xref: /openbmc/qemu/hw/arm/virt.c (revision 786a4ea8)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/kvm.h"
40 #include "hw/boards.h"
41 #include "hw/loader.h"
42 #include "exec/address-spaces.h"
43 #include "qemu/bitops.h"
44 #include "qemu/error-report.h"
45 #include "hw/pci-host/gpex.h"
46 
47 #define NUM_VIRTIO_TRANSPORTS 32
48 
49 /* Number of external interrupt lines to configure the GIC with */
50 #define NUM_IRQS 128
51 
52 #define GIC_FDT_IRQ_TYPE_SPI 0
53 #define GIC_FDT_IRQ_TYPE_PPI 1
54 
55 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
56 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
58 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
59 
60 #define GIC_FDT_IRQ_PPI_CPU_START 8
61 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
62 
63 enum {
64     VIRT_FLASH,
65     VIRT_MEM,
66     VIRT_CPUPERIPHS,
67     VIRT_GIC_DIST,
68     VIRT_GIC_CPU,
69     VIRT_UART,
70     VIRT_MMIO,
71     VIRT_RTC,
72     VIRT_FW_CFG,
73     VIRT_PCIE,
74 };
75 
76 typedef struct MemMapEntry {
77     hwaddr base;
78     hwaddr size;
79 } MemMapEntry;
80 
81 typedef struct VirtBoardInfo {
82     struct arm_boot_info bootinfo;
83     const char *cpu_model;
84     const MemMapEntry *memmap;
85     const int *irqmap;
86     int smp_cpus;
87     void *fdt;
88     int fdt_size;
89     uint32_t clock_phandle;
90 } VirtBoardInfo;
91 
92 typedef struct {
93     MachineClass parent;
94     VirtBoardInfo *daughterboard;
95 } VirtMachineClass;
96 
97 typedef struct {
98     MachineState parent;
99     bool secure;
100 } VirtMachineState;
101 
102 #define TYPE_VIRT_MACHINE   "virt"
103 #define VIRT_MACHINE(obj) \
104     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
105 #define VIRT_MACHINE_GET_CLASS(obj) \
106     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
107 #define VIRT_MACHINE_CLASS(klass) \
108     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
109 
110 /* Addresses and sizes of our components.
111  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
112  * 128MB..256MB is used for miscellaneous device I/O.
113  * 256MB..1GB is reserved for possible future PCI support (ie where the
114  * PCI memory window will go if we add a PCI host controller).
115  * 1GB and up is RAM (which may happily spill over into the
116  * high memory region beyond 4GB).
117  * This represents a compromise between how much RAM can be given to
118  * a 32 bit VM and leaving space for expansion and in particular for PCI.
119  * Note that devices should generally be placed at multiples of 0x10000,
120  * to accommodate guests using 64K pages.
121  */
122 static const MemMapEntry a15memmap[] = {
123     /* Space up to 0x8000000 is reserved for a boot ROM */
124     [VIRT_FLASH] =      {          0, 0x08000000 },
125     [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
126     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
127     [VIRT_GIC_DIST] =   { 0x08000000, 0x00010000 },
128     [VIRT_GIC_CPU] =    { 0x08010000, 0x00010000 },
129     [VIRT_UART] =       { 0x09000000, 0x00001000 },
130     [VIRT_RTC] =        { 0x09010000, 0x00001000 },
131     [VIRT_FW_CFG] =     { 0x09020000, 0x0000000a },
132     [VIRT_MMIO] =       { 0x0a000000, 0x00000200 },
133     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
134     /*
135      * PCIE verbose map:
136      *
137      * MMIO window      { 0x10000000, 0x2eff0000 },
138      * PIO window       { 0x3eff0000, 0x00010000 },
139      * ECAM             { 0x3f000000, 0x01000000 },
140      */
141     [VIRT_PCIE] =       { 0x10000000, 0x30000000 },
142     [VIRT_MEM] =        { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
143 };
144 
145 static const int a15irqmap[] = {
146     [VIRT_UART] = 1,
147     [VIRT_RTC] = 2,
148     [VIRT_PCIE] = 3, /* ... to 6 */
149     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
150 };
151 
152 static VirtBoardInfo machines[] = {
153     {
154         .cpu_model = "cortex-a15",
155         .memmap = a15memmap,
156         .irqmap = a15irqmap,
157     },
158     {
159         .cpu_model = "cortex-a57",
160         .memmap = a15memmap,
161         .irqmap = a15irqmap,
162     },
163     {
164         .cpu_model = "host",
165         .memmap = a15memmap,
166         .irqmap = a15irqmap,
167     },
168 };
169 
170 static VirtBoardInfo *find_machine_info(const char *cpu)
171 {
172     int i;
173 
174     for (i = 0; i < ARRAY_SIZE(machines); i++) {
175         if (strcmp(cpu, machines[i].cpu_model) == 0) {
176             return &machines[i];
177         }
178     }
179     return NULL;
180 }
181 
182 static void create_fdt(VirtBoardInfo *vbi)
183 {
184     void *fdt = create_device_tree(&vbi->fdt_size);
185 
186     if (!fdt) {
187         error_report("create_device_tree() failed");
188         exit(1);
189     }
190 
191     vbi->fdt = fdt;
192 
193     /* Header */
194     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
195     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
196     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
197 
198     /*
199      * /chosen and /memory nodes must exist for load_dtb
200      * to fill in necessary properties later
201      */
202     qemu_fdt_add_subnode(fdt, "/chosen");
203     qemu_fdt_add_subnode(fdt, "/memory");
204     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
205 
206     /* Clock node, for the benefit of the UART. The kernel device tree
207      * binding documentation claims the PL011 node clock properties are
208      * optional but in practice if you omit them the kernel refuses to
209      * probe for the device.
210      */
211     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
212     qemu_fdt_add_subnode(fdt, "/apb-pclk");
213     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
214     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
215     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
216     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
217                                 "clk24mhz");
218     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
219 
220 }
221 
222 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
223 {
224     uint32_t cpu_suspend_fn;
225     uint32_t cpu_off_fn;
226     uint32_t cpu_on_fn;
227     uint32_t migrate_fn;
228     void *fdt = vbi->fdt;
229     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
230 
231     qemu_fdt_add_subnode(fdt, "/psci");
232     if (armcpu->psci_version == 2) {
233         const char comp[] = "arm,psci-0.2\0arm,psci";
234         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
235 
236         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
237         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
238             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
239             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
240             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
241         } else {
242             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
243             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
244             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
245         }
246     } else {
247         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
248 
249         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
250         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
251         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
252         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
253     }
254 
255     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
256      * to the instruction that should be used to invoke PSCI functions.
257      * However, the device tree binding uses 'method' instead, so that is
258      * what we should use here.
259      */
260     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
261 
262     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
263     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
264     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
265     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
266 }
267 
268 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
269 {
270     /* Note that on A15 h/w these interrupts are level-triggered,
271      * but for the GIC implementation provided by both QEMU and KVM
272      * they are edge-triggered.
273      */
274     ARMCPU *armcpu;
275     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
276 
277     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
278                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
279 
280     qemu_fdt_add_subnode(vbi->fdt, "/timer");
281 
282     armcpu = ARM_CPU(qemu_get_cpu(0));
283     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
284         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
285         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
286                          compat, sizeof(compat));
287     } else {
288         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
289                                 "arm,armv7-timer");
290     }
291     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
292                                GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
293                                GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
294                                GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
295                                GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
296 }
297 
298 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
299 {
300     int cpu;
301 
302     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
303     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
304     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
305 
306     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
307         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
308         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
309 
310         qemu_fdt_add_subnode(vbi->fdt, nodename);
311         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
312         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
313                                     armcpu->dtb_compatible);
314 
315         if (vbi->smp_cpus > 1) {
316             qemu_fdt_setprop_string(vbi->fdt, nodename,
317                                         "enable-method", "psci");
318         }
319 
320         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
321         g_free(nodename);
322     }
323 }
324 
325 static uint32_t fdt_add_gic_node(const VirtBoardInfo *vbi)
326 {
327     uint32_t gic_phandle;
328 
329     gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
330     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
331 
332     qemu_fdt_add_subnode(vbi->fdt, "/intc");
333     /* 'cortex-a15-gic' means 'GIC v2' */
334     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
335                             "arm,cortex-a15-gic");
336     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
337     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
338     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
339                                      2, vbi->memmap[VIRT_GIC_DIST].base,
340                                      2, vbi->memmap[VIRT_GIC_DIST].size,
341                                      2, vbi->memmap[VIRT_GIC_CPU].base,
342                                      2, vbi->memmap[VIRT_GIC_CPU].size);
343     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
344 
345     return gic_phandle;
346 }
347 
348 static uint32_t create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
349 {
350     /* We create a standalone GIC v2 */
351     DeviceState *gicdev;
352     SysBusDevice *gicbusdev;
353     const char *gictype = "arm_gic";
354     int i;
355 
356     if (kvm_irqchip_in_kernel()) {
357         gictype = "kvm-arm-gic";
358     }
359 
360     gicdev = qdev_create(NULL, gictype);
361     qdev_prop_set_uint32(gicdev, "revision", 2);
362     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
363     /* Note that the num-irq property counts both internal and external
364      * interrupts; there are always 32 of the former (mandated by GIC spec).
365      */
366     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
367     qdev_init_nofail(gicdev);
368     gicbusdev = SYS_BUS_DEVICE(gicdev);
369     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
370     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
371 
372     /* Wire the outputs from each CPU's generic timer to the
373      * appropriate GIC PPI inputs, and the GIC's IRQ output to
374      * the CPU's IRQ input.
375      */
376     for (i = 0; i < smp_cpus; i++) {
377         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
378         int ppibase = NUM_IRQS + i * 32;
379         /* physical timer; we wire it up to the non-secure timer's ID,
380          * since a real A15 always has TrustZone but QEMU doesn't.
381          */
382         qdev_connect_gpio_out(cpudev, 0,
383                               qdev_get_gpio_in(gicdev, ppibase + 30));
384         /* virtual timer */
385         qdev_connect_gpio_out(cpudev, 1,
386                               qdev_get_gpio_in(gicdev, ppibase + 27));
387 
388         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
389     }
390 
391     for (i = 0; i < NUM_IRQS; i++) {
392         pic[i] = qdev_get_gpio_in(gicdev, i);
393     }
394 
395     return fdt_add_gic_node(vbi);
396 }
397 
398 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
399 {
400     char *nodename;
401     hwaddr base = vbi->memmap[VIRT_UART].base;
402     hwaddr size = vbi->memmap[VIRT_UART].size;
403     int irq = vbi->irqmap[VIRT_UART];
404     const char compat[] = "arm,pl011\0arm,primecell";
405     const char clocknames[] = "uartclk\0apb_pclk";
406 
407     sysbus_create_simple("pl011", base, pic[irq]);
408 
409     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
410     qemu_fdt_add_subnode(vbi->fdt, nodename);
411     /* Note that we can't use setprop_string because of the embedded NUL */
412     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
413                          compat, sizeof(compat));
414     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
415                                      2, base, 2, size);
416     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
417                                GIC_FDT_IRQ_TYPE_SPI, irq,
418                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
419     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
420                                vbi->clock_phandle, vbi->clock_phandle);
421     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
422                          clocknames, sizeof(clocknames));
423 
424     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
425     g_free(nodename);
426 }
427 
428 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
429 {
430     char *nodename;
431     hwaddr base = vbi->memmap[VIRT_RTC].base;
432     hwaddr size = vbi->memmap[VIRT_RTC].size;
433     int irq = vbi->irqmap[VIRT_RTC];
434     const char compat[] = "arm,pl031\0arm,primecell";
435 
436     sysbus_create_simple("pl031", base, pic[irq]);
437 
438     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
439     qemu_fdt_add_subnode(vbi->fdt, nodename);
440     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
441     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
442                                  2, base, 2, size);
443     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
444                            GIC_FDT_IRQ_TYPE_SPI, irq,
445                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
446     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
447     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
448     g_free(nodename);
449 }
450 
451 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
452 {
453     int i;
454     hwaddr size = vbi->memmap[VIRT_MMIO].size;
455 
456     /* We create the transports in forwards order. Since qbus_realize()
457      * prepends (not appends) new child buses, the incrementing loop below will
458      * create a list of virtio-mmio buses with decreasing base addresses.
459      *
460      * When a -device option is processed from the command line,
461      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
462      * order. The upshot is that -device options in increasing command line
463      * order are mapped to virtio-mmio buses with decreasing base addresses.
464      *
465      * When this code was originally written, that arrangement ensured that the
466      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
467      * the first -device on the command line. (The end-to-end order is a
468      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
469      * guest kernel's name-to-address assignment strategy.)
470      *
471      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
472      * the message, if not necessarily the code, of commit 70161ff336.
473      * Therefore the loop now establishes the inverse of the original intent.
474      *
475      * Unfortunately, we can't counteract the kernel change by reversing the
476      * loop; it would break existing command lines.
477      *
478      * In any case, the kernel makes no guarantee about the stability of
479      * enumeration order of virtio devices (as demonstrated by it changing
480      * between kernel versions). For reliable and stable identification
481      * of disks users must use UUIDs or similar mechanisms.
482      */
483     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
484         int irq = vbi->irqmap[VIRT_MMIO] + i;
485         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
486 
487         sysbus_create_simple("virtio-mmio", base, pic[irq]);
488     }
489 
490     /* We add dtb nodes in reverse order so that they appear in the finished
491      * device tree lowest address first.
492      *
493      * Note that this mapping is independent of the loop above. The previous
494      * loop influences virtio device to virtio transport assignment, whereas
495      * this loop controls how virtio transports are laid out in the dtb.
496      */
497     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
498         char *nodename;
499         int irq = vbi->irqmap[VIRT_MMIO] + i;
500         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
501 
502         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
503         qemu_fdt_add_subnode(vbi->fdt, nodename);
504         qemu_fdt_setprop_string(vbi->fdt, nodename,
505                                 "compatible", "virtio,mmio");
506         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
507                                      2, base, 2, size);
508         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
509                                GIC_FDT_IRQ_TYPE_SPI, irq,
510                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
511         g_free(nodename);
512     }
513 }
514 
515 static void create_one_flash(const char *name, hwaddr flashbase,
516                              hwaddr flashsize)
517 {
518     /* Create and map a single flash device. We use the same
519      * parameters as the flash devices on the Versatile Express board.
520      */
521     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
522     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
523     const uint64_t sectorlength = 256 * 1024;
524 
525     if (dinfo) {
526         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
527                             &error_abort);
528     }
529 
530     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
531     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
532     qdev_prop_set_uint8(dev, "width", 4);
533     qdev_prop_set_uint8(dev, "device-width", 2);
534     qdev_prop_set_uint8(dev, "big-endian", 0);
535     qdev_prop_set_uint16(dev, "id0", 0x89);
536     qdev_prop_set_uint16(dev, "id1", 0x18);
537     qdev_prop_set_uint16(dev, "id2", 0x00);
538     qdev_prop_set_uint16(dev, "id3", 0x00);
539     qdev_prop_set_string(dev, "name", name);
540     qdev_init_nofail(dev);
541 
542     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
543 }
544 
545 static void create_flash(const VirtBoardInfo *vbi)
546 {
547     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
548      * Any file passed via -bios goes in the first of these.
549      */
550     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
551     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
552     char *nodename;
553 
554     if (bios_name) {
555         char *fn;
556         int image_size;
557 
558         if (drive_get(IF_PFLASH, 0, 0)) {
559             error_report("The contents of the first flash device may be "
560                          "specified with -bios or with -drive if=pflash... "
561                          "but you cannot use both options at once");
562             exit(1);
563         }
564         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
565         if (!fn) {
566             error_report("Could not find ROM image '%s'", bios_name);
567             exit(1);
568         }
569         image_size = load_image_targphys(fn, flashbase, flashsize);
570         g_free(fn);
571         if (image_size < 0) {
572             error_report("Could not load ROM image '%s'", bios_name);
573             exit(1);
574         }
575     }
576 
577     create_one_flash("virt.flash0", flashbase, flashsize);
578     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
579 
580     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
581     qemu_fdt_add_subnode(vbi->fdt, nodename);
582     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
583     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
584                                  2, flashbase, 2, flashsize,
585                                  2, flashbase + flashsize, 2, flashsize);
586     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
587     g_free(nodename);
588 }
589 
590 static void create_fw_cfg(const VirtBoardInfo *vbi)
591 {
592     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
593     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
594     char *nodename;
595 
596     fw_cfg_init_mem_wide(base + 8, base, 8);
597 
598     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
599     qemu_fdt_add_subnode(vbi->fdt, nodename);
600     qemu_fdt_setprop_string(vbi->fdt, nodename,
601                             "compatible", "qemu,fw-cfg-mmio");
602     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
603                                  2, base, 2, size);
604     g_free(nodename);
605 }
606 
607 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
608                                 int first_irq, const char *nodename)
609 {
610     int devfn, pin;
611     uint32_t full_irq_map[4 * 4 * 8] = { 0 };
612     uint32_t *irq_map = full_irq_map;
613 
614     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
615         for (pin = 0; pin < 4; pin++) {
616             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
617             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
618             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
619             int i;
620 
621             uint32_t map[] = {
622                 devfn << 8, 0, 0,                           /* devfn */
623                 pin + 1,                                    /* PCI pin */
624                 gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */
625 
626             /* Convert map to big endian */
627             for (i = 0; i < 8; i++) {
628                 irq_map[i] = cpu_to_be32(map[i]);
629             }
630             irq_map += 8;
631         }
632     }
633 
634     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
635                      full_irq_map, sizeof(full_irq_map));
636 
637     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
638                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
639                            0x7           /* PCI irq */);
640 }
641 
642 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
643                         uint32_t gic_phandle)
644 {
645     hwaddr base = vbi->memmap[VIRT_PCIE].base;
646     hwaddr size = vbi->memmap[VIRT_PCIE].size;
647     hwaddr end = base + size;
648     hwaddr size_mmio;
649     hwaddr size_ioport = 64 * 1024;
650     int nr_pcie_buses = 16;
651     hwaddr size_ecam = PCIE_MMCFG_SIZE_MIN * nr_pcie_buses;
652     hwaddr base_mmio = base;
653     hwaddr base_ioport;
654     hwaddr base_ecam;
655     int irq = vbi->irqmap[VIRT_PCIE];
656     MemoryRegion *mmio_alias;
657     MemoryRegion *mmio_reg;
658     MemoryRegion *ecam_alias;
659     MemoryRegion *ecam_reg;
660     DeviceState *dev;
661     char *nodename;
662     int i;
663 
664     base_ecam = QEMU_ALIGN_DOWN(end - size_ecam, size_ecam);
665     base_ioport = QEMU_ALIGN_DOWN(base_ecam - size_ioport, size_ioport);
666     size_mmio = base_ioport - base;
667 
668     dev = qdev_create(NULL, TYPE_GPEX_HOST);
669     qdev_init_nofail(dev);
670 
671     /* Map only the first size_ecam bytes of ECAM space */
672     ecam_alias = g_new0(MemoryRegion, 1);
673     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
674     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
675                              ecam_reg, 0, size_ecam);
676     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
677 
678     /* Map the MMIO window into system address space so as to expose
679      * the section of PCI MMIO space which starts at the same base address
680      * (ie 1:1 mapping for that part of PCI MMIO space visible through
681      * the window).
682      */
683     mmio_alias = g_new0(MemoryRegion, 1);
684     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
685     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
686                              mmio_reg, base_mmio, size_mmio);
687     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
688 
689     /* Map IO port space */
690     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_ioport);
691 
692     for (i = 0; i < GPEX_NUM_IRQS; i++) {
693         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
694     }
695 
696     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
697     qemu_fdt_add_subnode(vbi->fdt, nodename);
698     qemu_fdt_setprop_string(vbi->fdt, nodename,
699                             "compatible", "pci-host-ecam-generic");
700     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
701     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
702     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
703     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
704                            nr_pcie_buses - 1);
705 
706     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
707                                  2, base_ecam, 2, size_ecam);
708     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
709                                  1, FDT_PCI_RANGE_IOPORT, 2, 0,
710                                  2, base_ioport, 2, size_ioport,
711                                  1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
712                                  2, base_mmio, 2, size_mmio);
713 
714     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
715     create_pcie_irq_map(vbi, gic_phandle, irq, nodename);
716 
717     g_free(nodename);
718 }
719 
720 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
721 {
722     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
723 
724     *fdt_size = board->fdt_size;
725     return board->fdt;
726 }
727 
728 static void machvirt_init(MachineState *machine)
729 {
730     VirtMachineState *vms = VIRT_MACHINE(machine);
731     qemu_irq pic[NUM_IRQS];
732     MemoryRegion *sysmem = get_system_memory();
733     int n;
734     MemoryRegion *ram = g_new(MemoryRegion, 1);
735     const char *cpu_model = machine->cpu_model;
736     VirtBoardInfo *vbi;
737     uint32_t gic_phandle;
738     char **cpustr;
739 
740     if (!cpu_model) {
741         cpu_model = "cortex-a15";
742     }
743 
744     /* Separate the actual CPU model name from any appended features */
745     cpustr = g_strsplit(cpu_model, ",", 2);
746 
747     vbi = find_machine_info(cpustr[0]);
748 
749     if (!vbi) {
750         error_report("mach-virt: CPU %s not supported", cpustr[0]);
751         exit(1);
752     }
753 
754     vbi->smp_cpus = smp_cpus;
755 
756     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
757         error_report("mach-virt: cannot model more than 30GB RAM");
758         exit(1);
759     }
760 
761     create_fdt(vbi);
762 
763     for (n = 0; n < smp_cpus; n++) {
764         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
765         CPUClass *cc = CPU_CLASS(oc);
766         Object *cpuobj;
767         Error *err = NULL;
768         char *cpuopts = g_strdup(cpustr[1]);
769 
770         if (!oc) {
771             fprintf(stderr, "Unable to find CPU definition\n");
772             exit(1);
773         }
774         cpuobj = object_new(object_class_get_name(oc));
775 
776         /* Handle any CPU options specified by the user */
777         cc->parse_features(CPU(cpuobj), cpuopts, &err);
778         g_free(cpuopts);
779         if (err) {
780             error_report_err(err);
781             exit(1);
782         }
783 
784         if (!vms->secure) {
785             object_property_set_bool(cpuobj, false, "has_el3", NULL);
786         }
787 
788         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
789                                 NULL);
790 
791         /* Secondary CPUs start in PSCI powered-down state */
792         if (n > 0) {
793             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
794         }
795 
796         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
797             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
798                                     "reset-cbar", &error_abort);
799         }
800 
801         object_property_set_bool(cpuobj, true, "realized", NULL);
802     }
803     g_strfreev(cpustr);
804     fdt_add_timer_nodes(vbi);
805     fdt_add_cpu_nodes(vbi);
806     fdt_add_psci_node(vbi);
807 
808     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
809                                          machine->ram_size);
810     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
811 
812     create_flash(vbi);
813 
814     gic_phandle = create_gic(vbi, pic);
815 
816     create_uart(vbi, pic);
817 
818     create_rtc(vbi, pic);
819 
820     create_pcie(vbi, pic, gic_phandle);
821 
822     /* Create mmio transports, so the user can create virtio backends
823      * (which will be automatically plugged in to the transports). If
824      * no backend is created the transport will just sit harmlessly idle.
825      */
826     create_virtio_devices(vbi, pic);
827 
828     create_fw_cfg(vbi);
829 
830     vbi->bootinfo.ram_size = machine->ram_size;
831     vbi->bootinfo.kernel_filename = machine->kernel_filename;
832     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
833     vbi->bootinfo.initrd_filename = machine->initrd_filename;
834     vbi->bootinfo.nb_cpus = smp_cpus;
835     vbi->bootinfo.board_id = -1;
836     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
837     vbi->bootinfo.get_dtb = machvirt_dtb;
838     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
839     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
840 }
841 
842 static bool virt_get_secure(Object *obj, Error **errp)
843 {
844     VirtMachineState *vms = VIRT_MACHINE(obj);
845 
846     return vms->secure;
847 }
848 
849 static void virt_set_secure(Object *obj, bool value, Error **errp)
850 {
851     VirtMachineState *vms = VIRT_MACHINE(obj);
852 
853     vms->secure = value;
854 }
855 
856 static void virt_instance_init(Object *obj)
857 {
858     VirtMachineState *vms = VIRT_MACHINE(obj);
859 
860     /* EL3 is enabled by default on virt */
861     vms->secure = true;
862     object_property_add_bool(obj, "secure", virt_get_secure,
863                              virt_set_secure, NULL);
864     object_property_set_description(obj, "secure",
865                                     "Set on/off to enable/disable the ARM "
866                                     "Security Extensions (TrustZone)",
867                                     NULL);
868 }
869 
870 static void virt_class_init(ObjectClass *oc, void *data)
871 {
872     MachineClass *mc = MACHINE_CLASS(oc);
873 
874     mc->name = TYPE_VIRT_MACHINE;
875     mc->desc = "ARM Virtual Machine",
876     mc->init = machvirt_init;
877     mc->max_cpus = 8;
878 }
879 
880 static const TypeInfo machvirt_info = {
881     .name = TYPE_VIRT_MACHINE,
882     .parent = TYPE_MACHINE,
883     .instance_size = sizeof(VirtMachineState),
884     .instance_init = virt_instance_init,
885     .class_size = sizeof(VirtMachineClass),
886     .class_init = virt_class_init,
887 };
888 
889 static void machvirt_machine_init(void)
890 {
891     type_register_static(&machvirt_info);
892 }
893 
894 machine_init(machvirt_machine_init);
895