xref: /openbmc/qemu/hw/arm/virt.c (revision 66708822cd3007ae1ec5104d274a861148725e7a)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/kvm.h"
40 #include "hw/boards.h"
41 #include "hw/loader.h"
42 #include "exec/address-spaces.h"
43 #include "qemu/bitops.h"
44 #include "qemu/error-report.h"
45 
46 #define NUM_VIRTIO_TRANSPORTS 32
47 
48 /* Number of external interrupt lines to configure the GIC with */
49 #define NUM_IRQS 128
50 
51 #define GIC_FDT_IRQ_TYPE_SPI 0
52 #define GIC_FDT_IRQ_TYPE_PPI 1
53 
54 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
56 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
58 
59 #define GIC_FDT_IRQ_PPI_CPU_START 8
60 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
61 
62 enum {
63     VIRT_FLASH,
64     VIRT_MEM,
65     VIRT_CPUPERIPHS,
66     VIRT_GIC_DIST,
67     VIRT_GIC_CPU,
68     VIRT_UART,
69     VIRT_MMIO,
70     VIRT_RTC,
71 };
72 
73 typedef struct MemMapEntry {
74     hwaddr base;
75     hwaddr size;
76 } MemMapEntry;
77 
78 typedef struct VirtBoardInfo {
79     struct arm_boot_info bootinfo;
80     const char *cpu_model;
81     const MemMapEntry *memmap;
82     const int *irqmap;
83     int smp_cpus;
84     void *fdt;
85     int fdt_size;
86     uint32_t clock_phandle;
87 } VirtBoardInfo;
88 
89 typedef struct {
90     MachineClass parent;
91     VirtBoardInfo *daughterboard;
92 } VirtMachineClass;
93 
94 typedef struct {
95     MachineState parent;
96     bool secure;
97 } VirtMachineState;
98 
99 #define TYPE_VIRT_MACHINE   "virt"
100 #define VIRT_MACHINE(obj) \
101     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
102 #define VIRT_MACHINE_GET_CLASS(obj) \
103     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
104 #define VIRT_MACHINE_CLASS(klass) \
105     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
106 
107 /* Addresses and sizes of our components.
108  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
109  * 128MB..256MB is used for miscellaneous device I/O.
110  * 256MB..1GB is reserved for possible future PCI support (ie where the
111  * PCI memory window will go if we add a PCI host controller).
112  * 1GB and up is RAM (which may happily spill over into the
113  * high memory region beyond 4GB).
114  * This represents a compromise between how much RAM can be given to
115  * a 32 bit VM and leaving space for expansion and in particular for PCI.
116  * Note that devices should generally be placed at multiples of 0x10000,
117  * to accommodate guests using 64K pages.
118  */
119 static const MemMapEntry a15memmap[] = {
120     /* Space up to 0x8000000 is reserved for a boot ROM */
121     [VIRT_FLASH] =      {          0, 0x08000000 },
122     [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
123     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
124     [VIRT_GIC_DIST] =   { 0x08000000, 0x00010000 },
125     [VIRT_GIC_CPU] =    { 0x08010000, 0x00010000 },
126     [VIRT_UART] =       { 0x09000000, 0x00001000 },
127     [VIRT_RTC] =        { 0x09010000, 0x00001000 },
128     [VIRT_MMIO] =       { 0x0a000000, 0x00000200 },
129     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
130     /* 0x10000000 .. 0x40000000 reserved for PCI */
131     [VIRT_MEM] =        { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
132 };
133 
134 static const int a15irqmap[] = {
135     [VIRT_UART] = 1,
136     [VIRT_RTC] = 2,
137     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
138 };
139 
140 static VirtBoardInfo machines[] = {
141     {
142         .cpu_model = "cortex-a15",
143         .memmap = a15memmap,
144         .irqmap = a15irqmap,
145     },
146     {
147         .cpu_model = "cortex-a57",
148         .memmap = a15memmap,
149         .irqmap = a15irqmap,
150     },
151     {
152         .cpu_model = "host",
153         .memmap = a15memmap,
154         .irqmap = a15irqmap,
155     },
156 };
157 
158 static VirtBoardInfo *find_machine_info(const char *cpu)
159 {
160     int i;
161 
162     for (i = 0; i < ARRAY_SIZE(machines); i++) {
163         if (strcmp(cpu, machines[i].cpu_model) == 0) {
164             return &machines[i];
165         }
166     }
167     return NULL;
168 }
169 
170 static void create_fdt(VirtBoardInfo *vbi)
171 {
172     void *fdt = create_device_tree(&vbi->fdt_size);
173 
174     if (!fdt) {
175         error_report("create_device_tree() failed");
176         exit(1);
177     }
178 
179     vbi->fdt = fdt;
180 
181     /* Header */
182     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
183     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
184     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
185 
186     /*
187      * /chosen and /memory nodes must exist for load_dtb
188      * to fill in necessary properties later
189      */
190     qemu_fdt_add_subnode(fdt, "/chosen");
191     qemu_fdt_add_subnode(fdt, "/memory");
192     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
193 
194     /* Clock node, for the benefit of the UART. The kernel device tree
195      * binding documentation claims the PL011 node clock properties are
196      * optional but in practice if you omit them the kernel refuses to
197      * probe for the device.
198      */
199     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
200     qemu_fdt_add_subnode(fdt, "/apb-pclk");
201     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
202     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
203     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
204     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
205                                 "clk24mhz");
206     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
207 
208 }
209 
210 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
211 {
212     uint32_t cpu_suspend_fn;
213     uint32_t cpu_off_fn;
214     uint32_t cpu_on_fn;
215     uint32_t migrate_fn;
216     void *fdt = vbi->fdt;
217     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
218 
219     qemu_fdt_add_subnode(fdt, "/psci");
220     if (armcpu->psci_version == 2) {
221         const char comp[] = "arm,psci-0.2\0arm,psci";
222         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
223 
224         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
225         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
226             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
227             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
228             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
229         } else {
230             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
231             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
232             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
233         }
234     } else {
235         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
236 
237         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
238         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
239         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
240         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
241     }
242 
243     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
244      * to the instruction that should be used to invoke PSCI functions.
245      * However, the device tree binding uses 'method' instead, so that is
246      * what we should use here.
247      */
248     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
249 
250     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
251     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
252     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
253     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
254 }
255 
256 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
257 {
258     /* Note that on A15 h/w these interrupts are level-triggered,
259      * but for the GIC implementation provided by both QEMU and KVM
260      * they are edge-triggered.
261      */
262     ARMCPU *armcpu;
263     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
264 
265     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
266                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
267 
268     qemu_fdt_add_subnode(vbi->fdt, "/timer");
269 
270     armcpu = ARM_CPU(qemu_get_cpu(0));
271     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
272         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
273         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
274                          compat, sizeof(compat));
275     } else {
276         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
277                                 "arm,armv7-timer");
278     }
279     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
280                                GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
281                                GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
282                                GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
283                                GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
284 }
285 
286 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
287 {
288     int cpu;
289 
290     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
291     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
292     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
293 
294     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
295         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
296         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
297 
298         qemu_fdt_add_subnode(vbi->fdt, nodename);
299         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
300         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
301                                     armcpu->dtb_compatible);
302 
303         if (vbi->smp_cpus > 1) {
304             qemu_fdt_setprop_string(vbi->fdt, nodename,
305                                         "enable-method", "psci");
306         }
307 
308         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
309         g_free(nodename);
310     }
311 }
312 
313 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
314 {
315     uint32_t gic_phandle;
316 
317     gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
318     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
319 
320     qemu_fdt_add_subnode(vbi->fdt, "/intc");
321     /* 'cortex-a15-gic' means 'GIC v2' */
322     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
323                             "arm,cortex-a15-gic");
324     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
325     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
326     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
327                                      2, vbi->memmap[VIRT_GIC_DIST].base,
328                                      2, vbi->memmap[VIRT_GIC_DIST].size,
329                                      2, vbi->memmap[VIRT_GIC_CPU].base,
330                                      2, vbi->memmap[VIRT_GIC_CPU].size);
331     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
332 }
333 
334 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
335 {
336     /* We create a standalone GIC v2 */
337     DeviceState *gicdev;
338     SysBusDevice *gicbusdev;
339     const char *gictype = "arm_gic";
340     int i;
341 
342     if (kvm_irqchip_in_kernel()) {
343         gictype = "kvm-arm-gic";
344     }
345 
346     gicdev = qdev_create(NULL, gictype);
347     qdev_prop_set_uint32(gicdev, "revision", 2);
348     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
349     /* Note that the num-irq property counts both internal and external
350      * interrupts; there are always 32 of the former (mandated by GIC spec).
351      */
352     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
353     qdev_init_nofail(gicdev);
354     gicbusdev = SYS_BUS_DEVICE(gicdev);
355     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
356     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
357 
358     /* Wire the outputs from each CPU's generic timer to the
359      * appropriate GIC PPI inputs, and the GIC's IRQ output to
360      * the CPU's IRQ input.
361      */
362     for (i = 0; i < smp_cpus; i++) {
363         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
364         int ppibase = NUM_IRQS + i * 32;
365         /* physical timer; we wire it up to the non-secure timer's ID,
366          * since a real A15 always has TrustZone but QEMU doesn't.
367          */
368         qdev_connect_gpio_out(cpudev, 0,
369                               qdev_get_gpio_in(gicdev, ppibase + 30));
370         /* virtual timer */
371         qdev_connect_gpio_out(cpudev, 1,
372                               qdev_get_gpio_in(gicdev, ppibase + 27));
373 
374         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
375     }
376 
377     for (i = 0; i < NUM_IRQS; i++) {
378         pic[i] = qdev_get_gpio_in(gicdev, i);
379     }
380 
381     fdt_add_gic_node(vbi);
382 }
383 
384 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
385 {
386     char *nodename;
387     hwaddr base = vbi->memmap[VIRT_UART].base;
388     hwaddr size = vbi->memmap[VIRT_UART].size;
389     int irq = vbi->irqmap[VIRT_UART];
390     const char compat[] = "arm,pl011\0arm,primecell";
391     const char clocknames[] = "uartclk\0apb_pclk";
392 
393     sysbus_create_simple("pl011", base, pic[irq]);
394 
395     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
396     qemu_fdt_add_subnode(vbi->fdt, nodename);
397     /* Note that we can't use setprop_string because of the embedded NUL */
398     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
399                          compat, sizeof(compat));
400     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
401                                      2, base, 2, size);
402     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
403                                GIC_FDT_IRQ_TYPE_SPI, irq,
404                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
405     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
406                                vbi->clock_phandle, vbi->clock_phandle);
407     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
408                          clocknames, sizeof(clocknames));
409 
410     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
411     g_free(nodename);
412 }
413 
414 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
415 {
416     char *nodename;
417     hwaddr base = vbi->memmap[VIRT_RTC].base;
418     hwaddr size = vbi->memmap[VIRT_RTC].size;
419     int irq = vbi->irqmap[VIRT_RTC];
420     const char compat[] = "arm,pl031\0arm,primecell";
421 
422     sysbus_create_simple("pl031", base, pic[irq]);
423 
424     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
425     qemu_fdt_add_subnode(vbi->fdt, nodename);
426     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
427     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
428                                  2, base, 2, size);
429     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
430                            GIC_FDT_IRQ_TYPE_SPI, irq,
431                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
432     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
433     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
434     g_free(nodename);
435 }
436 
437 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
438 {
439     int i;
440     hwaddr size = vbi->memmap[VIRT_MMIO].size;
441 
442     /* Note that we have to create the transports in forwards order
443      * so that command line devices are inserted lowest address first,
444      * and then add dtb nodes in reverse order so that they appear in
445      * the finished device tree lowest address first.
446      */
447     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
448         int irq = vbi->irqmap[VIRT_MMIO] + i;
449         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
450 
451         sysbus_create_simple("virtio-mmio", base, pic[irq]);
452     }
453 
454     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
455         char *nodename;
456         int irq = vbi->irqmap[VIRT_MMIO] + i;
457         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
458 
459         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
460         qemu_fdt_add_subnode(vbi->fdt, nodename);
461         qemu_fdt_setprop_string(vbi->fdt, nodename,
462                                 "compatible", "virtio,mmio");
463         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
464                                      2, base, 2, size);
465         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
466                                GIC_FDT_IRQ_TYPE_SPI, irq,
467                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
468         g_free(nodename);
469     }
470 }
471 
472 static void create_one_flash(const char *name, hwaddr flashbase,
473                              hwaddr flashsize)
474 {
475     /* Create and map a single flash device. We use the same
476      * parameters as the flash devices on the Versatile Express board.
477      */
478     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
479     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
480     const uint64_t sectorlength = 256 * 1024;
481 
482     if (dinfo && qdev_prop_set_drive(dev, "drive",
483                                      blk_by_legacy_dinfo(dinfo))) {
484         abort();
485     }
486 
487     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
488     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
489     qdev_prop_set_uint8(dev, "width", 4);
490     qdev_prop_set_uint8(dev, "device-width", 2);
491     qdev_prop_set_uint8(dev, "big-endian", 0);
492     qdev_prop_set_uint16(dev, "id0", 0x89);
493     qdev_prop_set_uint16(dev, "id1", 0x18);
494     qdev_prop_set_uint16(dev, "id2", 0x00);
495     qdev_prop_set_uint16(dev, "id3", 0x00);
496     qdev_prop_set_string(dev, "name", name);
497     qdev_init_nofail(dev);
498 
499     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
500 }
501 
502 static void create_flash(const VirtBoardInfo *vbi)
503 {
504     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
505      * Any file passed via -bios goes in the first of these.
506      */
507     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
508     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
509     char *nodename;
510 
511     if (bios_name) {
512         const char *fn;
513 
514         if (drive_get(IF_PFLASH, 0, 0)) {
515             error_report("The contents of the first flash device may be "
516                          "specified with -bios or with -drive if=pflash... "
517                          "but you cannot use both options at once");
518             exit(1);
519         }
520         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
521         if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) {
522             error_report("Could not load ROM image '%s'", bios_name);
523             exit(1);
524         }
525     }
526 
527     create_one_flash("virt.flash0", flashbase, flashsize);
528     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
529 
530     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
531     qemu_fdt_add_subnode(vbi->fdt, nodename);
532     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
533     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
534                                  2, flashbase, 2, flashsize,
535                                  2, flashbase + flashsize, 2, flashsize);
536     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
537     g_free(nodename);
538 }
539 
540 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
541 {
542     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
543 
544     *fdt_size = board->fdt_size;
545     return board->fdt;
546 }
547 
548 static void machvirt_init(MachineState *machine)
549 {
550     VirtMachineState *vms = VIRT_MACHINE(machine);
551     qemu_irq pic[NUM_IRQS];
552     MemoryRegion *sysmem = get_system_memory();
553     int n;
554     MemoryRegion *ram = g_new(MemoryRegion, 1);
555     const char *cpu_model = machine->cpu_model;
556     VirtBoardInfo *vbi;
557 
558     if (!cpu_model) {
559         cpu_model = "cortex-a15";
560     }
561 
562     vbi = find_machine_info(cpu_model);
563 
564     if (!vbi) {
565         error_report("mach-virt: CPU %s not supported", cpu_model);
566         exit(1);
567     }
568 
569     vbi->smp_cpus = smp_cpus;
570 
571     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
572         error_report("mach-virt: cannot model more than 30GB RAM");
573         exit(1);
574     }
575 
576     create_fdt(vbi);
577 
578     for (n = 0; n < smp_cpus; n++) {
579         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
580         Object *cpuobj;
581 
582         if (!oc) {
583             fprintf(stderr, "Unable to find CPU definition\n");
584             exit(1);
585         }
586         cpuobj = object_new(object_class_get_name(oc));
587 
588         if (!vms->secure) {
589             object_property_set_bool(cpuobj, false, "has_el3", NULL);
590         }
591 
592         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
593                                 NULL);
594 
595         /* Secondary CPUs start in PSCI powered-down state */
596         if (n > 0) {
597             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
598         }
599 
600         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
601             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
602                                     "reset-cbar", &error_abort);
603         }
604 
605         object_property_set_bool(cpuobj, true, "realized", NULL);
606     }
607     fdt_add_timer_nodes(vbi);
608     fdt_add_cpu_nodes(vbi);
609     fdt_add_psci_node(vbi);
610 
611     memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size,
612                            &error_abort);
613     vmstate_register_ram_global(ram);
614     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
615 
616     create_flash(vbi);
617 
618     create_gic(vbi, pic);
619 
620     create_uart(vbi, pic);
621 
622     create_rtc(vbi, pic);
623 
624     /* Create mmio transports, so the user can create virtio backends
625      * (which will be automatically plugged in to the transports). If
626      * no backend is created the transport will just sit harmlessly idle.
627      */
628     create_virtio_devices(vbi, pic);
629 
630     vbi->bootinfo.ram_size = machine->ram_size;
631     vbi->bootinfo.kernel_filename = machine->kernel_filename;
632     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
633     vbi->bootinfo.initrd_filename = machine->initrd_filename;
634     vbi->bootinfo.nb_cpus = smp_cpus;
635     vbi->bootinfo.board_id = -1;
636     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
637     vbi->bootinfo.get_dtb = machvirt_dtb;
638     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
639 }
640 
641 static bool virt_get_secure(Object *obj, Error **errp)
642 {
643     VirtMachineState *vms = VIRT_MACHINE(obj);
644 
645     return vms->secure;
646 }
647 
648 static void virt_set_secure(Object *obj, bool value, Error **errp)
649 {
650     VirtMachineState *vms = VIRT_MACHINE(obj);
651 
652     vms->secure = value;
653 }
654 
655 static void virt_instance_init(Object *obj)
656 {
657     VirtMachineState *vms = VIRT_MACHINE(obj);
658 
659     /* EL3 is enabled by default on virt */
660     vms->secure = true;
661     object_property_add_bool(obj, "secure", virt_get_secure,
662                              virt_set_secure, NULL);
663     object_property_set_description(obj, "secure",
664                                     "Set on/off to enable/disable the ARM "
665                                     "Security Extensions (TrustZone)",
666                                     NULL);
667 }
668 
669 static void virt_class_init(ObjectClass *oc, void *data)
670 {
671     MachineClass *mc = MACHINE_CLASS(oc);
672 
673     mc->name = TYPE_VIRT_MACHINE;
674     mc->desc = "ARM Virtual Machine",
675     mc->init = machvirt_init;
676     mc->max_cpus = 8;
677 }
678 
679 static const TypeInfo machvirt_info = {
680     .name = TYPE_VIRT_MACHINE,
681     .parent = TYPE_MACHINE,
682     .instance_size = sizeof(VirtMachineState),
683     .instance_init = virt_instance_init,
684     .class_size = sizeof(VirtMachineClass),
685     .class_init = virt_class_init,
686 };
687 
688 static void machvirt_machine_init(void)
689 {
690     type_register_static(&machvirt_info);
691 }
692 
693 machine_init(machvirt_machine_init);
694