1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "qapi/error.h" 36 #include "hw/sysbus.h" 37 #include "hw/boards.h" 38 #include "hw/arm/boot.h" 39 #include "hw/arm/primecell.h" 40 #include "hw/arm/virt.h" 41 #include "hw/block/flash.h" 42 #include "hw/vfio/vfio-calxeda-xgmac.h" 43 #include "hw/vfio/vfio-amd-xgbe.h" 44 #include "hw/display/ramfb.h" 45 #include "net/net.h" 46 #include "sysemu/device_tree.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/runstate.h" 49 #include "sysemu/sysemu.h" 50 #include "sysemu/kvm.h" 51 #include "hw/loader.h" 52 #include "exec/address-spaces.h" 53 #include "qemu/bitops.h" 54 #include "qemu/error-report.h" 55 #include "qemu/module.h" 56 #include "hw/pci-host/gpex.h" 57 #include "hw/arm/sysbus-fdt.h" 58 #include "hw/platform-bus.h" 59 #include "hw/qdev-properties.h" 60 #include "hw/arm/fdt.h" 61 #include "hw/intc/arm_gic.h" 62 #include "hw/intc/arm_gicv3_common.h" 63 #include "hw/irq.h" 64 #include "kvm_arm.h" 65 #include "hw/firmware/smbios.h" 66 #include "qapi/visitor.h" 67 #include "standard-headers/linux/input.h" 68 #include "hw/arm/smmuv3.h" 69 #include "hw/acpi/acpi.h" 70 #include "target/arm/internals.h" 71 #include "hw/mem/pc-dimm.h" 72 #include "hw/mem/nvdimm.h" 73 #include "hw/acpi/generic_event_device.h" 74 75 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 76 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 77 void *data) \ 78 { \ 79 MachineClass *mc = MACHINE_CLASS(oc); \ 80 virt_machine_##major##_##minor##_options(mc); \ 81 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 82 if (latest) { \ 83 mc->alias = "virt"; \ 84 } \ 85 } \ 86 static const TypeInfo machvirt_##major##_##minor##_info = { \ 87 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 88 .parent = TYPE_VIRT_MACHINE, \ 89 .class_init = virt_##major##_##minor##_class_init, \ 90 }; \ 91 static void machvirt_machine_##major##_##minor##_init(void) \ 92 { \ 93 type_register_static(&machvirt_##major##_##minor##_info); \ 94 } \ 95 type_init(machvirt_machine_##major##_##minor##_init); 96 97 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 98 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 99 #define DEFINE_VIRT_MACHINE(major, minor) \ 100 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 101 102 103 /* Number of external interrupt lines to configure the GIC with */ 104 #define NUM_IRQS 256 105 106 #define PLATFORM_BUS_NUM_IRQS 64 107 108 /* Legacy RAM limit in GB (< version 4.0) */ 109 #define LEGACY_RAMLIMIT_GB 255 110 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 111 112 /* Addresses and sizes of our components. 113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 114 * 128MB..256MB is used for miscellaneous device I/O. 115 * 256MB..1GB is reserved for possible future PCI support (ie where the 116 * PCI memory window will go if we add a PCI host controller). 117 * 1GB and up is RAM (which may happily spill over into the 118 * high memory region beyond 4GB). 119 * This represents a compromise between how much RAM can be given to 120 * a 32 bit VM and leaving space for expansion and in particular for PCI. 121 * Note that devices should generally be placed at multiples of 0x10000, 122 * to accommodate guests using 64K pages. 123 */ 124 static const MemMapEntry base_memmap[] = { 125 /* Space up to 0x8000000 is reserved for a boot ROM */ 126 [VIRT_FLASH] = { 0, 0x08000000 }, 127 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 129 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 130 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 131 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 132 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 133 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 136 /* This redistributor space allows up to 2*64kB*123 CPUs */ 137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 138 [VIRT_UART] = { 0x09000000, 0x00001000 }, 139 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 141 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 143 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 144 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 145 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 153 /* Actual RAM size depends on initial RAM and device memory settings */ 154 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 155 }; 156 157 /* 158 * Highmem IO Regions: This memory map is floating, located after the RAM. 159 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 160 * top of the RAM, so that its base get the same alignment as the size, 161 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 162 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 163 * Note the extended_memmap is sized so that it eventually also includes the 164 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 165 * index of base_memmap). 166 */ 167 static MemMapEntry extended_memmap[] = { 168 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 169 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 170 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 171 /* Second PCIe window */ 172 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 173 }; 174 175 static const int a15irqmap[] = { 176 [VIRT_UART] = 1, 177 [VIRT_RTC] = 2, 178 [VIRT_PCIE] = 3, /* ... to 6 */ 179 [VIRT_GPIO] = 7, 180 [VIRT_SECURE_UART] = 8, 181 [VIRT_ACPI_GED] = 9, 182 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 183 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 184 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 185 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 186 }; 187 188 static const char *valid_cpus[] = { 189 ARM_CPU_TYPE_NAME("cortex-a7"), 190 ARM_CPU_TYPE_NAME("cortex-a15"), 191 ARM_CPU_TYPE_NAME("cortex-a53"), 192 ARM_CPU_TYPE_NAME("cortex-a57"), 193 ARM_CPU_TYPE_NAME("cortex-a72"), 194 ARM_CPU_TYPE_NAME("host"), 195 ARM_CPU_TYPE_NAME("max"), 196 }; 197 198 static bool cpu_type_valid(const char *cpu) 199 { 200 int i; 201 202 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 203 if (strcmp(cpu, valid_cpus[i]) == 0) { 204 return true; 205 } 206 } 207 return false; 208 } 209 210 static void create_fdt(VirtMachineState *vms) 211 { 212 MachineState *ms = MACHINE(vms); 213 int nb_numa_nodes = ms->numa_state->num_nodes; 214 void *fdt = create_device_tree(&vms->fdt_size); 215 216 if (!fdt) { 217 error_report("create_device_tree() failed"); 218 exit(1); 219 } 220 221 vms->fdt = fdt; 222 223 /* Header */ 224 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 225 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 226 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 227 228 /* /chosen must exist for load_dtb to fill in necessary properties later */ 229 qemu_fdt_add_subnode(fdt, "/chosen"); 230 231 /* Clock node, for the benefit of the UART. The kernel device tree 232 * binding documentation claims the PL011 node clock properties are 233 * optional but in practice if you omit them the kernel refuses to 234 * probe for the device. 235 */ 236 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 237 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 238 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 239 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 240 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 241 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 242 "clk24mhz"); 243 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 244 245 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 246 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 247 uint32_t *matrix = g_malloc0(size); 248 int idx, i, j; 249 250 for (i = 0; i < nb_numa_nodes; i++) { 251 for (j = 0; j < nb_numa_nodes; j++) { 252 idx = (i * nb_numa_nodes + j) * 3; 253 matrix[idx + 0] = cpu_to_be32(i); 254 matrix[idx + 1] = cpu_to_be32(j); 255 matrix[idx + 2] = 256 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 257 } 258 } 259 260 qemu_fdt_add_subnode(fdt, "/distance-map"); 261 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 262 "numa-distance-map-v1"); 263 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 264 matrix, size); 265 g_free(matrix); 266 } 267 } 268 269 static void fdt_add_timer_nodes(const VirtMachineState *vms) 270 { 271 /* On real hardware these interrupts are level-triggered. 272 * On KVM they were edge-triggered before host kernel version 4.4, 273 * and level-triggered afterwards. 274 * On emulated QEMU they are level-triggered. 275 * 276 * Getting the DTB info about them wrong is awkward for some 277 * guest kernels: 278 * pre-4.8 ignore the DT and leave the interrupt configured 279 * with whatever the GIC reset value (or the bootloader) left it at 280 * 4.8 before rc6 honour the incorrect data by programming it back 281 * into the GIC, causing problems 282 * 4.8rc6 and later ignore the DT and always write "level triggered" 283 * into the GIC 284 * 285 * For backwards-compatibility, virt-2.8 and earlier will continue 286 * to say these are edge-triggered, but later machines will report 287 * the correct information. 288 */ 289 ARMCPU *armcpu; 290 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 291 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 292 293 if (vmc->claim_edge_triggered_timers) { 294 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 295 } 296 297 if (vms->gic_version == 2) { 298 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 299 GIC_FDT_IRQ_PPI_CPU_WIDTH, 300 (1 << vms->smp_cpus) - 1); 301 } 302 303 qemu_fdt_add_subnode(vms->fdt, "/timer"); 304 305 armcpu = ARM_CPU(qemu_get_cpu(0)); 306 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 307 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 308 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 309 compat, sizeof(compat)); 310 } else { 311 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 312 "arm,armv7-timer"); 313 } 314 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 315 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 316 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 317 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 318 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 319 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 320 } 321 322 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 323 { 324 int cpu; 325 int addr_cells = 1; 326 const MachineState *ms = MACHINE(vms); 327 328 /* 329 * From Documentation/devicetree/bindings/arm/cpus.txt 330 * On ARM v8 64-bit systems value should be set to 2, 331 * that corresponds to the MPIDR_EL1 register size. 332 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 333 * in the system, #address-cells can be set to 1, since 334 * MPIDR_EL1[63:32] bits are not used for CPUs 335 * identification. 336 * 337 * Here we actually don't know whether our system is 32- or 64-bit one. 338 * The simplest way to go is to examine affinity IDs of all our CPUs. If 339 * at least one of them has Aff3 populated, we set #address-cells to 2. 340 */ 341 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 342 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 343 344 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 345 addr_cells = 2; 346 break; 347 } 348 } 349 350 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 351 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 352 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 353 354 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 355 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 356 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 357 CPUState *cs = CPU(armcpu); 358 359 qemu_fdt_add_subnode(vms->fdt, nodename); 360 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 361 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 362 armcpu->dtb_compatible); 363 364 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 365 && vms->smp_cpus > 1) { 366 qemu_fdt_setprop_string(vms->fdt, nodename, 367 "enable-method", "psci"); 368 } 369 370 if (addr_cells == 2) { 371 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 372 armcpu->mp_affinity); 373 } else { 374 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 375 armcpu->mp_affinity); 376 } 377 378 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 379 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 380 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 381 } 382 383 g_free(nodename); 384 } 385 } 386 387 static void fdt_add_its_gic_node(VirtMachineState *vms) 388 { 389 char *nodename; 390 391 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 392 nodename = g_strdup_printf("/intc/its@%" PRIx64, 393 vms->memmap[VIRT_GIC_ITS].base); 394 qemu_fdt_add_subnode(vms->fdt, nodename); 395 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 396 "arm,gic-v3-its"); 397 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 398 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 399 2, vms->memmap[VIRT_GIC_ITS].base, 400 2, vms->memmap[VIRT_GIC_ITS].size); 401 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 402 g_free(nodename); 403 } 404 405 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 406 { 407 char *nodename; 408 409 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 410 vms->memmap[VIRT_GIC_V2M].base); 411 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 412 qemu_fdt_add_subnode(vms->fdt, nodename); 413 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 414 "arm,gic-v2m-frame"); 415 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 416 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 417 2, vms->memmap[VIRT_GIC_V2M].base, 418 2, vms->memmap[VIRT_GIC_V2M].size); 419 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 420 g_free(nodename); 421 } 422 423 static void fdt_add_gic_node(VirtMachineState *vms) 424 { 425 char *nodename; 426 427 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 428 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 429 430 nodename = g_strdup_printf("/intc@%" PRIx64, 431 vms->memmap[VIRT_GIC_DIST].base); 432 qemu_fdt_add_subnode(vms->fdt, nodename); 433 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 434 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 435 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 436 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 437 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 438 if (vms->gic_version == 3) { 439 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 440 441 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 442 "arm,gic-v3"); 443 444 qemu_fdt_setprop_cell(vms->fdt, nodename, 445 "#redistributor-regions", nb_redist_regions); 446 447 if (nb_redist_regions == 1) { 448 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 449 2, vms->memmap[VIRT_GIC_DIST].base, 450 2, vms->memmap[VIRT_GIC_DIST].size, 451 2, vms->memmap[VIRT_GIC_REDIST].base, 452 2, vms->memmap[VIRT_GIC_REDIST].size); 453 } else { 454 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 455 2, vms->memmap[VIRT_GIC_DIST].base, 456 2, vms->memmap[VIRT_GIC_DIST].size, 457 2, vms->memmap[VIRT_GIC_REDIST].base, 458 2, vms->memmap[VIRT_GIC_REDIST].size, 459 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 460 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 461 } 462 463 if (vms->virt) { 464 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 465 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 466 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 467 } 468 } else { 469 /* 'cortex-a15-gic' means 'GIC v2' */ 470 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 471 "arm,cortex-a15-gic"); 472 if (!vms->virt) { 473 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 474 2, vms->memmap[VIRT_GIC_DIST].base, 475 2, vms->memmap[VIRT_GIC_DIST].size, 476 2, vms->memmap[VIRT_GIC_CPU].base, 477 2, vms->memmap[VIRT_GIC_CPU].size); 478 } else { 479 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 480 2, vms->memmap[VIRT_GIC_DIST].base, 481 2, vms->memmap[VIRT_GIC_DIST].size, 482 2, vms->memmap[VIRT_GIC_CPU].base, 483 2, vms->memmap[VIRT_GIC_CPU].size, 484 2, vms->memmap[VIRT_GIC_HYP].base, 485 2, vms->memmap[VIRT_GIC_HYP].size, 486 2, vms->memmap[VIRT_GIC_VCPU].base, 487 2, vms->memmap[VIRT_GIC_VCPU].size); 488 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 489 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 490 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 491 } 492 } 493 494 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 495 g_free(nodename); 496 } 497 498 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 499 { 500 CPUState *cpu; 501 ARMCPU *armcpu; 502 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 503 504 CPU_FOREACH(cpu) { 505 armcpu = ARM_CPU(cpu); 506 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 507 return; 508 } 509 if (kvm_enabled()) { 510 if (kvm_irqchip_in_kernel()) { 511 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 512 } 513 kvm_arm_pmu_init(cpu); 514 } 515 } 516 517 if (vms->gic_version == 2) { 518 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 519 GIC_FDT_IRQ_PPI_CPU_WIDTH, 520 (1 << vms->smp_cpus) - 1); 521 } 522 523 armcpu = ARM_CPU(qemu_get_cpu(0)); 524 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 525 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 526 const char compat[] = "arm,armv8-pmuv3"; 527 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 528 compat, sizeof(compat)); 529 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 530 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 531 } 532 } 533 534 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 535 { 536 DeviceState *dev; 537 MachineState *ms = MACHINE(vms); 538 int irq = vms->irqmap[VIRT_ACPI_GED]; 539 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 540 541 if (ms->ram_slots) { 542 event |= ACPI_GED_MEM_HOTPLUG_EVT; 543 } 544 545 dev = qdev_create(NULL, TYPE_ACPI_GED); 546 qdev_prop_set_uint32(dev, "ged-event", event); 547 548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 549 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 550 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 551 552 qdev_init_nofail(dev); 553 554 return dev; 555 } 556 557 static void create_its(VirtMachineState *vms) 558 { 559 const char *itsclass = its_class_name(); 560 DeviceState *dev; 561 562 if (!itsclass) { 563 /* Do nothing if not supported */ 564 return; 565 } 566 567 dev = qdev_create(NULL, itsclass); 568 569 object_property_set_link(OBJECT(dev), OBJECT(vms->gic), "parent-gicv3", 570 &error_abort); 571 qdev_init_nofail(dev); 572 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 573 574 fdt_add_its_gic_node(vms); 575 } 576 577 static void create_v2m(VirtMachineState *vms) 578 { 579 int i; 580 int irq = vms->irqmap[VIRT_GIC_V2M]; 581 DeviceState *dev; 582 583 dev = qdev_create(NULL, "arm-gicv2m"); 584 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 585 qdev_prop_set_uint32(dev, "base-spi", irq); 586 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 587 qdev_init_nofail(dev); 588 589 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 590 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 591 qdev_get_gpio_in(vms->gic, irq + i)); 592 } 593 594 fdt_add_v2m_gic_node(vms); 595 } 596 597 static void create_gic(VirtMachineState *vms) 598 { 599 MachineState *ms = MACHINE(vms); 600 /* We create a standalone GIC */ 601 SysBusDevice *gicbusdev; 602 const char *gictype; 603 int type = vms->gic_version, i; 604 unsigned int smp_cpus = ms->smp.cpus; 605 uint32_t nb_redist_regions = 0; 606 607 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 608 609 vms->gic = qdev_create(NULL, gictype); 610 qdev_prop_set_uint32(vms->gic, "revision", type); 611 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 612 /* Note that the num-irq property counts both internal and external 613 * interrupts; there are always 32 of the former (mandated by GIC spec). 614 */ 615 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 616 if (!kvm_irqchip_in_kernel()) { 617 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 618 } 619 620 if (type == 3) { 621 uint32_t redist0_capacity = 622 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 623 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 624 625 nb_redist_regions = virt_gicv3_redist_region_count(vms); 626 627 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 628 nb_redist_regions); 629 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 630 631 if (nb_redist_regions == 2) { 632 uint32_t redist1_capacity = 633 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 634 635 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 636 MIN(smp_cpus - redist0_count, redist1_capacity)); 637 } 638 } else { 639 if (!kvm_irqchip_in_kernel()) { 640 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 641 vms->virt); 642 } 643 } 644 qdev_init_nofail(vms->gic); 645 gicbusdev = SYS_BUS_DEVICE(vms->gic); 646 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 647 if (type == 3) { 648 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 649 if (nb_redist_regions == 2) { 650 sysbus_mmio_map(gicbusdev, 2, 651 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 652 } 653 } else { 654 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 655 if (vms->virt) { 656 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 657 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 658 } 659 } 660 661 /* Wire the outputs from each CPU's generic timer and the GICv3 662 * maintenance interrupt signal to the appropriate GIC PPI inputs, 663 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 664 */ 665 for (i = 0; i < smp_cpus; i++) { 666 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 667 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 668 int irq; 669 /* Mapping from the output timer irq lines from the CPU to the 670 * GIC PPI inputs we use for the virt board. 671 */ 672 const int timer_irq[] = { 673 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 674 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 675 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 676 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 677 }; 678 679 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 680 qdev_connect_gpio_out(cpudev, irq, 681 qdev_get_gpio_in(vms->gic, 682 ppibase + timer_irq[irq])); 683 } 684 685 if (type == 3) { 686 qemu_irq irq = qdev_get_gpio_in(vms->gic, 687 ppibase + ARCH_GIC_MAINT_IRQ); 688 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 689 0, irq); 690 } else if (vms->virt) { 691 qemu_irq irq = qdev_get_gpio_in(vms->gic, 692 ppibase + ARCH_GIC_MAINT_IRQ); 693 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 694 } 695 696 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 697 qdev_get_gpio_in(vms->gic, ppibase 698 + VIRTUAL_PMU_IRQ)); 699 700 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 701 sysbus_connect_irq(gicbusdev, i + smp_cpus, 702 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 703 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 704 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 705 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 706 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 707 } 708 709 fdt_add_gic_node(vms); 710 711 if (type == 3 && vms->its) { 712 create_its(vms); 713 } else if (type == 2) { 714 create_v2m(vms); 715 } 716 } 717 718 static void create_uart(const VirtMachineState *vms, int uart, 719 MemoryRegion *mem, Chardev *chr) 720 { 721 char *nodename; 722 hwaddr base = vms->memmap[uart].base; 723 hwaddr size = vms->memmap[uart].size; 724 int irq = vms->irqmap[uart]; 725 const char compat[] = "arm,pl011\0arm,primecell"; 726 const char clocknames[] = "uartclk\0apb_pclk"; 727 DeviceState *dev = qdev_create(NULL, "pl011"); 728 SysBusDevice *s = SYS_BUS_DEVICE(dev); 729 730 qdev_prop_set_chr(dev, "chardev", chr); 731 qdev_init_nofail(dev); 732 memory_region_add_subregion(mem, base, 733 sysbus_mmio_get_region(s, 0)); 734 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 735 736 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 737 qemu_fdt_add_subnode(vms->fdt, nodename); 738 /* Note that we can't use setprop_string because of the embedded NUL */ 739 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 740 compat, sizeof(compat)); 741 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 742 2, base, 2, size); 743 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 744 GIC_FDT_IRQ_TYPE_SPI, irq, 745 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 746 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 747 vms->clock_phandle, vms->clock_phandle); 748 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 749 clocknames, sizeof(clocknames)); 750 751 if (uart == VIRT_UART) { 752 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 753 } else { 754 /* Mark as not usable by the normal world */ 755 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 756 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 757 758 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen"); 759 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 760 nodename); 761 } 762 763 g_free(nodename); 764 } 765 766 static void create_rtc(const VirtMachineState *vms) 767 { 768 char *nodename; 769 hwaddr base = vms->memmap[VIRT_RTC].base; 770 hwaddr size = vms->memmap[VIRT_RTC].size; 771 int irq = vms->irqmap[VIRT_RTC]; 772 const char compat[] = "arm,pl031\0arm,primecell"; 773 774 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 775 776 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 777 qemu_fdt_add_subnode(vms->fdt, nodename); 778 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 779 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 780 2, base, 2, size); 781 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 782 GIC_FDT_IRQ_TYPE_SPI, irq, 783 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 784 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 785 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 786 g_free(nodename); 787 } 788 789 static DeviceState *gpio_key_dev; 790 static void virt_powerdown_req(Notifier *n, void *opaque) 791 { 792 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 793 794 if (s->acpi_dev) { 795 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 796 } else { 797 /* use gpio Pin 3 for power button event */ 798 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 799 } 800 } 801 802 static void create_gpio(const VirtMachineState *vms) 803 { 804 char *nodename; 805 DeviceState *pl061_dev; 806 hwaddr base = vms->memmap[VIRT_GPIO].base; 807 hwaddr size = vms->memmap[VIRT_GPIO].size; 808 int irq = vms->irqmap[VIRT_GPIO]; 809 const char compat[] = "arm,pl061\0arm,primecell"; 810 811 pl061_dev = sysbus_create_simple("pl061", base, 812 qdev_get_gpio_in(vms->gic, irq)); 813 814 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 815 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 816 qemu_fdt_add_subnode(vms->fdt, nodename); 817 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 818 2, base, 2, size); 819 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 820 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 821 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 822 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 823 GIC_FDT_IRQ_TYPE_SPI, irq, 824 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 825 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 826 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 827 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 828 829 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 830 qdev_get_gpio_in(pl061_dev, 3)); 831 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 832 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 833 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 834 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 835 836 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 837 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 838 "label", "GPIO Key Poweroff"); 839 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 840 KEY_POWER); 841 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 842 "gpios", phandle, 3, 0); 843 g_free(nodename); 844 } 845 846 static void create_virtio_devices(const VirtMachineState *vms) 847 { 848 int i; 849 hwaddr size = vms->memmap[VIRT_MMIO].size; 850 851 /* We create the transports in forwards order. Since qbus_realize() 852 * prepends (not appends) new child buses, the incrementing loop below will 853 * create a list of virtio-mmio buses with decreasing base addresses. 854 * 855 * When a -device option is processed from the command line, 856 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 857 * order. The upshot is that -device options in increasing command line 858 * order are mapped to virtio-mmio buses with decreasing base addresses. 859 * 860 * When this code was originally written, that arrangement ensured that the 861 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 862 * the first -device on the command line. (The end-to-end order is a 863 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 864 * guest kernel's name-to-address assignment strategy.) 865 * 866 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 867 * the message, if not necessarily the code, of commit 70161ff336. 868 * Therefore the loop now establishes the inverse of the original intent. 869 * 870 * Unfortunately, we can't counteract the kernel change by reversing the 871 * loop; it would break existing command lines. 872 * 873 * In any case, the kernel makes no guarantee about the stability of 874 * enumeration order of virtio devices (as demonstrated by it changing 875 * between kernel versions). For reliable and stable identification 876 * of disks users must use UUIDs or similar mechanisms. 877 */ 878 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 879 int irq = vms->irqmap[VIRT_MMIO] + i; 880 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 881 882 sysbus_create_simple("virtio-mmio", base, 883 qdev_get_gpio_in(vms->gic, irq)); 884 } 885 886 /* We add dtb nodes in reverse order so that they appear in the finished 887 * device tree lowest address first. 888 * 889 * Note that this mapping is independent of the loop above. The previous 890 * loop influences virtio device to virtio transport assignment, whereas 891 * this loop controls how virtio transports are laid out in the dtb. 892 */ 893 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 894 char *nodename; 895 int irq = vms->irqmap[VIRT_MMIO] + i; 896 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 897 898 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 899 qemu_fdt_add_subnode(vms->fdt, nodename); 900 qemu_fdt_setprop_string(vms->fdt, nodename, 901 "compatible", "virtio,mmio"); 902 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 903 2, base, 2, size); 904 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 905 GIC_FDT_IRQ_TYPE_SPI, irq, 906 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 907 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 908 g_free(nodename); 909 } 910 } 911 912 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 913 914 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 915 const char *name, 916 const char *alias_prop_name) 917 { 918 /* 919 * Create a single flash device. We use the same parameters as 920 * the flash devices on the Versatile Express board. 921 */ 922 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01); 923 924 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 925 qdev_prop_set_uint8(dev, "width", 4); 926 qdev_prop_set_uint8(dev, "device-width", 2); 927 qdev_prop_set_bit(dev, "big-endian", false); 928 qdev_prop_set_uint16(dev, "id0", 0x89); 929 qdev_prop_set_uint16(dev, "id1", 0x18); 930 qdev_prop_set_uint16(dev, "id2", 0x00); 931 qdev_prop_set_uint16(dev, "id3", 0x00); 932 qdev_prop_set_string(dev, "name", name); 933 object_property_add_child(OBJECT(vms), name, OBJECT(dev), 934 &error_abort); 935 object_property_add_alias(OBJECT(vms), alias_prop_name, 936 OBJECT(dev), "drive", &error_abort); 937 return PFLASH_CFI01(dev); 938 } 939 940 static void virt_flash_create(VirtMachineState *vms) 941 { 942 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 943 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 944 } 945 946 static void virt_flash_map1(PFlashCFI01 *flash, 947 hwaddr base, hwaddr size, 948 MemoryRegion *sysmem) 949 { 950 DeviceState *dev = DEVICE(flash); 951 952 assert(size % VIRT_FLASH_SECTOR_SIZE == 0); 953 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 954 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 955 qdev_init_nofail(dev); 956 957 memory_region_add_subregion(sysmem, base, 958 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 959 0)); 960 } 961 962 static void virt_flash_map(VirtMachineState *vms, 963 MemoryRegion *sysmem, 964 MemoryRegion *secure_sysmem) 965 { 966 /* 967 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 968 * sysmem is the system memory space. secure_sysmem is the secure view 969 * of the system, and the first flash device should be made visible only 970 * there. The second flash device is visible to both secure and nonsecure. 971 * If sysmem == secure_sysmem this means there is no separate Secure 972 * address space and both flash devices are generally visible. 973 */ 974 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 975 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 976 977 virt_flash_map1(vms->flash[0], flashbase, flashsize, 978 secure_sysmem); 979 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 980 sysmem); 981 } 982 983 static void virt_flash_fdt(VirtMachineState *vms, 984 MemoryRegion *sysmem, 985 MemoryRegion *secure_sysmem) 986 { 987 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 988 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 989 char *nodename; 990 991 if (sysmem == secure_sysmem) { 992 /* Report both flash devices as a single node in the DT */ 993 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 994 qemu_fdt_add_subnode(vms->fdt, nodename); 995 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 996 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 997 2, flashbase, 2, flashsize, 998 2, flashbase + flashsize, 2, flashsize); 999 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1000 g_free(nodename); 1001 } else { 1002 /* 1003 * Report the devices as separate nodes so we can mark one as 1004 * only visible to the secure world. 1005 */ 1006 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1007 qemu_fdt_add_subnode(vms->fdt, nodename); 1008 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1009 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1010 2, flashbase, 2, flashsize); 1011 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1012 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1013 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1014 g_free(nodename); 1015 1016 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1017 qemu_fdt_add_subnode(vms->fdt, nodename); 1018 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1019 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1020 2, flashbase + flashsize, 2, flashsize); 1021 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1022 g_free(nodename); 1023 } 1024 } 1025 1026 static bool virt_firmware_init(VirtMachineState *vms, 1027 MemoryRegion *sysmem, 1028 MemoryRegion *secure_sysmem) 1029 { 1030 int i; 1031 BlockBackend *pflash_blk0; 1032 1033 /* Map legacy -drive if=pflash to machine properties */ 1034 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1035 pflash_cfi01_legacy_drive(vms->flash[i], 1036 drive_get(IF_PFLASH, 0, i)); 1037 } 1038 1039 virt_flash_map(vms, sysmem, secure_sysmem); 1040 1041 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1042 1043 if (bios_name) { 1044 char *fname; 1045 MemoryRegion *mr; 1046 int image_size; 1047 1048 if (pflash_blk0) { 1049 error_report("The contents of the first flash device may be " 1050 "specified with -bios or with -drive if=pflash... " 1051 "but you cannot use both options at once"); 1052 exit(1); 1053 } 1054 1055 /* Fall back to -bios */ 1056 1057 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1058 if (!fname) { 1059 error_report("Could not find ROM image '%s'", bios_name); 1060 exit(1); 1061 } 1062 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1063 image_size = load_image_mr(fname, mr); 1064 g_free(fname); 1065 if (image_size < 0) { 1066 error_report("Could not load ROM image '%s'", bios_name); 1067 exit(1); 1068 } 1069 } 1070 1071 return pflash_blk0 || bios_name; 1072 } 1073 1074 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1075 { 1076 MachineState *ms = MACHINE(vms); 1077 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1078 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1079 FWCfgState *fw_cfg; 1080 char *nodename; 1081 1082 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1083 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1084 1085 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1086 qemu_fdt_add_subnode(vms->fdt, nodename); 1087 qemu_fdt_setprop_string(vms->fdt, nodename, 1088 "compatible", "qemu,fw-cfg-mmio"); 1089 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1090 2, base, 2, size); 1091 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1092 g_free(nodename); 1093 return fw_cfg; 1094 } 1095 1096 static void create_pcie_irq_map(const VirtMachineState *vms, 1097 uint32_t gic_phandle, 1098 int first_irq, const char *nodename) 1099 { 1100 int devfn, pin; 1101 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1102 uint32_t *irq_map = full_irq_map; 1103 1104 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1105 for (pin = 0; pin < 4; pin++) { 1106 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1107 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1108 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1109 int i; 1110 1111 uint32_t map[] = { 1112 devfn << 8, 0, 0, /* devfn */ 1113 pin + 1, /* PCI pin */ 1114 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1115 1116 /* Convert map to big endian */ 1117 for (i = 0; i < 10; i++) { 1118 irq_map[i] = cpu_to_be32(map[i]); 1119 } 1120 irq_map += 10; 1121 } 1122 } 1123 1124 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1125 full_irq_map, sizeof(full_irq_map)); 1126 1127 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1128 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1129 0x7 /* PCI irq */); 1130 } 1131 1132 static void create_smmu(const VirtMachineState *vms, 1133 PCIBus *bus) 1134 { 1135 char *node; 1136 const char compat[] = "arm,smmu-v3"; 1137 int irq = vms->irqmap[VIRT_SMMU]; 1138 int i; 1139 hwaddr base = vms->memmap[VIRT_SMMU].base; 1140 hwaddr size = vms->memmap[VIRT_SMMU].size; 1141 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1142 DeviceState *dev; 1143 1144 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1145 return; 1146 } 1147 1148 dev = qdev_create(NULL, "arm-smmuv3"); 1149 1150 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1151 &error_abort); 1152 qdev_init_nofail(dev); 1153 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1154 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1155 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1156 qdev_get_gpio_in(vms->gic, irq + i)); 1157 } 1158 1159 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1160 qemu_fdt_add_subnode(vms->fdt, node); 1161 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1162 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1163 1164 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1165 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1166 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1167 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1168 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1169 1170 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1171 sizeof(irq_names)); 1172 1173 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1174 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1175 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1176 1177 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1178 1179 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1180 g_free(node); 1181 } 1182 1183 static void create_pcie(VirtMachineState *vms) 1184 { 1185 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1186 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1187 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1188 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1189 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1190 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1191 hwaddr base_ecam, size_ecam; 1192 hwaddr base = base_mmio; 1193 int nr_pcie_buses; 1194 int irq = vms->irqmap[VIRT_PCIE]; 1195 MemoryRegion *mmio_alias; 1196 MemoryRegion *mmio_reg; 1197 MemoryRegion *ecam_alias; 1198 MemoryRegion *ecam_reg; 1199 DeviceState *dev; 1200 char *nodename; 1201 int i, ecam_id; 1202 PCIHostState *pci; 1203 1204 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1205 qdev_init_nofail(dev); 1206 1207 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1208 base_ecam = vms->memmap[ecam_id].base; 1209 size_ecam = vms->memmap[ecam_id].size; 1210 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1211 /* Map only the first size_ecam bytes of ECAM space */ 1212 ecam_alias = g_new0(MemoryRegion, 1); 1213 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1214 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1215 ecam_reg, 0, size_ecam); 1216 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1217 1218 /* Map the MMIO window into system address space so as to expose 1219 * the section of PCI MMIO space which starts at the same base address 1220 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1221 * the window). 1222 */ 1223 mmio_alias = g_new0(MemoryRegion, 1); 1224 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1225 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1226 mmio_reg, base_mmio, size_mmio); 1227 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1228 1229 if (vms->highmem) { 1230 /* Map high MMIO space */ 1231 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1232 1233 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1234 mmio_reg, base_mmio_high, size_mmio_high); 1235 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1236 high_mmio_alias); 1237 } 1238 1239 /* Map IO port space */ 1240 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1241 1242 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1243 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1244 qdev_get_gpio_in(vms->gic, irq + i)); 1245 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1246 } 1247 1248 pci = PCI_HOST_BRIDGE(dev); 1249 if (pci->bus) { 1250 for (i = 0; i < nb_nics; i++) { 1251 NICInfo *nd = &nd_table[i]; 1252 1253 if (!nd->model) { 1254 nd->model = g_strdup("virtio"); 1255 } 1256 1257 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1258 } 1259 } 1260 1261 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1262 qemu_fdt_add_subnode(vms->fdt, nodename); 1263 qemu_fdt_setprop_string(vms->fdt, nodename, 1264 "compatible", "pci-host-ecam-generic"); 1265 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1266 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1267 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1268 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1269 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1270 nr_pcie_buses - 1); 1271 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1272 1273 if (vms->msi_phandle) { 1274 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1275 vms->msi_phandle); 1276 } 1277 1278 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1279 2, base_ecam, 2, size_ecam); 1280 1281 if (vms->highmem) { 1282 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1283 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1284 2, base_pio, 2, size_pio, 1285 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1286 2, base_mmio, 2, size_mmio, 1287 1, FDT_PCI_RANGE_MMIO_64BIT, 1288 2, base_mmio_high, 1289 2, base_mmio_high, 2, size_mmio_high); 1290 } else { 1291 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1292 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1293 2, base_pio, 2, size_pio, 1294 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1295 2, base_mmio, 2, size_mmio); 1296 } 1297 1298 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1299 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1300 1301 if (vms->iommu) { 1302 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1303 1304 create_smmu(vms, pci->bus); 1305 1306 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1307 0x0, vms->iommu_phandle, 0x0, 0x10000); 1308 } 1309 1310 g_free(nodename); 1311 } 1312 1313 static void create_platform_bus(VirtMachineState *vms) 1314 { 1315 DeviceState *dev; 1316 SysBusDevice *s; 1317 int i; 1318 MemoryRegion *sysmem = get_system_memory(); 1319 1320 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1321 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1322 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1323 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1324 qdev_init_nofail(dev); 1325 vms->platform_bus_dev = dev; 1326 1327 s = SYS_BUS_DEVICE(dev); 1328 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1329 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1330 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1331 } 1332 1333 memory_region_add_subregion(sysmem, 1334 vms->memmap[VIRT_PLATFORM_BUS].base, 1335 sysbus_mmio_get_region(s, 0)); 1336 } 1337 1338 static void create_secure_ram(VirtMachineState *vms, 1339 MemoryRegion *secure_sysmem) 1340 { 1341 MemoryRegion *secram = g_new(MemoryRegion, 1); 1342 char *nodename; 1343 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1344 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1345 1346 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1347 &error_fatal); 1348 memory_region_add_subregion(secure_sysmem, base, secram); 1349 1350 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1351 qemu_fdt_add_subnode(vms->fdt, nodename); 1352 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1353 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1354 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1355 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1356 1357 g_free(nodename); 1358 } 1359 1360 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1361 { 1362 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1363 bootinfo); 1364 1365 *fdt_size = board->fdt_size; 1366 return board->fdt; 1367 } 1368 1369 static void virt_build_smbios(VirtMachineState *vms) 1370 { 1371 MachineClass *mc = MACHINE_GET_CLASS(vms); 1372 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1373 uint8_t *smbios_tables, *smbios_anchor; 1374 size_t smbios_tables_len, smbios_anchor_len; 1375 const char *product = "QEMU Virtual Machine"; 1376 1377 if (kvm_enabled()) { 1378 product = "KVM Virtual Machine"; 1379 } 1380 1381 smbios_set_defaults("QEMU", product, 1382 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1383 true, SMBIOS_ENTRY_POINT_30); 1384 1385 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1386 &smbios_anchor, &smbios_anchor_len); 1387 1388 if (smbios_anchor) { 1389 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1390 smbios_tables, smbios_tables_len); 1391 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1392 smbios_anchor, smbios_anchor_len); 1393 } 1394 } 1395 1396 static 1397 void virt_machine_done(Notifier *notifier, void *data) 1398 { 1399 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1400 machine_done); 1401 MachineState *ms = MACHINE(vms); 1402 ARMCPU *cpu = ARM_CPU(first_cpu); 1403 struct arm_boot_info *info = &vms->bootinfo; 1404 AddressSpace *as = arm_boot_address_space(cpu, info); 1405 1406 /* 1407 * If the user provided a dtb, we assume the dynamic sysbus nodes 1408 * already are integrated there. This corresponds to a use case where 1409 * the dynamic sysbus nodes are complex and their generation is not yet 1410 * supported. In that case the user can take charge of the guest dt 1411 * while qemu takes charge of the qom stuff. 1412 */ 1413 if (info->dtb_filename == NULL) { 1414 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1415 vms->memmap[VIRT_PLATFORM_BUS].base, 1416 vms->memmap[VIRT_PLATFORM_BUS].size, 1417 vms->irqmap[VIRT_PLATFORM_BUS]); 1418 } 1419 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1420 exit(1); 1421 } 1422 1423 virt_acpi_setup(vms); 1424 virt_build_smbios(vms); 1425 } 1426 1427 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1428 { 1429 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1430 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1431 1432 if (!vmc->disallow_affinity_adjustment) { 1433 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1434 * GIC's target-list limitations. 32-bit KVM hosts currently 1435 * always create clusters of 4 CPUs, but that is expected to 1436 * change when they gain support for gicv3. When KVM is enabled 1437 * it will override the changes we make here, therefore our 1438 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1439 * and to improve SGI efficiency. 1440 */ 1441 if (vms->gic_version == 3) { 1442 clustersz = GICV3_TARGETLIST_BITS; 1443 } else { 1444 clustersz = GIC_TARGETLIST_BITS; 1445 } 1446 } 1447 return arm_cpu_mp_affinity(idx, clustersz); 1448 } 1449 1450 static void virt_set_memmap(VirtMachineState *vms) 1451 { 1452 MachineState *ms = MACHINE(vms); 1453 hwaddr base, device_memory_base, device_memory_size; 1454 int i; 1455 1456 vms->memmap = extended_memmap; 1457 1458 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1459 vms->memmap[i] = base_memmap[i]; 1460 } 1461 1462 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1463 error_report("unsupported number of memory slots: %"PRIu64, 1464 ms->ram_slots); 1465 exit(EXIT_FAILURE); 1466 } 1467 1468 /* 1469 * We compute the base of the high IO region depending on the 1470 * amount of initial and device memory. The device memory start/size 1471 * is aligned on 1GiB. We never put the high IO region below 256GiB 1472 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1473 * The device region size assumes 1GiB page max alignment per slot. 1474 */ 1475 device_memory_base = 1476 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1477 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1478 1479 /* Base address of the high IO region */ 1480 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1481 if (base < device_memory_base) { 1482 error_report("maxmem/slots too huge"); 1483 exit(EXIT_FAILURE); 1484 } 1485 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1486 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1487 } 1488 1489 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1490 hwaddr size = extended_memmap[i].size; 1491 1492 base = ROUND_UP(base, size); 1493 vms->memmap[i].base = base; 1494 vms->memmap[i].size = size; 1495 base += size; 1496 } 1497 vms->highest_gpa = base - 1; 1498 if (device_memory_size > 0) { 1499 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1500 ms->device_memory->base = device_memory_base; 1501 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1502 "device-memory", device_memory_size); 1503 } 1504 } 1505 1506 static void machvirt_init(MachineState *machine) 1507 { 1508 VirtMachineState *vms = VIRT_MACHINE(machine); 1509 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1510 MachineClass *mc = MACHINE_GET_CLASS(machine); 1511 const CPUArchIdList *possible_cpus; 1512 MemoryRegion *sysmem = get_system_memory(); 1513 MemoryRegion *secure_sysmem = NULL; 1514 int n, virt_max_cpus; 1515 MemoryRegion *ram = g_new(MemoryRegion, 1); 1516 bool firmware_loaded; 1517 bool aarch64 = true; 1518 bool has_ged = !vmc->no_ged; 1519 unsigned int smp_cpus = machine->smp.cpus; 1520 unsigned int max_cpus = machine->smp.max_cpus; 1521 1522 /* 1523 * In accelerated mode, the memory map is computed earlier in kvm_type() 1524 * to create a VM with the right number of IPA bits. 1525 */ 1526 if (!vms->memmap) { 1527 virt_set_memmap(vms); 1528 } 1529 1530 /* We can probe only here because during property set 1531 * KVM is not available yet 1532 */ 1533 if (vms->gic_version <= 0) { 1534 /* "host" or "max" */ 1535 if (!kvm_enabled()) { 1536 if (vms->gic_version == 0) { 1537 error_report("gic-version=host requires KVM"); 1538 exit(1); 1539 } else { 1540 /* "max": currently means 3 for TCG */ 1541 vms->gic_version = 3; 1542 } 1543 } else { 1544 vms->gic_version = kvm_arm_vgic_probe(); 1545 if (!vms->gic_version) { 1546 error_report( 1547 "Unable to determine GIC version supported by host"); 1548 exit(1); 1549 } 1550 } 1551 } 1552 1553 if (!cpu_type_valid(machine->cpu_type)) { 1554 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1555 exit(1); 1556 } 1557 1558 if (vms->secure) { 1559 if (kvm_enabled()) { 1560 error_report("mach-virt: KVM does not support Security extensions"); 1561 exit(1); 1562 } 1563 1564 /* 1565 * The Secure view of the world is the same as the NonSecure, 1566 * but with a few extra devices. Create it as a container region 1567 * containing the system memory at low priority; any secure-only 1568 * devices go in at higher priority and take precedence. 1569 */ 1570 secure_sysmem = g_new(MemoryRegion, 1); 1571 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1572 UINT64_MAX); 1573 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1574 } 1575 1576 firmware_loaded = virt_firmware_init(vms, sysmem, 1577 secure_sysmem ?: sysmem); 1578 1579 /* If we have an EL3 boot ROM then the assumption is that it will 1580 * implement PSCI itself, so disable QEMU's internal implementation 1581 * so it doesn't get in the way. Instead of starting secondary 1582 * CPUs in PSCI powerdown state we will start them all running and 1583 * let the boot ROM sort them out. 1584 * The usual case is that we do use QEMU's PSCI implementation; 1585 * if the guest has EL2 then we will use SMC as the conduit, 1586 * and otherwise we will use HVC (for backwards compatibility and 1587 * because if we're using KVM then we must use HVC). 1588 */ 1589 if (vms->secure && firmware_loaded) { 1590 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1591 } else if (vms->virt) { 1592 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1593 } else { 1594 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1595 } 1596 1597 /* The maximum number of CPUs depends on the GIC version, or on how 1598 * many redistributors we can fit into the memory map. 1599 */ 1600 if (vms->gic_version == 3) { 1601 virt_max_cpus = 1602 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1603 virt_max_cpus += 1604 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1605 } else { 1606 virt_max_cpus = GIC_NCPU; 1607 } 1608 1609 if (max_cpus > virt_max_cpus) { 1610 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1611 "supported by machine 'mach-virt' (%d)", 1612 max_cpus, virt_max_cpus); 1613 exit(1); 1614 } 1615 1616 vms->smp_cpus = smp_cpus; 1617 1618 if (vms->virt && kvm_enabled()) { 1619 error_report("mach-virt: KVM does not support providing " 1620 "Virtualization extensions to the guest CPU"); 1621 exit(1); 1622 } 1623 1624 create_fdt(vms); 1625 1626 possible_cpus = mc->possible_cpu_arch_ids(machine); 1627 for (n = 0; n < possible_cpus->len; n++) { 1628 Object *cpuobj; 1629 CPUState *cs; 1630 1631 if (n >= smp_cpus) { 1632 break; 1633 } 1634 1635 cpuobj = object_new(possible_cpus->cpus[n].type); 1636 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1637 "mp-affinity", NULL); 1638 1639 cs = CPU(cpuobj); 1640 cs->cpu_index = n; 1641 1642 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1643 &error_fatal); 1644 1645 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1646 1647 if (!vms->secure) { 1648 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1649 } 1650 1651 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1652 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1653 } 1654 1655 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1656 object_property_set_int(cpuobj, vms->psci_conduit, 1657 "psci-conduit", NULL); 1658 1659 /* Secondary CPUs start in PSCI powered-down state */ 1660 if (n > 0) { 1661 object_property_set_bool(cpuobj, true, 1662 "start-powered-off", NULL); 1663 } 1664 } 1665 1666 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1667 object_property_set_bool(cpuobj, false, "pmu", NULL); 1668 } 1669 1670 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1671 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1672 "reset-cbar", &error_abort); 1673 } 1674 1675 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1676 &error_abort); 1677 if (vms->secure) { 1678 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1679 "secure-memory", &error_abort); 1680 } 1681 1682 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1683 object_unref(cpuobj); 1684 } 1685 fdt_add_timer_nodes(vms); 1686 fdt_add_cpu_nodes(vms); 1687 1688 if (!kvm_enabled()) { 1689 ARMCPU *cpu = ARM_CPU(first_cpu); 1690 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL); 1691 1692 if (aarch64 && vms->highmem) { 1693 int requested_pa_size, pamax = arm_pamax(cpu); 1694 1695 requested_pa_size = 64 - clz64(vms->highest_gpa); 1696 if (pamax < requested_pa_size) { 1697 error_report("VCPU supports less PA bits (%d) than requested " 1698 "by the memory map (%d)", pamax, requested_pa_size); 1699 exit(1); 1700 } 1701 } 1702 } 1703 1704 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1705 machine->ram_size); 1706 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1707 if (machine->device_memory) { 1708 memory_region_add_subregion(sysmem, machine->device_memory->base, 1709 &machine->device_memory->mr); 1710 } 1711 1712 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 1713 1714 create_gic(vms); 1715 1716 fdt_add_pmu_nodes(vms); 1717 1718 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 1719 1720 if (vms->secure) { 1721 create_secure_ram(vms, secure_sysmem); 1722 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1723 } 1724 1725 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1726 1727 create_rtc(vms); 1728 1729 create_pcie(vms); 1730 1731 if (has_ged && aarch64 && firmware_loaded && acpi_enabled) { 1732 vms->acpi_dev = create_acpi_ged(vms); 1733 } else { 1734 create_gpio(vms); 1735 } 1736 1737 /* connect powerdown request */ 1738 vms->powerdown_notifier.notify = virt_powerdown_req; 1739 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 1740 1741 /* Create mmio transports, so the user can create virtio backends 1742 * (which will be automatically plugged in to the transports). If 1743 * no backend is created the transport will just sit harmlessly idle. 1744 */ 1745 create_virtio_devices(vms); 1746 1747 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1748 rom_set_fw(vms->fw_cfg); 1749 1750 create_platform_bus(vms); 1751 1752 vms->bootinfo.ram_size = machine->ram_size; 1753 vms->bootinfo.nb_cpus = smp_cpus; 1754 vms->bootinfo.board_id = -1; 1755 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1756 vms->bootinfo.get_dtb = machvirt_dtb; 1757 vms->bootinfo.skip_dtb_autoload = true; 1758 vms->bootinfo.firmware_loaded = firmware_loaded; 1759 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 1760 1761 vms->machine_done.notify = virt_machine_done; 1762 qemu_add_machine_init_done_notifier(&vms->machine_done); 1763 } 1764 1765 static bool virt_get_secure(Object *obj, Error **errp) 1766 { 1767 VirtMachineState *vms = VIRT_MACHINE(obj); 1768 1769 return vms->secure; 1770 } 1771 1772 static void virt_set_secure(Object *obj, bool value, Error **errp) 1773 { 1774 VirtMachineState *vms = VIRT_MACHINE(obj); 1775 1776 vms->secure = value; 1777 } 1778 1779 static bool virt_get_virt(Object *obj, Error **errp) 1780 { 1781 VirtMachineState *vms = VIRT_MACHINE(obj); 1782 1783 return vms->virt; 1784 } 1785 1786 static void virt_set_virt(Object *obj, bool value, Error **errp) 1787 { 1788 VirtMachineState *vms = VIRT_MACHINE(obj); 1789 1790 vms->virt = value; 1791 } 1792 1793 static bool virt_get_highmem(Object *obj, Error **errp) 1794 { 1795 VirtMachineState *vms = VIRT_MACHINE(obj); 1796 1797 return vms->highmem; 1798 } 1799 1800 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1801 { 1802 VirtMachineState *vms = VIRT_MACHINE(obj); 1803 1804 vms->highmem = value; 1805 } 1806 1807 static bool virt_get_its(Object *obj, Error **errp) 1808 { 1809 VirtMachineState *vms = VIRT_MACHINE(obj); 1810 1811 return vms->its; 1812 } 1813 1814 static void virt_set_its(Object *obj, bool value, Error **errp) 1815 { 1816 VirtMachineState *vms = VIRT_MACHINE(obj); 1817 1818 vms->its = value; 1819 } 1820 1821 static char *virt_get_gic_version(Object *obj, Error **errp) 1822 { 1823 VirtMachineState *vms = VIRT_MACHINE(obj); 1824 const char *val = vms->gic_version == 3 ? "3" : "2"; 1825 1826 return g_strdup(val); 1827 } 1828 1829 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1830 { 1831 VirtMachineState *vms = VIRT_MACHINE(obj); 1832 1833 if (!strcmp(value, "3")) { 1834 vms->gic_version = 3; 1835 } else if (!strcmp(value, "2")) { 1836 vms->gic_version = 2; 1837 } else if (!strcmp(value, "host")) { 1838 vms->gic_version = 0; /* Will probe later */ 1839 } else if (!strcmp(value, "max")) { 1840 vms->gic_version = -1; /* Will probe later */ 1841 } else { 1842 error_setg(errp, "Invalid gic-version value"); 1843 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1844 } 1845 } 1846 1847 static char *virt_get_iommu(Object *obj, Error **errp) 1848 { 1849 VirtMachineState *vms = VIRT_MACHINE(obj); 1850 1851 switch (vms->iommu) { 1852 case VIRT_IOMMU_NONE: 1853 return g_strdup("none"); 1854 case VIRT_IOMMU_SMMUV3: 1855 return g_strdup("smmuv3"); 1856 default: 1857 g_assert_not_reached(); 1858 } 1859 } 1860 1861 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1862 { 1863 VirtMachineState *vms = VIRT_MACHINE(obj); 1864 1865 if (!strcmp(value, "smmuv3")) { 1866 vms->iommu = VIRT_IOMMU_SMMUV3; 1867 } else if (!strcmp(value, "none")) { 1868 vms->iommu = VIRT_IOMMU_NONE; 1869 } else { 1870 error_setg(errp, "Invalid iommu value"); 1871 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1872 } 1873 } 1874 1875 static CpuInstanceProperties 1876 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1877 { 1878 MachineClass *mc = MACHINE_GET_CLASS(ms); 1879 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1880 1881 assert(cpu_index < possible_cpus->len); 1882 return possible_cpus->cpus[cpu_index].props; 1883 } 1884 1885 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1886 { 1887 return idx % ms->numa_state->num_nodes; 1888 } 1889 1890 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1891 { 1892 int n; 1893 unsigned int max_cpus = ms->smp.max_cpus; 1894 VirtMachineState *vms = VIRT_MACHINE(ms); 1895 1896 if (ms->possible_cpus) { 1897 assert(ms->possible_cpus->len == max_cpus); 1898 return ms->possible_cpus; 1899 } 1900 1901 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1902 sizeof(CPUArchId) * max_cpus); 1903 ms->possible_cpus->len = max_cpus; 1904 for (n = 0; n < ms->possible_cpus->len; n++) { 1905 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1906 ms->possible_cpus->cpus[n].arch_id = 1907 virt_cpu_mp_affinity(vms, n); 1908 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1909 ms->possible_cpus->cpus[n].props.thread_id = n; 1910 } 1911 return ms->possible_cpus; 1912 } 1913 1914 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1915 Error **errp) 1916 { 1917 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1918 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1919 1920 if (is_nvdimm) { 1921 error_setg(errp, "nvdimm is not yet supported"); 1922 return; 1923 } 1924 1925 if (!vms->acpi_dev) { 1926 error_setg(errp, 1927 "memory hotplug is not enabled: missing acpi-ged device"); 1928 return; 1929 } 1930 1931 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 1932 } 1933 1934 static void virt_memory_plug(HotplugHandler *hotplug_dev, 1935 DeviceState *dev, Error **errp) 1936 { 1937 HotplugHandlerClass *hhc; 1938 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1939 Error *local_err = NULL; 1940 1941 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err); 1942 if (local_err) { 1943 goto out; 1944 } 1945 1946 hhc = HOTPLUG_HANDLER_GET_CLASS(vms->acpi_dev); 1947 hhc->plug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &error_abort); 1948 out: 1949 error_propagate(errp, local_err); 1950 } 1951 1952 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 1953 DeviceState *dev, Error **errp) 1954 { 1955 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1956 virt_memory_pre_plug(hotplug_dev, dev, errp); 1957 } 1958 } 1959 1960 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1961 DeviceState *dev, Error **errp) 1962 { 1963 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1964 1965 if (vms->platform_bus_dev) { 1966 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1967 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1968 SYS_BUS_DEVICE(dev)); 1969 } 1970 } 1971 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1972 virt_memory_plug(hotplug_dev, dev, errp); 1973 } 1974 } 1975 1976 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 1977 DeviceState *dev, Error **errp) 1978 { 1979 error_setg(errp, "device unplug request for unsupported device" 1980 " type: %s", object_get_typename(OBJECT(dev))); 1981 } 1982 1983 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1984 DeviceState *dev) 1985 { 1986 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) || 1987 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 1988 return HOTPLUG_HANDLER(machine); 1989 } 1990 1991 return NULL; 1992 } 1993 1994 /* 1995 * for arm64 kvm_type [7-0] encodes the requested number of bits 1996 * in the IPA address space 1997 */ 1998 static int virt_kvm_type(MachineState *ms, const char *type_str) 1999 { 2000 VirtMachineState *vms = VIRT_MACHINE(ms); 2001 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 2002 int requested_pa_size; 2003 2004 /* we freeze the memory map to compute the highest gpa */ 2005 virt_set_memmap(vms); 2006 2007 requested_pa_size = 64 - clz64(vms->highest_gpa); 2008 2009 if (requested_pa_size > max_vm_pa_size) { 2010 error_report("-m and ,maxmem option values " 2011 "require an IPA range (%d bits) larger than " 2012 "the one supported by the host (%d bits)", 2013 requested_pa_size, max_vm_pa_size); 2014 exit(1); 2015 } 2016 /* 2017 * By default we return 0 which corresponds to an implicit legacy 2018 * 40b IPA setting. Otherwise we return the actual requested PA 2019 * logsize 2020 */ 2021 return requested_pa_size > 40 ? requested_pa_size : 0; 2022 } 2023 2024 static void virt_machine_class_init(ObjectClass *oc, void *data) 2025 { 2026 MachineClass *mc = MACHINE_CLASS(oc); 2027 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2028 2029 mc->init = machvirt_init; 2030 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2031 * The value may be reduced later when we have more information about the 2032 * configuration of the particular instance. 2033 */ 2034 mc->max_cpus = 512; 2035 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2036 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2037 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2038 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2039 mc->block_default_type = IF_VIRTIO; 2040 mc->no_cdrom = 1; 2041 mc->pci_allow_0_address = true; 2042 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2043 mc->minimum_page_bits = 12; 2044 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2045 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2046 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2047 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2048 mc->kvm_type = virt_kvm_type; 2049 assert(!mc->get_hotplug_handler); 2050 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2051 hc->pre_plug = virt_machine_device_pre_plug_cb; 2052 hc->plug = virt_machine_device_plug_cb; 2053 hc->unplug_request = virt_machine_device_unplug_request_cb; 2054 mc->numa_mem_supported = true; 2055 mc->auto_enable_numa_with_memhp = true; 2056 } 2057 2058 static void virt_instance_init(Object *obj) 2059 { 2060 VirtMachineState *vms = VIRT_MACHINE(obj); 2061 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2062 2063 /* EL3 is disabled by default on virt: this makes us consistent 2064 * between KVM and TCG for this board, and it also allows us to 2065 * boot UEFI blobs which assume no TrustZone support. 2066 */ 2067 vms->secure = false; 2068 object_property_add_bool(obj, "secure", virt_get_secure, 2069 virt_set_secure, NULL); 2070 object_property_set_description(obj, "secure", 2071 "Set on/off to enable/disable the ARM " 2072 "Security Extensions (TrustZone)", 2073 NULL); 2074 2075 /* EL2 is also disabled by default, for similar reasons */ 2076 vms->virt = false; 2077 object_property_add_bool(obj, "virtualization", virt_get_virt, 2078 virt_set_virt, NULL); 2079 object_property_set_description(obj, "virtualization", 2080 "Set on/off to enable/disable emulating a " 2081 "guest CPU which implements the ARM " 2082 "Virtualization Extensions", 2083 NULL); 2084 2085 /* High memory is enabled by default */ 2086 vms->highmem = true; 2087 object_property_add_bool(obj, "highmem", virt_get_highmem, 2088 virt_set_highmem, NULL); 2089 object_property_set_description(obj, "highmem", 2090 "Set on/off to enable/disable using " 2091 "physical address space above 32 bits", 2092 NULL); 2093 /* Default GIC type is v2 */ 2094 vms->gic_version = 2; 2095 object_property_add_str(obj, "gic-version", virt_get_gic_version, 2096 virt_set_gic_version, NULL); 2097 object_property_set_description(obj, "gic-version", 2098 "Set GIC version. " 2099 "Valid values are 2, 3 and host", NULL); 2100 2101 vms->highmem_ecam = !vmc->no_highmem_ecam; 2102 2103 if (vmc->no_its) { 2104 vms->its = false; 2105 } else { 2106 /* Default allows ITS instantiation */ 2107 vms->its = true; 2108 object_property_add_bool(obj, "its", virt_get_its, 2109 virt_set_its, NULL); 2110 object_property_set_description(obj, "its", 2111 "Set on/off to enable/disable " 2112 "ITS instantiation", 2113 NULL); 2114 } 2115 2116 /* Default disallows iommu instantiation */ 2117 vms->iommu = VIRT_IOMMU_NONE; 2118 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 2119 object_property_set_description(obj, "iommu", 2120 "Set the IOMMU type. " 2121 "Valid values are none and smmuv3", 2122 NULL); 2123 2124 vms->irqmap = a15irqmap; 2125 2126 virt_flash_create(vms); 2127 } 2128 2129 static const TypeInfo virt_machine_info = { 2130 .name = TYPE_VIRT_MACHINE, 2131 .parent = TYPE_MACHINE, 2132 .abstract = true, 2133 .instance_size = sizeof(VirtMachineState), 2134 .class_size = sizeof(VirtMachineClass), 2135 .class_init = virt_machine_class_init, 2136 .instance_init = virt_instance_init, 2137 .interfaces = (InterfaceInfo[]) { 2138 { TYPE_HOTPLUG_HANDLER }, 2139 { } 2140 }, 2141 }; 2142 2143 static void machvirt_machine_init(void) 2144 { 2145 type_register_static(&virt_machine_info); 2146 } 2147 type_init(machvirt_machine_init); 2148 2149 static void virt_machine_5_0_options(MachineClass *mc) 2150 { 2151 } 2152 DEFINE_VIRT_MACHINE_AS_LATEST(5, 0) 2153 2154 static void virt_machine_4_2_options(MachineClass *mc) 2155 { 2156 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2157 } 2158 DEFINE_VIRT_MACHINE(4, 2) 2159 2160 static void virt_machine_4_1_options(MachineClass *mc) 2161 { 2162 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2163 2164 virt_machine_4_2_options(mc); 2165 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2166 vmc->no_ged = true; 2167 mc->auto_enable_numa_with_memhp = false; 2168 } 2169 DEFINE_VIRT_MACHINE(4, 1) 2170 2171 static void virt_machine_4_0_options(MachineClass *mc) 2172 { 2173 virt_machine_4_1_options(mc); 2174 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2175 } 2176 DEFINE_VIRT_MACHINE(4, 0) 2177 2178 static void virt_machine_3_1_options(MachineClass *mc) 2179 { 2180 virt_machine_4_0_options(mc); 2181 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2182 } 2183 DEFINE_VIRT_MACHINE(3, 1) 2184 2185 static void virt_machine_3_0_options(MachineClass *mc) 2186 { 2187 virt_machine_3_1_options(mc); 2188 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2189 } 2190 DEFINE_VIRT_MACHINE(3, 0) 2191 2192 static void virt_machine_2_12_options(MachineClass *mc) 2193 { 2194 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2195 2196 virt_machine_3_0_options(mc); 2197 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2198 vmc->no_highmem_ecam = true; 2199 mc->max_cpus = 255; 2200 } 2201 DEFINE_VIRT_MACHINE(2, 12) 2202 2203 static void virt_machine_2_11_options(MachineClass *mc) 2204 { 2205 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2206 2207 virt_machine_2_12_options(mc); 2208 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2209 vmc->smbios_old_sys_ver = true; 2210 } 2211 DEFINE_VIRT_MACHINE(2, 11) 2212 2213 static void virt_machine_2_10_options(MachineClass *mc) 2214 { 2215 virt_machine_2_11_options(mc); 2216 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2217 /* before 2.11 we never faulted accesses to bad addresses */ 2218 mc->ignore_memory_transaction_failures = true; 2219 } 2220 DEFINE_VIRT_MACHINE(2, 10) 2221 2222 static void virt_machine_2_9_options(MachineClass *mc) 2223 { 2224 virt_machine_2_10_options(mc); 2225 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2226 } 2227 DEFINE_VIRT_MACHINE(2, 9) 2228 2229 static void virt_machine_2_8_options(MachineClass *mc) 2230 { 2231 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2232 2233 virt_machine_2_9_options(mc); 2234 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2235 /* For 2.8 and earlier we falsely claimed in the DT that 2236 * our timers were edge-triggered, not level-triggered. 2237 */ 2238 vmc->claim_edge_triggered_timers = true; 2239 } 2240 DEFINE_VIRT_MACHINE(2, 8) 2241 2242 static void virt_machine_2_7_options(MachineClass *mc) 2243 { 2244 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2245 2246 virt_machine_2_8_options(mc); 2247 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2248 /* ITS was introduced with 2.8 */ 2249 vmc->no_its = true; 2250 /* Stick with 1K pages for migration compatibility */ 2251 mc->minimum_page_bits = 0; 2252 } 2253 DEFINE_VIRT_MACHINE(2, 7) 2254 2255 static void virt_machine_2_6_options(MachineClass *mc) 2256 { 2257 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2258 2259 virt_machine_2_7_options(mc); 2260 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2261 vmc->disallow_affinity_adjustment = true; 2262 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2263 vmc->no_pmu = true; 2264 } 2265 DEFINE_VIRT_MACHINE(2, 6) 2266