xref: /openbmc/qemu/hw/arm/virt.c (revision 795eaa62)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
87 
88 static GlobalProperty arm_virt_compat[] = {
89     { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
90 };
91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
92 
93 /*
94  * This cannot be called from the virt_machine_class_init() because
95  * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
96  * only is called on virt non abstract class init.
97  */
98 static void arm_virt_compat_set(MachineClass *mc)
99 {
100     compat_props_add(mc->compat_props, arm_virt_compat,
101                      arm_virt_compat_len);
102 }
103 
104 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
105     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
106                                                     void *data) \
107     { \
108         MachineClass *mc = MACHINE_CLASS(oc); \
109         arm_virt_compat_set(mc); \
110         virt_machine_##major##_##minor##_options(mc); \
111         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
112         if (latest) { \
113             mc->alias = "virt"; \
114         } \
115     } \
116     static const TypeInfo machvirt_##major##_##minor##_info = { \
117         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118         .parent = TYPE_VIRT_MACHINE, \
119         .class_init = virt_##major##_##minor##_class_init, \
120     }; \
121     static void machvirt_machine_##major##_##minor##_init(void) \
122     { \
123         type_register_static(&machvirt_##major##_##minor##_info); \
124     } \
125     type_init(machvirt_machine_##major##_##minor##_init);
126 
127 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
128     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
129 #define DEFINE_VIRT_MACHINE(major, minor) \
130     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
131 
132 
133 /* Number of external interrupt lines to configure the GIC with */
134 #define NUM_IRQS 256
135 
136 #define PLATFORM_BUS_NUM_IRQS 64
137 
138 /* Legacy RAM limit in GB (< version 4.0) */
139 #define LEGACY_RAMLIMIT_GB 255
140 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
141 
142 /* Addresses and sizes of our components.
143  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
144  * 128MB..256MB is used for miscellaneous device I/O.
145  * 256MB..1GB is reserved for possible future PCI support (ie where the
146  * PCI memory window will go if we add a PCI host controller).
147  * 1GB and up is RAM (which may happily spill over into the
148  * high memory region beyond 4GB).
149  * This represents a compromise between how much RAM can be given to
150  * a 32 bit VM and leaving space for expansion and in particular for PCI.
151  * Note that devices should generally be placed at multiples of 0x10000,
152  * to accommodate guests using 64K pages.
153  */
154 static const MemMapEntry base_memmap[] = {
155     /* Space up to 0x8000000 is reserved for a boot ROM */
156     [VIRT_FLASH] =              {          0, 0x08000000 },
157     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
158     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
159     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
160     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
161     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
162     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
163     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
164     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
165     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
166     /* This redistributor space allows up to 2*64kB*123 CPUs */
167     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
168     [VIRT_UART] =               { 0x09000000, 0x00001000 },
169     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
170     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
171     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
172     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
173     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
174     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
175     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
176     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
177     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
178     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
179     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
180     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
181     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
182     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
183     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
184     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
185     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
186     /* Actual RAM size depends on initial RAM and device memory settings */
187     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
188 };
189 
190 /*
191  * Highmem IO Regions: This memory map is floating, located after the RAM.
192  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
193  * top of the RAM, so that its base get the same alignment as the size,
194  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
195  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
196  * Note the extended_memmap is sized so that it eventually also includes the
197  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
198  * index of base_memmap).
199  *
200  * The memory map for these Highmem IO Regions can be in legacy or compact
201  * layout, depending on 'compact-highmem' property. With legacy layout, the
202  * PA space for one specific region is always reserved, even if the region
203  * has been disabled or doesn't fit into the PA space. However, the PA space
204  * for the region won't be reserved in these circumstances with compact layout.
205  */
206 static MemMapEntry extended_memmap[] = {
207     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
208     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
209     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
210     /* Second PCIe window */
211     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
212 };
213 
214 static const int a15irqmap[] = {
215     [VIRT_UART] = 1,
216     [VIRT_RTC] = 2,
217     [VIRT_PCIE] = 3, /* ... to 6 */
218     [VIRT_GPIO] = 7,
219     [VIRT_SECURE_UART] = 8,
220     [VIRT_ACPI_GED] = 9,
221     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
222     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
223     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
224     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
225 };
226 
227 static void create_randomness(MachineState *ms, const char *node)
228 {
229     struct {
230         uint64_t kaslr;
231         uint8_t rng[32];
232     } seed;
233 
234     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
235         return;
236     }
237     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
238     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
239 }
240 
241 /*
242  * The CPU object always exposes the NS EL2 virt timer IRQ line,
243  * but we don't want to advertise it to the guest in the dtb or ACPI
244  * table unless it's really going to do something.
245  */
246 static bool ns_el2_virt_timer_present(void)
247 {
248     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
249     CPUARMState *env = &cpu->env;
250 
251     return arm_feature(env, ARM_FEATURE_AARCH64) &&
252         arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
253 }
254 
255 static void create_fdt(VirtMachineState *vms)
256 {
257     MachineState *ms = MACHINE(vms);
258     int nb_numa_nodes = ms->numa_state->num_nodes;
259     void *fdt = create_device_tree(&vms->fdt_size);
260 
261     if (!fdt) {
262         error_report("create_device_tree() failed");
263         exit(1);
264     }
265 
266     ms->fdt = fdt;
267 
268     /* Header */
269     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
270     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
271     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
272     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
273 
274     /* /chosen must exist for load_dtb to fill in necessary properties later */
275     qemu_fdt_add_subnode(fdt, "/chosen");
276     if (vms->dtb_randomness) {
277         create_randomness(ms, "/chosen");
278     }
279 
280     if (vms->secure) {
281         qemu_fdt_add_subnode(fdt, "/secure-chosen");
282         if (vms->dtb_randomness) {
283             create_randomness(ms, "/secure-chosen");
284         }
285     }
286 
287     /* Clock node, for the benefit of the UART. The kernel device tree
288      * binding documentation claims the PL011 node clock properties are
289      * optional but in practice if you omit them the kernel refuses to
290      * probe for the device.
291      */
292     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
293     qemu_fdt_add_subnode(fdt, "/apb-pclk");
294     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
295     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
296     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
297     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
298                                 "clk24mhz");
299     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
300 
301     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
302         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
303         uint32_t *matrix = g_malloc0(size);
304         int idx, i, j;
305 
306         for (i = 0; i < nb_numa_nodes; i++) {
307             for (j = 0; j < nb_numa_nodes; j++) {
308                 idx = (i * nb_numa_nodes + j) * 3;
309                 matrix[idx + 0] = cpu_to_be32(i);
310                 matrix[idx + 1] = cpu_to_be32(j);
311                 matrix[idx + 2] =
312                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
313             }
314         }
315 
316         qemu_fdt_add_subnode(fdt, "/distance-map");
317         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
318                                 "numa-distance-map-v1");
319         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
320                          matrix, size);
321         g_free(matrix);
322     }
323 }
324 
325 static void fdt_add_timer_nodes(const VirtMachineState *vms)
326 {
327     /* On real hardware these interrupts are level-triggered.
328      * On KVM they were edge-triggered before host kernel version 4.4,
329      * and level-triggered afterwards.
330      * On emulated QEMU they are level-triggered.
331      *
332      * Getting the DTB info about them wrong is awkward for some
333      * guest kernels:
334      *  pre-4.8 ignore the DT and leave the interrupt configured
335      *   with whatever the GIC reset value (or the bootloader) left it at
336      *  4.8 before rc6 honour the incorrect data by programming it back
337      *   into the GIC, causing problems
338      *  4.8rc6 and later ignore the DT and always write "level triggered"
339      *   into the GIC
340      *
341      * For backwards-compatibility, virt-2.8 and earlier will continue
342      * to say these are edge-triggered, but later machines will report
343      * the correct information.
344      */
345     ARMCPU *armcpu;
346     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
347     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
348     MachineState *ms = MACHINE(vms);
349 
350     if (vmc->claim_edge_triggered_timers) {
351         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
352     }
353 
354     if (vms->gic_version == VIRT_GIC_VERSION_2) {
355         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
356                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
357                              (1 << MACHINE(vms)->smp.cpus) - 1);
358     }
359 
360     qemu_fdt_add_subnode(ms->fdt, "/timer");
361 
362     armcpu = ARM_CPU(qemu_get_cpu(0));
363     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
364         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
365         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
366                          compat, sizeof(compat));
367     } else {
368         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
369                                 "arm,armv7-timer");
370     }
371     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
372     if (vms->ns_el2_virt_timer_irq) {
373         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
374                                GIC_FDT_IRQ_TYPE_PPI,
375                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
376                                GIC_FDT_IRQ_TYPE_PPI,
377                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
378                                GIC_FDT_IRQ_TYPE_PPI,
379                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
380                                GIC_FDT_IRQ_TYPE_PPI,
381                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
382                                GIC_FDT_IRQ_TYPE_PPI,
383                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
384     } else {
385         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
386                                GIC_FDT_IRQ_TYPE_PPI,
387                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
388                                GIC_FDT_IRQ_TYPE_PPI,
389                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
390                                GIC_FDT_IRQ_TYPE_PPI,
391                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
392                                GIC_FDT_IRQ_TYPE_PPI,
393                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
394     }
395 }
396 
397 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
398 {
399     int cpu;
400     int addr_cells = 1;
401     const MachineState *ms = MACHINE(vms);
402     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
403     int smp_cpus = ms->smp.cpus;
404 
405     /*
406      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
407      * On ARM v8 64-bit systems value should be set to 2,
408      * that corresponds to the MPIDR_EL1 register size.
409      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
410      * in the system, #address-cells can be set to 1, since
411      * MPIDR_EL1[63:32] bits are not used for CPUs
412      * identification.
413      *
414      * Here we actually don't know whether our system is 32- or 64-bit one.
415      * The simplest way to go is to examine affinity IDs of all our CPUs. If
416      * at least one of them has Aff3 populated, we set #address-cells to 2.
417      */
418     for (cpu = 0; cpu < smp_cpus; cpu++) {
419         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
420 
421         if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
422             addr_cells = 2;
423             break;
424         }
425     }
426 
427     qemu_fdt_add_subnode(ms->fdt, "/cpus");
428     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
429     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
430 
431     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
432         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
433         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
434         CPUState *cs = CPU(armcpu);
435 
436         qemu_fdt_add_subnode(ms->fdt, nodename);
437         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
438         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
439                                     armcpu->dtb_compatible);
440 
441         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
442             qemu_fdt_setprop_string(ms->fdt, nodename,
443                                         "enable-method", "psci");
444         }
445 
446         if (addr_cells == 2) {
447             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
448                                  arm_cpu_mp_affinity(armcpu));
449         } else {
450             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
451                                   arm_cpu_mp_affinity(armcpu));
452         }
453 
454         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
455             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
456                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
457         }
458 
459         if (!vmc->no_cpu_topology) {
460             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
461                                   qemu_fdt_alloc_phandle(ms->fdt));
462         }
463 
464         g_free(nodename);
465     }
466 
467     if (!vmc->no_cpu_topology) {
468         /*
469          * Add vCPU topology description through fdt node cpu-map.
470          *
471          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
472          * In a SMP system, the hierarchy of CPUs can be defined through
473          * four entities that are used to describe the layout of CPUs in
474          * the system: socket/cluster/core/thread.
475          *
476          * A socket node represents the boundary of system physical package
477          * and its child nodes must be one or more cluster nodes. A system
478          * can contain several layers of clustering within a single physical
479          * package and cluster nodes can be contained in parent cluster nodes.
480          *
481          * Note: currently we only support one layer of clustering within
482          * each physical package.
483          */
484         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
485 
486         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
487             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
488             char *map_path;
489 
490             if (ms->smp.threads > 1) {
491                 map_path = g_strdup_printf(
492                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
493                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
494                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
495                     (cpu / ms->smp.threads) % ms->smp.cores,
496                     cpu % ms->smp.threads);
497             } else {
498                 map_path = g_strdup_printf(
499                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
500                     cpu / (ms->smp.clusters * ms->smp.cores),
501                     (cpu / ms->smp.cores) % ms->smp.clusters,
502                     cpu % ms->smp.cores);
503             }
504             qemu_fdt_add_path(ms->fdt, map_path);
505             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
506 
507             g_free(map_path);
508             g_free(cpu_path);
509         }
510     }
511 }
512 
513 static void fdt_add_its_gic_node(VirtMachineState *vms)
514 {
515     char *nodename;
516     MachineState *ms = MACHINE(vms);
517 
518     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
519     nodename = g_strdup_printf("/intc/its@%" PRIx64,
520                                vms->memmap[VIRT_GIC_ITS].base);
521     qemu_fdt_add_subnode(ms->fdt, nodename);
522     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
523                             "arm,gic-v3-its");
524     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
525     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
526     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
527                                  2, vms->memmap[VIRT_GIC_ITS].base,
528                                  2, vms->memmap[VIRT_GIC_ITS].size);
529     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
530     g_free(nodename);
531 }
532 
533 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
534 {
535     MachineState *ms = MACHINE(vms);
536     char *nodename;
537 
538     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
539                                vms->memmap[VIRT_GIC_V2M].base);
540     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
541     qemu_fdt_add_subnode(ms->fdt, nodename);
542     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
543                             "arm,gic-v2m-frame");
544     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
545     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
546                                  2, vms->memmap[VIRT_GIC_V2M].base,
547                                  2, vms->memmap[VIRT_GIC_V2M].size);
548     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
549     g_free(nodename);
550 }
551 
552 static void fdt_add_gic_node(VirtMachineState *vms)
553 {
554     MachineState *ms = MACHINE(vms);
555     char *nodename;
556 
557     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
558     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
559 
560     nodename = g_strdup_printf("/intc@%" PRIx64,
561                                vms->memmap[VIRT_GIC_DIST].base);
562     qemu_fdt_add_subnode(ms->fdt, nodename);
563     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
564     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
565     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
566     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
567     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
568     if (vms->gic_version != VIRT_GIC_VERSION_2) {
569         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
570 
571         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
572                                 "arm,gic-v3");
573 
574         qemu_fdt_setprop_cell(ms->fdt, nodename,
575                               "#redistributor-regions", nb_redist_regions);
576 
577         if (nb_redist_regions == 1) {
578             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
579                                          2, vms->memmap[VIRT_GIC_DIST].base,
580                                          2, vms->memmap[VIRT_GIC_DIST].size,
581                                          2, vms->memmap[VIRT_GIC_REDIST].base,
582                                          2, vms->memmap[VIRT_GIC_REDIST].size);
583         } else {
584             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
585                                  2, vms->memmap[VIRT_GIC_DIST].base,
586                                  2, vms->memmap[VIRT_GIC_DIST].size,
587                                  2, vms->memmap[VIRT_GIC_REDIST].base,
588                                  2, vms->memmap[VIRT_GIC_REDIST].size,
589                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
590                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
591         }
592 
593         if (vms->virt) {
594             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
595                                    GIC_FDT_IRQ_TYPE_PPI,
596                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
597                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
598         }
599     } else {
600         /* 'cortex-a15-gic' means 'GIC v2' */
601         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
602                                 "arm,cortex-a15-gic");
603         if (!vms->virt) {
604             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
605                                          2, vms->memmap[VIRT_GIC_DIST].base,
606                                          2, vms->memmap[VIRT_GIC_DIST].size,
607                                          2, vms->memmap[VIRT_GIC_CPU].base,
608                                          2, vms->memmap[VIRT_GIC_CPU].size);
609         } else {
610             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
611                                          2, vms->memmap[VIRT_GIC_DIST].base,
612                                          2, vms->memmap[VIRT_GIC_DIST].size,
613                                          2, vms->memmap[VIRT_GIC_CPU].base,
614                                          2, vms->memmap[VIRT_GIC_CPU].size,
615                                          2, vms->memmap[VIRT_GIC_HYP].base,
616                                          2, vms->memmap[VIRT_GIC_HYP].size,
617                                          2, vms->memmap[VIRT_GIC_VCPU].base,
618                                          2, vms->memmap[VIRT_GIC_VCPU].size);
619             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
620                                    GIC_FDT_IRQ_TYPE_PPI,
621                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
622                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
623         }
624     }
625 
626     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
627     g_free(nodename);
628 }
629 
630 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
631 {
632     ARMCPU *armcpu = ARM_CPU(first_cpu);
633     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
634     MachineState *ms = MACHINE(vms);
635 
636     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
637         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
638         return;
639     }
640 
641     if (vms->gic_version == VIRT_GIC_VERSION_2) {
642         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
643                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
644                              (1 << MACHINE(vms)->smp.cpus) - 1);
645     }
646 
647     qemu_fdt_add_subnode(ms->fdt, "/pmu");
648     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
649         const char compat[] = "arm,armv8-pmuv3";
650         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
651                          compat, sizeof(compat));
652         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
653                                GIC_FDT_IRQ_TYPE_PPI,
654                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
655     }
656 }
657 
658 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
659 {
660     DeviceState *dev;
661     MachineState *ms = MACHINE(vms);
662     int irq = vms->irqmap[VIRT_ACPI_GED];
663     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
664 
665     if (ms->ram_slots) {
666         event |= ACPI_GED_MEM_HOTPLUG_EVT;
667     }
668 
669     if (ms->nvdimms_state->is_enabled) {
670         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
671     }
672 
673     dev = qdev_new(TYPE_ACPI_GED);
674     qdev_prop_set_uint32(dev, "ged-event", event);
675     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
676 
677     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
678     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
679     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
680 
681     return dev;
682 }
683 
684 static void create_its(VirtMachineState *vms)
685 {
686     const char *itsclass = its_class_name();
687     DeviceState *dev;
688 
689     if (!strcmp(itsclass, "arm-gicv3-its")) {
690         if (!vms->tcg_its) {
691             itsclass = NULL;
692         }
693     }
694 
695     if (!itsclass) {
696         /* Do nothing if not supported */
697         return;
698     }
699 
700     dev = qdev_new(itsclass);
701 
702     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
703                              &error_abort);
704     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
705     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
706 
707     fdt_add_its_gic_node(vms);
708     vms->msi_controller = VIRT_MSI_CTRL_ITS;
709 }
710 
711 static void create_v2m(VirtMachineState *vms)
712 {
713     int i;
714     int irq = vms->irqmap[VIRT_GIC_V2M];
715     DeviceState *dev;
716 
717     dev = qdev_new("arm-gicv2m");
718     qdev_prop_set_uint32(dev, "base-spi", irq);
719     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
720     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
721     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
722 
723     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
724         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
725                            qdev_get_gpio_in(vms->gic, irq + i));
726     }
727 
728     fdt_add_v2m_gic_node(vms);
729     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
730 }
731 
732 /*
733  * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too.
734  * It's permitted to have a configuration with NMI in the CPU (and thus the
735  * GICv3 CPU interface) but not in the distributor/redistributors, but it's
736  * not very useful.
737  */
738 static bool gicv3_nmi_present(VirtMachineState *vms)
739 {
740     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
741 
742     return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) &&
743            (vms->gic_version != VIRT_GIC_VERSION_2);
744 }
745 
746 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
747 {
748     MachineState *ms = MACHINE(vms);
749     /* We create a standalone GIC */
750     SysBusDevice *gicbusdev;
751     const char *gictype;
752     int i;
753     unsigned int smp_cpus = ms->smp.cpus;
754     uint32_t nb_redist_regions = 0;
755     int revision;
756 
757     if (vms->gic_version == VIRT_GIC_VERSION_2) {
758         gictype = gic_class_name();
759     } else {
760         gictype = gicv3_class_name();
761     }
762 
763     switch (vms->gic_version) {
764     case VIRT_GIC_VERSION_2:
765         revision = 2;
766         break;
767     case VIRT_GIC_VERSION_3:
768         revision = 3;
769         break;
770     case VIRT_GIC_VERSION_4:
771         revision = 4;
772         break;
773     default:
774         g_assert_not_reached();
775     }
776     vms->gic = qdev_new(gictype);
777     qdev_prop_set_uint32(vms->gic, "revision", revision);
778     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
779     /* Note that the num-irq property counts both internal and external
780      * interrupts; there are always 32 of the former (mandated by GIC spec).
781      */
782     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
783     if (!kvm_irqchip_in_kernel()) {
784         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
785     }
786 
787     if (vms->gic_version != VIRT_GIC_VERSION_2) {
788         QList *redist_region_count;
789         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
790         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
791 
792         nb_redist_regions = virt_gicv3_redist_region_count(vms);
793 
794         redist_region_count = qlist_new();
795         qlist_append_int(redist_region_count, redist0_count);
796         if (nb_redist_regions == 2) {
797             uint32_t redist1_capacity =
798                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
799 
800             qlist_append_int(redist_region_count,
801                 MIN(smp_cpus - redist0_count, redist1_capacity));
802         }
803         qdev_prop_set_array(vms->gic, "redist-region-count",
804                             redist_region_count);
805 
806         if (!kvm_irqchip_in_kernel()) {
807             if (vms->tcg_its) {
808                 object_property_set_link(OBJECT(vms->gic), "sysmem",
809                                          OBJECT(mem), &error_fatal);
810                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
811             }
812         }
813     } else {
814         if (!kvm_irqchip_in_kernel()) {
815             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
816                               vms->virt);
817         }
818     }
819 
820     if (gicv3_nmi_present(vms)) {
821         qdev_prop_set_bit(vms->gic, "has-nmi", true);
822     }
823 
824     gicbusdev = SYS_BUS_DEVICE(vms->gic);
825     sysbus_realize_and_unref(gicbusdev, &error_fatal);
826     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
827     if (vms->gic_version != VIRT_GIC_VERSION_2) {
828         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
829         if (nb_redist_regions == 2) {
830             sysbus_mmio_map(gicbusdev, 2,
831                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
832         }
833     } else {
834         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
835         if (vms->virt) {
836             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
837             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
838         }
839     }
840 
841     /* Wire the outputs from each CPU's generic timer and the GICv3
842      * maintenance interrupt signal to the appropriate GIC PPI inputs,
843      * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the
844      * CPU's inputs.
845      */
846     for (i = 0; i < smp_cpus; i++) {
847         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
848         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
849         /* Mapping from the output timer irq lines from the CPU to the
850          * GIC PPI inputs we use for the virt board.
851          */
852         const int timer_irq[] = {
853             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
854             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
855             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
856             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
857             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
858         };
859 
860         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
861             qdev_connect_gpio_out(cpudev, irq,
862                                   qdev_get_gpio_in(vms->gic,
863                                                    intidbase + timer_irq[irq]));
864         }
865 
866         if (vms->gic_version != VIRT_GIC_VERSION_2) {
867             qemu_irq irq = qdev_get_gpio_in(vms->gic,
868                                             intidbase + ARCH_GIC_MAINT_IRQ);
869             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
870                                         0, irq);
871         } else if (vms->virt) {
872             qemu_irq irq = qdev_get_gpio_in(vms->gic,
873                                             intidbase + ARCH_GIC_MAINT_IRQ);
874             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
875         }
876 
877         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
878                                     qdev_get_gpio_in(vms->gic, intidbase
879                                                      + VIRTUAL_PMU_IRQ));
880 
881         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
882         sysbus_connect_irq(gicbusdev, i + smp_cpus,
883                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
884         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
885                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
886         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
887                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
888 
889         if (vms->gic_version != VIRT_GIC_VERSION_2) {
890             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus,
891                                qdev_get_gpio_in(cpudev, ARM_CPU_NMI));
892             sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus,
893                                qdev_get_gpio_in(cpudev, ARM_CPU_VINMI));
894         }
895     }
896 
897     fdt_add_gic_node(vms);
898 
899     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
900         create_its(vms);
901     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
902         create_v2m(vms);
903     }
904 }
905 
906 static void create_uart(const VirtMachineState *vms, int uart,
907                         MemoryRegion *mem, Chardev *chr)
908 {
909     char *nodename;
910     hwaddr base = vms->memmap[uart].base;
911     hwaddr size = vms->memmap[uart].size;
912     int irq = vms->irqmap[uart];
913     const char compat[] = "arm,pl011\0arm,primecell";
914     const char clocknames[] = "uartclk\0apb_pclk";
915     DeviceState *dev = qdev_new(TYPE_PL011);
916     SysBusDevice *s = SYS_BUS_DEVICE(dev);
917     MachineState *ms = MACHINE(vms);
918 
919     qdev_prop_set_chr(dev, "chardev", chr);
920     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
921     memory_region_add_subregion(mem, base,
922                                 sysbus_mmio_get_region(s, 0));
923     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
924 
925     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
926     qemu_fdt_add_subnode(ms->fdt, nodename);
927     /* Note that we can't use setprop_string because of the embedded NUL */
928     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
929                          compat, sizeof(compat));
930     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
931                                      2, base, 2, size);
932     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
933                                GIC_FDT_IRQ_TYPE_SPI, irq,
934                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
935     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
936                                vms->clock_phandle, vms->clock_phandle);
937     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
938                          clocknames, sizeof(clocknames));
939 
940     if (uart == VIRT_UART) {
941         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
942     } else {
943         /* Mark as not usable by the normal world */
944         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
945         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
946 
947         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
948                                 nodename);
949     }
950 
951     g_free(nodename);
952 }
953 
954 static void create_rtc(const VirtMachineState *vms)
955 {
956     char *nodename;
957     hwaddr base = vms->memmap[VIRT_RTC].base;
958     hwaddr size = vms->memmap[VIRT_RTC].size;
959     int irq = vms->irqmap[VIRT_RTC];
960     const char compat[] = "arm,pl031\0arm,primecell";
961     MachineState *ms = MACHINE(vms);
962 
963     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
964 
965     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
966     qemu_fdt_add_subnode(ms->fdt, nodename);
967     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
968     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
969                                  2, base, 2, size);
970     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
971                            GIC_FDT_IRQ_TYPE_SPI, irq,
972                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
973     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
974     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
975     g_free(nodename);
976 }
977 
978 static DeviceState *gpio_key_dev;
979 static void virt_powerdown_req(Notifier *n, void *opaque)
980 {
981     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
982 
983     if (s->acpi_dev) {
984         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
985     } else {
986         /* use gpio Pin 3 for power button event */
987         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
988     }
989 }
990 
991 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
992                              uint32_t phandle)
993 {
994     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
995                                         qdev_get_gpio_in(pl061_dev, 3));
996 
997     qemu_fdt_add_subnode(fdt, "/gpio-keys");
998     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
999 
1000     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
1001     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
1002                             "label", "GPIO Key Poweroff");
1003     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
1004                           KEY_POWER);
1005     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
1006                            "gpios", phandle, 3, 0);
1007 }
1008 
1009 #define SECURE_GPIO_POWEROFF 0
1010 #define SECURE_GPIO_RESET    1
1011 
1012 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
1013                                    uint32_t phandle)
1014 {
1015     DeviceState *gpio_pwr_dev;
1016 
1017     /* gpio-pwr */
1018     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
1019 
1020     /* connect secure pl061 to gpio-pwr */
1021     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
1022                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
1023     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
1024                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
1025 
1026     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
1027     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
1028                             "gpio-poweroff");
1029     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
1030                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
1031     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
1032     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
1033                             "okay");
1034 
1035     qemu_fdt_add_subnode(fdt, "/gpio-restart");
1036     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
1037                             "gpio-restart");
1038     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
1039                            "gpios", phandle, SECURE_GPIO_RESET, 0);
1040     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
1041     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
1042                             "okay");
1043 }
1044 
1045 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1046                                 MemoryRegion *mem)
1047 {
1048     char *nodename;
1049     DeviceState *pl061_dev;
1050     hwaddr base = vms->memmap[gpio].base;
1051     hwaddr size = vms->memmap[gpio].size;
1052     int irq = vms->irqmap[gpio];
1053     const char compat[] = "arm,pl061\0arm,primecell";
1054     SysBusDevice *s;
1055     MachineState *ms = MACHINE(vms);
1056 
1057     pl061_dev = qdev_new("pl061");
1058     /* Pull lines down to 0 if not driven by the PL061 */
1059     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1060     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1061     s = SYS_BUS_DEVICE(pl061_dev);
1062     sysbus_realize_and_unref(s, &error_fatal);
1063     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1064     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1065 
1066     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1067     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1068     qemu_fdt_add_subnode(ms->fdt, nodename);
1069     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1070                                  2, base, 2, size);
1071     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1072     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1073     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1074     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1075                            GIC_FDT_IRQ_TYPE_SPI, irq,
1076                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1077     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1078     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1079     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1080 
1081     if (gpio != VIRT_GPIO) {
1082         /* Mark as not usable by the normal world */
1083         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1084         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1085     }
1086     g_free(nodename);
1087 
1088     /* Child gpio devices */
1089     if (gpio == VIRT_GPIO) {
1090         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1091     } else {
1092         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1093     }
1094 }
1095 
1096 static void create_virtio_devices(const VirtMachineState *vms)
1097 {
1098     int i;
1099     hwaddr size = vms->memmap[VIRT_MMIO].size;
1100     MachineState *ms = MACHINE(vms);
1101 
1102     /* We create the transports in forwards order. Since qbus_realize()
1103      * prepends (not appends) new child buses, the incrementing loop below will
1104      * create a list of virtio-mmio buses with decreasing base addresses.
1105      *
1106      * When a -device option is processed from the command line,
1107      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1108      * order. The upshot is that -device options in increasing command line
1109      * order are mapped to virtio-mmio buses with decreasing base addresses.
1110      *
1111      * When this code was originally written, that arrangement ensured that the
1112      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1113      * the first -device on the command line. (The end-to-end order is a
1114      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1115      * guest kernel's name-to-address assignment strategy.)
1116      *
1117      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1118      * the message, if not necessarily the code, of commit 70161ff336.
1119      * Therefore the loop now establishes the inverse of the original intent.
1120      *
1121      * Unfortunately, we can't counteract the kernel change by reversing the
1122      * loop; it would break existing command lines.
1123      *
1124      * In any case, the kernel makes no guarantee about the stability of
1125      * enumeration order of virtio devices (as demonstrated by it changing
1126      * between kernel versions). For reliable and stable identification
1127      * of disks users must use UUIDs or similar mechanisms.
1128      */
1129     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1130         int irq = vms->irqmap[VIRT_MMIO] + i;
1131         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1132 
1133         sysbus_create_simple("virtio-mmio", base,
1134                              qdev_get_gpio_in(vms->gic, irq));
1135     }
1136 
1137     /* We add dtb nodes in reverse order so that they appear in the finished
1138      * device tree lowest address first.
1139      *
1140      * Note that this mapping is independent of the loop above. The previous
1141      * loop influences virtio device to virtio transport assignment, whereas
1142      * this loop controls how virtio transports are laid out in the dtb.
1143      */
1144     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1145         char *nodename;
1146         int irq = vms->irqmap[VIRT_MMIO] + i;
1147         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1148 
1149         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1150         qemu_fdt_add_subnode(ms->fdt, nodename);
1151         qemu_fdt_setprop_string(ms->fdt, nodename,
1152                                 "compatible", "virtio,mmio");
1153         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1154                                      2, base, 2, size);
1155         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1156                                GIC_FDT_IRQ_TYPE_SPI, irq,
1157                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1158         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1159         g_free(nodename);
1160     }
1161 }
1162 
1163 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1164 
1165 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1166                                         const char *name,
1167                                         const char *alias_prop_name)
1168 {
1169     /*
1170      * Create a single flash device.  We use the same parameters as
1171      * the flash devices on the Versatile Express board.
1172      */
1173     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1174 
1175     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1176     qdev_prop_set_uint8(dev, "width", 4);
1177     qdev_prop_set_uint8(dev, "device-width", 2);
1178     qdev_prop_set_bit(dev, "big-endian", false);
1179     qdev_prop_set_uint16(dev, "id0", 0x89);
1180     qdev_prop_set_uint16(dev, "id1", 0x18);
1181     qdev_prop_set_uint16(dev, "id2", 0x00);
1182     qdev_prop_set_uint16(dev, "id3", 0x00);
1183     qdev_prop_set_string(dev, "name", name);
1184     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1185     object_property_add_alias(OBJECT(vms), alias_prop_name,
1186                               OBJECT(dev), "drive");
1187     return PFLASH_CFI01(dev);
1188 }
1189 
1190 static void virt_flash_create(VirtMachineState *vms)
1191 {
1192     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1193     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1194 }
1195 
1196 static void virt_flash_map1(PFlashCFI01 *flash,
1197                             hwaddr base, hwaddr size,
1198                             MemoryRegion *sysmem)
1199 {
1200     DeviceState *dev = DEVICE(flash);
1201 
1202     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1203     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1204     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1205     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1206 
1207     memory_region_add_subregion(sysmem, base,
1208                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1209                                                        0));
1210 }
1211 
1212 static void virt_flash_map(VirtMachineState *vms,
1213                            MemoryRegion *sysmem,
1214                            MemoryRegion *secure_sysmem)
1215 {
1216     /*
1217      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1218      * sysmem is the system memory space. secure_sysmem is the secure view
1219      * of the system, and the first flash device should be made visible only
1220      * there. The second flash device is visible to both secure and nonsecure.
1221      * If sysmem == secure_sysmem this means there is no separate Secure
1222      * address space and both flash devices are generally visible.
1223      */
1224     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1225     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1226 
1227     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1228                     secure_sysmem);
1229     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1230                     sysmem);
1231 }
1232 
1233 static void virt_flash_fdt(VirtMachineState *vms,
1234                            MemoryRegion *sysmem,
1235                            MemoryRegion *secure_sysmem)
1236 {
1237     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1238     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1239     MachineState *ms = MACHINE(vms);
1240     char *nodename;
1241 
1242     if (sysmem == secure_sysmem) {
1243         /* Report both flash devices as a single node in the DT */
1244         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1245         qemu_fdt_add_subnode(ms->fdt, nodename);
1246         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1247         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1248                                      2, flashbase, 2, flashsize,
1249                                      2, flashbase + flashsize, 2, flashsize);
1250         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1251         g_free(nodename);
1252     } else {
1253         /*
1254          * Report the devices as separate nodes so we can mark one as
1255          * only visible to the secure world.
1256          */
1257         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1258         qemu_fdt_add_subnode(ms->fdt, nodename);
1259         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1260         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1261                                      2, flashbase, 2, flashsize);
1262         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1263         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1264         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1265         g_free(nodename);
1266 
1267         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1268         qemu_fdt_add_subnode(ms->fdt, nodename);
1269         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1270         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1271                                      2, flashbase + flashsize, 2, flashsize);
1272         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1273         g_free(nodename);
1274     }
1275 }
1276 
1277 static bool virt_firmware_init(VirtMachineState *vms,
1278                                MemoryRegion *sysmem,
1279                                MemoryRegion *secure_sysmem)
1280 {
1281     int i;
1282     const char *bios_name;
1283     BlockBackend *pflash_blk0;
1284 
1285     /* Map legacy -drive if=pflash to machine properties */
1286     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1287         pflash_cfi01_legacy_drive(vms->flash[i],
1288                                   drive_get(IF_PFLASH, 0, i));
1289     }
1290 
1291     virt_flash_map(vms, sysmem, secure_sysmem);
1292 
1293     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1294 
1295     bios_name = MACHINE(vms)->firmware;
1296     if (bios_name) {
1297         char *fname;
1298         MemoryRegion *mr;
1299         int image_size;
1300 
1301         if (pflash_blk0) {
1302             error_report("The contents of the first flash device may be "
1303                          "specified with -bios or with -drive if=pflash... "
1304                          "but you cannot use both options at once");
1305             exit(1);
1306         }
1307 
1308         /* Fall back to -bios */
1309 
1310         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1311         if (!fname) {
1312             error_report("Could not find ROM image '%s'", bios_name);
1313             exit(1);
1314         }
1315         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1316         image_size = load_image_mr(fname, mr);
1317         g_free(fname);
1318         if (image_size < 0) {
1319             error_report("Could not load ROM image '%s'", bios_name);
1320             exit(1);
1321         }
1322     }
1323 
1324     return pflash_blk0 || bios_name;
1325 }
1326 
1327 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1328 {
1329     MachineState *ms = MACHINE(vms);
1330     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1331     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1332     FWCfgState *fw_cfg;
1333     char *nodename;
1334 
1335     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1336     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1337 
1338     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1339     qemu_fdt_add_subnode(ms->fdt, nodename);
1340     qemu_fdt_setprop_string(ms->fdt, nodename,
1341                             "compatible", "qemu,fw-cfg-mmio");
1342     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1343                                  2, base, 2, size);
1344     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1345     g_free(nodename);
1346     return fw_cfg;
1347 }
1348 
1349 static void create_pcie_irq_map(const MachineState *ms,
1350                                 uint32_t gic_phandle,
1351                                 int first_irq, const char *nodename)
1352 {
1353     int devfn, pin;
1354     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1355     uint32_t *irq_map = full_irq_map;
1356 
1357     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1358         for (pin = 0; pin < 4; pin++) {
1359             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1360             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1361             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1362             int i;
1363 
1364             uint32_t map[] = {
1365                 devfn << 8, 0, 0,                           /* devfn */
1366                 pin + 1,                                    /* PCI pin */
1367                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1368 
1369             /* Convert map to big endian */
1370             for (i = 0; i < 10; i++) {
1371                 irq_map[i] = cpu_to_be32(map[i]);
1372             }
1373             irq_map += 10;
1374         }
1375     }
1376 
1377     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1378                      full_irq_map, sizeof(full_irq_map));
1379 
1380     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1381                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1382                            0, 0,
1383                            0x7           /* PCI irq */);
1384 }
1385 
1386 static void create_smmu(const VirtMachineState *vms,
1387                         PCIBus *bus)
1388 {
1389     char *node;
1390     const char compat[] = "arm,smmu-v3";
1391     int irq =  vms->irqmap[VIRT_SMMU];
1392     int i;
1393     hwaddr base = vms->memmap[VIRT_SMMU].base;
1394     hwaddr size = vms->memmap[VIRT_SMMU].size;
1395     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1396     DeviceState *dev;
1397     MachineState *ms = MACHINE(vms);
1398 
1399     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1400         return;
1401     }
1402 
1403     dev = qdev_new(TYPE_ARM_SMMUV3);
1404 
1405     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1406                              &error_abort);
1407     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1408     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1409     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1410         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1411                            qdev_get_gpio_in(vms->gic, irq + i));
1412     }
1413 
1414     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1415     qemu_fdt_add_subnode(ms->fdt, node);
1416     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1417     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1418 
1419     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1420             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1421             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1422             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1423             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1424 
1425     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1426                      sizeof(irq_names));
1427 
1428     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1429 
1430     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1431 
1432     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1433     g_free(node);
1434 }
1435 
1436 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1437 {
1438     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1439     uint16_t bdf = vms->virtio_iommu_bdf;
1440     MachineState *ms = MACHINE(vms);
1441     char *node;
1442 
1443     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1444 
1445     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1446                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1447     qemu_fdt_add_subnode(ms->fdt, node);
1448     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1449     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1450                                  1, bdf << 8, 1, 0, 1, 0,
1451                                  1, 0, 1, 0);
1452 
1453     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1454     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1455     g_free(node);
1456 
1457     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1458                            0x0, vms->iommu_phandle, 0x0, bdf,
1459                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1460 }
1461 
1462 static void create_pcie(VirtMachineState *vms)
1463 {
1464     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1465     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1466     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1467     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1468     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1469     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1470     hwaddr base_ecam, size_ecam;
1471     hwaddr base = base_mmio;
1472     int nr_pcie_buses;
1473     int irq = vms->irqmap[VIRT_PCIE];
1474     MemoryRegion *mmio_alias;
1475     MemoryRegion *mmio_reg;
1476     MemoryRegion *ecam_alias;
1477     MemoryRegion *ecam_reg;
1478     DeviceState *dev;
1479     char *nodename;
1480     int i, ecam_id;
1481     PCIHostState *pci;
1482     MachineState *ms = MACHINE(vms);
1483     MachineClass *mc = MACHINE_GET_CLASS(ms);
1484 
1485     dev = qdev_new(TYPE_GPEX_HOST);
1486     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1487 
1488     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1489     base_ecam = vms->memmap[ecam_id].base;
1490     size_ecam = vms->memmap[ecam_id].size;
1491     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1492     /* Map only the first size_ecam bytes of ECAM space */
1493     ecam_alias = g_new0(MemoryRegion, 1);
1494     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1495     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1496                              ecam_reg, 0, size_ecam);
1497     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1498 
1499     /* Map the MMIO window into system address space so as to expose
1500      * the section of PCI MMIO space which starts at the same base address
1501      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1502      * the window).
1503      */
1504     mmio_alias = g_new0(MemoryRegion, 1);
1505     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1506     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1507                              mmio_reg, base_mmio, size_mmio);
1508     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1509 
1510     if (vms->highmem_mmio) {
1511         /* Map high MMIO space */
1512         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1513 
1514         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1515                                  mmio_reg, base_mmio_high, size_mmio_high);
1516         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1517                                     high_mmio_alias);
1518     }
1519 
1520     /* Map IO port space */
1521     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1522 
1523     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1524         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1525                            qdev_get_gpio_in(vms->gic, irq + i));
1526         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1527     }
1528 
1529     pci = PCI_HOST_BRIDGE(dev);
1530     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1531     vms->bus = pci->bus;
1532     if (vms->bus) {
1533         pci_init_nic_devices(pci->bus, mc->default_nic);
1534     }
1535 
1536     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1537     qemu_fdt_add_subnode(ms->fdt, nodename);
1538     qemu_fdt_setprop_string(ms->fdt, nodename,
1539                             "compatible", "pci-host-ecam-generic");
1540     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1541     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1542     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1543     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1544     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1545                            nr_pcie_buses - 1);
1546     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1547 
1548     if (vms->msi_phandle) {
1549         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1550                                0, vms->msi_phandle, 0, 0x10000);
1551     }
1552 
1553     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1554                                  2, base_ecam, 2, size_ecam);
1555 
1556     if (vms->highmem_mmio) {
1557         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1558                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1559                                      2, base_pio, 2, size_pio,
1560                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1561                                      2, base_mmio, 2, size_mmio,
1562                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1563                                      2, base_mmio_high,
1564                                      2, base_mmio_high, 2, size_mmio_high);
1565     } else {
1566         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1567                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1568                                      2, base_pio, 2, size_pio,
1569                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1570                                      2, base_mmio, 2, size_mmio);
1571     }
1572 
1573     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1574     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1575 
1576     if (vms->iommu) {
1577         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1578 
1579         switch (vms->iommu) {
1580         case VIRT_IOMMU_SMMUV3:
1581             create_smmu(vms, vms->bus);
1582             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1583                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1584             break;
1585         default:
1586             g_assert_not_reached();
1587         }
1588     }
1589 }
1590 
1591 static void create_platform_bus(VirtMachineState *vms)
1592 {
1593     DeviceState *dev;
1594     SysBusDevice *s;
1595     int i;
1596     MemoryRegion *sysmem = get_system_memory();
1597 
1598     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1599     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1600     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1601     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1602     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1603     vms->platform_bus_dev = dev;
1604 
1605     s = SYS_BUS_DEVICE(dev);
1606     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1607         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1608         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1609     }
1610 
1611     memory_region_add_subregion(sysmem,
1612                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1613                                 sysbus_mmio_get_region(s, 0));
1614 }
1615 
1616 static void create_tag_ram(MemoryRegion *tag_sysmem,
1617                            hwaddr base, hwaddr size,
1618                            const char *name)
1619 {
1620     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1621 
1622     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1623     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1624 }
1625 
1626 static void create_secure_ram(VirtMachineState *vms,
1627                               MemoryRegion *secure_sysmem,
1628                               MemoryRegion *secure_tag_sysmem)
1629 {
1630     MemoryRegion *secram = g_new(MemoryRegion, 1);
1631     char *nodename;
1632     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1633     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1634     MachineState *ms = MACHINE(vms);
1635 
1636     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1637                            &error_fatal);
1638     memory_region_add_subregion(secure_sysmem, base, secram);
1639 
1640     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1641     qemu_fdt_add_subnode(ms->fdt, nodename);
1642     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1643     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1644     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1645     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1646 
1647     if (secure_tag_sysmem) {
1648         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1649     }
1650 
1651     g_free(nodename);
1652 }
1653 
1654 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1655 {
1656     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1657                                                  bootinfo);
1658     MachineState *ms = MACHINE(board);
1659 
1660 
1661     *fdt_size = board->fdt_size;
1662     return ms->fdt;
1663 }
1664 
1665 static void virt_build_smbios(VirtMachineState *vms)
1666 {
1667     MachineClass *mc = MACHINE_GET_CLASS(vms);
1668     MachineState *ms = MACHINE(vms);
1669     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1670     uint8_t *smbios_tables, *smbios_anchor;
1671     size_t smbios_tables_len, smbios_anchor_len;
1672     struct smbios_phys_mem_area mem_array;
1673     const char *product = "QEMU Virtual Machine";
1674 
1675     if (kvm_enabled()) {
1676         product = "KVM Virtual Machine";
1677     }
1678 
1679     smbios_set_defaults("QEMU", product,
1680                         vmc->smbios_old_sys_ver ? "1.0" : mc->name);
1681 
1682     /* build the array of physical mem area from base_memmap */
1683     mem_array.address = vms->memmap[VIRT_MEM].base;
1684     mem_array.length = ms->ram_size;
1685 
1686     smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
1687                       &smbios_tables, &smbios_tables_len,
1688                       &smbios_anchor, &smbios_anchor_len,
1689                       &error_fatal);
1690 
1691     if (smbios_anchor) {
1692         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1693                         smbios_tables, smbios_tables_len);
1694         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1695                         smbios_anchor, smbios_anchor_len);
1696     }
1697 }
1698 
1699 static
1700 void virt_machine_done(Notifier *notifier, void *data)
1701 {
1702     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1703                                          machine_done);
1704     MachineState *ms = MACHINE(vms);
1705     ARMCPU *cpu = ARM_CPU(first_cpu);
1706     struct arm_boot_info *info = &vms->bootinfo;
1707     AddressSpace *as = arm_boot_address_space(cpu, info);
1708 
1709     /*
1710      * If the user provided a dtb, we assume the dynamic sysbus nodes
1711      * already are integrated there. This corresponds to a use case where
1712      * the dynamic sysbus nodes are complex and their generation is not yet
1713      * supported. In that case the user can take charge of the guest dt
1714      * while qemu takes charge of the qom stuff.
1715      */
1716     if (info->dtb_filename == NULL) {
1717         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1718                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1719                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1720                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1721     }
1722     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1723         exit(1);
1724     }
1725 
1726     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1727 
1728     virt_acpi_setup(vms);
1729     virt_build_smbios(vms);
1730 }
1731 
1732 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1733 {
1734     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1735     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1736 
1737     if (!vmc->disallow_affinity_adjustment) {
1738         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1739          * GIC's target-list limitations. 32-bit KVM hosts currently
1740          * always create clusters of 4 CPUs, but that is expected to
1741          * change when they gain support for gicv3. When KVM is enabled
1742          * it will override the changes we make here, therefore our
1743          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1744          * and to improve SGI efficiency.
1745          */
1746         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1747             clustersz = GIC_TARGETLIST_BITS;
1748         } else {
1749             clustersz = GICV3_TARGETLIST_BITS;
1750         }
1751     }
1752     return arm_build_mp_affinity(idx, clustersz);
1753 }
1754 
1755 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1756                                                  int index)
1757 {
1758     bool *enabled_array[] = {
1759         &vms->highmem_redists,
1760         &vms->highmem_ecam,
1761         &vms->highmem_mmio,
1762     };
1763 
1764     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1765            ARRAY_SIZE(enabled_array));
1766     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1767 
1768     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1769 }
1770 
1771 static void virt_set_high_memmap(VirtMachineState *vms,
1772                                  hwaddr base, int pa_bits)
1773 {
1774     hwaddr region_base, region_size;
1775     bool *region_enabled, fits;
1776     int i;
1777 
1778     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1779         region_enabled = virt_get_high_memmap_enabled(vms, i);
1780         region_base = ROUND_UP(base, extended_memmap[i].size);
1781         region_size = extended_memmap[i].size;
1782 
1783         vms->memmap[i].base = region_base;
1784         vms->memmap[i].size = region_size;
1785 
1786         /*
1787          * Check each device to see if it fits in the PA space,
1788          * moving highest_gpa as we go. For compatibility, move
1789          * highest_gpa for disabled fitting devices as well, if
1790          * the compact layout has been disabled.
1791          *
1792          * For each device that doesn't fit, disable it.
1793          */
1794         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1795         *region_enabled &= fits;
1796         if (vms->highmem_compact && !*region_enabled) {
1797             continue;
1798         }
1799 
1800         base = region_base + region_size;
1801         if (fits) {
1802             vms->highest_gpa = base - 1;
1803         }
1804     }
1805 }
1806 
1807 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1808 {
1809     MachineState *ms = MACHINE(vms);
1810     hwaddr base, device_memory_base, device_memory_size, memtop;
1811     int i;
1812 
1813     vms->memmap = extended_memmap;
1814 
1815     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1816         vms->memmap[i] = base_memmap[i];
1817     }
1818 
1819     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1820         error_report("unsupported number of memory slots: %"PRIu64,
1821                      ms->ram_slots);
1822         exit(EXIT_FAILURE);
1823     }
1824 
1825     /*
1826      * !highmem is exactly the same as limiting the PA space to 32bit,
1827      * irrespective of the underlying capabilities of the HW.
1828      */
1829     if (!vms->highmem) {
1830         pa_bits = 32;
1831     }
1832 
1833     /*
1834      * We compute the base of the high IO region depending on the
1835      * amount of initial and device memory. The device memory start/size
1836      * is aligned on 1GiB. We never put the high IO region below 256GiB
1837      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1838      * The device region size assumes 1GiB page max alignment per slot.
1839      */
1840     device_memory_base =
1841         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1842     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1843 
1844     /* Base address of the high IO region */
1845     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1846     if (memtop > BIT_ULL(pa_bits)) {
1847         error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1848                      pa_bits, memtop - BIT_ULL(pa_bits));
1849         exit(EXIT_FAILURE);
1850     }
1851     if (base < device_memory_base) {
1852         error_report("maxmem/slots too huge");
1853         exit(EXIT_FAILURE);
1854     }
1855     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1856         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1857     }
1858 
1859     /* We know for sure that at least the memory fits in the PA space */
1860     vms->highest_gpa = memtop - 1;
1861 
1862     virt_set_high_memmap(vms, base, pa_bits);
1863 
1864     if (device_memory_size > 0) {
1865         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1866     }
1867 }
1868 
1869 static VirtGICType finalize_gic_version_do(const char *accel_name,
1870                                            VirtGICType gic_version,
1871                                            int gics_supported,
1872                                            unsigned int max_cpus)
1873 {
1874     /* Convert host/max/nosel to GIC version number */
1875     switch (gic_version) {
1876     case VIRT_GIC_VERSION_HOST:
1877         if (!kvm_enabled()) {
1878             error_report("gic-version=host requires KVM");
1879             exit(1);
1880         }
1881 
1882         /* For KVM, gic-version=host means gic-version=max */
1883         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1884                                        gics_supported, max_cpus);
1885     case VIRT_GIC_VERSION_MAX:
1886         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1887             gic_version = VIRT_GIC_VERSION_4;
1888         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1889             gic_version = VIRT_GIC_VERSION_3;
1890         } else {
1891             gic_version = VIRT_GIC_VERSION_2;
1892         }
1893         break;
1894     case VIRT_GIC_VERSION_NOSEL:
1895         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1896             max_cpus <= GIC_NCPU) {
1897             gic_version = VIRT_GIC_VERSION_2;
1898         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1899             /*
1900              * in case the host does not support v2 emulation or
1901              * the end-user requested more than 8 VCPUs we now default
1902              * to v3. In any case defaulting to v2 would be broken.
1903              */
1904             gic_version = VIRT_GIC_VERSION_3;
1905         } else if (max_cpus > GIC_NCPU) {
1906             error_report("%s only supports GICv2 emulation but more than 8 "
1907                          "vcpus are requested", accel_name);
1908             exit(1);
1909         }
1910         break;
1911     case VIRT_GIC_VERSION_2:
1912     case VIRT_GIC_VERSION_3:
1913     case VIRT_GIC_VERSION_4:
1914         break;
1915     }
1916 
1917     /* Check chosen version is effectively supported */
1918     switch (gic_version) {
1919     case VIRT_GIC_VERSION_2:
1920         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1921             error_report("%s does not support GICv2 emulation", accel_name);
1922             exit(1);
1923         }
1924         break;
1925     case VIRT_GIC_VERSION_3:
1926         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1927             error_report("%s does not support GICv3 emulation", accel_name);
1928             exit(1);
1929         }
1930         break;
1931     case VIRT_GIC_VERSION_4:
1932         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1933             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1934                          accel_name);
1935             exit(1);
1936         }
1937         break;
1938     default:
1939         error_report("logic error in finalize_gic_version");
1940         exit(1);
1941         break;
1942     }
1943 
1944     return gic_version;
1945 }
1946 
1947 /*
1948  * finalize_gic_version - Determines the final gic_version
1949  * according to the gic-version property
1950  *
1951  * Default GIC type is v2
1952  */
1953 static void finalize_gic_version(VirtMachineState *vms)
1954 {
1955     const char *accel_name = current_accel_name();
1956     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1957     int gics_supported = 0;
1958 
1959     /* Determine which GIC versions the current environment supports */
1960     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1961         int probe_bitmap = kvm_arm_vgic_probe();
1962 
1963         if (!probe_bitmap) {
1964             error_report("Unable to determine GIC version supported by host");
1965             exit(1);
1966         }
1967 
1968         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1969             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1970         }
1971         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1972             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1973         }
1974     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1975         /* KVM w/o kernel irqchip can only deal with GICv2 */
1976         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1977         accel_name = "KVM with kernel-irqchip=off";
1978     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1979         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1980         if (module_object_class_by_name("arm-gicv3")) {
1981             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1982             if (vms->virt) {
1983                 /* GICv4 only makes sense if CPU has EL2 */
1984                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1985             }
1986         }
1987     } else {
1988         error_report("Unsupported accelerator, can not determine GIC support");
1989         exit(1);
1990     }
1991 
1992     /*
1993      * Then convert helpers like host/max to concrete GIC versions and ensure
1994      * the desired version is supported
1995      */
1996     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1997                                                gics_supported, max_cpus);
1998 }
1999 
2000 /*
2001  * virt_cpu_post_init() must be called after the CPUs have
2002  * been realized and the GIC has been created.
2003  */
2004 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
2005 {
2006     int max_cpus = MACHINE(vms)->smp.max_cpus;
2007     bool aarch64, pmu, steal_time;
2008     CPUState *cpu;
2009 
2010     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
2011     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
2012     steal_time = object_property_get_bool(OBJECT(first_cpu),
2013                                           "kvm-steal-time", NULL);
2014 
2015     if (kvm_enabled()) {
2016         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
2017         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
2018 
2019         if (steal_time) {
2020             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
2021             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
2022 
2023             /* The memory region size must be a multiple of host page size. */
2024             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
2025 
2026             if (pvtime_size > pvtime_reg_size) {
2027                 error_report("pvtime requires a %" HWADDR_PRId
2028                              " byte memory region for %d CPUs,"
2029                              " but only %" HWADDR_PRId " has been reserved",
2030                              pvtime_size, max_cpus, pvtime_reg_size);
2031                 exit(1);
2032             }
2033 
2034             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
2035             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
2036         }
2037 
2038         CPU_FOREACH(cpu) {
2039             if (pmu) {
2040                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
2041                 if (kvm_irqchip_in_kernel()) {
2042                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2043                 }
2044                 kvm_arm_pmu_init(ARM_CPU(cpu));
2045             }
2046             if (steal_time) {
2047                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2048                                                   + cpu->cpu_index
2049                                                     * PVTIME_SIZE_PER_CPU);
2050             }
2051         }
2052     } else {
2053         if (aarch64 && vms->highmem) {
2054             int requested_pa_size = 64 - clz64(vms->highest_gpa);
2055             int pamax = arm_pamax(ARM_CPU(first_cpu));
2056 
2057             if (pamax < requested_pa_size) {
2058                 error_report("VCPU supports less PA bits (%d) than "
2059                              "requested by the memory map (%d)",
2060                              pamax, requested_pa_size);
2061                 exit(1);
2062             }
2063         }
2064     }
2065 }
2066 
2067 static void machvirt_init(MachineState *machine)
2068 {
2069     VirtMachineState *vms = VIRT_MACHINE(machine);
2070     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2071     MachineClass *mc = MACHINE_GET_CLASS(machine);
2072     const CPUArchIdList *possible_cpus;
2073     MemoryRegion *sysmem = get_system_memory();
2074     MemoryRegion *secure_sysmem = NULL;
2075     MemoryRegion *tag_sysmem = NULL;
2076     MemoryRegion *secure_tag_sysmem = NULL;
2077     int n, virt_max_cpus;
2078     bool firmware_loaded;
2079     bool aarch64 = true;
2080     bool has_ged = !vmc->no_ged;
2081     unsigned int smp_cpus = machine->smp.cpus;
2082     unsigned int max_cpus = machine->smp.max_cpus;
2083 
2084     possible_cpus = mc->possible_cpu_arch_ids(machine);
2085 
2086     /*
2087      * In accelerated mode, the memory map is computed earlier in kvm_type()
2088      * to create a VM with the right number of IPA bits.
2089      */
2090     if (!vms->memmap) {
2091         Object *cpuobj;
2092         ARMCPU *armcpu;
2093         int pa_bits;
2094 
2095         /*
2096          * Instantiate a temporary CPU object to find out about what
2097          * we are about to deal with. Once this is done, get rid of
2098          * the object.
2099          */
2100         cpuobj = object_new(possible_cpus->cpus[0].type);
2101         armcpu = ARM_CPU(cpuobj);
2102 
2103         pa_bits = arm_pamax(armcpu);
2104 
2105         object_unref(cpuobj);
2106 
2107         virt_set_memmap(vms, pa_bits);
2108     }
2109 
2110     /* We can probe only here because during property set
2111      * KVM is not available yet
2112      */
2113     finalize_gic_version(vms);
2114 
2115     if (vms->secure) {
2116         /*
2117          * The Secure view of the world is the same as the NonSecure,
2118          * but with a few extra devices. Create it as a container region
2119          * containing the system memory at low priority; any secure-only
2120          * devices go in at higher priority and take precedence.
2121          */
2122         secure_sysmem = g_new(MemoryRegion, 1);
2123         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2124                            UINT64_MAX);
2125         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2126     }
2127 
2128     firmware_loaded = virt_firmware_init(vms, sysmem,
2129                                          secure_sysmem ?: sysmem);
2130 
2131     /* If we have an EL3 boot ROM then the assumption is that it will
2132      * implement PSCI itself, so disable QEMU's internal implementation
2133      * so it doesn't get in the way. Instead of starting secondary
2134      * CPUs in PSCI powerdown state we will start them all running and
2135      * let the boot ROM sort them out.
2136      * The usual case is that we do use QEMU's PSCI implementation;
2137      * if the guest has EL2 then we will use SMC as the conduit,
2138      * and otherwise we will use HVC (for backwards compatibility and
2139      * because if we're using KVM then we must use HVC).
2140      */
2141     if (vms->secure && firmware_loaded) {
2142         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2143     } else if (vms->virt) {
2144         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2145     } else {
2146         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2147     }
2148 
2149     /*
2150      * The maximum number of CPUs depends on the GIC version, or on how
2151      * many redistributors we can fit into the memory map (which in turn
2152      * depends on whether this is a GICv3 or v4).
2153      */
2154     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2155         virt_max_cpus = GIC_NCPU;
2156     } else {
2157         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2158         if (vms->highmem_redists) {
2159             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2160         }
2161     }
2162 
2163     if (max_cpus > virt_max_cpus) {
2164         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2165                      "supported by machine 'mach-virt' (%d)",
2166                      max_cpus, virt_max_cpus);
2167         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2168             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2169         }
2170 
2171         exit(1);
2172     }
2173 
2174     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2175         error_report("mach-virt: %s does not support providing "
2176                      "Security extensions (TrustZone) to the guest CPU",
2177                      current_accel_name());
2178         exit(1);
2179     }
2180 
2181     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2182         error_report("mach-virt: %s does not support providing "
2183                      "Virtualization extensions to the guest CPU",
2184                      current_accel_name());
2185         exit(1);
2186     }
2187 
2188     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2189         error_report("mach-virt: %s does not support providing "
2190                      "MTE to the guest CPU",
2191                      current_accel_name());
2192         exit(1);
2193     }
2194 
2195     create_fdt(vms);
2196 
2197     assert(possible_cpus->len == max_cpus);
2198     for (n = 0; n < possible_cpus->len; n++) {
2199         Object *cpuobj;
2200         CPUState *cs;
2201 
2202         if (n >= smp_cpus) {
2203             break;
2204         }
2205 
2206         cpuobj = object_new(possible_cpus->cpus[n].type);
2207         object_property_set_int(cpuobj, "mp-affinity",
2208                                 possible_cpus->cpus[n].arch_id, NULL);
2209 
2210         cs = CPU(cpuobj);
2211         cs->cpu_index = n;
2212 
2213         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2214                           &error_fatal);
2215 
2216         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2217 
2218         if (!vms->secure) {
2219             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2220         }
2221 
2222         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2223             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2224         }
2225 
2226         if (vmc->kvm_no_adjvtime &&
2227             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2228             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2229         }
2230 
2231         if (vmc->no_kvm_steal_time &&
2232             object_property_find(cpuobj, "kvm-steal-time")) {
2233             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2234         }
2235 
2236         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2237             object_property_set_bool(cpuobj, "pmu", false, NULL);
2238         }
2239 
2240         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2241             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2242         }
2243 
2244         if (object_property_find(cpuobj, "reset-cbar")) {
2245             object_property_set_int(cpuobj, "reset-cbar",
2246                                     vms->memmap[VIRT_CPUPERIPHS].base,
2247                                     &error_abort);
2248         }
2249 
2250         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2251                                  &error_abort);
2252         if (vms->secure) {
2253             object_property_set_link(cpuobj, "secure-memory",
2254                                      OBJECT(secure_sysmem), &error_abort);
2255         }
2256 
2257         if (vms->mte) {
2258             /* Create the memory region only once, but link to all cpus. */
2259             if (!tag_sysmem) {
2260                 /*
2261                  * The property exists only if MemTag is supported.
2262                  * If it is, we must allocate the ram to back that up.
2263                  */
2264                 if (!object_property_find(cpuobj, "tag-memory")) {
2265                     error_report("MTE requested, but not supported "
2266                                  "by the guest CPU");
2267                     exit(1);
2268                 }
2269 
2270                 tag_sysmem = g_new(MemoryRegion, 1);
2271                 memory_region_init(tag_sysmem, OBJECT(machine),
2272                                    "tag-memory", UINT64_MAX / 32);
2273 
2274                 if (vms->secure) {
2275                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2276                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2277                                        "secure-tag-memory", UINT64_MAX / 32);
2278 
2279                     /* As with ram, secure-tag takes precedence over tag.  */
2280                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2281                                                         tag_sysmem, -1);
2282                 }
2283             }
2284 
2285             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2286                                      &error_abort);
2287             if (vms->secure) {
2288                 object_property_set_link(cpuobj, "secure-tag-memory",
2289                                          OBJECT(secure_tag_sysmem),
2290                                          &error_abort);
2291             }
2292         }
2293 
2294         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2295         object_unref(cpuobj);
2296     }
2297 
2298     /* Now we've created the CPUs we can see if they have the hypvirt timer */
2299     vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2300         !vmc->no_ns_el2_virt_timer_irq;
2301 
2302     fdt_add_timer_nodes(vms);
2303     fdt_add_cpu_nodes(vms);
2304 
2305     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2306                                 machine->ram);
2307 
2308     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2309 
2310     create_gic(vms, sysmem);
2311 
2312     virt_cpu_post_init(vms, sysmem);
2313 
2314     fdt_add_pmu_nodes(vms);
2315 
2316     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2317 
2318     if (vms->secure) {
2319         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2320         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2321     }
2322 
2323     if (tag_sysmem) {
2324         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2325                        machine->ram_size, "mach-virt.tag");
2326     }
2327 
2328     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2329 
2330     create_rtc(vms);
2331 
2332     create_pcie(vms);
2333 
2334     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2335         vms->acpi_dev = create_acpi_ged(vms);
2336     } else {
2337         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2338     }
2339 
2340     if (vms->secure && !vmc->no_secure_gpio) {
2341         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2342     }
2343 
2344      /* connect powerdown request */
2345      vms->powerdown_notifier.notify = virt_powerdown_req;
2346      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2347 
2348     /* Create mmio transports, so the user can create virtio backends
2349      * (which will be automatically plugged in to the transports). If
2350      * no backend is created the transport will just sit harmlessly idle.
2351      */
2352     create_virtio_devices(vms);
2353 
2354     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2355     rom_set_fw(vms->fw_cfg);
2356 
2357     create_platform_bus(vms);
2358 
2359     if (machine->nvdimms_state->is_enabled) {
2360         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2361             .space_id = AML_AS_SYSTEM_MEMORY,
2362             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2363             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2364         };
2365 
2366         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2367                                arm_virt_nvdimm_acpi_dsmio,
2368                                vms->fw_cfg, OBJECT(vms));
2369     }
2370 
2371     vms->bootinfo.ram_size = machine->ram_size;
2372     vms->bootinfo.board_id = -1;
2373     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2374     vms->bootinfo.get_dtb = machvirt_dtb;
2375     vms->bootinfo.skip_dtb_autoload = true;
2376     vms->bootinfo.firmware_loaded = firmware_loaded;
2377     vms->bootinfo.psci_conduit = vms->psci_conduit;
2378     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2379 
2380     vms->machine_done.notify = virt_machine_done;
2381     qemu_add_machine_init_done_notifier(&vms->machine_done);
2382 }
2383 
2384 static bool virt_get_secure(Object *obj, Error **errp)
2385 {
2386     VirtMachineState *vms = VIRT_MACHINE(obj);
2387 
2388     return vms->secure;
2389 }
2390 
2391 static void virt_set_secure(Object *obj, bool value, Error **errp)
2392 {
2393     VirtMachineState *vms = VIRT_MACHINE(obj);
2394 
2395     vms->secure = value;
2396 }
2397 
2398 static bool virt_get_virt(Object *obj, Error **errp)
2399 {
2400     VirtMachineState *vms = VIRT_MACHINE(obj);
2401 
2402     return vms->virt;
2403 }
2404 
2405 static void virt_set_virt(Object *obj, bool value, Error **errp)
2406 {
2407     VirtMachineState *vms = VIRT_MACHINE(obj);
2408 
2409     vms->virt = value;
2410 }
2411 
2412 static bool virt_get_highmem(Object *obj, Error **errp)
2413 {
2414     VirtMachineState *vms = VIRT_MACHINE(obj);
2415 
2416     return vms->highmem;
2417 }
2418 
2419 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2420 {
2421     VirtMachineState *vms = VIRT_MACHINE(obj);
2422 
2423     vms->highmem = value;
2424 }
2425 
2426 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2427 {
2428     VirtMachineState *vms = VIRT_MACHINE(obj);
2429 
2430     return vms->highmem_compact;
2431 }
2432 
2433 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2434 {
2435     VirtMachineState *vms = VIRT_MACHINE(obj);
2436 
2437     vms->highmem_compact = value;
2438 }
2439 
2440 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2441 {
2442     VirtMachineState *vms = VIRT_MACHINE(obj);
2443 
2444     return vms->highmem_redists;
2445 }
2446 
2447 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2448 {
2449     VirtMachineState *vms = VIRT_MACHINE(obj);
2450 
2451     vms->highmem_redists = value;
2452 }
2453 
2454 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2455 {
2456     VirtMachineState *vms = VIRT_MACHINE(obj);
2457 
2458     return vms->highmem_ecam;
2459 }
2460 
2461 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2462 {
2463     VirtMachineState *vms = VIRT_MACHINE(obj);
2464 
2465     vms->highmem_ecam = value;
2466 }
2467 
2468 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2469 {
2470     VirtMachineState *vms = VIRT_MACHINE(obj);
2471 
2472     return vms->highmem_mmio;
2473 }
2474 
2475 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2476 {
2477     VirtMachineState *vms = VIRT_MACHINE(obj);
2478 
2479     vms->highmem_mmio = value;
2480 }
2481 
2482 
2483 static bool virt_get_its(Object *obj, Error **errp)
2484 {
2485     VirtMachineState *vms = VIRT_MACHINE(obj);
2486 
2487     return vms->its;
2488 }
2489 
2490 static void virt_set_its(Object *obj, bool value, Error **errp)
2491 {
2492     VirtMachineState *vms = VIRT_MACHINE(obj);
2493 
2494     vms->its = value;
2495 }
2496 
2497 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2498 {
2499     VirtMachineState *vms = VIRT_MACHINE(obj);
2500 
2501     return vms->dtb_randomness;
2502 }
2503 
2504 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2505 {
2506     VirtMachineState *vms = VIRT_MACHINE(obj);
2507 
2508     vms->dtb_randomness = value;
2509 }
2510 
2511 static char *virt_get_oem_id(Object *obj, Error **errp)
2512 {
2513     VirtMachineState *vms = VIRT_MACHINE(obj);
2514 
2515     return g_strdup(vms->oem_id);
2516 }
2517 
2518 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2519 {
2520     VirtMachineState *vms = VIRT_MACHINE(obj);
2521     size_t len = strlen(value);
2522 
2523     if (len > 6) {
2524         error_setg(errp,
2525                    "User specified oem-id value is bigger than 6 bytes in size");
2526         return;
2527     }
2528 
2529     strncpy(vms->oem_id, value, 6);
2530 }
2531 
2532 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2533 {
2534     VirtMachineState *vms = VIRT_MACHINE(obj);
2535 
2536     return g_strdup(vms->oem_table_id);
2537 }
2538 
2539 static void virt_set_oem_table_id(Object *obj, const char *value,
2540                                   Error **errp)
2541 {
2542     VirtMachineState *vms = VIRT_MACHINE(obj);
2543     size_t len = strlen(value);
2544 
2545     if (len > 8) {
2546         error_setg(errp,
2547                    "User specified oem-table-id value is bigger than 8 bytes in size");
2548         return;
2549     }
2550     strncpy(vms->oem_table_id, value, 8);
2551 }
2552 
2553 
2554 bool virt_is_acpi_enabled(VirtMachineState *vms)
2555 {
2556     if (vms->acpi == ON_OFF_AUTO_OFF) {
2557         return false;
2558     }
2559     return true;
2560 }
2561 
2562 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2563                           void *opaque, Error **errp)
2564 {
2565     VirtMachineState *vms = VIRT_MACHINE(obj);
2566     OnOffAuto acpi = vms->acpi;
2567 
2568     visit_type_OnOffAuto(v, name, &acpi, errp);
2569 }
2570 
2571 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2572                           void *opaque, Error **errp)
2573 {
2574     VirtMachineState *vms = VIRT_MACHINE(obj);
2575 
2576     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2577 }
2578 
2579 static bool virt_get_ras(Object *obj, Error **errp)
2580 {
2581     VirtMachineState *vms = VIRT_MACHINE(obj);
2582 
2583     return vms->ras;
2584 }
2585 
2586 static void virt_set_ras(Object *obj, bool value, Error **errp)
2587 {
2588     VirtMachineState *vms = VIRT_MACHINE(obj);
2589 
2590     vms->ras = value;
2591 }
2592 
2593 static bool virt_get_mte(Object *obj, Error **errp)
2594 {
2595     VirtMachineState *vms = VIRT_MACHINE(obj);
2596 
2597     return vms->mte;
2598 }
2599 
2600 static void virt_set_mte(Object *obj, bool value, Error **errp)
2601 {
2602     VirtMachineState *vms = VIRT_MACHINE(obj);
2603 
2604     vms->mte = value;
2605 }
2606 
2607 static char *virt_get_gic_version(Object *obj, Error **errp)
2608 {
2609     VirtMachineState *vms = VIRT_MACHINE(obj);
2610     const char *val;
2611 
2612     switch (vms->gic_version) {
2613     case VIRT_GIC_VERSION_4:
2614         val = "4";
2615         break;
2616     case VIRT_GIC_VERSION_3:
2617         val = "3";
2618         break;
2619     default:
2620         val = "2";
2621         break;
2622     }
2623     return g_strdup(val);
2624 }
2625 
2626 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2627 {
2628     VirtMachineState *vms = VIRT_MACHINE(obj);
2629 
2630     if (!strcmp(value, "4")) {
2631         vms->gic_version = VIRT_GIC_VERSION_4;
2632     } else if (!strcmp(value, "3")) {
2633         vms->gic_version = VIRT_GIC_VERSION_3;
2634     } else if (!strcmp(value, "2")) {
2635         vms->gic_version = VIRT_GIC_VERSION_2;
2636     } else if (!strcmp(value, "host")) {
2637         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2638     } else if (!strcmp(value, "max")) {
2639         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2640     } else {
2641         error_setg(errp, "Invalid gic-version value");
2642         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2643     }
2644 }
2645 
2646 static char *virt_get_iommu(Object *obj, Error **errp)
2647 {
2648     VirtMachineState *vms = VIRT_MACHINE(obj);
2649 
2650     switch (vms->iommu) {
2651     case VIRT_IOMMU_NONE:
2652         return g_strdup("none");
2653     case VIRT_IOMMU_SMMUV3:
2654         return g_strdup("smmuv3");
2655     default:
2656         g_assert_not_reached();
2657     }
2658 }
2659 
2660 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2661 {
2662     VirtMachineState *vms = VIRT_MACHINE(obj);
2663 
2664     if (!strcmp(value, "smmuv3")) {
2665         vms->iommu = VIRT_IOMMU_SMMUV3;
2666     } else if (!strcmp(value, "none")) {
2667         vms->iommu = VIRT_IOMMU_NONE;
2668     } else {
2669         error_setg(errp, "Invalid iommu value");
2670         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2671     }
2672 }
2673 
2674 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2675 {
2676     VirtMachineState *vms = VIRT_MACHINE(obj);
2677 
2678     return vms->default_bus_bypass_iommu;
2679 }
2680 
2681 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2682                                               Error **errp)
2683 {
2684     VirtMachineState *vms = VIRT_MACHINE(obj);
2685 
2686     vms->default_bus_bypass_iommu = value;
2687 }
2688 
2689 static CpuInstanceProperties
2690 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2691 {
2692     MachineClass *mc = MACHINE_GET_CLASS(ms);
2693     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2694 
2695     assert(cpu_index < possible_cpus->len);
2696     return possible_cpus->cpus[cpu_index].props;
2697 }
2698 
2699 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2700 {
2701     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2702 
2703     return socket_id % ms->numa_state->num_nodes;
2704 }
2705 
2706 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2707 {
2708     int n;
2709     unsigned int max_cpus = ms->smp.max_cpus;
2710     VirtMachineState *vms = VIRT_MACHINE(ms);
2711     MachineClass *mc = MACHINE_GET_CLASS(vms);
2712 
2713     if (ms->possible_cpus) {
2714         assert(ms->possible_cpus->len == max_cpus);
2715         return ms->possible_cpus;
2716     }
2717 
2718     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2719                                   sizeof(CPUArchId) * max_cpus);
2720     ms->possible_cpus->len = max_cpus;
2721     for (n = 0; n < ms->possible_cpus->len; n++) {
2722         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2723         ms->possible_cpus->cpus[n].arch_id =
2724             virt_cpu_mp_affinity(vms, n);
2725 
2726         assert(!mc->smp_props.dies_supported);
2727         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2728         ms->possible_cpus->cpus[n].props.socket_id =
2729             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2730         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2731         ms->possible_cpus->cpus[n].props.cluster_id =
2732             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2733         ms->possible_cpus->cpus[n].props.has_core_id = true;
2734         ms->possible_cpus->cpus[n].props.core_id =
2735             (n / ms->smp.threads) % ms->smp.cores;
2736         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2737         ms->possible_cpus->cpus[n].props.thread_id =
2738             n % ms->smp.threads;
2739     }
2740     return ms->possible_cpus;
2741 }
2742 
2743 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2744                                  Error **errp)
2745 {
2746     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2747     const MachineState *ms = MACHINE(hotplug_dev);
2748     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2749 
2750     if (!vms->acpi_dev) {
2751         error_setg(errp,
2752                    "memory hotplug is not enabled: missing acpi-ged device");
2753         return;
2754     }
2755 
2756     if (vms->mte) {
2757         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2758         return;
2759     }
2760 
2761     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2762         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2763         return;
2764     }
2765 
2766     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp);
2767 }
2768 
2769 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2770                              DeviceState *dev, Error **errp)
2771 {
2772     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2773     MachineState *ms = MACHINE(hotplug_dev);
2774     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2775 
2776     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2777 
2778     if (is_nvdimm) {
2779         nvdimm_plug(ms->nvdimms_state);
2780     }
2781 
2782     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2783                          dev, &error_abort);
2784 }
2785 
2786 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2787                                             DeviceState *dev, Error **errp)
2788 {
2789     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2790 
2791     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2792         virt_memory_pre_plug(hotplug_dev, dev, errp);
2793     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2794         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2795     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2796         hwaddr db_start = 0, db_end = 0;
2797         QList *reserved_regions;
2798         char *resv_prop_str;
2799 
2800         if (vms->iommu != VIRT_IOMMU_NONE) {
2801             error_setg(errp, "virt machine does not support multiple IOMMUs");
2802             return;
2803         }
2804 
2805         switch (vms->msi_controller) {
2806         case VIRT_MSI_CTRL_NONE:
2807             return;
2808         case VIRT_MSI_CTRL_ITS:
2809             /* GITS_TRANSLATER page */
2810             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2811             db_end = base_memmap[VIRT_GIC_ITS].base +
2812                      base_memmap[VIRT_GIC_ITS].size - 1;
2813             break;
2814         case VIRT_MSI_CTRL_GICV2M:
2815             /* MSI_SETSPI_NS page */
2816             db_start = base_memmap[VIRT_GIC_V2M].base;
2817             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2818             break;
2819         }
2820         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2821                                         db_start, db_end,
2822                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2823 
2824         reserved_regions = qlist_new();
2825         qlist_append_str(reserved_regions, resv_prop_str);
2826         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2827         g_free(resv_prop_str);
2828     }
2829 }
2830 
2831 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2832                                         DeviceState *dev, Error **errp)
2833 {
2834     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2835 
2836     if (vms->platform_bus_dev) {
2837         MachineClass *mc = MACHINE_GET_CLASS(vms);
2838 
2839         if (device_is_dynamic_sysbus(mc, dev)) {
2840             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2841                                      SYS_BUS_DEVICE(dev));
2842         }
2843     }
2844 
2845     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2846         virt_memory_plug(hotplug_dev, dev, errp);
2847     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2848         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2849     }
2850 
2851     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2852         PCIDevice *pdev = PCI_DEVICE(dev);
2853 
2854         vms->iommu = VIRT_IOMMU_VIRTIO;
2855         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2856         create_virtio_iommu_dt_bindings(vms);
2857     }
2858 }
2859 
2860 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2861                                      DeviceState *dev, Error **errp)
2862 {
2863     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2864 
2865     if (!vms->acpi_dev) {
2866         error_setg(errp,
2867                    "memory hotplug is not enabled: missing acpi-ged device");
2868         return;
2869     }
2870 
2871     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2872         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2873         return;
2874     }
2875 
2876     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2877                                    errp);
2878 }
2879 
2880 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2881                              DeviceState *dev, Error **errp)
2882 {
2883     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2884     Error *local_err = NULL;
2885 
2886     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2887     if (local_err) {
2888         goto out;
2889     }
2890 
2891     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2892     qdev_unrealize(dev);
2893 
2894 out:
2895     error_propagate(errp, local_err);
2896 }
2897 
2898 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2899                                           DeviceState *dev, Error **errp)
2900 {
2901     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2902         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2903     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2904         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2905                                      errp);
2906     } else {
2907         error_setg(errp, "device unplug request for unsupported device"
2908                    " type: %s", object_get_typename(OBJECT(dev)));
2909     }
2910 }
2911 
2912 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2913                                           DeviceState *dev, Error **errp)
2914 {
2915     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2916         virt_dimm_unplug(hotplug_dev, dev, errp);
2917     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2918         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2919     } else {
2920         error_setg(errp, "virt: device unplug for unsupported device"
2921                    " type: %s", object_get_typename(OBJECT(dev)));
2922     }
2923 }
2924 
2925 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2926                                                         DeviceState *dev)
2927 {
2928     MachineClass *mc = MACHINE_GET_CLASS(machine);
2929 
2930     if (device_is_dynamic_sysbus(mc, dev) ||
2931         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2932         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2933         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2934         return HOTPLUG_HANDLER(machine);
2935     }
2936     return NULL;
2937 }
2938 
2939 /*
2940  * for arm64 kvm_type [7-0] encodes the requested number of bits
2941  * in the IPA address space
2942  */
2943 static int virt_kvm_type(MachineState *ms, const char *type_str)
2944 {
2945     VirtMachineState *vms = VIRT_MACHINE(ms);
2946     int max_vm_pa_size, requested_pa_size;
2947     bool fixed_ipa;
2948 
2949     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2950 
2951     /* we freeze the memory map to compute the highest gpa */
2952     virt_set_memmap(vms, max_vm_pa_size);
2953 
2954     requested_pa_size = 64 - clz64(vms->highest_gpa);
2955 
2956     /*
2957      * KVM requires the IPA size to be at least 32 bits.
2958      */
2959     if (requested_pa_size < 32) {
2960         requested_pa_size = 32;
2961     }
2962 
2963     if (requested_pa_size > max_vm_pa_size) {
2964         error_report("-m and ,maxmem option values "
2965                      "require an IPA range (%d bits) larger than "
2966                      "the one supported by the host (%d bits)",
2967                      requested_pa_size, max_vm_pa_size);
2968         return -1;
2969     }
2970     /*
2971      * We return the requested PA log size, unless KVM only supports
2972      * the implicit legacy 40b IPA setting, in which case the kvm_type
2973      * must be 0.
2974      */
2975     return fixed_ipa ? 0 : requested_pa_size;
2976 }
2977 
2978 static void virt_machine_class_init(ObjectClass *oc, void *data)
2979 {
2980     MachineClass *mc = MACHINE_CLASS(oc);
2981     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2982     static const char * const valid_cpu_types[] = {
2983 #ifdef CONFIG_TCG
2984         ARM_CPU_TYPE_NAME("cortex-a7"),
2985         ARM_CPU_TYPE_NAME("cortex-a15"),
2986 #ifdef TARGET_AARCH64
2987         ARM_CPU_TYPE_NAME("cortex-a35"),
2988         ARM_CPU_TYPE_NAME("cortex-a55"),
2989         ARM_CPU_TYPE_NAME("cortex-a72"),
2990         ARM_CPU_TYPE_NAME("cortex-a76"),
2991         ARM_CPU_TYPE_NAME("cortex-a710"),
2992         ARM_CPU_TYPE_NAME("a64fx"),
2993         ARM_CPU_TYPE_NAME("neoverse-n1"),
2994         ARM_CPU_TYPE_NAME("neoverse-v1"),
2995         ARM_CPU_TYPE_NAME("neoverse-n2"),
2996 #endif /* TARGET_AARCH64 */
2997 #endif /* CONFIG_TCG */
2998 #ifdef TARGET_AARCH64
2999         ARM_CPU_TYPE_NAME("cortex-a53"),
3000         ARM_CPU_TYPE_NAME("cortex-a57"),
3001 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
3002         ARM_CPU_TYPE_NAME("host"),
3003 #endif /* CONFIG_KVM || CONFIG_HVF */
3004 #endif /* TARGET_AARCH64 */
3005         ARM_CPU_TYPE_NAME("max"),
3006         NULL
3007     };
3008 
3009     mc->init = machvirt_init;
3010     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
3011      * The value may be reduced later when we have more information about the
3012      * configuration of the particular instance.
3013      */
3014     mc->max_cpus = 512;
3015     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3016     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3017     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3018     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3019 #ifdef CONFIG_TPM
3020     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3021 #endif
3022     mc->block_default_type = IF_VIRTIO;
3023     mc->no_cdrom = 1;
3024     mc->pci_allow_0_address = true;
3025     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3026     mc->minimum_page_bits = 12;
3027     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3028     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3029 #ifdef CONFIG_TCG
3030     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3031 #else
3032     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3033 #endif
3034     mc->valid_cpu_types = valid_cpu_types;
3035     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3036     mc->kvm_type = virt_kvm_type;
3037     assert(!mc->get_hotplug_handler);
3038     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3039     hc->pre_plug = virt_machine_device_pre_plug_cb;
3040     hc->plug = virt_machine_device_plug_cb;
3041     hc->unplug_request = virt_machine_device_unplug_request_cb;
3042     hc->unplug = virt_machine_device_unplug_cb;
3043     mc->nvdimm_supported = true;
3044     mc->smp_props.clusters_supported = true;
3045     mc->auto_enable_numa_with_memhp = true;
3046     mc->auto_enable_numa_with_memdev = true;
3047     /* platform instead of architectural choice */
3048     mc->cpu_cluster_has_numa_boundary = true;
3049     mc->default_ram_id = "mach-virt.ram";
3050     mc->default_nic = "virtio-net-pci";
3051 
3052     object_class_property_add(oc, "acpi", "OnOffAuto",
3053         virt_get_acpi, virt_set_acpi,
3054         NULL, NULL);
3055     object_class_property_set_description(oc, "acpi",
3056         "Enable ACPI");
3057     object_class_property_add_bool(oc, "secure", virt_get_secure,
3058                                    virt_set_secure);
3059     object_class_property_set_description(oc, "secure",
3060                                                 "Set on/off to enable/disable the ARM "
3061                                                 "Security Extensions (TrustZone)");
3062 
3063     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3064                                    virt_set_virt);
3065     object_class_property_set_description(oc, "virtualization",
3066                                           "Set on/off to enable/disable emulating a "
3067                                           "guest CPU which implements the ARM "
3068                                           "Virtualization Extensions");
3069 
3070     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3071                                    virt_set_highmem);
3072     object_class_property_set_description(oc, "highmem",
3073                                           "Set on/off to enable/disable using "
3074                                           "physical address space above 32 bits");
3075 
3076     object_class_property_add_bool(oc, "compact-highmem",
3077                                    virt_get_compact_highmem,
3078                                    virt_set_compact_highmem);
3079     object_class_property_set_description(oc, "compact-highmem",
3080                                           "Set on/off to enable/disable compact "
3081                                           "layout for high memory regions");
3082 
3083     object_class_property_add_bool(oc, "highmem-redists",
3084                                    virt_get_highmem_redists,
3085                                    virt_set_highmem_redists);
3086     object_class_property_set_description(oc, "highmem-redists",
3087                                           "Set on/off to enable/disable high "
3088                                           "memory region for GICv3 or GICv4 "
3089                                           "redistributor");
3090 
3091     object_class_property_add_bool(oc, "highmem-ecam",
3092                                    virt_get_highmem_ecam,
3093                                    virt_set_highmem_ecam);
3094     object_class_property_set_description(oc, "highmem-ecam",
3095                                           "Set on/off to enable/disable high "
3096                                           "memory region for PCI ECAM");
3097 
3098     object_class_property_add_bool(oc, "highmem-mmio",
3099                                    virt_get_highmem_mmio,
3100                                    virt_set_highmem_mmio);
3101     object_class_property_set_description(oc, "highmem-mmio",
3102                                           "Set on/off to enable/disable high "
3103                                           "memory region for PCI MMIO");
3104 
3105     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3106                                   virt_set_gic_version);
3107     object_class_property_set_description(oc, "gic-version",
3108                                           "Set GIC version. "
3109                                           "Valid values are 2, 3, 4, host and max");
3110 
3111     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3112     object_class_property_set_description(oc, "iommu",
3113                                           "Set the IOMMU type. "
3114                                           "Valid values are none and smmuv3");
3115 
3116     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3117                                    virt_get_default_bus_bypass_iommu,
3118                                    virt_set_default_bus_bypass_iommu);
3119     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3120                                           "Set on/off to enable/disable "
3121                                           "bypass_iommu for default root bus");
3122 
3123     object_class_property_add_bool(oc, "ras", virt_get_ras,
3124                                    virt_set_ras);
3125     object_class_property_set_description(oc, "ras",
3126                                           "Set on/off to enable/disable reporting host memory errors "
3127                                           "to a KVM guest using ACPI and guest external abort exceptions");
3128 
3129     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3130     object_class_property_set_description(oc, "mte",
3131                                           "Set on/off to enable/disable emulating a "
3132                                           "guest CPU which implements the ARM "
3133                                           "Memory Tagging Extension");
3134 
3135     object_class_property_add_bool(oc, "its", virt_get_its,
3136                                    virt_set_its);
3137     object_class_property_set_description(oc, "its",
3138                                           "Set on/off to enable/disable "
3139                                           "ITS instantiation");
3140 
3141     object_class_property_add_bool(oc, "dtb-randomness",
3142                                    virt_get_dtb_randomness,
3143                                    virt_set_dtb_randomness);
3144     object_class_property_set_description(oc, "dtb-randomness",
3145                                           "Set off to disable passing random or "
3146                                           "non-deterministic dtb nodes to guest");
3147 
3148     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3149                                    virt_get_dtb_randomness,
3150                                    virt_set_dtb_randomness);
3151     object_class_property_set_description(oc, "dtb-kaslr-seed",
3152                                           "Deprecated synonym of dtb-randomness");
3153 
3154     object_class_property_add_str(oc, "x-oem-id",
3155                                   virt_get_oem_id,
3156                                   virt_set_oem_id);
3157     object_class_property_set_description(oc, "x-oem-id",
3158                                           "Override the default value of field OEMID "
3159                                           "in ACPI table header."
3160                                           "The string may be up to 6 bytes in size");
3161 
3162 
3163     object_class_property_add_str(oc, "x-oem-table-id",
3164                                   virt_get_oem_table_id,
3165                                   virt_set_oem_table_id);
3166     object_class_property_set_description(oc, "x-oem-table-id",
3167                                           "Override the default value of field OEM Table ID "
3168                                           "in ACPI table header."
3169                                           "The string may be up to 8 bytes in size");
3170 
3171 }
3172 
3173 static void virt_instance_init(Object *obj)
3174 {
3175     VirtMachineState *vms = VIRT_MACHINE(obj);
3176     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3177 
3178     /* EL3 is disabled by default on virt: this makes us consistent
3179      * between KVM and TCG for this board, and it also allows us to
3180      * boot UEFI blobs which assume no TrustZone support.
3181      */
3182     vms->secure = false;
3183 
3184     /* EL2 is also disabled by default, for similar reasons */
3185     vms->virt = false;
3186 
3187     /* High memory is enabled by default */
3188     vms->highmem = true;
3189     vms->highmem_compact = !vmc->no_highmem_compact;
3190     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3191 
3192     vms->highmem_ecam = !vmc->no_highmem_ecam;
3193     vms->highmem_mmio = true;
3194     vms->highmem_redists = true;
3195 
3196     if (vmc->no_its) {
3197         vms->its = false;
3198     } else {
3199         /* Default allows ITS instantiation */
3200         vms->its = true;
3201 
3202         if (vmc->no_tcg_its) {
3203             vms->tcg_its = false;
3204         } else {
3205             vms->tcg_its = true;
3206         }
3207     }
3208 
3209     /* Default disallows iommu instantiation */
3210     vms->iommu = VIRT_IOMMU_NONE;
3211 
3212     /* The default root bus is attached to iommu by default */
3213     vms->default_bus_bypass_iommu = false;
3214 
3215     /* Default disallows RAS instantiation */
3216     vms->ras = false;
3217 
3218     /* MTE is disabled by default.  */
3219     vms->mte = false;
3220 
3221     /* Supply kaslr-seed and rng-seed by default */
3222     vms->dtb_randomness = true;
3223 
3224     vms->irqmap = a15irqmap;
3225 
3226     virt_flash_create(vms);
3227 
3228     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3229     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3230 }
3231 
3232 static const TypeInfo virt_machine_info = {
3233     .name          = TYPE_VIRT_MACHINE,
3234     .parent        = TYPE_MACHINE,
3235     .abstract      = true,
3236     .instance_size = sizeof(VirtMachineState),
3237     .class_size    = sizeof(VirtMachineClass),
3238     .class_init    = virt_machine_class_init,
3239     .instance_init = virt_instance_init,
3240     .interfaces = (InterfaceInfo[]) {
3241          { TYPE_HOTPLUG_HANDLER },
3242          { }
3243     },
3244 };
3245 
3246 static void machvirt_machine_init(void)
3247 {
3248     type_register_static(&virt_machine_info);
3249 }
3250 type_init(machvirt_machine_init);
3251 
3252 static void virt_machine_9_1_options(MachineClass *mc)
3253 {
3254 }
3255 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1)
3256 
3257 static void virt_machine_9_0_options(MachineClass *mc)
3258 {
3259     virt_machine_9_1_options(mc);
3260     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
3261 }
3262 DEFINE_VIRT_MACHINE(9, 0)
3263 
3264 static void virt_machine_8_2_options(MachineClass *mc)
3265 {
3266     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3267 
3268     virt_machine_9_0_options(mc);
3269     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3270     /*
3271      * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3272      * earlier machines. (Exposing it tickles a bug in older EDK2
3273      * guest BIOS binaries.)
3274      */
3275     vmc->no_ns_el2_virt_timer_irq = true;
3276 }
3277 DEFINE_VIRT_MACHINE(8, 2)
3278 
3279 static void virt_machine_8_1_options(MachineClass *mc)
3280 {
3281     virt_machine_8_2_options(mc);
3282     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3283 }
3284 DEFINE_VIRT_MACHINE(8, 1)
3285 
3286 static void virt_machine_8_0_options(MachineClass *mc)
3287 {
3288     virt_machine_8_1_options(mc);
3289     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3290 }
3291 DEFINE_VIRT_MACHINE(8, 0)
3292 
3293 static void virt_machine_7_2_options(MachineClass *mc)
3294 {
3295     virt_machine_8_0_options(mc);
3296     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3297 }
3298 DEFINE_VIRT_MACHINE(7, 2)
3299 
3300 static void virt_machine_7_1_options(MachineClass *mc)
3301 {
3302     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3303 
3304     virt_machine_7_2_options(mc);
3305     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3306     /* Compact layout for high memory regions was introduced with 7.2 */
3307     vmc->no_highmem_compact = true;
3308 }
3309 DEFINE_VIRT_MACHINE(7, 1)
3310 
3311 static void virt_machine_7_0_options(MachineClass *mc)
3312 {
3313     virt_machine_7_1_options(mc);
3314     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3315 }
3316 DEFINE_VIRT_MACHINE(7, 0)
3317 
3318 static void virt_machine_6_2_options(MachineClass *mc)
3319 {
3320     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3321 
3322     virt_machine_7_0_options(mc);
3323     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3324     vmc->no_tcg_lpa2 = true;
3325 }
3326 DEFINE_VIRT_MACHINE(6, 2)
3327 
3328 static void virt_machine_6_1_options(MachineClass *mc)
3329 {
3330     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3331 
3332     virt_machine_6_2_options(mc);
3333     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3334     mc->smp_props.prefer_sockets = true;
3335     vmc->no_cpu_topology = true;
3336 
3337     /* qemu ITS was introduced with 6.2 */
3338     vmc->no_tcg_its = true;
3339 }
3340 DEFINE_VIRT_MACHINE(6, 1)
3341 
3342 static void virt_machine_6_0_options(MachineClass *mc)
3343 {
3344     virt_machine_6_1_options(mc);
3345     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3346 }
3347 DEFINE_VIRT_MACHINE(6, 0)
3348 
3349 static void virt_machine_5_2_options(MachineClass *mc)
3350 {
3351     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3352 
3353     virt_machine_6_0_options(mc);
3354     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3355     vmc->no_secure_gpio = true;
3356 }
3357 DEFINE_VIRT_MACHINE(5, 2)
3358 
3359 static void virt_machine_5_1_options(MachineClass *mc)
3360 {
3361     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3362 
3363     virt_machine_5_2_options(mc);
3364     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3365     vmc->no_kvm_steal_time = true;
3366 }
3367 DEFINE_VIRT_MACHINE(5, 1)
3368 
3369 static void virt_machine_5_0_options(MachineClass *mc)
3370 {
3371     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3372 
3373     virt_machine_5_1_options(mc);
3374     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3375     mc->numa_mem_supported = true;
3376     vmc->acpi_expose_flash = true;
3377     mc->auto_enable_numa_with_memdev = false;
3378 }
3379 DEFINE_VIRT_MACHINE(5, 0)
3380 
3381 static void virt_machine_4_2_options(MachineClass *mc)
3382 {
3383     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3384 
3385     virt_machine_5_0_options(mc);
3386     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3387     vmc->kvm_no_adjvtime = true;
3388 }
3389 DEFINE_VIRT_MACHINE(4, 2)
3390 
3391 static void virt_machine_4_1_options(MachineClass *mc)
3392 {
3393     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3394 
3395     virt_machine_4_2_options(mc);
3396     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3397     vmc->no_ged = true;
3398     mc->auto_enable_numa_with_memhp = false;
3399 }
3400 DEFINE_VIRT_MACHINE(4, 1)
3401 
3402 static void virt_machine_4_0_options(MachineClass *mc)
3403 {
3404     virt_machine_4_1_options(mc);
3405     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3406 }
3407 DEFINE_VIRT_MACHINE(4, 0)
3408 
3409 static void virt_machine_3_1_options(MachineClass *mc)
3410 {
3411     virt_machine_4_0_options(mc);
3412     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3413 }
3414 DEFINE_VIRT_MACHINE(3, 1)
3415 
3416 static void virt_machine_3_0_options(MachineClass *mc)
3417 {
3418     virt_machine_3_1_options(mc);
3419     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3420 }
3421 DEFINE_VIRT_MACHINE(3, 0)
3422 
3423 static void virt_machine_2_12_options(MachineClass *mc)
3424 {
3425     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3426 
3427     virt_machine_3_0_options(mc);
3428     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3429     vmc->no_highmem_ecam = true;
3430     mc->max_cpus = 255;
3431 }
3432 DEFINE_VIRT_MACHINE(2, 12)
3433 
3434 static void virt_machine_2_11_options(MachineClass *mc)
3435 {
3436     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3437 
3438     virt_machine_2_12_options(mc);
3439     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3440     vmc->smbios_old_sys_ver = true;
3441 }
3442 DEFINE_VIRT_MACHINE(2, 11)
3443 
3444 static void virt_machine_2_10_options(MachineClass *mc)
3445 {
3446     virt_machine_2_11_options(mc);
3447     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3448     /* before 2.11 we never faulted accesses to bad addresses */
3449     mc->ignore_memory_transaction_failures = true;
3450 }
3451 DEFINE_VIRT_MACHINE(2, 10)
3452 
3453 static void virt_machine_2_9_options(MachineClass *mc)
3454 {
3455     virt_machine_2_10_options(mc);
3456     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3457 }
3458 DEFINE_VIRT_MACHINE(2, 9)
3459 
3460 static void virt_machine_2_8_options(MachineClass *mc)
3461 {
3462     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3463 
3464     virt_machine_2_9_options(mc);
3465     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3466     /* For 2.8 and earlier we falsely claimed in the DT that
3467      * our timers were edge-triggered, not level-triggered.
3468      */
3469     vmc->claim_edge_triggered_timers = true;
3470 }
3471 DEFINE_VIRT_MACHINE(2, 8)
3472 
3473 static void virt_machine_2_7_options(MachineClass *mc)
3474 {
3475     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3476 
3477     virt_machine_2_8_options(mc);
3478     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3479     /* ITS was introduced with 2.8 */
3480     vmc->no_its = true;
3481     /* Stick with 1K pages for migration compatibility */
3482     mc->minimum_page_bits = 0;
3483 }
3484 DEFINE_VIRT_MACHINE(2, 7)
3485 
3486 static void virt_machine_2_6_options(MachineClass *mc)
3487 {
3488     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3489 
3490     virt_machine_2_7_options(mc);
3491     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3492     vmc->disallow_affinity_adjustment = true;
3493     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3494     vmc->no_pmu = true;
3495 }
3496 DEFINE_VIRT_MACHINE(2, 6)
3497