1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "qapi/error.h" 37 #include "hw/sysbus.h" 38 #include "hw/boards.h" 39 #include "hw/arm/boot.h" 40 #include "hw/arm/primecell.h" 41 #include "hw/arm/virt.h" 42 #include "hw/block/flash.h" 43 #include "hw/vfio/vfio-calxeda-xgmac.h" 44 #include "hw/vfio/vfio-amd-xgbe.h" 45 #include "hw/display/ramfb.h" 46 #include "net/net.h" 47 #include "sysemu/device_tree.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/runstate.h" 50 #include "sysemu/sysemu.h" 51 #include "sysemu/tpm.h" 52 #include "sysemu/kvm.h" 53 #include "hw/loader.h" 54 #include "exec/address-spaces.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/arm/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/irq.h" 67 #include "kvm_arm.h" 68 #include "hw/firmware/smbios.h" 69 #include "qapi/visitor.h" 70 #include "qapi/qapi-visit-common.h" 71 #include "standard-headers/linux/input.h" 72 #include "hw/arm/smmuv3.h" 73 #include "hw/acpi/acpi.h" 74 #include "target/arm/internals.h" 75 #include "hw/mem/pc-dimm.h" 76 #include "hw/mem/nvdimm.h" 77 #include "hw/acpi/generic_event_device.h" 78 #include "hw/virtio/virtio-iommu.h" 79 #include "hw/char/pl011.h" 80 #include "qemu/guest-random.h" 81 82 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 83 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 84 void *data) \ 85 { \ 86 MachineClass *mc = MACHINE_CLASS(oc); \ 87 virt_machine_##major##_##minor##_options(mc); \ 88 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 89 if (latest) { \ 90 mc->alias = "virt"; \ 91 } \ 92 } \ 93 static const TypeInfo machvirt_##major##_##minor##_info = { \ 94 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 95 .parent = TYPE_VIRT_MACHINE, \ 96 .class_init = virt_##major##_##minor##_class_init, \ 97 }; \ 98 static void machvirt_machine_##major##_##minor##_init(void) \ 99 { \ 100 type_register_static(&machvirt_##major##_##minor##_info); \ 101 } \ 102 type_init(machvirt_machine_##major##_##minor##_init); 103 104 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 105 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 106 #define DEFINE_VIRT_MACHINE(major, minor) \ 107 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 108 109 110 /* Number of external interrupt lines to configure the GIC with */ 111 #define NUM_IRQS 256 112 113 #define PLATFORM_BUS_NUM_IRQS 64 114 115 /* Legacy RAM limit in GB (< version 4.0) */ 116 #define LEGACY_RAMLIMIT_GB 255 117 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 118 119 /* Addresses and sizes of our components. 120 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 121 * 128MB..256MB is used for miscellaneous device I/O. 122 * 256MB..1GB is reserved for possible future PCI support (ie where the 123 * PCI memory window will go if we add a PCI host controller). 124 * 1GB and up is RAM (which may happily spill over into the 125 * high memory region beyond 4GB). 126 * This represents a compromise between how much RAM can be given to 127 * a 32 bit VM and leaving space for expansion and in particular for PCI. 128 * Note that devices should generally be placed at multiples of 0x10000, 129 * to accommodate guests using 64K pages. 130 */ 131 static const MemMapEntry base_memmap[] = { 132 /* Space up to 0x8000000 is reserved for a boot ROM */ 133 [VIRT_FLASH] = { 0, 0x08000000 }, 134 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 135 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 136 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 137 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 138 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 139 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 140 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 141 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 142 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 143 /* This redistributor space allows up to 2*64kB*123 CPUs */ 144 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 145 [VIRT_UART] = { 0x09000000, 0x00001000 }, 146 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 147 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 148 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 149 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 150 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 151 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 152 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 153 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 154 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 155 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 156 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 157 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 158 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 159 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 160 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 161 /* Actual RAM size depends on initial RAM and device memory settings */ 162 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 163 }; 164 165 /* 166 * Highmem IO Regions: This memory map is floating, located after the RAM. 167 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 168 * top of the RAM, so that its base get the same alignment as the size, 169 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 170 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 171 * Note the extended_memmap is sized so that it eventually also includes the 172 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 173 * index of base_memmap). 174 */ 175 static MemMapEntry extended_memmap[] = { 176 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 177 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 178 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 179 /* Second PCIe window */ 180 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 181 }; 182 183 static const int a15irqmap[] = { 184 [VIRT_UART] = 1, 185 [VIRT_RTC] = 2, 186 [VIRT_PCIE] = 3, /* ... to 6 */ 187 [VIRT_GPIO] = 7, 188 [VIRT_SECURE_UART] = 8, 189 [VIRT_ACPI_GED] = 9, 190 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 191 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 192 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 193 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 194 }; 195 196 static const char *valid_cpus[] = { 197 ARM_CPU_TYPE_NAME("cortex-a7"), 198 ARM_CPU_TYPE_NAME("cortex-a15"), 199 ARM_CPU_TYPE_NAME("cortex-a53"), 200 ARM_CPU_TYPE_NAME("cortex-a57"), 201 ARM_CPU_TYPE_NAME("cortex-a72"), 202 ARM_CPU_TYPE_NAME("host"), 203 ARM_CPU_TYPE_NAME("max"), 204 }; 205 206 static bool cpu_type_valid(const char *cpu) 207 { 208 int i; 209 210 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 211 if (strcmp(cpu, valid_cpus[i]) == 0) { 212 return true; 213 } 214 } 215 return false; 216 } 217 218 static void create_kaslr_seed(VirtMachineState *vms, const char *node) 219 { 220 Error *err = NULL; 221 uint64_t seed; 222 223 if (qemu_guest_getrandom(&seed, sizeof(seed), &err)) { 224 error_free(err); 225 return; 226 } 227 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed); 228 } 229 230 static void create_fdt(VirtMachineState *vms) 231 { 232 MachineState *ms = MACHINE(vms); 233 int nb_numa_nodes = ms->numa_state->num_nodes; 234 void *fdt = create_device_tree(&vms->fdt_size); 235 236 if (!fdt) { 237 error_report("create_device_tree() failed"); 238 exit(1); 239 } 240 241 vms->fdt = fdt; 242 243 /* Header */ 244 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 245 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 246 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 247 248 /* /chosen must exist for load_dtb to fill in necessary properties later */ 249 qemu_fdt_add_subnode(fdt, "/chosen"); 250 create_kaslr_seed(vms, "/chosen"); 251 252 if (vms->secure) { 253 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 254 create_kaslr_seed(vms, "/secure-chosen"); 255 } 256 257 /* Clock node, for the benefit of the UART. The kernel device tree 258 * binding documentation claims the PL011 node clock properties are 259 * optional but in practice if you omit them the kernel refuses to 260 * probe for the device. 261 */ 262 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 263 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 264 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 268 "clk24mhz"); 269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 270 271 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 272 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 273 uint32_t *matrix = g_malloc0(size); 274 int idx, i, j; 275 276 for (i = 0; i < nb_numa_nodes; i++) { 277 for (j = 0; j < nb_numa_nodes; j++) { 278 idx = (i * nb_numa_nodes + j) * 3; 279 matrix[idx + 0] = cpu_to_be32(i); 280 matrix[idx + 1] = cpu_to_be32(j); 281 matrix[idx + 2] = 282 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 283 } 284 } 285 286 qemu_fdt_add_subnode(fdt, "/distance-map"); 287 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 288 "numa-distance-map-v1"); 289 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 290 matrix, size); 291 g_free(matrix); 292 } 293 } 294 295 static void fdt_add_timer_nodes(const VirtMachineState *vms) 296 { 297 /* On real hardware these interrupts are level-triggered. 298 * On KVM they were edge-triggered before host kernel version 4.4, 299 * and level-triggered afterwards. 300 * On emulated QEMU they are level-triggered. 301 * 302 * Getting the DTB info about them wrong is awkward for some 303 * guest kernels: 304 * pre-4.8 ignore the DT and leave the interrupt configured 305 * with whatever the GIC reset value (or the bootloader) left it at 306 * 4.8 before rc6 honour the incorrect data by programming it back 307 * into the GIC, causing problems 308 * 4.8rc6 and later ignore the DT and always write "level triggered" 309 * into the GIC 310 * 311 * For backwards-compatibility, virt-2.8 and earlier will continue 312 * to say these are edge-triggered, but later machines will report 313 * the correct information. 314 */ 315 ARMCPU *armcpu; 316 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 318 319 if (vmc->claim_edge_triggered_timers) { 320 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 321 } 322 323 if (vms->gic_version == VIRT_GIC_VERSION_2) { 324 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 325 GIC_FDT_IRQ_PPI_CPU_WIDTH, 326 (1 << vms->smp_cpus) - 1); 327 } 328 329 qemu_fdt_add_subnode(vms->fdt, "/timer"); 330 331 armcpu = ARM_CPU(qemu_get_cpu(0)); 332 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 333 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 334 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 335 compat, sizeof(compat)); 336 } else { 337 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 338 "arm,armv7-timer"); 339 } 340 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 341 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 346 } 347 348 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 349 { 350 int cpu; 351 int addr_cells = 1; 352 const MachineState *ms = MACHINE(vms); 353 354 /* 355 * From Documentation/devicetree/bindings/arm/cpus.txt 356 * On ARM v8 64-bit systems value should be set to 2, 357 * that corresponds to the MPIDR_EL1 register size. 358 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 359 * in the system, #address-cells can be set to 1, since 360 * MPIDR_EL1[63:32] bits are not used for CPUs 361 * identification. 362 * 363 * Here we actually don't know whether our system is 32- or 64-bit one. 364 * The simplest way to go is to examine affinity IDs of all our CPUs. If 365 * at least one of them has Aff3 populated, we set #address-cells to 2. 366 */ 367 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 368 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 369 370 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 371 addr_cells = 2; 372 break; 373 } 374 } 375 376 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 377 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 378 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 379 380 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 381 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 382 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 383 CPUState *cs = CPU(armcpu); 384 385 qemu_fdt_add_subnode(vms->fdt, nodename); 386 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 387 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 388 armcpu->dtb_compatible); 389 390 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 391 && vms->smp_cpus > 1) { 392 qemu_fdt_setprop_string(vms->fdt, nodename, 393 "enable-method", "psci"); 394 } 395 396 if (addr_cells == 2) { 397 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 398 armcpu->mp_affinity); 399 } else { 400 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 401 armcpu->mp_affinity); 402 } 403 404 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 405 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 406 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 407 } 408 409 g_free(nodename); 410 } 411 } 412 413 static void fdt_add_its_gic_node(VirtMachineState *vms) 414 { 415 char *nodename; 416 417 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 418 nodename = g_strdup_printf("/intc/its@%" PRIx64, 419 vms->memmap[VIRT_GIC_ITS].base); 420 qemu_fdt_add_subnode(vms->fdt, nodename); 421 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 422 "arm,gic-v3-its"); 423 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 424 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 425 2, vms->memmap[VIRT_GIC_ITS].base, 426 2, vms->memmap[VIRT_GIC_ITS].size); 427 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 428 g_free(nodename); 429 } 430 431 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 432 { 433 char *nodename; 434 435 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 436 vms->memmap[VIRT_GIC_V2M].base); 437 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 438 qemu_fdt_add_subnode(vms->fdt, nodename); 439 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 440 "arm,gic-v2m-frame"); 441 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 442 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 443 2, vms->memmap[VIRT_GIC_V2M].base, 444 2, vms->memmap[VIRT_GIC_V2M].size); 445 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 446 g_free(nodename); 447 } 448 449 static void fdt_add_gic_node(VirtMachineState *vms) 450 { 451 char *nodename; 452 453 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 454 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 455 456 nodename = g_strdup_printf("/intc@%" PRIx64, 457 vms->memmap[VIRT_GIC_DIST].base); 458 qemu_fdt_add_subnode(vms->fdt, nodename); 459 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 460 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 461 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 462 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 463 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 464 if (vms->gic_version == VIRT_GIC_VERSION_3) { 465 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 466 467 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 468 "arm,gic-v3"); 469 470 qemu_fdt_setprop_cell(vms->fdt, nodename, 471 "#redistributor-regions", nb_redist_regions); 472 473 if (nb_redist_regions == 1) { 474 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 475 2, vms->memmap[VIRT_GIC_DIST].base, 476 2, vms->memmap[VIRT_GIC_DIST].size, 477 2, vms->memmap[VIRT_GIC_REDIST].base, 478 2, vms->memmap[VIRT_GIC_REDIST].size); 479 } else { 480 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 481 2, vms->memmap[VIRT_GIC_DIST].base, 482 2, vms->memmap[VIRT_GIC_DIST].size, 483 2, vms->memmap[VIRT_GIC_REDIST].base, 484 2, vms->memmap[VIRT_GIC_REDIST].size, 485 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 486 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 487 } 488 489 if (vms->virt) { 490 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 491 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 492 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 493 } 494 } else { 495 /* 'cortex-a15-gic' means 'GIC v2' */ 496 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 497 "arm,cortex-a15-gic"); 498 if (!vms->virt) { 499 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 500 2, vms->memmap[VIRT_GIC_DIST].base, 501 2, vms->memmap[VIRT_GIC_DIST].size, 502 2, vms->memmap[VIRT_GIC_CPU].base, 503 2, vms->memmap[VIRT_GIC_CPU].size); 504 } else { 505 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 506 2, vms->memmap[VIRT_GIC_DIST].base, 507 2, vms->memmap[VIRT_GIC_DIST].size, 508 2, vms->memmap[VIRT_GIC_CPU].base, 509 2, vms->memmap[VIRT_GIC_CPU].size, 510 2, vms->memmap[VIRT_GIC_HYP].base, 511 2, vms->memmap[VIRT_GIC_HYP].size, 512 2, vms->memmap[VIRT_GIC_VCPU].base, 513 2, vms->memmap[VIRT_GIC_VCPU].size); 514 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 515 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 516 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 517 } 518 } 519 520 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 521 g_free(nodename); 522 } 523 524 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 525 { 526 CPUState *cpu; 527 ARMCPU *armcpu; 528 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 529 530 CPU_FOREACH(cpu) { 531 armcpu = ARM_CPU(cpu); 532 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 533 return; 534 } 535 if (kvm_enabled()) { 536 if (kvm_irqchip_in_kernel()) { 537 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 538 } 539 kvm_arm_pmu_init(cpu); 540 } 541 } 542 543 if (vms->gic_version == VIRT_GIC_VERSION_2) { 544 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 545 GIC_FDT_IRQ_PPI_CPU_WIDTH, 546 (1 << vms->smp_cpus) - 1); 547 } 548 549 armcpu = ARM_CPU(qemu_get_cpu(0)); 550 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 551 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 552 const char compat[] = "arm,armv8-pmuv3"; 553 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 554 compat, sizeof(compat)); 555 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 556 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 557 } 558 } 559 560 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 561 { 562 DeviceState *dev; 563 MachineState *ms = MACHINE(vms); 564 int irq = vms->irqmap[VIRT_ACPI_GED]; 565 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 566 567 if (ms->ram_slots) { 568 event |= ACPI_GED_MEM_HOTPLUG_EVT; 569 } 570 571 if (ms->nvdimms_state->is_enabled) { 572 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 573 } 574 575 dev = qdev_create(NULL, TYPE_ACPI_GED); 576 qdev_prop_set_uint32(dev, "ged-event", event); 577 578 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 579 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 580 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 581 582 qdev_init_nofail(dev); 583 584 return dev; 585 } 586 587 static void create_its(VirtMachineState *vms) 588 { 589 const char *itsclass = its_class_name(); 590 DeviceState *dev; 591 592 if (!itsclass) { 593 /* Do nothing if not supported */ 594 return; 595 } 596 597 dev = qdev_create(NULL, itsclass); 598 599 object_property_set_link(OBJECT(dev), OBJECT(vms->gic), "parent-gicv3", 600 &error_abort); 601 qdev_init_nofail(dev); 602 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 603 604 fdt_add_its_gic_node(vms); 605 } 606 607 static void create_v2m(VirtMachineState *vms) 608 { 609 int i; 610 int irq = vms->irqmap[VIRT_GIC_V2M]; 611 DeviceState *dev; 612 613 dev = qdev_create(NULL, "arm-gicv2m"); 614 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 615 qdev_prop_set_uint32(dev, "base-spi", irq); 616 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 617 qdev_init_nofail(dev); 618 619 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 620 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 621 qdev_get_gpio_in(vms->gic, irq + i)); 622 } 623 624 fdt_add_v2m_gic_node(vms); 625 } 626 627 static void create_gic(VirtMachineState *vms) 628 { 629 MachineState *ms = MACHINE(vms); 630 /* We create a standalone GIC */ 631 SysBusDevice *gicbusdev; 632 const char *gictype; 633 int type = vms->gic_version, i; 634 unsigned int smp_cpus = ms->smp.cpus; 635 uint32_t nb_redist_regions = 0; 636 637 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 638 639 vms->gic = qdev_create(NULL, gictype); 640 qdev_prop_set_uint32(vms->gic, "revision", type); 641 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 642 /* Note that the num-irq property counts both internal and external 643 * interrupts; there are always 32 of the former (mandated by GIC spec). 644 */ 645 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 646 if (!kvm_irqchip_in_kernel()) { 647 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 648 } 649 650 if (type == 3) { 651 uint32_t redist0_capacity = 652 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 653 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 654 655 nb_redist_regions = virt_gicv3_redist_region_count(vms); 656 657 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 658 nb_redist_regions); 659 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 660 661 if (nb_redist_regions == 2) { 662 uint32_t redist1_capacity = 663 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 664 665 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 666 MIN(smp_cpus - redist0_count, redist1_capacity)); 667 } 668 } else { 669 if (!kvm_irqchip_in_kernel()) { 670 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 671 vms->virt); 672 } 673 } 674 qdev_init_nofail(vms->gic); 675 gicbusdev = SYS_BUS_DEVICE(vms->gic); 676 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 677 if (type == 3) { 678 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 679 if (nb_redist_regions == 2) { 680 sysbus_mmio_map(gicbusdev, 2, 681 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 682 } 683 } else { 684 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 685 if (vms->virt) { 686 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 687 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 688 } 689 } 690 691 /* Wire the outputs from each CPU's generic timer and the GICv3 692 * maintenance interrupt signal to the appropriate GIC PPI inputs, 693 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 694 */ 695 for (i = 0; i < smp_cpus; i++) { 696 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 697 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 698 int irq; 699 /* Mapping from the output timer irq lines from the CPU to the 700 * GIC PPI inputs we use for the virt board. 701 */ 702 const int timer_irq[] = { 703 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 704 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 705 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 706 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 707 }; 708 709 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 710 qdev_connect_gpio_out(cpudev, irq, 711 qdev_get_gpio_in(vms->gic, 712 ppibase + timer_irq[irq])); 713 } 714 715 if (type == 3) { 716 qemu_irq irq = qdev_get_gpio_in(vms->gic, 717 ppibase + ARCH_GIC_MAINT_IRQ); 718 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 719 0, irq); 720 } else if (vms->virt) { 721 qemu_irq irq = qdev_get_gpio_in(vms->gic, 722 ppibase + ARCH_GIC_MAINT_IRQ); 723 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 724 } 725 726 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 727 qdev_get_gpio_in(vms->gic, ppibase 728 + VIRTUAL_PMU_IRQ)); 729 730 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 731 sysbus_connect_irq(gicbusdev, i + smp_cpus, 732 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 733 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 734 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 735 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 736 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 737 } 738 739 fdt_add_gic_node(vms); 740 741 if (type == 3 && vms->its) { 742 create_its(vms); 743 } else if (type == 2) { 744 create_v2m(vms); 745 } 746 } 747 748 static void create_uart(const VirtMachineState *vms, int uart, 749 MemoryRegion *mem, Chardev *chr) 750 { 751 char *nodename; 752 hwaddr base = vms->memmap[uart].base; 753 hwaddr size = vms->memmap[uart].size; 754 int irq = vms->irqmap[uart]; 755 const char compat[] = "arm,pl011\0arm,primecell"; 756 const char clocknames[] = "uartclk\0apb_pclk"; 757 DeviceState *dev = qdev_create(NULL, TYPE_PL011); 758 SysBusDevice *s = SYS_BUS_DEVICE(dev); 759 760 qdev_prop_set_chr(dev, "chardev", chr); 761 qdev_init_nofail(dev); 762 memory_region_add_subregion(mem, base, 763 sysbus_mmio_get_region(s, 0)); 764 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 765 766 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 767 qemu_fdt_add_subnode(vms->fdt, nodename); 768 /* Note that we can't use setprop_string because of the embedded NUL */ 769 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 770 compat, sizeof(compat)); 771 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 772 2, base, 2, size); 773 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 774 GIC_FDT_IRQ_TYPE_SPI, irq, 775 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 776 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 777 vms->clock_phandle, vms->clock_phandle); 778 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 779 clocknames, sizeof(clocknames)); 780 781 if (uart == VIRT_UART) { 782 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 783 } else { 784 /* Mark as not usable by the normal world */ 785 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 786 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 787 788 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 789 nodename); 790 } 791 792 g_free(nodename); 793 } 794 795 static void create_rtc(const VirtMachineState *vms) 796 { 797 char *nodename; 798 hwaddr base = vms->memmap[VIRT_RTC].base; 799 hwaddr size = vms->memmap[VIRT_RTC].size; 800 int irq = vms->irqmap[VIRT_RTC]; 801 const char compat[] = "arm,pl031\0arm,primecell"; 802 803 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 804 805 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 806 qemu_fdt_add_subnode(vms->fdt, nodename); 807 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 808 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 809 2, base, 2, size); 810 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 811 GIC_FDT_IRQ_TYPE_SPI, irq, 812 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 813 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 814 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 815 g_free(nodename); 816 } 817 818 static DeviceState *gpio_key_dev; 819 static void virt_powerdown_req(Notifier *n, void *opaque) 820 { 821 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 822 823 if (s->acpi_dev) { 824 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 825 } else { 826 /* use gpio Pin 3 for power button event */ 827 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 828 } 829 } 830 831 static void create_gpio(const VirtMachineState *vms) 832 { 833 char *nodename; 834 DeviceState *pl061_dev; 835 hwaddr base = vms->memmap[VIRT_GPIO].base; 836 hwaddr size = vms->memmap[VIRT_GPIO].size; 837 int irq = vms->irqmap[VIRT_GPIO]; 838 const char compat[] = "arm,pl061\0arm,primecell"; 839 840 pl061_dev = sysbus_create_simple("pl061", base, 841 qdev_get_gpio_in(vms->gic, irq)); 842 843 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 844 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 845 qemu_fdt_add_subnode(vms->fdt, nodename); 846 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 847 2, base, 2, size); 848 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 849 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 850 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 851 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 852 GIC_FDT_IRQ_TYPE_SPI, irq, 853 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 854 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 855 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 856 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 857 858 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 859 qdev_get_gpio_in(pl061_dev, 3)); 860 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 861 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 862 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 863 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 864 865 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 866 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 867 "label", "GPIO Key Poweroff"); 868 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 869 KEY_POWER); 870 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 871 "gpios", phandle, 3, 0); 872 g_free(nodename); 873 } 874 875 static void create_virtio_devices(const VirtMachineState *vms) 876 { 877 int i; 878 hwaddr size = vms->memmap[VIRT_MMIO].size; 879 880 /* We create the transports in forwards order. Since qbus_realize() 881 * prepends (not appends) new child buses, the incrementing loop below will 882 * create a list of virtio-mmio buses with decreasing base addresses. 883 * 884 * When a -device option is processed from the command line, 885 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 886 * order. The upshot is that -device options in increasing command line 887 * order are mapped to virtio-mmio buses with decreasing base addresses. 888 * 889 * When this code was originally written, that arrangement ensured that the 890 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 891 * the first -device on the command line. (The end-to-end order is a 892 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 893 * guest kernel's name-to-address assignment strategy.) 894 * 895 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 896 * the message, if not necessarily the code, of commit 70161ff336. 897 * Therefore the loop now establishes the inverse of the original intent. 898 * 899 * Unfortunately, we can't counteract the kernel change by reversing the 900 * loop; it would break existing command lines. 901 * 902 * In any case, the kernel makes no guarantee about the stability of 903 * enumeration order of virtio devices (as demonstrated by it changing 904 * between kernel versions). For reliable and stable identification 905 * of disks users must use UUIDs or similar mechanisms. 906 */ 907 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 908 int irq = vms->irqmap[VIRT_MMIO] + i; 909 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 910 911 sysbus_create_simple("virtio-mmio", base, 912 qdev_get_gpio_in(vms->gic, irq)); 913 } 914 915 /* We add dtb nodes in reverse order so that they appear in the finished 916 * device tree lowest address first. 917 * 918 * Note that this mapping is independent of the loop above. The previous 919 * loop influences virtio device to virtio transport assignment, whereas 920 * this loop controls how virtio transports are laid out in the dtb. 921 */ 922 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 923 char *nodename; 924 int irq = vms->irqmap[VIRT_MMIO] + i; 925 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 926 927 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 928 qemu_fdt_add_subnode(vms->fdt, nodename); 929 qemu_fdt_setprop_string(vms->fdt, nodename, 930 "compatible", "virtio,mmio"); 931 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 932 2, base, 2, size); 933 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 934 GIC_FDT_IRQ_TYPE_SPI, irq, 935 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 936 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 937 g_free(nodename); 938 } 939 } 940 941 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 942 943 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 944 const char *name, 945 const char *alias_prop_name) 946 { 947 /* 948 * Create a single flash device. We use the same parameters as 949 * the flash devices on the Versatile Express board. 950 */ 951 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01); 952 953 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 954 qdev_prop_set_uint8(dev, "width", 4); 955 qdev_prop_set_uint8(dev, "device-width", 2); 956 qdev_prop_set_bit(dev, "big-endian", false); 957 qdev_prop_set_uint16(dev, "id0", 0x89); 958 qdev_prop_set_uint16(dev, "id1", 0x18); 959 qdev_prop_set_uint16(dev, "id2", 0x00); 960 qdev_prop_set_uint16(dev, "id3", 0x00); 961 qdev_prop_set_string(dev, "name", name); 962 object_property_add_child(OBJECT(vms), name, OBJECT(dev), 963 &error_abort); 964 object_property_add_alias(OBJECT(vms), alias_prop_name, 965 OBJECT(dev), "drive", &error_abort); 966 return PFLASH_CFI01(dev); 967 } 968 969 static void virt_flash_create(VirtMachineState *vms) 970 { 971 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 972 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 973 } 974 975 static void virt_flash_map1(PFlashCFI01 *flash, 976 hwaddr base, hwaddr size, 977 MemoryRegion *sysmem) 978 { 979 DeviceState *dev = DEVICE(flash); 980 981 assert(size % VIRT_FLASH_SECTOR_SIZE == 0); 982 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 983 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 984 qdev_init_nofail(dev); 985 986 memory_region_add_subregion(sysmem, base, 987 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 988 0)); 989 } 990 991 static void virt_flash_map(VirtMachineState *vms, 992 MemoryRegion *sysmem, 993 MemoryRegion *secure_sysmem) 994 { 995 /* 996 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 997 * sysmem is the system memory space. secure_sysmem is the secure view 998 * of the system, and the first flash device should be made visible only 999 * there. The second flash device is visible to both secure and nonsecure. 1000 * If sysmem == secure_sysmem this means there is no separate Secure 1001 * address space and both flash devices are generally visible. 1002 */ 1003 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1004 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1005 1006 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1007 secure_sysmem); 1008 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1009 sysmem); 1010 } 1011 1012 static void virt_flash_fdt(VirtMachineState *vms, 1013 MemoryRegion *sysmem, 1014 MemoryRegion *secure_sysmem) 1015 { 1016 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1017 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1018 char *nodename; 1019 1020 if (sysmem == secure_sysmem) { 1021 /* Report both flash devices as a single node in the DT */ 1022 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1023 qemu_fdt_add_subnode(vms->fdt, nodename); 1024 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1025 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1026 2, flashbase, 2, flashsize, 1027 2, flashbase + flashsize, 2, flashsize); 1028 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1029 g_free(nodename); 1030 } else { 1031 /* 1032 * Report the devices as separate nodes so we can mark one as 1033 * only visible to the secure world. 1034 */ 1035 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1036 qemu_fdt_add_subnode(vms->fdt, nodename); 1037 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1038 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1039 2, flashbase, 2, flashsize); 1040 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1041 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1042 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1043 g_free(nodename); 1044 1045 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1046 qemu_fdt_add_subnode(vms->fdt, nodename); 1047 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1048 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1049 2, flashbase + flashsize, 2, flashsize); 1050 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1051 g_free(nodename); 1052 } 1053 } 1054 1055 static bool virt_firmware_init(VirtMachineState *vms, 1056 MemoryRegion *sysmem, 1057 MemoryRegion *secure_sysmem) 1058 { 1059 int i; 1060 BlockBackend *pflash_blk0; 1061 1062 /* Map legacy -drive if=pflash to machine properties */ 1063 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1064 pflash_cfi01_legacy_drive(vms->flash[i], 1065 drive_get(IF_PFLASH, 0, i)); 1066 } 1067 1068 virt_flash_map(vms, sysmem, secure_sysmem); 1069 1070 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1071 1072 if (bios_name) { 1073 char *fname; 1074 MemoryRegion *mr; 1075 int image_size; 1076 1077 if (pflash_blk0) { 1078 error_report("The contents of the first flash device may be " 1079 "specified with -bios or with -drive if=pflash... " 1080 "but you cannot use both options at once"); 1081 exit(1); 1082 } 1083 1084 /* Fall back to -bios */ 1085 1086 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1087 if (!fname) { 1088 error_report("Could not find ROM image '%s'", bios_name); 1089 exit(1); 1090 } 1091 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1092 image_size = load_image_mr(fname, mr); 1093 g_free(fname); 1094 if (image_size < 0) { 1095 error_report("Could not load ROM image '%s'", bios_name); 1096 exit(1); 1097 } 1098 } 1099 1100 return pflash_blk0 || bios_name; 1101 } 1102 1103 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1104 { 1105 MachineState *ms = MACHINE(vms); 1106 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1107 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1108 FWCfgState *fw_cfg; 1109 char *nodename; 1110 1111 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1112 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1113 1114 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1115 qemu_fdt_add_subnode(vms->fdt, nodename); 1116 qemu_fdt_setprop_string(vms->fdt, nodename, 1117 "compatible", "qemu,fw-cfg-mmio"); 1118 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1119 2, base, 2, size); 1120 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1121 g_free(nodename); 1122 return fw_cfg; 1123 } 1124 1125 static void create_pcie_irq_map(const VirtMachineState *vms, 1126 uint32_t gic_phandle, 1127 int first_irq, const char *nodename) 1128 { 1129 int devfn, pin; 1130 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1131 uint32_t *irq_map = full_irq_map; 1132 1133 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1134 for (pin = 0; pin < 4; pin++) { 1135 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1136 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1137 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1138 int i; 1139 1140 uint32_t map[] = { 1141 devfn << 8, 0, 0, /* devfn */ 1142 pin + 1, /* PCI pin */ 1143 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1144 1145 /* Convert map to big endian */ 1146 for (i = 0; i < 10; i++) { 1147 irq_map[i] = cpu_to_be32(map[i]); 1148 } 1149 irq_map += 10; 1150 } 1151 } 1152 1153 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1154 full_irq_map, sizeof(full_irq_map)); 1155 1156 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1157 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1158 0x7 /* PCI irq */); 1159 } 1160 1161 static void create_smmu(const VirtMachineState *vms, 1162 PCIBus *bus) 1163 { 1164 char *node; 1165 const char compat[] = "arm,smmu-v3"; 1166 int irq = vms->irqmap[VIRT_SMMU]; 1167 int i; 1168 hwaddr base = vms->memmap[VIRT_SMMU].base; 1169 hwaddr size = vms->memmap[VIRT_SMMU].size; 1170 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1171 DeviceState *dev; 1172 1173 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1174 return; 1175 } 1176 1177 dev = qdev_create(NULL, "arm-smmuv3"); 1178 1179 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1180 &error_abort); 1181 qdev_init_nofail(dev); 1182 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1183 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1184 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1185 qdev_get_gpio_in(vms->gic, irq + i)); 1186 } 1187 1188 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1189 qemu_fdt_add_subnode(vms->fdt, node); 1190 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1191 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1192 1193 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1194 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1195 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1196 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1197 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1198 1199 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1200 sizeof(irq_names)); 1201 1202 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1203 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1204 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1205 1206 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1207 1208 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1209 g_free(node); 1210 } 1211 1212 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1213 { 1214 const char compat[] = "virtio,pci-iommu"; 1215 uint16_t bdf = vms->virtio_iommu_bdf; 1216 char *node; 1217 1218 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1219 1220 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1221 qemu_fdt_add_subnode(vms->fdt, node); 1222 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1223 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 1224 1, bdf << 8, 1, 0, 1, 0, 1225 1, 0, 1, 0); 1226 1227 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1228 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1229 g_free(node); 1230 1231 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map", 1232 0x0, vms->iommu_phandle, 0x0, bdf, 1233 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1234 } 1235 1236 static void create_pcie(VirtMachineState *vms) 1237 { 1238 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1239 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1240 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1241 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1242 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1243 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1244 hwaddr base_ecam, size_ecam; 1245 hwaddr base = base_mmio; 1246 int nr_pcie_buses; 1247 int irq = vms->irqmap[VIRT_PCIE]; 1248 MemoryRegion *mmio_alias; 1249 MemoryRegion *mmio_reg; 1250 MemoryRegion *ecam_alias; 1251 MemoryRegion *ecam_reg; 1252 DeviceState *dev; 1253 char *nodename; 1254 int i, ecam_id; 1255 PCIHostState *pci; 1256 1257 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1258 qdev_init_nofail(dev); 1259 1260 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1261 base_ecam = vms->memmap[ecam_id].base; 1262 size_ecam = vms->memmap[ecam_id].size; 1263 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1264 /* Map only the first size_ecam bytes of ECAM space */ 1265 ecam_alias = g_new0(MemoryRegion, 1); 1266 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1267 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1268 ecam_reg, 0, size_ecam); 1269 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1270 1271 /* Map the MMIO window into system address space so as to expose 1272 * the section of PCI MMIO space which starts at the same base address 1273 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1274 * the window). 1275 */ 1276 mmio_alias = g_new0(MemoryRegion, 1); 1277 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1278 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1279 mmio_reg, base_mmio, size_mmio); 1280 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1281 1282 if (vms->highmem) { 1283 /* Map high MMIO space */ 1284 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1285 1286 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1287 mmio_reg, base_mmio_high, size_mmio_high); 1288 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1289 high_mmio_alias); 1290 } 1291 1292 /* Map IO port space */ 1293 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1294 1295 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1296 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1297 qdev_get_gpio_in(vms->gic, irq + i)); 1298 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1299 } 1300 1301 pci = PCI_HOST_BRIDGE(dev); 1302 if (pci->bus) { 1303 for (i = 0; i < nb_nics; i++) { 1304 NICInfo *nd = &nd_table[i]; 1305 1306 if (!nd->model) { 1307 nd->model = g_strdup("virtio"); 1308 } 1309 1310 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1311 } 1312 } 1313 1314 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1315 qemu_fdt_add_subnode(vms->fdt, nodename); 1316 qemu_fdt_setprop_string(vms->fdt, nodename, 1317 "compatible", "pci-host-ecam-generic"); 1318 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1319 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1320 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1321 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1322 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1323 nr_pcie_buses - 1); 1324 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1325 1326 if (vms->msi_phandle) { 1327 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1328 vms->msi_phandle); 1329 } 1330 1331 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1332 2, base_ecam, 2, size_ecam); 1333 1334 if (vms->highmem) { 1335 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1336 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1337 2, base_pio, 2, size_pio, 1338 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1339 2, base_mmio, 2, size_mmio, 1340 1, FDT_PCI_RANGE_MMIO_64BIT, 1341 2, base_mmio_high, 1342 2, base_mmio_high, 2, size_mmio_high); 1343 } else { 1344 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1345 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1346 2, base_pio, 2, size_pio, 1347 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1348 2, base_mmio, 2, size_mmio); 1349 } 1350 1351 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1352 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1353 1354 if (vms->iommu) { 1355 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1356 1357 switch (vms->iommu) { 1358 case VIRT_IOMMU_SMMUV3: 1359 create_smmu(vms, pci->bus); 1360 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1361 0x0, vms->iommu_phandle, 0x0, 0x10000); 1362 break; 1363 default: 1364 g_assert_not_reached(); 1365 } 1366 } 1367 } 1368 1369 static void create_platform_bus(VirtMachineState *vms) 1370 { 1371 DeviceState *dev; 1372 SysBusDevice *s; 1373 int i; 1374 MemoryRegion *sysmem = get_system_memory(); 1375 1376 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1377 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1378 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1379 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1380 qdev_init_nofail(dev); 1381 vms->platform_bus_dev = dev; 1382 1383 s = SYS_BUS_DEVICE(dev); 1384 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1385 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1386 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1387 } 1388 1389 memory_region_add_subregion(sysmem, 1390 vms->memmap[VIRT_PLATFORM_BUS].base, 1391 sysbus_mmio_get_region(s, 0)); 1392 } 1393 1394 static void create_secure_ram(VirtMachineState *vms, 1395 MemoryRegion *secure_sysmem) 1396 { 1397 MemoryRegion *secram = g_new(MemoryRegion, 1); 1398 char *nodename; 1399 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1400 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1401 1402 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1403 &error_fatal); 1404 memory_region_add_subregion(secure_sysmem, base, secram); 1405 1406 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1407 qemu_fdt_add_subnode(vms->fdt, nodename); 1408 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1409 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1410 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1411 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1412 1413 g_free(nodename); 1414 } 1415 1416 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1417 { 1418 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1419 bootinfo); 1420 1421 *fdt_size = board->fdt_size; 1422 return board->fdt; 1423 } 1424 1425 static void virt_build_smbios(VirtMachineState *vms) 1426 { 1427 MachineClass *mc = MACHINE_GET_CLASS(vms); 1428 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1429 uint8_t *smbios_tables, *smbios_anchor; 1430 size_t smbios_tables_len, smbios_anchor_len; 1431 const char *product = "QEMU Virtual Machine"; 1432 1433 if (kvm_enabled()) { 1434 product = "KVM Virtual Machine"; 1435 } 1436 1437 smbios_set_defaults("QEMU", product, 1438 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1439 true, SMBIOS_ENTRY_POINT_30); 1440 1441 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1442 &smbios_anchor, &smbios_anchor_len); 1443 1444 if (smbios_anchor) { 1445 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1446 smbios_tables, smbios_tables_len); 1447 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1448 smbios_anchor, smbios_anchor_len); 1449 } 1450 } 1451 1452 static 1453 void virt_machine_done(Notifier *notifier, void *data) 1454 { 1455 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1456 machine_done); 1457 MachineState *ms = MACHINE(vms); 1458 ARMCPU *cpu = ARM_CPU(first_cpu); 1459 struct arm_boot_info *info = &vms->bootinfo; 1460 AddressSpace *as = arm_boot_address_space(cpu, info); 1461 1462 /* 1463 * If the user provided a dtb, we assume the dynamic sysbus nodes 1464 * already are integrated there. This corresponds to a use case where 1465 * the dynamic sysbus nodes are complex and their generation is not yet 1466 * supported. In that case the user can take charge of the guest dt 1467 * while qemu takes charge of the qom stuff. 1468 */ 1469 if (info->dtb_filename == NULL) { 1470 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1471 vms->memmap[VIRT_PLATFORM_BUS].base, 1472 vms->memmap[VIRT_PLATFORM_BUS].size, 1473 vms->irqmap[VIRT_PLATFORM_BUS]); 1474 } 1475 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1476 exit(1); 1477 } 1478 1479 virt_acpi_setup(vms); 1480 virt_build_smbios(vms); 1481 } 1482 1483 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1484 { 1485 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1486 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1487 1488 if (!vmc->disallow_affinity_adjustment) { 1489 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1490 * GIC's target-list limitations. 32-bit KVM hosts currently 1491 * always create clusters of 4 CPUs, but that is expected to 1492 * change when they gain support for gicv3. When KVM is enabled 1493 * it will override the changes we make here, therefore our 1494 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1495 * and to improve SGI efficiency. 1496 */ 1497 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1498 clustersz = GICV3_TARGETLIST_BITS; 1499 } else { 1500 clustersz = GIC_TARGETLIST_BITS; 1501 } 1502 } 1503 return arm_cpu_mp_affinity(idx, clustersz); 1504 } 1505 1506 static void virt_set_memmap(VirtMachineState *vms) 1507 { 1508 MachineState *ms = MACHINE(vms); 1509 hwaddr base, device_memory_base, device_memory_size; 1510 int i; 1511 1512 vms->memmap = extended_memmap; 1513 1514 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1515 vms->memmap[i] = base_memmap[i]; 1516 } 1517 1518 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1519 error_report("unsupported number of memory slots: %"PRIu64, 1520 ms->ram_slots); 1521 exit(EXIT_FAILURE); 1522 } 1523 1524 /* 1525 * We compute the base of the high IO region depending on the 1526 * amount of initial and device memory. The device memory start/size 1527 * is aligned on 1GiB. We never put the high IO region below 256GiB 1528 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1529 * The device region size assumes 1GiB page max alignment per slot. 1530 */ 1531 device_memory_base = 1532 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1533 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1534 1535 /* Base address of the high IO region */ 1536 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1537 if (base < device_memory_base) { 1538 error_report("maxmem/slots too huge"); 1539 exit(EXIT_FAILURE); 1540 } 1541 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1542 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1543 } 1544 1545 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1546 hwaddr size = extended_memmap[i].size; 1547 1548 base = ROUND_UP(base, size); 1549 vms->memmap[i].base = base; 1550 vms->memmap[i].size = size; 1551 base += size; 1552 } 1553 vms->highest_gpa = base - 1; 1554 if (device_memory_size > 0) { 1555 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1556 ms->device_memory->base = device_memory_base; 1557 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1558 "device-memory", device_memory_size); 1559 } 1560 } 1561 1562 /* 1563 * finalize_gic_version - Determines the final gic_version 1564 * according to the gic-version property 1565 * 1566 * Default GIC type is v2 1567 */ 1568 static void finalize_gic_version(VirtMachineState *vms) 1569 { 1570 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1571 1572 if (kvm_enabled()) { 1573 int probe_bitmap; 1574 1575 if (!kvm_irqchip_in_kernel()) { 1576 switch (vms->gic_version) { 1577 case VIRT_GIC_VERSION_HOST: 1578 warn_report( 1579 "gic-version=host not relevant with kernel-irqchip=off " 1580 "as only userspace GICv2 is supported. Using v2 ..."); 1581 return; 1582 case VIRT_GIC_VERSION_MAX: 1583 case VIRT_GIC_VERSION_NOSEL: 1584 vms->gic_version = VIRT_GIC_VERSION_2; 1585 return; 1586 case VIRT_GIC_VERSION_2: 1587 return; 1588 case VIRT_GIC_VERSION_3: 1589 error_report( 1590 "gic-version=3 is not supported with kernel-irqchip=off"); 1591 exit(1); 1592 } 1593 } 1594 1595 probe_bitmap = kvm_arm_vgic_probe(); 1596 if (!probe_bitmap) { 1597 error_report("Unable to determine GIC version supported by host"); 1598 exit(1); 1599 } 1600 1601 switch (vms->gic_version) { 1602 case VIRT_GIC_VERSION_HOST: 1603 case VIRT_GIC_VERSION_MAX: 1604 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1605 vms->gic_version = VIRT_GIC_VERSION_3; 1606 } else { 1607 vms->gic_version = VIRT_GIC_VERSION_2; 1608 } 1609 return; 1610 case VIRT_GIC_VERSION_NOSEL: 1611 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1612 vms->gic_version = VIRT_GIC_VERSION_2; 1613 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1614 /* 1615 * in case the host does not support v2 in-kernel emulation or 1616 * the end-user requested more than 8 VCPUs we now default 1617 * to v3. In any case defaulting to v2 would be broken. 1618 */ 1619 vms->gic_version = VIRT_GIC_VERSION_3; 1620 } else if (max_cpus > GIC_NCPU) { 1621 error_report("host only supports in-kernel GICv2 emulation " 1622 "but more than 8 vcpus are requested"); 1623 exit(1); 1624 } 1625 break; 1626 case VIRT_GIC_VERSION_2: 1627 case VIRT_GIC_VERSION_3: 1628 break; 1629 } 1630 1631 /* Check chosen version is effectively supported by the host */ 1632 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1633 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1634 error_report("host does not support in-kernel GICv2 emulation"); 1635 exit(1); 1636 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1637 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1638 error_report("host does not support in-kernel GICv3 emulation"); 1639 exit(1); 1640 } 1641 return; 1642 } 1643 1644 /* TCG mode */ 1645 switch (vms->gic_version) { 1646 case VIRT_GIC_VERSION_NOSEL: 1647 vms->gic_version = VIRT_GIC_VERSION_2; 1648 break; 1649 case VIRT_GIC_VERSION_MAX: 1650 vms->gic_version = VIRT_GIC_VERSION_3; 1651 break; 1652 case VIRT_GIC_VERSION_HOST: 1653 error_report("gic-version=host requires KVM"); 1654 exit(1); 1655 case VIRT_GIC_VERSION_2: 1656 case VIRT_GIC_VERSION_3: 1657 break; 1658 } 1659 } 1660 1661 static void machvirt_init(MachineState *machine) 1662 { 1663 VirtMachineState *vms = VIRT_MACHINE(machine); 1664 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1665 MachineClass *mc = MACHINE_GET_CLASS(machine); 1666 const CPUArchIdList *possible_cpus; 1667 MemoryRegion *sysmem = get_system_memory(); 1668 MemoryRegion *secure_sysmem = NULL; 1669 int n, virt_max_cpus; 1670 bool firmware_loaded; 1671 bool aarch64 = true; 1672 bool has_ged = !vmc->no_ged; 1673 unsigned int smp_cpus = machine->smp.cpus; 1674 unsigned int max_cpus = machine->smp.max_cpus; 1675 1676 /* 1677 * In accelerated mode, the memory map is computed earlier in kvm_type() 1678 * to create a VM with the right number of IPA bits. 1679 */ 1680 if (!vms->memmap) { 1681 virt_set_memmap(vms); 1682 } 1683 1684 /* We can probe only here because during property set 1685 * KVM is not available yet 1686 */ 1687 finalize_gic_version(vms); 1688 1689 if (!cpu_type_valid(machine->cpu_type)) { 1690 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1691 exit(1); 1692 } 1693 1694 if (vms->secure) { 1695 if (kvm_enabled()) { 1696 error_report("mach-virt: KVM does not support Security extensions"); 1697 exit(1); 1698 } 1699 1700 /* 1701 * The Secure view of the world is the same as the NonSecure, 1702 * but with a few extra devices. Create it as a container region 1703 * containing the system memory at low priority; any secure-only 1704 * devices go in at higher priority and take precedence. 1705 */ 1706 secure_sysmem = g_new(MemoryRegion, 1); 1707 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1708 UINT64_MAX); 1709 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1710 } 1711 1712 firmware_loaded = virt_firmware_init(vms, sysmem, 1713 secure_sysmem ?: sysmem); 1714 1715 /* If we have an EL3 boot ROM then the assumption is that it will 1716 * implement PSCI itself, so disable QEMU's internal implementation 1717 * so it doesn't get in the way. Instead of starting secondary 1718 * CPUs in PSCI powerdown state we will start them all running and 1719 * let the boot ROM sort them out. 1720 * The usual case is that we do use QEMU's PSCI implementation; 1721 * if the guest has EL2 then we will use SMC as the conduit, 1722 * and otherwise we will use HVC (for backwards compatibility and 1723 * because if we're using KVM then we must use HVC). 1724 */ 1725 if (vms->secure && firmware_loaded) { 1726 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1727 } else if (vms->virt) { 1728 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1729 } else { 1730 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1731 } 1732 1733 /* The maximum number of CPUs depends on the GIC version, or on how 1734 * many redistributors we can fit into the memory map. 1735 */ 1736 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1737 virt_max_cpus = 1738 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1739 virt_max_cpus += 1740 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1741 } else { 1742 virt_max_cpus = GIC_NCPU; 1743 } 1744 1745 if (max_cpus > virt_max_cpus) { 1746 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1747 "supported by machine 'mach-virt' (%d)", 1748 max_cpus, virt_max_cpus); 1749 exit(1); 1750 } 1751 1752 vms->smp_cpus = smp_cpus; 1753 1754 if (vms->virt && kvm_enabled()) { 1755 error_report("mach-virt: KVM does not support providing " 1756 "Virtualization extensions to the guest CPU"); 1757 exit(1); 1758 } 1759 1760 create_fdt(vms); 1761 1762 possible_cpus = mc->possible_cpu_arch_ids(machine); 1763 for (n = 0; n < possible_cpus->len; n++) { 1764 Object *cpuobj; 1765 CPUState *cs; 1766 1767 if (n >= smp_cpus) { 1768 break; 1769 } 1770 1771 cpuobj = object_new(possible_cpus->cpus[n].type); 1772 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1773 "mp-affinity", NULL); 1774 1775 cs = CPU(cpuobj); 1776 cs->cpu_index = n; 1777 1778 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1779 &error_fatal); 1780 1781 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1782 1783 if (!vms->secure) { 1784 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1785 } 1786 1787 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1788 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1789 } 1790 1791 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1792 object_property_set_int(cpuobj, vms->psci_conduit, 1793 "psci-conduit", NULL); 1794 1795 /* Secondary CPUs start in PSCI powered-down state */ 1796 if (n > 0) { 1797 object_property_set_bool(cpuobj, true, 1798 "start-powered-off", NULL); 1799 } 1800 } 1801 1802 if (vmc->kvm_no_adjvtime && 1803 object_property_find(cpuobj, "kvm-no-adjvtime", NULL)) { 1804 object_property_set_bool(cpuobj, true, "kvm-no-adjvtime", NULL); 1805 } 1806 1807 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1808 object_property_set_bool(cpuobj, false, "pmu", NULL); 1809 } 1810 1811 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1812 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1813 "reset-cbar", &error_abort); 1814 } 1815 1816 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1817 &error_abort); 1818 if (vms->secure) { 1819 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1820 "secure-memory", &error_abort); 1821 } 1822 1823 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1824 object_unref(cpuobj); 1825 } 1826 fdt_add_timer_nodes(vms); 1827 fdt_add_cpu_nodes(vms); 1828 1829 if (!kvm_enabled()) { 1830 ARMCPU *cpu = ARM_CPU(first_cpu); 1831 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL); 1832 1833 if (aarch64 && vms->highmem) { 1834 int requested_pa_size, pamax = arm_pamax(cpu); 1835 1836 requested_pa_size = 64 - clz64(vms->highest_gpa); 1837 if (pamax < requested_pa_size) { 1838 error_report("VCPU supports less PA bits (%d) than requested " 1839 "by the memory map (%d)", pamax, requested_pa_size); 1840 exit(1); 1841 } 1842 } 1843 } 1844 1845 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 1846 machine->ram); 1847 if (machine->device_memory) { 1848 memory_region_add_subregion(sysmem, machine->device_memory->base, 1849 &machine->device_memory->mr); 1850 } 1851 1852 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 1853 1854 create_gic(vms); 1855 1856 fdt_add_pmu_nodes(vms); 1857 1858 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 1859 1860 if (vms->secure) { 1861 create_secure_ram(vms, secure_sysmem); 1862 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1863 } 1864 1865 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1866 1867 create_rtc(vms); 1868 1869 create_pcie(vms); 1870 1871 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 1872 vms->acpi_dev = create_acpi_ged(vms); 1873 } else { 1874 create_gpio(vms); 1875 } 1876 1877 /* connect powerdown request */ 1878 vms->powerdown_notifier.notify = virt_powerdown_req; 1879 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 1880 1881 /* Create mmio transports, so the user can create virtio backends 1882 * (which will be automatically plugged in to the transports). If 1883 * no backend is created the transport will just sit harmlessly idle. 1884 */ 1885 create_virtio_devices(vms); 1886 1887 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1888 rom_set_fw(vms->fw_cfg); 1889 1890 create_platform_bus(vms); 1891 1892 if (machine->nvdimms_state->is_enabled) { 1893 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 1894 .space_id = AML_AS_SYSTEM_MEMORY, 1895 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 1896 .bit_width = NVDIMM_ACPI_IO_LEN << 3 1897 }; 1898 1899 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 1900 arm_virt_nvdimm_acpi_dsmio, 1901 vms->fw_cfg, OBJECT(vms)); 1902 } 1903 1904 vms->bootinfo.ram_size = machine->ram_size; 1905 vms->bootinfo.nb_cpus = smp_cpus; 1906 vms->bootinfo.board_id = -1; 1907 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1908 vms->bootinfo.get_dtb = machvirt_dtb; 1909 vms->bootinfo.skip_dtb_autoload = true; 1910 vms->bootinfo.firmware_loaded = firmware_loaded; 1911 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 1912 1913 vms->machine_done.notify = virt_machine_done; 1914 qemu_add_machine_init_done_notifier(&vms->machine_done); 1915 } 1916 1917 static bool virt_get_secure(Object *obj, Error **errp) 1918 { 1919 VirtMachineState *vms = VIRT_MACHINE(obj); 1920 1921 return vms->secure; 1922 } 1923 1924 static void virt_set_secure(Object *obj, bool value, Error **errp) 1925 { 1926 VirtMachineState *vms = VIRT_MACHINE(obj); 1927 1928 vms->secure = value; 1929 } 1930 1931 static bool virt_get_virt(Object *obj, Error **errp) 1932 { 1933 VirtMachineState *vms = VIRT_MACHINE(obj); 1934 1935 return vms->virt; 1936 } 1937 1938 static void virt_set_virt(Object *obj, bool value, Error **errp) 1939 { 1940 VirtMachineState *vms = VIRT_MACHINE(obj); 1941 1942 vms->virt = value; 1943 } 1944 1945 static bool virt_get_highmem(Object *obj, Error **errp) 1946 { 1947 VirtMachineState *vms = VIRT_MACHINE(obj); 1948 1949 return vms->highmem; 1950 } 1951 1952 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1953 { 1954 VirtMachineState *vms = VIRT_MACHINE(obj); 1955 1956 vms->highmem = value; 1957 } 1958 1959 static bool virt_get_its(Object *obj, Error **errp) 1960 { 1961 VirtMachineState *vms = VIRT_MACHINE(obj); 1962 1963 return vms->its; 1964 } 1965 1966 static void virt_set_its(Object *obj, bool value, Error **errp) 1967 { 1968 VirtMachineState *vms = VIRT_MACHINE(obj); 1969 1970 vms->its = value; 1971 } 1972 1973 bool virt_is_acpi_enabled(VirtMachineState *vms) 1974 { 1975 if (vms->acpi == ON_OFF_AUTO_OFF) { 1976 return false; 1977 } 1978 return true; 1979 } 1980 1981 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 1982 void *opaque, Error **errp) 1983 { 1984 VirtMachineState *vms = VIRT_MACHINE(obj); 1985 OnOffAuto acpi = vms->acpi; 1986 1987 visit_type_OnOffAuto(v, name, &acpi, errp); 1988 } 1989 1990 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 1991 void *opaque, Error **errp) 1992 { 1993 VirtMachineState *vms = VIRT_MACHINE(obj); 1994 1995 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 1996 } 1997 1998 static char *virt_get_gic_version(Object *obj, Error **errp) 1999 { 2000 VirtMachineState *vms = VIRT_MACHINE(obj); 2001 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2002 2003 return g_strdup(val); 2004 } 2005 2006 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2007 { 2008 VirtMachineState *vms = VIRT_MACHINE(obj); 2009 2010 if (!strcmp(value, "3")) { 2011 vms->gic_version = VIRT_GIC_VERSION_3; 2012 } else if (!strcmp(value, "2")) { 2013 vms->gic_version = VIRT_GIC_VERSION_2; 2014 } else if (!strcmp(value, "host")) { 2015 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2016 } else if (!strcmp(value, "max")) { 2017 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2018 } else { 2019 error_setg(errp, "Invalid gic-version value"); 2020 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2021 } 2022 } 2023 2024 static char *virt_get_iommu(Object *obj, Error **errp) 2025 { 2026 VirtMachineState *vms = VIRT_MACHINE(obj); 2027 2028 switch (vms->iommu) { 2029 case VIRT_IOMMU_NONE: 2030 return g_strdup("none"); 2031 case VIRT_IOMMU_SMMUV3: 2032 return g_strdup("smmuv3"); 2033 default: 2034 g_assert_not_reached(); 2035 } 2036 } 2037 2038 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2039 { 2040 VirtMachineState *vms = VIRT_MACHINE(obj); 2041 2042 if (!strcmp(value, "smmuv3")) { 2043 vms->iommu = VIRT_IOMMU_SMMUV3; 2044 } else if (!strcmp(value, "none")) { 2045 vms->iommu = VIRT_IOMMU_NONE; 2046 } else { 2047 error_setg(errp, "Invalid iommu value"); 2048 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2049 } 2050 } 2051 2052 static CpuInstanceProperties 2053 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2054 { 2055 MachineClass *mc = MACHINE_GET_CLASS(ms); 2056 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2057 2058 assert(cpu_index < possible_cpus->len); 2059 return possible_cpus->cpus[cpu_index].props; 2060 } 2061 2062 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2063 { 2064 return idx % ms->numa_state->num_nodes; 2065 } 2066 2067 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2068 { 2069 int n; 2070 unsigned int max_cpus = ms->smp.max_cpus; 2071 VirtMachineState *vms = VIRT_MACHINE(ms); 2072 2073 if (ms->possible_cpus) { 2074 assert(ms->possible_cpus->len == max_cpus); 2075 return ms->possible_cpus; 2076 } 2077 2078 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2079 sizeof(CPUArchId) * max_cpus); 2080 ms->possible_cpus->len = max_cpus; 2081 for (n = 0; n < ms->possible_cpus->len; n++) { 2082 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2083 ms->possible_cpus->cpus[n].arch_id = 2084 virt_cpu_mp_affinity(vms, n); 2085 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2086 ms->possible_cpus->cpus[n].props.thread_id = n; 2087 } 2088 return ms->possible_cpus; 2089 } 2090 2091 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2092 Error **errp) 2093 { 2094 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2095 const MachineState *ms = MACHINE(hotplug_dev); 2096 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2097 2098 if (!vms->acpi_dev) { 2099 error_setg(errp, 2100 "memory hotplug is not enabled: missing acpi-ged device"); 2101 return; 2102 } 2103 2104 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2105 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2106 return; 2107 } 2108 2109 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2110 } 2111 2112 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2113 DeviceState *dev, Error **errp) 2114 { 2115 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2116 MachineState *ms = MACHINE(hotplug_dev); 2117 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2118 Error *local_err = NULL; 2119 2120 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err); 2121 if (local_err) { 2122 goto out; 2123 } 2124 2125 if (is_nvdimm) { 2126 nvdimm_plug(ms->nvdimms_state); 2127 } 2128 2129 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2130 dev, &error_abort); 2131 2132 out: 2133 error_propagate(errp, local_err); 2134 } 2135 2136 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2137 DeviceState *dev, Error **errp) 2138 { 2139 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2140 virt_memory_pre_plug(hotplug_dev, dev, errp); 2141 } 2142 } 2143 2144 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2145 DeviceState *dev, Error **errp) 2146 { 2147 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2148 2149 if (vms->platform_bus_dev) { 2150 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 2151 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2152 SYS_BUS_DEVICE(dev)); 2153 } 2154 } 2155 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2156 virt_memory_plug(hotplug_dev, dev, errp); 2157 } 2158 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2159 PCIDevice *pdev = PCI_DEVICE(dev); 2160 2161 vms->iommu = VIRT_IOMMU_VIRTIO; 2162 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2163 create_virtio_iommu_dt_bindings(vms); 2164 } 2165 } 2166 2167 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2168 DeviceState *dev, Error **errp) 2169 { 2170 error_setg(errp, "device unplug request for unsupported device" 2171 " type: %s", object_get_typename(OBJECT(dev))); 2172 } 2173 2174 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2175 DeviceState *dev) 2176 { 2177 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) || 2178 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2179 return HOTPLUG_HANDLER(machine); 2180 } 2181 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2182 VirtMachineState *vms = VIRT_MACHINE(machine); 2183 2184 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2185 return HOTPLUG_HANDLER(machine); 2186 } 2187 } 2188 return NULL; 2189 } 2190 2191 /* 2192 * for arm64 kvm_type [7-0] encodes the requested number of bits 2193 * in the IPA address space 2194 */ 2195 static int virt_kvm_type(MachineState *ms, const char *type_str) 2196 { 2197 VirtMachineState *vms = VIRT_MACHINE(ms); 2198 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 2199 int requested_pa_size; 2200 2201 /* we freeze the memory map to compute the highest gpa */ 2202 virt_set_memmap(vms); 2203 2204 requested_pa_size = 64 - clz64(vms->highest_gpa); 2205 2206 if (requested_pa_size > max_vm_pa_size) { 2207 error_report("-m and ,maxmem option values " 2208 "require an IPA range (%d bits) larger than " 2209 "the one supported by the host (%d bits)", 2210 requested_pa_size, max_vm_pa_size); 2211 exit(1); 2212 } 2213 /* 2214 * By default we return 0 which corresponds to an implicit legacy 2215 * 40b IPA setting. Otherwise we return the actual requested PA 2216 * logsize 2217 */ 2218 return requested_pa_size > 40 ? requested_pa_size : 0; 2219 } 2220 2221 static void virt_machine_class_init(ObjectClass *oc, void *data) 2222 { 2223 MachineClass *mc = MACHINE_CLASS(oc); 2224 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2225 2226 mc->init = machvirt_init; 2227 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2228 * The value may be reduced later when we have more information about the 2229 * configuration of the particular instance. 2230 */ 2231 mc->max_cpus = 512; 2232 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2233 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2234 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2235 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2236 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2237 mc->block_default_type = IF_VIRTIO; 2238 mc->no_cdrom = 1; 2239 mc->pci_allow_0_address = true; 2240 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2241 mc->minimum_page_bits = 12; 2242 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2243 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2244 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2245 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2246 mc->kvm_type = virt_kvm_type; 2247 assert(!mc->get_hotplug_handler); 2248 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2249 hc->pre_plug = virt_machine_device_pre_plug_cb; 2250 hc->plug = virt_machine_device_plug_cb; 2251 hc->unplug_request = virt_machine_device_unplug_request_cb; 2252 mc->numa_mem_supported = true; 2253 mc->nvdimm_supported = true; 2254 mc->auto_enable_numa_with_memhp = true; 2255 mc->default_ram_id = "mach-virt.ram"; 2256 2257 object_class_property_add(oc, "acpi", "OnOffAuto", 2258 virt_get_acpi, virt_set_acpi, 2259 NULL, NULL, &error_abort); 2260 object_class_property_set_description(oc, "acpi", 2261 "Enable ACPI", &error_abort); 2262 } 2263 2264 static void virt_instance_init(Object *obj) 2265 { 2266 VirtMachineState *vms = VIRT_MACHINE(obj); 2267 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2268 2269 /* EL3 is disabled by default on virt: this makes us consistent 2270 * between KVM and TCG for this board, and it also allows us to 2271 * boot UEFI blobs which assume no TrustZone support. 2272 */ 2273 vms->secure = false; 2274 object_property_add_bool(obj, "secure", virt_get_secure, 2275 virt_set_secure, NULL); 2276 object_property_set_description(obj, "secure", 2277 "Set on/off to enable/disable the ARM " 2278 "Security Extensions (TrustZone)", 2279 NULL); 2280 2281 /* EL2 is also disabled by default, for similar reasons */ 2282 vms->virt = false; 2283 object_property_add_bool(obj, "virtualization", virt_get_virt, 2284 virt_set_virt, NULL); 2285 object_property_set_description(obj, "virtualization", 2286 "Set on/off to enable/disable emulating a " 2287 "guest CPU which implements the ARM " 2288 "Virtualization Extensions", 2289 NULL); 2290 2291 /* High memory is enabled by default */ 2292 vms->highmem = true; 2293 object_property_add_bool(obj, "highmem", virt_get_highmem, 2294 virt_set_highmem, NULL); 2295 object_property_set_description(obj, "highmem", 2296 "Set on/off to enable/disable using " 2297 "physical address space above 32 bits", 2298 NULL); 2299 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2300 object_property_add_str(obj, "gic-version", virt_get_gic_version, 2301 virt_set_gic_version, NULL); 2302 object_property_set_description(obj, "gic-version", 2303 "Set GIC version. " 2304 "Valid values are 2, 3, host and max", 2305 NULL); 2306 2307 vms->highmem_ecam = !vmc->no_highmem_ecam; 2308 2309 if (vmc->no_its) { 2310 vms->its = false; 2311 } else { 2312 /* Default allows ITS instantiation */ 2313 vms->its = true; 2314 object_property_add_bool(obj, "its", virt_get_its, 2315 virt_set_its, NULL); 2316 object_property_set_description(obj, "its", 2317 "Set on/off to enable/disable " 2318 "ITS instantiation", 2319 NULL); 2320 } 2321 2322 /* Default disallows iommu instantiation */ 2323 vms->iommu = VIRT_IOMMU_NONE; 2324 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 2325 object_property_set_description(obj, "iommu", 2326 "Set the IOMMU type. " 2327 "Valid values are none and smmuv3", 2328 NULL); 2329 2330 vms->irqmap = a15irqmap; 2331 2332 virt_flash_create(vms); 2333 } 2334 2335 static const TypeInfo virt_machine_info = { 2336 .name = TYPE_VIRT_MACHINE, 2337 .parent = TYPE_MACHINE, 2338 .abstract = true, 2339 .instance_size = sizeof(VirtMachineState), 2340 .class_size = sizeof(VirtMachineClass), 2341 .class_init = virt_machine_class_init, 2342 .instance_init = virt_instance_init, 2343 .interfaces = (InterfaceInfo[]) { 2344 { TYPE_HOTPLUG_HANDLER }, 2345 { } 2346 }, 2347 }; 2348 2349 static void machvirt_machine_init(void) 2350 { 2351 type_register_static(&virt_machine_info); 2352 } 2353 type_init(machvirt_machine_init); 2354 2355 static void virt_machine_5_1_options(MachineClass *mc) 2356 { 2357 } 2358 DEFINE_VIRT_MACHINE_AS_LATEST(5, 1) 2359 2360 static void virt_machine_5_0_options(MachineClass *mc) 2361 { 2362 virt_machine_5_1_options(mc); 2363 } 2364 DEFINE_VIRT_MACHINE(5, 0) 2365 2366 static void virt_machine_4_2_options(MachineClass *mc) 2367 { 2368 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2369 2370 virt_machine_5_0_options(mc); 2371 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2372 vmc->kvm_no_adjvtime = true; 2373 } 2374 DEFINE_VIRT_MACHINE(4, 2) 2375 2376 static void virt_machine_4_1_options(MachineClass *mc) 2377 { 2378 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2379 2380 virt_machine_4_2_options(mc); 2381 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2382 vmc->no_ged = true; 2383 mc->auto_enable_numa_with_memhp = false; 2384 } 2385 DEFINE_VIRT_MACHINE(4, 1) 2386 2387 static void virt_machine_4_0_options(MachineClass *mc) 2388 { 2389 virt_machine_4_1_options(mc); 2390 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2391 } 2392 DEFINE_VIRT_MACHINE(4, 0) 2393 2394 static void virt_machine_3_1_options(MachineClass *mc) 2395 { 2396 virt_machine_4_0_options(mc); 2397 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2398 } 2399 DEFINE_VIRT_MACHINE(3, 1) 2400 2401 static void virt_machine_3_0_options(MachineClass *mc) 2402 { 2403 virt_machine_3_1_options(mc); 2404 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2405 } 2406 DEFINE_VIRT_MACHINE(3, 0) 2407 2408 static void virt_machine_2_12_options(MachineClass *mc) 2409 { 2410 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2411 2412 virt_machine_3_0_options(mc); 2413 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2414 vmc->no_highmem_ecam = true; 2415 mc->max_cpus = 255; 2416 } 2417 DEFINE_VIRT_MACHINE(2, 12) 2418 2419 static void virt_machine_2_11_options(MachineClass *mc) 2420 { 2421 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2422 2423 virt_machine_2_12_options(mc); 2424 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2425 vmc->smbios_old_sys_ver = true; 2426 } 2427 DEFINE_VIRT_MACHINE(2, 11) 2428 2429 static void virt_machine_2_10_options(MachineClass *mc) 2430 { 2431 virt_machine_2_11_options(mc); 2432 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2433 /* before 2.11 we never faulted accesses to bad addresses */ 2434 mc->ignore_memory_transaction_failures = true; 2435 } 2436 DEFINE_VIRT_MACHINE(2, 10) 2437 2438 static void virt_machine_2_9_options(MachineClass *mc) 2439 { 2440 virt_machine_2_10_options(mc); 2441 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2442 } 2443 DEFINE_VIRT_MACHINE(2, 9) 2444 2445 static void virt_machine_2_8_options(MachineClass *mc) 2446 { 2447 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2448 2449 virt_machine_2_9_options(mc); 2450 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2451 /* For 2.8 and earlier we falsely claimed in the DT that 2452 * our timers were edge-triggered, not level-triggered. 2453 */ 2454 vmc->claim_edge_triggered_timers = true; 2455 } 2456 DEFINE_VIRT_MACHINE(2, 8) 2457 2458 static void virt_machine_2_7_options(MachineClass *mc) 2459 { 2460 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2461 2462 virt_machine_2_8_options(mc); 2463 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2464 /* ITS was introduced with 2.8 */ 2465 vmc->no_its = true; 2466 /* Stick with 1K pages for migration compatibility */ 2467 mc->minimum_page_bits = 0; 2468 } 2469 DEFINE_VIRT_MACHINE(2, 7) 2470 2471 static void virt_machine_2_6_options(MachineClass *mc) 2472 { 2473 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2474 2475 virt_machine_2_7_options(mc); 2476 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2477 vmc->disallow_affinity_adjustment = true; 2478 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2479 vmc->no_pmu = true; 2480 } 2481 DEFINE_VIRT_MACHINE(2, 6) 2482