xref: /openbmc/qemu/hw/arm/virt.c (revision 770c58f8d10b61e80a211d87df83670711631530)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 
49 /* Number of external interrupt lines to configure the GIC with */
50 #define NUM_IRQS 128
51 
52 #define GIC_FDT_IRQ_TYPE_SPI 0
53 #define GIC_FDT_IRQ_TYPE_PPI 1
54 
55 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
56 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
58 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
59 
60 #define GIC_FDT_IRQ_PPI_CPU_START 8
61 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
62 
63 typedef struct VirtBoardInfo {
64     struct arm_boot_info bootinfo;
65     const char *cpu_model;
66     const MemMapEntry *memmap;
67     const int *irqmap;
68     int smp_cpus;
69     void *fdt;
70     int fdt_size;
71     uint32_t clock_phandle;
72     uint32_t gic_phandle;
73 } VirtBoardInfo;
74 
75 typedef struct {
76     MachineClass parent;
77     VirtBoardInfo *daughterboard;
78 } VirtMachineClass;
79 
80 typedef struct {
81     MachineState parent;
82     bool secure;
83 } VirtMachineState;
84 
85 #define TYPE_VIRT_MACHINE   "virt"
86 #define VIRT_MACHINE(obj) \
87     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
88 #define VIRT_MACHINE_GET_CLASS(obj) \
89     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
90 #define VIRT_MACHINE_CLASS(klass) \
91     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
92 
93 /* Addresses and sizes of our components.
94  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
95  * 128MB..256MB is used for miscellaneous device I/O.
96  * 256MB..1GB is reserved for possible future PCI support (ie where the
97  * PCI memory window will go if we add a PCI host controller).
98  * 1GB and up is RAM (which may happily spill over into the
99  * high memory region beyond 4GB).
100  * This represents a compromise between how much RAM can be given to
101  * a 32 bit VM and leaving space for expansion and in particular for PCI.
102  * Note that devices should generally be placed at multiples of 0x10000,
103  * to accommodate guests using 64K pages.
104  */
105 static const MemMapEntry a15memmap[] = {
106     /* Space up to 0x8000000 is reserved for a boot ROM */
107     [VIRT_FLASH] =      {          0, 0x08000000 },
108     [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
109     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
110     [VIRT_GIC_DIST] =   { 0x08000000, 0x00010000 },
111     [VIRT_GIC_CPU] =    { 0x08010000, 0x00010000 },
112     [VIRT_UART] =       { 0x09000000, 0x00001000 },
113     [VIRT_RTC] =        { 0x09010000, 0x00001000 },
114     [VIRT_FW_CFG] =     { 0x09020000, 0x0000000a },
115     [VIRT_MMIO] =       { 0x0a000000, 0x00000200 },
116     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
117     [VIRT_PCIE_MMIO] =  { 0x10000000, 0x2eff0000 },
118     [VIRT_PCIE_PIO] =   { 0x3eff0000, 0x00010000 },
119     [VIRT_PCIE_ECAM] =  { 0x3f000000, 0x01000000 },
120     [VIRT_MEM] =        { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
121 };
122 
123 static const int a15irqmap[] = {
124     [VIRT_UART] = 1,
125     [VIRT_RTC] = 2,
126     [VIRT_PCIE] = 3, /* ... to 6 */
127     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
128 };
129 
130 static VirtBoardInfo machines[] = {
131     {
132         .cpu_model = "cortex-a15",
133         .memmap = a15memmap,
134         .irqmap = a15irqmap,
135     },
136     {
137         .cpu_model = "cortex-a57",
138         .memmap = a15memmap,
139         .irqmap = a15irqmap,
140     },
141     {
142         .cpu_model = "host",
143         .memmap = a15memmap,
144         .irqmap = a15irqmap,
145     },
146 };
147 
148 static VirtBoardInfo *find_machine_info(const char *cpu)
149 {
150     int i;
151 
152     for (i = 0; i < ARRAY_SIZE(machines); i++) {
153         if (strcmp(cpu, machines[i].cpu_model) == 0) {
154             return &machines[i];
155         }
156     }
157     return NULL;
158 }
159 
160 static void create_fdt(VirtBoardInfo *vbi)
161 {
162     void *fdt = create_device_tree(&vbi->fdt_size);
163 
164     if (!fdt) {
165         error_report("create_device_tree() failed");
166         exit(1);
167     }
168 
169     vbi->fdt = fdt;
170 
171     /* Header */
172     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
173     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
174     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
175 
176     /*
177      * /chosen and /memory nodes must exist for load_dtb
178      * to fill in necessary properties later
179      */
180     qemu_fdt_add_subnode(fdt, "/chosen");
181     qemu_fdt_add_subnode(fdt, "/memory");
182     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
183 
184     /* Clock node, for the benefit of the UART. The kernel device tree
185      * binding documentation claims the PL011 node clock properties are
186      * optional but in practice if you omit them the kernel refuses to
187      * probe for the device.
188      */
189     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
190     qemu_fdt_add_subnode(fdt, "/apb-pclk");
191     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
192     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
193     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
194     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
195                                 "clk24mhz");
196     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
197 
198 }
199 
200 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
201 {
202     uint32_t cpu_suspend_fn;
203     uint32_t cpu_off_fn;
204     uint32_t cpu_on_fn;
205     uint32_t migrate_fn;
206     void *fdt = vbi->fdt;
207     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
208 
209     qemu_fdt_add_subnode(fdt, "/psci");
210     if (armcpu->psci_version == 2) {
211         const char comp[] = "arm,psci-0.2\0arm,psci";
212         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
213 
214         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
215         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
216             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
217             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
218             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
219         } else {
220             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
221             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
222             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
223         }
224     } else {
225         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
226 
227         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
228         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
229         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
230         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
231     }
232 
233     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
234      * to the instruction that should be used to invoke PSCI functions.
235      * However, the device tree binding uses 'method' instead, so that is
236      * what we should use here.
237      */
238     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
239 
240     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
241     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
242     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
243     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
244 }
245 
246 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
247 {
248     /* Note that on A15 h/w these interrupts are level-triggered,
249      * but for the GIC implementation provided by both QEMU and KVM
250      * they are edge-triggered.
251      */
252     ARMCPU *armcpu;
253     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
254 
255     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
256                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
257 
258     qemu_fdt_add_subnode(vbi->fdt, "/timer");
259 
260     armcpu = ARM_CPU(qemu_get_cpu(0));
261     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
262         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
263         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
264                          compat, sizeof(compat));
265     } else {
266         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
267                                 "arm,armv7-timer");
268     }
269     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
270                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
271                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
272                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
273                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
274 }
275 
276 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
277 {
278     int cpu;
279 
280     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
281     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
282     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
283 
284     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
285         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
286         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
287 
288         qemu_fdt_add_subnode(vbi->fdt, nodename);
289         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
290         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
291                                     armcpu->dtb_compatible);
292 
293         if (vbi->smp_cpus > 1) {
294             qemu_fdt_setprop_string(vbi->fdt, nodename,
295                                         "enable-method", "psci");
296         }
297 
298         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
299         g_free(nodename);
300     }
301 }
302 
303 static void fdt_add_gic_node(VirtBoardInfo *vbi)
304 {
305 
306     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
307     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
308 
309     qemu_fdt_add_subnode(vbi->fdt, "/intc");
310     /* 'cortex-a15-gic' means 'GIC v2' */
311     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
312                             "arm,cortex-a15-gic");
313     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
314     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
315     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
316                                      2, vbi->memmap[VIRT_GIC_DIST].base,
317                                      2, vbi->memmap[VIRT_GIC_DIST].size,
318                                      2, vbi->memmap[VIRT_GIC_CPU].base,
319                                      2, vbi->memmap[VIRT_GIC_CPU].size);
320     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
321 }
322 
323 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic)
324 {
325     /* We create a standalone GIC v2 */
326     DeviceState *gicdev;
327     SysBusDevice *gicbusdev;
328     const char *gictype = "arm_gic";
329     int i;
330 
331     if (kvm_irqchip_in_kernel()) {
332         gictype = "kvm-arm-gic";
333     }
334 
335     gicdev = qdev_create(NULL, gictype);
336     qdev_prop_set_uint32(gicdev, "revision", 2);
337     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
338     /* Note that the num-irq property counts both internal and external
339      * interrupts; there are always 32 of the former (mandated by GIC spec).
340      */
341     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
342     qdev_init_nofail(gicdev);
343     gicbusdev = SYS_BUS_DEVICE(gicdev);
344     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
345     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
346 
347     /* Wire the outputs from each CPU's generic timer to the
348      * appropriate GIC PPI inputs, and the GIC's IRQ output to
349      * the CPU's IRQ input.
350      */
351     for (i = 0; i < smp_cpus; i++) {
352         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
353         int ppibase = NUM_IRQS + i * 32;
354         /* physical timer; we wire it up to the non-secure timer's ID,
355          * since a real A15 always has TrustZone but QEMU doesn't.
356          */
357         qdev_connect_gpio_out(cpudev, 0,
358                               qdev_get_gpio_in(gicdev, ppibase + 30));
359         /* virtual timer */
360         qdev_connect_gpio_out(cpudev, 1,
361                               qdev_get_gpio_in(gicdev, ppibase + 27));
362 
363         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
364         sysbus_connect_irq(gicbusdev, i + smp_cpus,
365                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
366     }
367 
368     for (i = 0; i < NUM_IRQS; i++) {
369         pic[i] = qdev_get_gpio_in(gicdev, i);
370     }
371 
372     fdt_add_gic_node(vbi);
373 }
374 
375 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
376 {
377     char *nodename;
378     hwaddr base = vbi->memmap[VIRT_UART].base;
379     hwaddr size = vbi->memmap[VIRT_UART].size;
380     int irq = vbi->irqmap[VIRT_UART];
381     const char compat[] = "arm,pl011\0arm,primecell";
382     const char clocknames[] = "uartclk\0apb_pclk";
383 
384     sysbus_create_simple("pl011", base, pic[irq]);
385 
386     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
387     qemu_fdt_add_subnode(vbi->fdt, nodename);
388     /* Note that we can't use setprop_string because of the embedded NUL */
389     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
390                          compat, sizeof(compat));
391     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
392                                      2, base, 2, size);
393     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
394                                GIC_FDT_IRQ_TYPE_SPI, irq,
395                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
396     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
397                                vbi->clock_phandle, vbi->clock_phandle);
398     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
399                          clocknames, sizeof(clocknames));
400 
401     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
402     g_free(nodename);
403 }
404 
405 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
406 {
407     char *nodename;
408     hwaddr base = vbi->memmap[VIRT_RTC].base;
409     hwaddr size = vbi->memmap[VIRT_RTC].size;
410     int irq = vbi->irqmap[VIRT_RTC];
411     const char compat[] = "arm,pl031\0arm,primecell";
412 
413     sysbus_create_simple("pl031", base, pic[irq]);
414 
415     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
416     qemu_fdt_add_subnode(vbi->fdt, nodename);
417     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
418     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
419                                  2, base, 2, size);
420     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
421                            GIC_FDT_IRQ_TYPE_SPI, irq,
422                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
423     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
424     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
425     g_free(nodename);
426 }
427 
428 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
429 {
430     int i;
431     hwaddr size = vbi->memmap[VIRT_MMIO].size;
432 
433     /* We create the transports in forwards order. Since qbus_realize()
434      * prepends (not appends) new child buses, the incrementing loop below will
435      * create a list of virtio-mmio buses with decreasing base addresses.
436      *
437      * When a -device option is processed from the command line,
438      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
439      * order. The upshot is that -device options in increasing command line
440      * order are mapped to virtio-mmio buses with decreasing base addresses.
441      *
442      * When this code was originally written, that arrangement ensured that the
443      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
444      * the first -device on the command line. (The end-to-end order is a
445      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
446      * guest kernel's name-to-address assignment strategy.)
447      *
448      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
449      * the message, if not necessarily the code, of commit 70161ff336.
450      * Therefore the loop now establishes the inverse of the original intent.
451      *
452      * Unfortunately, we can't counteract the kernel change by reversing the
453      * loop; it would break existing command lines.
454      *
455      * In any case, the kernel makes no guarantee about the stability of
456      * enumeration order of virtio devices (as demonstrated by it changing
457      * between kernel versions). For reliable and stable identification
458      * of disks users must use UUIDs or similar mechanisms.
459      */
460     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
461         int irq = vbi->irqmap[VIRT_MMIO] + i;
462         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
463 
464         sysbus_create_simple("virtio-mmio", base, pic[irq]);
465     }
466 
467     /* We add dtb nodes in reverse order so that they appear in the finished
468      * device tree lowest address first.
469      *
470      * Note that this mapping is independent of the loop above. The previous
471      * loop influences virtio device to virtio transport assignment, whereas
472      * this loop controls how virtio transports are laid out in the dtb.
473      */
474     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
475         char *nodename;
476         int irq = vbi->irqmap[VIRT_MMIO] + i;
477         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
478 
479         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
480         qemu_fdt_add_subnode(vbi->fdt, nodename);
481         qemu_fdt_setprop_string(vbi->fdt, nodename,
482                                 "compatible", "virtio,mmio");
483         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
484                                      2, base, 2, size);
485         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
486                                GIC_FDT_IRQ_TYPE_SPI, irq,
487                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
488         g_free(nodename);
489     }
490 }
491 
492 static void create_one_flash(const char *name, hwaddr flashbase,
493                              hwaddr flashsize)
494 {
495     /* Create and map a single flash device. We use the same
496      * parameters as the flash devices on the Versatile Express board.
497      */
498     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
499     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
500     const uint64_t sectorlength = 256 * 1024;
501 
502     if (dinfo) {
503         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
504                             &error_abort);
505     }
506 
507     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
508     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
509     qdev_prop_set_uint8(dev, "width", 4);
510     qdev_prop_set_uint8(dev, "device-width", 2);
511     qdev_prop_set_uint8(dev, "big-endian", 0);
512     qdev_prop_set_uint16(dev, "id0", 0x89);
513     qdev_prop_set_uint16(dev, "id1", 0x18);
514     qdev_prop_set_uint16(dev, "id2", 0x00);
515     qdev_prop_set_uint16(dev, "id3", 0x00);
516     qdev_prop_set_string(dev, "name", name);
517     qdev_init_nofail(dev);
518 
519     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
520 }
521 
522 static void create_flash(const VirtBoardInfo *vbi)
523 {
524     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
525      * Any file passed via -bios goes in the first of these.
526      */
527     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
528     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
529     char *nodename;
530 
531     if (bios_name) {
532         char *fn;
533         int image_size;
534 
535         if (drive_get(IF_PFLASH, 0, 0)) {
536             error_report("The contents of the first flash device may be "
537                          "specified with -bios or with -drive if=pflash... "
538                          "but you cannot use both options at once");
539             exit(1);
540         }
541         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
542         if (!fn) {
543             error_report("Could not find ROM image '%s'", bios_name);
544             exit(1);
545         }
546         image_size = load_image_targphys(fn, flashbase, flashsize);
547         g_free(fn);
548         if (image_size < 0) {
549             error_report("Could not load ROM image '%s'", bios_name);
550             exit(1);
551         }
552     }
553 
554     create_one_flash("virt.flash0", flashbase, flashsize);
555     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
556 
557     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
558     qemu_fdt_add_subnode(vbi->fdt, nodename);
559     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
560     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
561                                  2, flashbase, 2, flashsize,
562                                  2, flashbase + flashsize, 2, flashsize);
563     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
564     g_free(nodename);
565 }
566 
567 static void create_fw_cfg(const VirtBoardInfo *vbi)
568 {
569     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
570     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
571     char *nodename;
572 
573     fw_cfg_init_mem_wide(base + 8, base, 8);
574 
575     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
576     qemu_fdt_add_subnode(vbi->fdt, nodename);
577     qemu_fdt_setprop_string(vbi->fdt, nodename,
578                             "compatible", "qemu,fw-cfg-mmio");
579     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
580                                  2, base, 2, size);
581     g_free(nodename);
582 }
583 
584 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
585                                 int first_irq, const char *nodename)
586 {
587     int devfn, pin;
588     uint32_t full_irq_map[4 * 4 * 8] = { 0 };
589     uint32_t *irq_map = full_irq_map;
590 
591     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
592         for (pin = 0; pin < 4; pin++) {
593             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
594             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
595             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
596             int i;
597 
598             uint32_t map[] = {
599                 devfn << 8, 0, 0,                           /* devfn */
600                 pin + 1,                                    /* PCI pin */
601                 gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */
602 
603             /* Convert map to big endian */
604             for (i = 0; i < 8; i++) {
605                 irq_map[i] = cpu_to_be32(map[i]);
606             }
607             irq_map += 8;
608         }
609     }
610 
611     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
612                      full_irq_map, sizeof(full_irq_map));
613 
614     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
615                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
616                            0x7           /* PCI irq */);
617 }
618 
619 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic)
620 {
621     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
622     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
623     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
624     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
625     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
626     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
627     hwaddr base = base_mmio;
628     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
629     int irq = vbi->irqmap[VIRT_PCIE];
630     MemoryRegion *mmio_alias;
631     MemoryRegion *mmio_reg;
632     MemoryRegion *ecam_alias;
633     MemoryRegion *ecam_reg;
634     DeviceState *dev;
635     char *nodename;
636     int i;
637 
638     dev = qdev_create(NULL, TYPE_GPEX_HOST);
639     qdev_init_nofail(dev);
640 
641     /* Map only the first size_ecam bytes of ECAM space */
642     ecam_alias = g_new0(MemoryRegion, 1);
643     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
644     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
645                              ecam_reg, 0, size_ecam);
646     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
647 
648     /* Map the MMIO window into system address space so as to expose
649      * the section of PCI MMIO space which starts at the same base address
650      * (ie 1:1 mapping for that part of PCI MMIO space visible through
651      * the window).
652      */
653     mmio_alias = g_new0(MemoryRegion, 1);
654     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
655     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
656                              mmio_reg, base_mmio, size_mmio);
657     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
658 
659     /* Map IO port space */
660     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
661 
662     for (i = 0; i < GPEX_NUM_IRQS; i++) {
663         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
664     }
665 
666     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
667     qemu_fdt_add_subnode(vbi->fdt, nodename);
668     qemu_fdt_setprop_string(vbi->fdt, nodename,
669                             "compatible", "pci-host-ecam-generic");
670     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
671     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
672     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
673     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
674                            nr_pcie_buses - 1);
675 
676     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
677                                  2, base_ecam, 2, size_ecam);
678     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
679                                  1, FDT_PCI_RANGE_IOPORT, 2, 0,
680                                  2, base_pio, 2, size_pio,
681                                  1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
682                                  2, base_mmio, 2, size_mmio);
683 
684     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
685     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
686 
687     g_free(nodename);
688 }
689 
690 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
691 {
692     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
693 
694     *fdt_size = board->fdt_size;
695     return board->fdt;
696 }
697 
698 static
699 void virt_guest_info_machine_done(Notifier *notifier, void *data)
700 {
701     VirtGuestInfoState *guest_info_state = container_of(notifier,
702                                               VirtGuestInfoState, machine_done);
703     virt_acpi_setup(&guest_info_state->info);
704 }
705 
706 static void machvirt_init(MachineState *machine)
707 {
708     VirtMachineState *vms = VIRT_MACHINE(machine);
709     qemu_irq pic[NUM_IRQS];
710     MemoryRegion *sysmem = get_system_memory();
711     int n;
712     MemoryRegion *ram = g_new(MemoryRegion, 1);
713     const char *cpu_model = machine->cpu_model;
714     VirtBoardInfo *vbi;
715     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
716     VirtGuestInfo *guest_info = &guest_info_state->info;
717     char **cpustr;
718 
719     if (!cpu_model) {
720         cpu_model = "cortex-a15";
721     }
722 
723     /* Separate the actual CPU model name from any appended features */
724     cpustr = g_strsplit(cpu_model, ",", 2);
725 
726     vbi = find_machine_info(cpustr[0]);
727 
728     if (!vbi) {
729         error_report("mach-virt: CPU %s not supported", cpustr[0]);
730         exit(1);
731     }
732 
733     vbi->smp_cpus = smp_cpus;
734 
735     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
736         error_report("mach-virt: cannot model more than 30GB RAM");
737         exit(1);
738     }
739 
740     create_fdt(vbi);
741 
742     for (n = 0; n < smp_cpus; n++) {
743         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
744         CPUClass *cc = CPU_CLASS(oc);
745         Object *cpuobj;
746         Error *err = NULL;
747         char *cpuopts = g_strdup(cpustr[1]);
748 
749         if (!oc) {
750             fprintf(stderr, "Unable to find CPU definition\n");
751             exit(1);
752         }
753         cpuobj = object_new(object_class_get_name(oc));
754 
755         /* Handle any CPU options specified by the user */
756         cc->parse_features(CPU(cpuobj), cpuopts, &err);
757         g_free(cpuopts);
758         if (err) {
759             error_report_err(err);
760             exit(1);
761         }
762 
763         if (!vms->secure) {
764             object_property_set_bool(cpuobj, false, "has_el3", NULL);
765         }
766 
767         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
768                                 NULL);
769 
770         /* Secondary CPUs start in PSCI powered-down state */
771         if (n > 0) {
772             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
773         }
774 
775         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
776             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
777                                     "reset-cbar", &error_abort);
778         }
779 
780         object_property_set_bool(cpuobj, true, "realized", NULL);
781     }
782     g_strfreev(cpustr);
783     fdt_add_timer_nodes(vbi);
784     fdt_add_cpu_nodes(vbi);
785     fdt_add_psci_node(vbi);
786 
787     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
788                                          machine->ram_size);
789     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
790 
791     create_flash(vbi);
792 
793     create_gic(vbi, pic);
794 
795     create_uart(vbi, pic);
796 
797     create_rtc(vbi, pic);
798 
799     create_pcie(vbi, pic);
800 
801     /* Create mmio transports, so the user can create virtio backends
802      * (which will be automatically plugged in to the transports). If
803      * no backend is created the transport will just sit harmlessly idle.
804      */
805     create_virtio_devices(vbi, pic);
806 
807     create_fw_cfg(vbi);
808     rom_set_fw(fw_cfg_find());
809 
810     guest_info->smp_cpus = smp_cpus;
811     guest_info->fw_cfg = fw_cfg_find();
812     guest_info->memmap = vbi->memmap;
813     guest_info->irqmap = vbi->irqmap;
814     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
815     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
816 
817     vbi->bootinfo.ram_size = machine->ram_size;
818     vbi->bootinfo.kernel_filename = machine->kernel_filename;
819     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
820     vbi->bootinfo.initrd_filename = machine->initrd_filename;
821     vbi->bootinfo.nb_cpus = smp_cpus;
822     vbi->bootinfo.board_id = -1;
823     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
824     vbi->bootinfo.get_dtb = machvirt_dtb;
825     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
826     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
827 }
828 
829 static bool virt_get_secure(Object *obj, Error **errp)
830 {
831     VirtMachineState *vms = VIRT_MACHINE(obj);
832 
833     return vms->secure;
834 }
835 
836 static void virt_set_secure(Object *obj, bool value, Error **errp)
837 {
838     VirtMachineState *vms = VIRT_MACHINE(obj);
839 
840     vms->secure = value;
841 }
842 
843 static void virt_instance_init(Object *obj)
844 {
845     VirtMachineState *vms = VIRT_MACHINE(obj);
846 
847     /* EL3 is enabled by default on virt */
848     vms->secure = true;
849     object_property_add_bool(obj, "secure", virt_get_secure,
850                              virt_set_secure, NULL);
851     object_property_set_description(obj, "secure",
852                                     "Set on/off to enable/disable the ARM "
853                                     "Security Extensions (TrustZone)",
854                                     NULL);
855 }
856 
857 static void virt_class_init(ObjectClass *oc, void *data)
858 {
859     MachineClass *mc = MACHINE_CLASS(oc);
860 
861     mc->name = TYPE_VIRT_MACHINE;
862     mc->desc = "ARM Virtual Machine",
863     mc->init = machvirt_init;
864     mc->max_cpus = 8;
865 }
866 
867 static const TypeInfo machvirt_info = {
868     .name = TYPE_VIRT_MACHINE,
869     .parent = TYPE_MACHINE,
870     .instance_size = sizeof(VirtMachineState),
871     .instance_init = virt_instance_init,
872     .class_size = sizeof(VirtMachineClass),
873     .class_init = virt_class_init,
874 };
875 
876 static void machvirt_machine_init(void)
877 {
878     type_register_static(&machvirt_info);
879 }
880 
881 machine_init(machvirt_machine_init);
882