirt_dtb;
621     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
622 }
623 
624 static QEMUMachine machvirt_a15_machine = {
625     .name = "virt",
626     .desc = "ARM Virtual Machine",
627     .init = machvirt_init,
628     .max_cpus = 8,
629 };
630 
631 static void machvirt_machine_init(void)
632 {
633     qemu_register_machine(&machvirt_a15_machine);
634 }
635 
636 machine_init(machvirt_machine_init);
637