1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "qapi/error.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/sysemu.h" 48 #include "sysemu/kvm.h" 49 #include "hw/loader.h" 50 #include "exec/address-spaces.h" 51 #include "qemu/bitops.h" 52 #include "qemu/error-report.h" 53 #include "qemu/module.h" 54 #include "hw/pci-host/gpex.h" 55 #include "hw/arm/sysbus-fdt.h" 56 #include "hw/platform-bus.h" 57 #include "hw/arm/fdt.h" 58 #include "hw/intc/arm_gic.h" 59 #include "hw/intc/arm_gicv3_common.h" 60 #include "hw/irq.h" 61 #include "kvm_arm.h" 62 #include "hw/firmware/smbios.h" 63 #include "qapi/visitor.h" 64 #include "standard-headers/linux/input.h" 65 #include "hw/arm/smmuv3.h" 66 #include "hw/acpi/acpi.h" 67 #include "target/arm/internals.h" 68 69 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 70 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 71 void *data) \ 72 { \ 73 MachineClass *mc = MACHINE_CLASS(oc); \ 74 virt_machine_##major##_##minor##_options(mc); \ 75 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 76 if (latest) { \ 77 mc->alias = "virt"; \ 78 } \ 79 } \ 80 static const TypeInfo machvirt_##major##_##minor##_info = { \ 81 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 82 .parent = TYPE_VIRT_MACHINE, \ 83 .class_init = virt_##major##_##minor##_class_init, \ 84 }; \ 85 static void machvirt_machine_##major##_##minor##_init(void) \ 86 { \ 87 type_register_static(&machvirt_##major##_##minor##_info); \ 88 } \ 89 type_init(machvirt_machine_##major##_##minor##_init); 90 91 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 92 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 93 #define DEFINE_VIRT_MACHINE(major, minor) \ 94 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 95 96 97 /* Number of external interrupt lines to configure the GIC with */ 98 #define NUM_IRQS 256 99 100 #define PLATFORM_BUS_NUM_IRQS 64 101 102 /* Legacy RAM limit in GB (< version 4.0) */ 103 #define LEGACY_RAMLIMIT_GB 255 104 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 105 106 /* Addresses and sizes of our components. 107 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 108 * 128MB..256MB is used for miscellaneous device I/O. 109 * 256MB..1GB is reserved for possible future PCI support (ie where the 110 * PCI memory window will go if we add a PCI host controller). 111 * 1GB and up is RAM (which may happily spill over into the 112 * high memory region beyond 4GB). 113 * This represents a compromise between how much RAM can be given to 114 * a 32 bit VM and leaving space for expansion and in particular for PCI. 115 * Note that devices should generally be placed at multiples of 0x10000, 116 * to accommodate guests using 64K pages. 117 */ 118 static const MemMapEntry base_memmap[] = { 119 /* Space up to 0x8000000 is reserved for a boot ROM */ 120 [VIRT_FLASH] = { 0, 0x08000000 }, 121 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 122 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 123 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 124 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 125 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 126 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 127 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 128 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 129 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 130 /* This redistributor space allows up to 2*64kB*123 CPUs */ 131 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 132 [VIRT_UART] = { 0x09000000, 0x00001000 }, 133 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 134 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 135 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 136 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 137 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 138 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 139 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 140 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 141 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 142 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 143 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 144 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 145 /* Actual RAM size depends on initial RAM and device memory settings */ 146 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 147 }; 148 149 /* 150 * Highmem IO Regions: This memory map is floating, located after the RAM. 151 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 152 * top of the RAM, so that its base get the same alignment as the size, 153 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 154 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 155 * Note the extended_memmap is sized so that it eventually also includes the 156 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 157 * index of base_memmap). 158 */ 159 static MemMapEntry extended_memmap[] = { 160 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 161 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 162 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 163 /* Second PCIe window */ 164 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 165 }; 166 167 static const int a15irqmap[] = { 168 [VIRT_UART] = 1, 169 [VIRT_RTC] = 2, 170 [VIRT_PCIE] = 3, /* ... to 6 */ 171 [VIRT_GPIO] = 7, 172 [VIRT_SECURE_UART] = 8, 173 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 174 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 175 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 176 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 177 }; 178 179 static const char *valid_cpus[] = { 180 ARM_CPU_TYPE_NAME("cortex-a7"), 181 ARM_CPU_TYPE_NAME("cortex-a15"), 182 ARM_CPU_TYPE_NAME("cortex-a53"), 183 ARM_CPU_TYPE_NAME("cortex-a57"), 184 ARM_CPU_TYPE_NAME("cortex-a72"), 185 ARM_CPU_TYPE_NAME("host"), 186 ARM_CPU_TYPE_NAME("max"), 187 }; 188 189 static bool cpu_type_valid(const char *cpu) 190 { 191 int i; 192 193 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 194 if (strcmp(cpu, valid_cpus[i]) == 0) { 195 return true; 196 } 197 } 198 return false; 199 } 200 201 static void create_fdt(VirtMachineState *vms) 202 { 203 void *fdt = create_device_tree(&vms->fdt_size); 204 205 if (!fdt) { 206 error_report("create_device_tree() failed"); 207 exit(1); 208 } 209 210 vms->fdt = fdt; 211 212 /* Header */ 213 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 214 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 215 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 216 217 /* /chosen must exist for load_dtb to fill in necessary properties later */ 218 qemu_fdt_add_subnode(fdt, "/chosen"); 219 220 /* Clock node, for the benefit of the UART. The kernel device tree 221 * binding documentation claims the PL011 node clock properties are 222 * optional but in practice if you omit them the kernel refuses to 223 * probe for the device. 224 */ 225 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 226 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 227 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 228 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 229 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 230 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 231 "clk24mhz"); 232 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 233 234 if (have_numa_distance) { 235 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 236 uint32_t *matrix = g_malloc0(size); 237 int idx, i, j; 238 239 for (i = 0; i < nb_numa_nodes; i++) { 240 for (j = 0; j < nb_numa_nodes; j++) { 241 idx = (i * nb_numa_nodes + j) * 3; 242 matrix[idx + 0] = cpu_to_be32(i); 243 matrix[idx + 1] = cpu_to_be32(j); 244 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); 245 } 246 } 247 248 qemu_fdt_add_subnode(fdt, "/distance-map"); 249 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 250 "numa-distance-map-v1"); 251 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 252 matrix, size); 253 g_free(matrix); 254 } 255 } 256 257 static void fdt_add_timer_nodes(const VirtMachineState *vms) 258 { 259 /* On real hardware these interrupts are level-triggered. 260 * On KVM they were edge-triggered before host kernel version 4.4, 261 * and level-triggered afterwards. 262 * On emulated QEMU they are level-triggered. 263 * 264 * Getting the DTB info about them wrong is awkward for some 265 * guest kernels: 266 * pre-4.8 ignore the DT and leave the interrupt configured 267 * with whatever the GIC reset value (or the bootloader) left it at 268 * 4.8 before rc6 honour the incorrect data by programming it back 269 * into the GIC, causing problems 270 * 4.8rc6 and later ignore the DT and always write "level triggered" 271 * into the GIC 272 * 273 * For backwards-compatibility, virt-2.8 and earlier will continue 274 * to say these are edge-triggered, but later machines will report 275 * the correct information. 276 */ 277 ARMCPU *armcpu; 278 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 279 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 280 281 if (vmc->claim_edge_triggered_timers) { 282 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 283 } 284 285 if (vms->gic_version == 2) { 286 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 287 GIC_FDT_IRQ_PPI_CPU_WIDTH, 288 (1 << vms->smp_cpus) - 1); 289 } 290 291 qemu_fdt_add_subnode(vms->fdt, "/timer"); 292 293 armcpu = ARM_CPU(qemu_get_cpu(0)); 294 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 295 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 296 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 297 compat, sizeof(compat)); 298 } else { 299 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 300 "arm,armv7-timer"); 301 } 302 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 303 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 304 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 305 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 306 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 307 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 308 } 309 310 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 311 { 312 int cpu; 313 int addr_cells = 1; 314 const MachineState *ms = MACHINE(vms); 315 316 /* 317 * From Documentation/devicetree/bindings/arm/cpus.txt 318 * On ARM v8 64-bit systems value should be set to 2, 319 * that corresponds to the MPIDR_EL1 register size. 320 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 321 * in the system, #address-cells can be set to 1, since 322 * MPIDR_EL1[63:32] bits are not used for CPUs 323 * identification. 324 * 325 * Here we actually don't know whether our system is 32- or 64-bit one. 326 * The simplest way to go is to examine affinity IDs of all our CPUs. If 327 * at least one of them has Aff3 populated, we set #address-cells to 2. 328 */ 329 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 330 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 331 332 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 333 addr_cells = 2; 334 break; 335 } 336 } 337 338 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 339 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 340 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 341 342 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 343 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 344 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 345 CPUState *cs = CPU(armcpu); 346 347 qemu_fdt_add_subnode(vms->fdt, nodename); 348 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 349 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 350 armcpu->dtb_compatible); 351 352 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 353 && vms->smp_cpus > 1) { 354 qemu_fdt_setprop_string(vms->fdt, nodename, 355 "enable-method", "psci"); 356 } 357 358 if (addr_cells == 2) { 359 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 360 armcpu->mp_affinity); 361 } else { 362 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 363 armcpu->mp_affinity); 364 } 365 366 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 367 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 368 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 369 } 370 371 g_free(nodename); 372 } 373 } 374 375 static void fdt_add_its_gic_node(VirtMachineState *vms) 376 { 377 char *nodename; 378 379 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 380 nodename = g_strdup_printf("/intc/its@%" PRIx64, 381 vms->memmap[VIRT_GIC_ITS].base); 382 qemu_fdt_add_subnode(vms->fdt, nodename); 383 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 384 "arm,gic-v3-its"); 385 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 386 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 387 2, vms->memmap[VIRT_GIC_ITS].base, 388 2, vms->memmap[VIRT_GIC_ITS].size); 389 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 390 g_free(nodename); 391 } 392 393 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 394 { 395 char *nodename; 396 397 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 398 vms->memmap[VIRT_GIC_V2M].base); 399 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 400 qemu_fdt_add_subnode(vms->fdt, nodename); 401 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 402 "arm,gic-v2m-frame"); 403 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 404 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 405 2, vms->memmap[VIRT_GIC_V2M].base, 406 2, vms->memmap[VIRT_GIC_V2M].size); 407 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 408 g_free(nodename); 409 } 410 411 static void fdt_add_gic_node(VirtMachineState *vms) 412 { 413 char *nodename; 414 415 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 416 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 417 418 nodename = g_strdup_printf("/intc@%" PRIx64, 419 vms->memmap[VIRT_GIC_DIST].base); 420 qemu_fdt_add_subnode(vms->fdt, nodename); 421 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 422 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 423 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 424 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 425 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 426 if (vms->gic_version == 3) { 427 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 428 429 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 430 "arm,gic-v3"); 431 432 qemu_fdt_setprop_cell(vms->fdt, nodename, 433 "#redistributor-regions", nb_redist_regions); 434 435 if (nb_redist_regions == 1) { 436 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 437 2, vms->memmap[VIRT_GIC_DIST].base, 438 2, vms->memmap[VIRT_GIC_DIST].size, 439 2, vms->memmap[VIRT_GIC_REDIST].base, 440 2, vms->memmap[VIRT_GIC_REDIST].size); 441 } else { 442 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 443 2, vms->memmap[VIRT_GIC_DIST].base, 444 2, vms->memmap[VIRT_GIC_DIST].size, 445 2, vms->memmap[VIRT_GIC_REDIST].base, 446 2, vms->memmap[VIRT_GIC_REDIST].size, 447 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 448 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 449 } 450 451 if (vms->virt) { 452 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 453 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 454 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 455 } 456 } else { 457 /* 'cortex-a15-gic' means 'GIC v2' */ 458 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 459 "arm,cortex-a15-gic"); 460 if (!vms->virt) { 461 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 462 2, vms->memmap[VIRT_GIC_DIST].base, 463 2, vms->memmap[VIRT_GIC_DIST].size, 464 2, vms->memmap[VIRT_GIC_CPU].base, 465 2, vms->memmap[VIRT_GIC_CPU].size); 466 } else { 467 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 468 2, vms->memmap[VIRT_GIC_DIST].base, 469 2, vms->memmap[VIRT_GIC_DIST].size, 470 2, vms->memmap[VIRT_GIC_CPU].base, 471 2, vms->memmap[VIRT_GIC_CPU].size, 472 2, vms->memmap[VIRT_GIC_HYP].base, 473 2, vms->memmap[VIRT_GIC_HYP].size, 474 2, vms->memmap[VIRT_GIC_VCPU].base, 475 2, vms->memmap[VIRT_GIC_VCPU].size); 476 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 477 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 478 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 479 } 480 } 481 482 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 483 g_free(nodename); 484 } 485 486 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 487 { 488 CPUState *cpu; 489 ARMCPU *armcpu; 490 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 491 492 CPU_FOREACH(cpu) { 493 armcpu = ARM_CPU(cpu); 494 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 495 return; 496 } 497 if (kvm_enabled()) { 498 if (kvm_irqchip_in_kernel()) { 499 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 500 } 501 kvm_arm_pmu_init(cpu); 502 } 503 } 504 505 if (vms->gic_version == 2) { 506 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 507 GIC_FDT_IRQ_PPI_CPU_WIDTH, 508 (1 << vms->smp_cpus) - 1); 509 } 510 511 armcpu = ARM_CPU(qemu_get_cpu(0)); 512 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 513 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 514 const char compat[] = "arm,armv8-pmuv3"; 515 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 516 compat, sizeof(compat)); 517 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 518 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 519 } 520 } 521 522 static void create_its(VirtMachineState *vms, DeviceState *gicdev) 523 { 524 const char *itsclass = its_class_name(); 525 DeviceState *dev; 526 527 if (!itsclass) { 528 /* Do nothing if not supported */ 529 return; 530 } 531 532 dev = qdev_create(NULL, itsclass); 533 534 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 535 &error_abort); 536 qdev_init_nofail(dev); 537 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 538 539 fdt_add_its_gic_node(vms); 540 } 541 542 static void create_v2m(VirtMachineState *vms, qemu_irq *pic) 543 { 544 int i; 545 int irq = vms->irqmap[VIRT_GIC_V2M]; 546 DeviceState *dev; 547 548 dev = qdev_create(NULL, "arm-gicv2m"); 549 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 550 qdev_prop_set_uint32(dev, "base-spi", irq); 551 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 552 qdev_init_nofail(dev); 553 554 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 555 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 556 } 557 558 fdt_add_v2m_gic_node(vms); 559 } 560 561 static void create_gic(VirtMachineState *vms, qemu_irq *pic) 562 { 563 MachineState *ms = MACHINE(vms); 564 /* We create a standalone GIC */ 565 DeviceState *gicdev; 566 SysBusDevice *gicbusdev; 567 const char *gictype; 568 int type = vms->gic_version, i; 569 unsigned int smp_cpus = ms->smp.cpus; 570 uint32_t nb_redist_regions = 0; 571 572 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 573 574 gicdev = qdev_create(NULL, gictype); 575 qdev_prop_set_uint32(gicdev, "revision", type); 576 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 577 /* Note that the num-irq property counts both internal and external 578 * interrupts; there are always 32 of the former (mandated by GIC spec). 579 */ 580 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 581 if (!kvm_irqchip_in_kernel()) { 582 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); 583 } 584 585 if (type == 3) { 586 uint32_t redist0_capacity = 587 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 588 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 589 590 nb_redist_regions = virt_gicv3_redist_region_count(vms); 591 592 qdev_prop_set_uint32(gicdev, "len-redist-region-count", 593 nb_redist_regions); 594 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count); 595 596 if (nb_redist_regions == 2) { 597 uint32_t redist1_capacity = 598 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 599 600 qdev_prop_set_uint32(gicdev, "redist-region-count[1]", 601 MIN(smp_cpus - redist0_count, redist1_capacity)); 602 } 603 } else { 604 if (!kvm_irqchip_in_kernel()) { 605 qdev_prop_set_bit(gicdev, "has-virtualization-extensions", 606 vms->virt); 607 } 608 } 609 qdev_init_nofail(gicdev); 610 gicbusdev = SYS_BUS_DEVICE(gicdev); 611 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 612 if (type == 3) { 613 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 614 if (nb_redist_regions == 2) { 615 sysbus_mmio_map(gicbusdev, 2, 616 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 617 } 618 } else { 619 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 620 if (vms->virt) { 621 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 622 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 623 } 624 } 625 626 /* Wire the outputs from each CPU's generic timer and the GICv3 627 * maintenance interrupt signal to the appropriate GIC PPI inputs, 628 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 629 */ 630 for (i = 0; i < smp_cpus; i++) { 631 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 632 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 633 int irq; 634 /* Mapping from the output timer irq lines from the CPU to the 635 * GIC PPI inputs we use for the virt board. 636 */ 637 const int timer_irq[] = { 638 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 639 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 640 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 641 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 642 }; 643 644 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 645 qdev_connect_gpio_out(cpudev, irq, 646 qdev_get_gpio_in(gicdev, 647 ppibase + timer_irq[irq])); 648 } 649 650 if (type == 3) { 651 qemu_irq irq = qdev_get_gpio_in(gicdev, 652 ppibase + ARCH_GIC_MAINT_IRQ); 653 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 654 0, irq); 655 } else if (vms->virt) { 656 qemu_irq irq = qdev_get_gpio_in(gicdev, 657 ppibase + ARCH_GIC_MAINT_IRQ); 658 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 659 } 660 661 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 662 qdev_get_gpio_in(gicdev, ppibase 663 + VIRTUAL_PMU_IRQ)); 664 665 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 666 sysbus_connect_irq(gicbusdev, i + smp_cpus, 667 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 668 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 669 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 670 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 671 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 672 } 673 674 for (i = 0; i < NUM_IRQS; i++) { 675 pic[i] = qdev_get_gpio_in(gicdev, i); 676 } 677 678 fdt_add_gic_node(vms); 679 680 if (type == 3 && vms->its) { 681 create_its(vms, gicdev); 682 } else if (type == 2) { 683 create_v2m(vms, pic); 684 } 685 } 686 687 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, 688 MemoryRegion *mem, Chardev *chr) 689 { 690 char *nodename; 691 hwaddr base = vms->memmap[uart].base; 692 hwaddr size = vms->memmap[uart].size; 693 int irq = vms->irqmap[uart]; 694 const char compat[] = "arm,pl011\0arm,primecell"; 695 const char clocknames[] = "uartclk\0apb_pclk"; 696 DeviceState *dev = qdev_create(NULL, "pl011"); 697 SysBusDevice *s = SYS_BUS_DEVICE(dev); 698 699 qdev_prop_set_chr(dev, "chardev", chr); 700 qdev_init_nofail(dev); 701 memory_region_add_subregion(mem, base, 702 sysbus_mmio_get_region(s, 0)); 703 sysbus_connect_irq(s, 0, pic[irq]); 704 705 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 706 qemu_fdt_add_subnode(vms->fdt, nodename); 707 /* Note that we can't use setprop_string because of the embedded NUL */ 708 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 709 compat, sizeof(compat)); 710 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 711 2, base, 2, size); 712 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 713 GIC_FDT_IRQ_TYPE_SPI, irq, 714 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 715 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 716 vms->clock_phandle, vms->clock_phandle); 717 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 718 clocknames, sizeof(clocknames)); 719 720 if (uart == VIRT_UART) { 721 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 722 } else { 723 /* Mark as not usable by the normal world */ 724 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 725 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 726 727 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen"); 728 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 729 nodename); 730 } 731 732 g_free(nodename); 733 } 734 735 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) 736 { 737 char *nodename; 738 hwaddr base = vms->memmap[VIRT_RTC].base; 739 hwaddr size = vms->memmap[VIRT_RTC].size; 740 int irq = vms->irqmap[VIRT_RTC]; 741 const char compat[] = "arm,pl031\0arm,primecell"; 742 743 sysbus_create_simple("pl031", base, pic[irq]); 744 745 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 746 qemu_fdt_add_subnode(vms->fdt, nodename); 747 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 748 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 749 2, base, 2, size); 750 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 751 GIC_FDT_IRQ_TYPE_SPI, irq, 752 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 753 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 754 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 755 g_free(nodename); 756 } 757 758 static DeviceState *gpio_key_dev; 759 static void virt_powerdown_req(Notifier *n, void *opaque) 760 { 761 /* use gpio Pin 3 for power button event */ 762 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 763 } 764 765 static Notifier virt_system_powerdown_notifier = { 766 .notify = virt_powerdown_req 767 }; 768 769 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) 770 { 771 char *nodename; 772 DeviceState *pl061_dev; 773 hwaddr base = vms->memmap[VIRT_GPIO].base; 774 hwaddr size = vms->memmap[VIRT_GPIO].size; 775 int irq = vms->irqmap[VIRT_GPIO]; 776 const char compat[] = "arm,pl061\0arm,primecell"; 777 778 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 779 780 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 781 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 782 qemu_fdt_add_subnode(vms->fdt, nodename); 783 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 784 2, base, 2, size); 785 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 786 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 787 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 788 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 789 GIC_FDT_IRQ_TYPE_SPI, irq, 790 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 791 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 792 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 793 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 794 795 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 796 qdev_get_gpio_in(pl061_dev, 3)); 797 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 798 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 799 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 800 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 801 802 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 803 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 804 "label", "GPIO Key Poweroff"); 805 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 806 KEY_POWER); 807 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 808 "gpios", phandle, 3, 0); 809 810 /* connect powerdown request */ 811 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 812 813 g_free(nodename); 814 } 815 816 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) 817 { 818 int i; 819 hwaddr size = vms->memmap[VIRT_MMIO].size; 820 821 /* We create the transports in forwards order. Since qbus_realize() 822 * prepends (not appends) new child buses, the incrementing loop below will 823 * create a list of virtio-mmio buses with decreasing base addresses. 824 * 825 * When a -device option is processed from the command line, 826 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 827 * order. The upshot is that -device options in increasing command line 828 * order are mapped to virtio-mmio buses with decreasing base addresses. 829 * 830 * When this code was originally written, that arrangement ensured that the 831 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 832 * the first -device on the command line. (The end-to-end order is a 833 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 834 * guest kernel's name-to-address assignment strategy.) 835 * 836 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 837 * the message, if not necessarily the code, of commit 70161ff336. 838 * Therefore the loop now establishes the inverse of the original intent. 839 * 840 * Unfortunately, we can't counteract the kernel change by reversing the 841 * loop; it would break existing command lines. 842 * 843 * In any case, the kernel makes no guarantee about the stability of 844 * enumeration order of virtio devices (as demonstrated by it changing 845 * between kernel versions). For reliable and stable identification 846 * of disks users must use UUIDs or similar mechanisms. 847 */ 848 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 849 int irq = vms->irqmap[VIRT_MMIO] + i; 850 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 851 852 sysbus_create_simple("virtio-mmio", base, pic[irq]); 853 } 854 855 /* We add dtb nodes in reverse order so that they appear in the finished 856 * device tree lowest address first. 857 * 858 * Note that this mapping is independent of the loop above. The previous 859 * loop influences virtio device to virtio transport assignment, whereas 860 * this loop controls how virtio transports are laid out in the dtb. 861 */ 862 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 863 char *nodename; 864 int irq = vms->irqmap[VIRT_MMIO] + i; 865 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 866 867 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 868 qemu_fdt_add_subnode(vms->fdt, nodename); 869 qemu_fdt_setprop_string(vms->fdt, nodename, 870 "compatible", "virtio,mmio"); 871 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 872 2, base, 2, size); 873 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 874 GIC_FDT_IRQ_TYPE_SPI, irq, 875 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 876 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 877 g_free(nodename); 878 } 879 } 880 881 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 882 883 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 884 const char *name, 885 const char *alias_prop_name) 886 { 887 /* 888 * Create a single flash device. We use the same parameters as 889 * the flash devices on the Versatile Express board. 890 */ 891 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01); 892 893 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 894 qdev_prop_set_uint8(dev, "width", 4); 895 qdev_prop_set_uint8(dev, "device-width", 2); 896 qdev_prop_set_bit(dev, "big-endian", false); 897 qdev_prop_set_uint16(dev, "id0", 0x89); 898 qdev_prop_set_uint16(dev, "id1", 0x18); 899 qdev_prop_set_uint16(dev, "id2", 0x00); 900 qdev_prop_set_uint16(dev, "id3", 0x00); 901 qdev_prop_set_string(dev, "name", name); 902 object_property_add_child(OBJECT(vms), name, OBJECT(dev), 903 &error_abort); 904 object_property_add_alias(OBJECT(vms), alias_prop_name, 905 OBJECT(dev), "drive", &error_abort); 906 return PFLASH_CFI01(dev); 907 } 908 909 static void virt_flash_create(VirtMachineState *vms) 910 { 911 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 912 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 913 } 914 915 static void virt_flash_map1(PFlashCFI01 *flash, 916 hwaddr base, hwaddr size, 917 MemoryRegion *sysmem) 918 { 919 DeviceState *dev = DEVICE(flash); 920 921 assert(size % VIRT_FLASH_SECTOR_SIZE == 0); 922 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 923 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 924 qdev_init_nofail(dev); 925 926 memory_region_add_subregion(sysmem, base, 927 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 928 0)); 929 } 930 931 static void virt_flash_map(VirtMachineState *vms, 932 MemoryRegion *sysmem, 933 MemoryRegion *secure_sysmem) 934 { 935 /* 936 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 937 * sysmem is the system memory space. secure_sysmem is the secure view 938 * of the system, and the first flash device should be made visible only 939 * there. The second flash device is visible to both secure and nonsecure. 940 * If sysmem == secure_sysmem this means there is no separate Secure 941 * address space and both flash devices are generally visible. 942 */ 943 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 944 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 945 946 virt_flash_map1(vms->flash[0], flashbase, flashsize, 947 secure_sysmem); 948 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 949 sysmem); 950 } 951 952 static void virt_flash_fdt(VirtMachineState *vms, 953 MemoryRegion *sysmem, 954 MemoryRegion *secure_sysmem) 955 { 956 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 957 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 958 char *nodename; 959 960 if (sysmem == secure_sysmem) { 961 /* Report both flash devices as a single node in the DT */ 962 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 963 qemu_fdt_add_subnode(vms->fdt, nodename); 964 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 965 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 966 2, flashbase, 2, flashsize, 967 2, flashbase + flashsize, 2, flashsize); 968 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 969 g_free(nodename); 970 } else { 971 /* 972 * Report the devices as separate nodes so we can mark one as 973 * only visible to the secure world. 974 */ 975 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 976 qemu_fdt_add_subnode(vms->fdt, nodename); 977 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 978 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 979 2, flashbase, 2, flashsize); 980 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 981 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 982 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 983 g_free(nodename); 984 985 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 986 qemu_fdt_add_subnode(vms->fdt, nodename); 987 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 988 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 989 2, flashbase + flashsize, 2, flashsize); 990 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 991 g_free(nodename); 992 } 993 } 994 995 static bool virt_firmware_init(VirtMachineState *vms, 996 MemoryRegion *sysmem, 997 MemoryRegion *secure_sysmem) 998 { 999 int i; 1000 BlockBackend *pflash_blk0; 1001 1002 /* Map legacy -drive if=pflash to machine properties */ 1003 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1004 pflash_cfi01_legacy_drive(vms->flash[i], 1005 drive_get(IF_PFLASH, 0, i)); 1006 } 1007 1008 virt_flash_map(vms, sysmem, secure_sysmem); 1009 1010 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1011 1012 if (bios_name) { 1013 char *fname; 1014 MemoryRegion *mr; 1015 int image_size; 1016 1017 if (pflash_blk0) { 1018 error_report("The contents of the first flash device may be " 1019 "specified with -bios or with -drive if=pflash... " 1020 "but you cannot use both options at once"); 1021 exit(1); 1022 } 1023 1024 /* Fall back to -bios */ 1025 1026 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1027 if (!fname) { 1028 error_report("Could not find ROM image '%s'", bios_name); 1029 exit(1); 1030 } 1031 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1032 image_size = load_image_mr(fname, mr); 1033 g_free(fname); 1034 if (image_size < 0) { 1035 error_report("Could not load ROM image '%s'", bios_name); 1036 exit(1); 1037 } 1038 } 1039 1040 return pflash_blk0 || bios_name; 1041 } 1042 1043 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1044 { 1045 MachineState *ms = MACHINE(vms); 1046 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1047 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1048 FWCfgState *fw_cfg; 1049 char *nodename; 1050 1051 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1052 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1053 1054 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1055 qemu_fdt_add_subnode(vms->fdt, nodename); 1056 qemu_fdt_setprop_string(vms->fdt, nodename, 1057 "compatible", "qemu,fw-cfg-mmio"); 1058 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1059 2, base, 2, size); 1060 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1061 g_free(nodename); 1062 return fw_cfg; 1063 } 1064 1065 static void create_pcie_irq_map(const VirtMachineState *vms, 1066 uint32_t gic_phandle, 1067 int first_irq, const char *nodename) 1068 { 1069 int devfn, pin; 1070 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1071 uint32_t *irq_map = full_irq_map; 1072 1073 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1074 for (pin = 0; pin < 4; pin++) { 1075 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1076 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1077 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1078 int i; 1079 1080 uint32_t map[] = { 1081 devfn << 8, 0, 0, /* devfn */ 1082 pin + 1, /* PCI pin */ 1083 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1084 1085 /* Convert map to big endian */ 1086 for (i = 0; i < 10; i++) { 1087 irq_map[i] = cpu_to_be32(map[i]); 1088 } 1089 irq_map += 10; 1090 } 1091 } 1092 1093 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1094 full_irq_map, sizeof(full_irq_map)); 1095 1096 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1097 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1098 0x7 /* PCI irq */); 1099 } 1100 1101 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, 1102 PCIBus *bus) 1103 { 1104 char *node; 1105 const char compat[] = "arm,smmu-v3"; 1106 int irq = vms->irqmap[VIRT_SMMU]; 1107 int i; 1108 hwaddr base = vms->memmap[VIRT_SMMU].base; 1109 hwaddr size = vms->memmap[VIRT_SMMU].size; 1110 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1111 DeviceState *dev; 1112 1113 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1114 return; 1115 } 1116 1117 dev = qdev_create(NULL, "arm-smmuv3"); 1118 1119 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1120 &error_abort); 1121 qdev_init_nofail(dev); 1122 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1123 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1124 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1125 } 1126 1127 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1128 qemu_fdt_add_subnode(vms->fdt, node); 1129 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1130 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1131 1132 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1133 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1134 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1135 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1136 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1137 1138 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1139 sizeof(irq_names)); 1140 1141 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1142 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1143 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1144 1145 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1146 1147 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1148 g_free(node); 1149 } 1150 1151 static void create_pcie(VirtMachineState *vms, qemu_irq *pic) 1152 { 1153 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1154 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1155 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1156 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1157 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1158 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1159 hwaddr base_ecam, size_ecam; 1160 hwaddr base = base_mmio; 1161 int nr_pcie_buses; 1162 int irq = vms->irqmap[VIRT_PCIE]; 1163 MemoryRegion *mmio_alias; 1164 MemoryRegion *mmio_reg; 1165 MemoryRegion *ecam_alias; 1166 MemoryRegion *ecam_reg; 1167 DeviceState *dev; 1168 char *nodename; 1169 int i, ecam_id; 1170 PCIHostState *pci; 1171 1172 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1173 qdev_init_nofail(dev); 1174 1175 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1176 base_ecam = vms->memmap[ecam_id].base; 1177 size_ecam = vms->memmap[ecam_id].size; 1178 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1179 /* Map only the first size_ecam bytes of ECAM space */ 1180 ecam_alias = g_new0(MemoryRegion, 1); 1181 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1182 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1183 ecam_reg, 0, size_ecam); 1184 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1185 1186 /* Map the MMIO window into system address space so as to expose 1187 * the section of PCI MMIO space which starts at the same base address 1188 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1189 * the window). 1190 */ 1191 mmio_alias = g_new0(MemoryRegion, 1); 1192 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1193 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1194 mmio_reg, base_mmio, size_mmio); 1195 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1196 1197 if (vms->highmem) { 1198 /* Map high MMIO space */ 1199 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1200 1201 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1202 mmio_reg, base_mmio_high, size_mmio_high); 1203 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1204 high_mmio_alias); 1205 } 1206 1207 /* Map IO port space */ 1208 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1209 1210 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1211 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1212 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1213 } 1214 1215 pci = PCI_HOST_BRIDGE(dev); 1216 if (pci->bus) { 1217 for (i = 0; i < nb_nics; i++) { 1218 NICInfo *nd = &nd_table[i]; 1219 1220 if (!nd->model) { 1221 nd->model = g_strdup("virtio"); 1222 } 1223 1224 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1225 } 1226 } 1227 1228 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1229 qemu_fdt_add_subnode(vms->fdt, nodename); 1230 qemu_fdt_setprop_string(vms->fdt, nodename, 1231 "compatible", "pci-host-ecam-generic"); 1232 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1233 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1234 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1235 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1236 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1237 nr_pcie_buses - 1); 1238 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1239 1240 if (vms->msi_phandle) { 1241 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1242 vms->msi_phandle); 1243 } 1244 1245 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1246 2, base_ecam, 2, size_ecam); 1247 1248 if (vms->highmem) { 1249 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1250 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1251 2, base_pio, 2, size_pio, 1252 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1253 2, base_mmio, 2, size_mmio, 1254 1, FDT_PCI_RANGE_MMIO_64BIT, 1255 2, base_mmio_high, 1256 2, base_mmio_high, 2, size_mmio_high); 1257 } else { 1258 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1259 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1260 2, base_pio, 2, size_pio, 1261 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1262 2, base_mmio, 2, size_mmio); 1263 } 1264 1265 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1266 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1267 1268 if (vms->iommu) { 1269 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1270 1271 create_smmu(vms, pic, pci->bus); 1272 1273 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1274 0x0, vms->iommu_phandle, 0x0, 0x10000); 1275 } 1276 1277 g_free(nodename); 1278 } 1279 1280 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) 1281 { 1282 DeviceState *dev; 1283 SysBusDevice *s; 1284 int i; 1285 MemoryRegion *sysmem = get_system_memory(); 1286 1287 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1288 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1289 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1290 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1291 qdev_init_nofail(dev); 1292 vms->platform_bus_dev = dev; 1293 1294 s = SYS_BUS_DEVICE(dev); 1295 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1296 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1297 sysbus_connect_irq(s, i, pic[irqn]); 1298 } 1299 1300 memory_region_add_subregion(sysmem, 1301 vms->memmap[VIRT_PLATFORM_BUS].base, 1302 sysbus_mmio_get_region(s, 0)); 1303 } 1304 1305 static void create_secure_ram(VirtMachineState *vms, 1306 MemoryRegion *secure_sysmem) 1307 { 1308 MemoryRegion *secram = g_new(MemoryRegion, 1); 1309 char *nodename; 1310 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1311 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1312 1313 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1314 &error_fatal); 1315 memory_region_add_subregion(secure_sysmem, base, secram); 1316 1317 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1318 qemu_fdt_add_subnode(vms->fdt, nodename); 1319 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1320 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1321 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1322 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1323 1324 g_free(nodename); 1325 } 1326 1327 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1328 { 1329 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1330 bootinfo); 1331 1332 *fdt_size = board->fdt_size; 1333 return board->fdt; 1334 } 1335 1336 static void virt_build_smbios(VirtMachineState *vms) 1337 { 1338 MachineClass *mc = MACHINE_GET_CLASS(vms); 1339 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1340 uint8_t *smbios_tables, *smbios_anchor; 1341 size_t smbios_tables_len, smbios_anchor_len; 1342 const char *product = "QEMU Virtual Machine"; 1343 1344 if (kvm_enabled()) { 1345 product = "KVM Virtual Machine"; 1346 } 1347 1348 smbios_set_defaults("QEMU", product, 1349 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1350 true, SMBIOS_ENTRY_POINT_30); 1351 1352 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1353 &smbios_anchor, &smbios_anchor_len); 1354 1355 if (smbios_anchor) { 1356 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1357 smbios_tables, smbios_tables_len); 1358 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1359 smbios_anchor, smbios_anchor_len); 1360 } 1361 } 1362 1363 static 1364 void virt_machine_done(Notifier *notifier, void *data) 1365 { 1366 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1367 machine_done); 1368 ARMCPU *cpu = ARM_CPU(first_cpu); 1369 struct arm_boot_info *info = &vms->bootinfo; 1370 AddressSpace *as = arm_boot_address_space(cpu, info); 1371 1372 /* 1373 * If the user provided a dtb, we assume the dynamic sysbus nodes 1374 * already are integrated there. This corresponds to a use case where 1375 * the dynamic sysbus nodes are complex and their generation is not yet 1376 * supported. In that case the user can take charge of the guest dt 1377 * while qemu takes charge of the qom stuff. 1378 */ 1379 if (info->dtb_filename == NULL) { 1380 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1381 vms->memmap[VIRT_PLATFORM_BUS].base, 1382 vms->memmap[VIRT_PLATFORM_BUS].size, 1383 vms->irqmap[VIRT_PLATFORM_BUS]); 1384 } 1385 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { 1386 exit(1); 1387 } 1388 1389 virt_acpi_setup(vms); 1390 virt_build_smbios(vms); 1391 } 1392 1393 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1394 { 1395 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1396 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1397 1398 if (!vmc->disallow_affinity_adjustment) { 1399 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1400 * GIC's target-list limitations. 32-bit KVM hosts currently 1401 * always create clusters of 4 CPUs, but that is expected to 1402 * change when they gain support for gicv3. When KVM is enabled 1403 * it will override the changes we make here, therefore our 1404 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1405 * and to improve SGI efficiency. 1406 */ 1407 if (vms->gic_version == 3) { 1408 clustersz = GICV3_TARGETLIST_BITS; 1409 } else { 1410 clustersz = GIC_TARGETLIST_BITS; 1411 } 1412 } 1413 return arm_cpu_mp_affinity(idx, clustersz); 1414 } 1415 1416 static void virt_set_memmap(VirtMachineState *vms) 1417 { 1418 MachineState *ms = MACHINE(vms); 1419 hwaddr base, device_memory_base, device_memory_size; 1420 int i; 1421 1422 vms->memmap = extended_memmap; 1423 1424 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1425 vms->memmap[i] = base_memmap[i]; 1426 } 1427 1428 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1429 error_report("unsupported number of memory slots: %"PRIu64, 1430 ms->ram_slots); 1431 exit(EXIT_FAILURE); 1432 } 1433 1434 /* 1435 * We compute the base of the high IO region depending on the 1436 * amount of initial and device memory. The device memory start/size 1437 * is aligned on 1GiB. We never put the high IO region below 256GiB 1438 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1439 * The device region size assumes 1GiB page max alignment per slot. 1440 */ 1441 device_memory_base = 1442 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1443 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1444 1445 /* Base address of the high IO region */ 1446 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1447 if (base < device_memory_base) { 1448 error_report("maxmem/slots too huge"); 1449 exit(EXIT_FAILURE); 1450 } 1451 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1452 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1453 } 1454 1455 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1456 hwaddr size = extended_memmap[i].size; 1457 1458 base = ROUND_UP(base, size); 1459 vms->memmap[i].base = base; 1460 vms->memmap[i].size = size; 1461 base += size; 1462 } 1463 vms->highest_gpa = base - 1; 1464 if (device_memory_size > 0) { 1465 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1466 ms->device_memory->base = device_memory_base; 1467 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1468 "device-memory", device_memory_size); 1469 } 1470 } 1471 1472 static void machvirt_init(MachineState *machine) 1473 { 1474 VirtMachineState *vms = VIRT_MACHINE(machine); 1475 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1476 MachineClass *mc = MACHINE_GET_CLASS(machine); 1477 const CPUArchIdList *possible_cpus; 1478 qemu_irq pic[NUM_IRQS]; 1479 MemoryRegion *sysmem = get_system_memory(); 1480 MemoryRegion *secure_sysmem = NULL; 1481 int n, virt_max_cpus; 1482 MemoryRegion *ram = g_new(MemoryRegion, 1); 1483 bool firmware_loaded; 1484 bool aarch64 = true; 1485 unsigned int smp_cpus = machine->smp.cpus; 1486 unsigned int max_cpus = machine->smp.max_cpus; 1487 1488 /* 1489 * In accelerated mode, the memory map is computed earlier in kvm_type() 1490 * to create a VM with the right number of IPA bits. 1491 */ 1492 if (!vms->memmap) { 1493 virt_set_memmap(vms); 1494 } 1495 1496 /* We can probe only here because during property set 1497 * KVM is not available yet 1498 */ 1499 if (vms->gic_version <= 0) { 1500 /* "host" or "max" */ 1501 if (!kvm_enabled()) { 1502 if (vms->gic_version == 0) { 1503 error_report("gic-version=host requires KVM"); 1504 exit(1); 1505 } else { 1506 /* "max": currently means 3 for TCG */ 1507 vms->gic_version = 3; 1508 } 1509 } else { 1510 vms->gic_version = kvm_arm_vgic_probe(); 1511 if (!vms->gic_version) { 1512 error_report( 1513 "Unable to determine GIC version supported by host"); 1514 exit(1); 1515 } 1516 } 1517 } 1518 1519 if (!cpu_type_valid(machine->cpu_type)) { 1520 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1521 exit(1); 1522 } 1523 1524 if (vms->secure) { 1525 if (kvm_enabled()) { 1526 error_report("mach-virt: KVM does not support Security extensions"); 1527 exit(1); 1528 } 1529 1530 /* 1531 * The Secure view of the world is the same as the NonSecure, 1532 * but with a few extra devices. Create it as a container region 1533 * containing the system memory at low priority; any secure-only 1534 * devices go in at higher priority and take precedence. 1535 */ 1536 secure_sysmem = g_new(MemoryRegion, 1); 1537 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1538 UINT64_MAX); 1539 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1540 } 1541 1542 firmware_loaded = virt_firmware_init(vms, sysmem, 1543 secure_sysmem ?: sysmem); 1544 1545 /* If we have an EL3 boot ROM then the assumption is that it will 1546 * implement PSCI itself, so disable QEMU's internal implementation 1547 * so it doesn't get in the way. Instead of starting secondary 1548 * CPUs in PSCI powerdown state we will start them all running and 1549 * let the boot ROM sort them out. 1550 * The usual case is that we do use QEMU's PSCI implementation; 1551 * if the guest has EL2 then we will use SMC as the conduit, 1552 * and otherwise we will use HVC (for backwards compatibility and 1553 * because if we're using KVM then we must use HVC). 1554 */ 1555 if (vms->secure && firmware_loaded) { 1556 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1557 } else if (vms->virt) { 1558 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1559 } else { 1560 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1561 } 1562 1563 /* The maximum number of CPUs depends on the GIC version, or on how 1564 * many redistributors we can fit into the memory map. 1565 */ 1566 if (vms->gic_version == 3) { 1567 virt_max_cpus = 1568 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1569 virt_max_cpus += 1570 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1571 } else { 1572 virt_max_cpus = GIC_NCPU; 1573 } 1574 1575 if (max_cpus > virt_max_cpus) { 1576 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1577 "supported by machine 'mach-virt' (%d)", 1578 max_cpus, virt_max_cpus); 1579 exit(1); 1580 } 1581 1582 vms->smp_cpus = smp_cpus; 1583 1584 if (vms->virt && kvm_enabled()) { 1585 error_report("mach-virt: KVM does not support providing " 1586 "Virtualization extensions to the guest CPU"); 1587 exit(1); 1588 } 1589 1590 create_fdt(vms); 1591 1592 possible_cpus = mc->possible_cpu_arch_ids(machine); 1593 for (n = 0; n < possible_cpus->len; n++) { 1594 Object *cpuobj; 1595 CPUState *cs; 1596 1597 if (n >= smp_cpus) { 1598 break; 1599 } 1600 1601 cpuobj = object_new(possible_cpus->cpus[n].type); 1602 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1603 "mp-affinity", NULL); 1604 1605 cs = CPU(cpuobj); 1606 cs->cpu_index = n; 1607 1608 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1609 &error_fatal); 1610 1611 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1612 1613 if (!vms->secure) { 1614 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1615 } 1616 1617 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1618 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1619 } 1620 1621 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1622 object_property_set_int(cpuobj, vms->psci_conduit, 1623 "psci-conduit", NULL); 1624 1625 /* Secondary CPUs start in PSCI powered-down state */ 1626 if (n > 0) { 1627 object_property_set_bool(cpuobj, true, 1628 "start-powered-off", NULL); 1629 } 1630 } 1631 1632 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1633 object_property_set_bool(cpuobj, false, "pmu", NULL); 1634 } 1635 1636 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1637 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1638 "reset-cbar", &error_abort); 1639 } 1640 1641 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1642 &error_abort); 1643 if (vms->secure) { 1644 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1645 "secure-memory", &error_abort); 1646 } 1647 1648 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1649 object_unref(cpuobj); 1650 } 1651 fdt_add_timer_nodes(vms); 1652 fdt_add_cpu_nodes(vms); 1653 1654 if (!kvm_enabled()) { 1655 ARMCPU *cpu = ARM_CPU(first_cpu); 1656 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL); 1657 1658 if (aarch64 && vms->highmem) { 1659 int requested_pa_size, pamax = arm_pamax(cpu); 1660 1661 requested_pa_size = 64 - clz64(vms->highest_gpa); 1662 if (pamax < requested_pa_size) { 1663 error_report("VCPU supports less PA bits (%d) than requested " 1664 "by the memory map (%d)", pamax, requested_pa_size); 1665 exit(1); 1666 } 1667 } 1668 } 1669 1670 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1671 machine->ram_size); 1672 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1673 if (machine->device_memory) { 1674 memory_region_add_subregion(sysmem, machine->device_memory->base, 1675 &machine->device_memory->mr); 1676 } 1677 1678 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 1679 1680 create_gic(vms, pic); 1681 1682 fdt_add_pmu_nodes(vms); 1683 1684 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); 1685 1686 if (vms->secure) { 1687 create_secure_ram(vms, secure_sysmem); 1688 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1689 } 1690 1691 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1692 1693 create_rtc(vms, pic); 1694 1695 create_pcie(vms, pic); 1696 1697 create_gpio(vms, pic); 1698 1699 /* Create mmio transports, so the user can create virtio backends 1700 * (which will be automatically plugged in to the transports). If 1701 * no backend is created the transport will just sit harmlessly idle. 1702 */ 1703 create_virtio_devices(vms, pic); 1704 1705 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1706 rom_set_fw(vms->fw_cfg); 1707 1708 create_platform_bus(vms, pic); 1709 1710 vms->bootinfo.ram_size = machine->ram_size; 1711 vms->bootinfo.kernel_filename = machine->kernel_filename; 1712 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1713 vms->bootinfo.initrd_filename = machine->initrd_filename; 1714 vms->bootinfo.nb_cpus = smp_cpus; 1715 vms->bootinfo.board_id = -1; 1716 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1717 vms->bootinfo.get_dtb = machvirt_dtb; 1718 vms->bootinfo.skip_dtb_autoload = true; 1719 vms->bootinfo.firmware_loaded = firmware_loaded; 1720 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); 1721 1722 vms->machine_done.notify = virt_machine_done; 1723 qemu_add_machine_init_done_notifier(&vms->machine_done); 1724 } 1725 1726 static bool virt_get_secure(Object *obj, Error **errp) 1727 { 1728 VirtMachineState *vms = VIRT_MACHINE(obj); 1729 1730 return vms->secure; 1731 } 1732 1733 static void virt_set_secure(Object *obj, bool value, Error **errp) 1734 { 1735 VirtMachineState *vms = VIRT_MACHINE(obj); 1736 1737 vms->secure = value; 1738 } 1739 1740 static bool virt_get_virt(Object *obj, Error **errp) 1741 { 1742 VirtMachineState *vms = VIRT_MACHINE(obj); 1743 1744 return vms->virt; 1745 } 1746 1747 static void virt_set_virt(Object *obj, bool value, Error **errp) 1748 { 1749 VirtMachineState *vms = VIRT_MACHINE(obj); 1750 1751 vms->virt = value; 1752 } 1753 1754 static bool virt_get_highmem(Object *obj, Error **errp) 1755 { 1756 VirtMachineState *vms = VIRT_MACHINE(obj); 1757 1758 return vms->highmem; 1759 } 1760 1761 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1762 { 1763 VirtMachineState *vms = VIRT_MACHINE(obj); 1764 1765 vms->highmem = value; 1766 } 1767 1768 static bool virt_get_its(Object *obj, Error **errp) 1769 { 1770 VirtMachineState *vms = VIRT_MACHINE(obj); 1771 1772 return vms->its; 1773 } 1774 1775 static void virt_set_its(Object *obj, bool value, Error **errp) 1776 { 1777 VirtMachineState *vms = VIRT_MACHINE(obj); 1778 1779 vms->its = value; 1780 } 1781 1782 static char *virt_get_gic_version(Object *obj, Error **errp) 1783 { 1784 VirtMachineState *vms = VIRT_MACHINE(obj); 1785 const char *val = vms->gic_version == 3 ? "3" : "2"; 1786 1787 return g_strdup(val); 1788 } 1789 1790 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1791 { 1792 VirtMachineState *vms = VIRT_MACHINE(obj); 1793 1794 if (!strcmp(value, "3")) { 1795 vms->gic_version = 3; 1796 } else if (!strcmp(value, "2")) { 1797 vms->gic_version = 2; 1798 } else if (!strcmp(value, "host")) { 1799 vms->gic_version = 0; /* Will probe later */ 1800 } else if (!strcmp(value, "max")) { 1801 vms->gic_version = -1; /* Will probe later */ 1802 } else { 1803 error_setg(errp, "Invalid gic-version value"); 1804 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1805 } 1806 } 1807 1808 static char *virt_get_iommu(Object *obj, Error **errp) 1809 { 1810 VirtMachineState *vms = VIRT_MACHINE(obj); 1811 1812 switch (vms->iommu) { 1813 case VIRT_IOMMU_NONE: 1814 return g_strdup("none"); 1815 case VIRT_IOMMU_SMMUV3: 1816 return g_strdup("smmuv3"); 1817 default: 1818 g_assert_not_reached(); 1819 } 1820 } 1821 1822 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1823 { 1824 VirtMachineState *vms = VIRT_MACHINE(obj); 1825 1826 if (!strcmp(value, "smmuv3")) { 1827 vms->iommu = VIRT_IOMMU_SMMUV3; 1828 } else if (!strcmp(value, "none")) { 1829 vms->iommu = VIRT_IOMMU_NONE; 1830 } else { 1831 error_setg(errp, "Invalid iommu value"); 1832 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1833 } 1834 } 1835 1836 static CpuInstanceProperties 1837 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1838 { 1839 MachineClass *mc = MACHINE_GET_CLASS(ms); 1840 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1841 1842 assert(cpu_index < possible_cpus->len); 1843 return possible_cpus->cpus[cpu_index].props; 1844 } 1845 1846 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1847 { 1848 return idx % nb_numa_nodes; 1849 } 1850 1851 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1852 { 1853 int n; 1854 unsigned int max_cpus = ms->smp.max_cpus; 1855 VirtMachineState *vms = VIRT_MACHINE(ms); 1856 1857 if (ms->possible_cpus) { 1858 assert(ms->possible_cpus->len == max_cpus); 1859 return ms->possible_cpus; 1860 } 1861 1862 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1863 sizeof(CPUArchId) * max_cpus); 1864 ms->possible_cpus->len = max_cpus; 1865 for (n = 0; n < ms->possible_cpus->len; n++) { 1866 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1867 ms->possible_cpus->cpus[n].arch_id = 1868 virt_cpu_mp_affinity(vms, n); 1869 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1870 ms->possible_cpus->cpus[n].props.thread_id = n; 1871 } 1872 return ms->possible_cpus; 1873 } 1874 1875 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1876 DeviceState *dev, Error **errp) 1877 { 1878 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1879 1880 if (vms->platform_bus_dev) { 1881 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1882 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1883 SYS_BUS_DEVICE(dev)); 1884 } 1885 } 1886 } 1887 1888 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1889 DeviceState *dev) 1890 { 1891 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1892 return HOTPLUG_HANDLER(machine); 1893 } 1894 1895 return NULL; 1896 } 1897 1898 /* 1899 * for arm64 kvm_type [7-0] encodes the requested number of bits 1900 * in the IPA address space 1901 */ 1902 static int virt_kvm_type(MachineState *ms, const char *type_str) 1903 { 1904 VirtMachineState *vms = VIRT_MACHINE(ms); 1905 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 1906 int requested_pa_size; 1907 1908 /* we freeze the memory map to compute the highest gpa */ 1909 virt_set_memmap(vms); 1910 1911 requested_pa_size = 64 - clz64(vms->highest_gpa); 1912 1913 if (requested_pa_size > max_vm_pa_size) { 1914 error_report("-m and ,maxmem option values " 1915 "require an IPA range (%d bits) larger than " 1916 "the one supported by the host (%d bits)", 1917 requested_pa_size, max_vm_pa_size); 1918 exit(1); 1919 } 1920 /* 1921 * By default we return 0 which corresponds to an implicit legacy 1922 * 40b IPA setting. Otherwise we return the actual requested PA 1923 * logsize 1924 */ 1925 return requested_pa_size > 40 ? requested_pa_size : 0; 1926 } 1927 1928 static void virt_machine_class_init(ObjectClass *oc, void *data) 1929 { 1930 MachineClass *mc = MACHINE_CLASS(oc); 1931 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 1932 1933 mc->init = machvirt_init; 1934 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 1935 * The value may be reduced later when we have more information about the 1936 * configuration of the particular instance. 1937 */ 1938 mc->max_cpus = 512; 1939 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 1940 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 1941 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 1942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 1943 mc->block_default_type = IF_VIRTIO; 1944 mc->no_cdrom = 1; 1945 mc->pci_allow_0_address = true; 1946 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 1947 mc->minimum_page_bits = 12; 1948 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 1949 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 1950 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 1951 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 1952 mc->kvm_type = virt_kvm_type; 1953 assert(!mc->get_hotplug_handler); 1954 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 1955 hc->plug = virt_machine_device_plug_cb; 1956 mc->numa_mem_supported = true; 1957 } 1958 1959 static void virt_instance_init(Object *obj) 1960 { 1961 VirtMachineState *vms = VIRT_MACHINE(obj); 1962 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1963 1964 /* EL3 is disabled by default on virt: this makes us consistent 1965 * between KVM and TCG for this board, and it also allows us to 1966 * boot UEFI blobs which assume no TrustZone support. 1967 */ 1968 vms->secure = false; 1969 object_property_add_bool(obj, "secure", virt_get_secure, 1970 virt_set_secure, NULL); 1971 object_property_set_description(obj, "secure", 1972 "Set on/off to enable/disable the ARM " 1973 "Security Extensions (TrustZone)", 1974 NULL); 1975 1976 /* EL2 is also disabled by default, for similar reasons */ 1977 vms->virt = false; 1978 object_property_add_bool(obj, "virtualization", virt_get_virt, 1979 virt_set_virt, NULL); 1980 object_property_set_description(obj, "virtualization", 1981 "Set on/off to enable/disable emulating a " 1982 "guest CPU which implements the ARM " 1983 "Virtualization Extensions", 1984 NULL); 1985 1986 /* High memory is enabled by default */ 1987 vms->highmem = true; 1988 object_property_add_bool(obj, "highmem", virt_get_highmem, 1989 virt_set_highmem, NULL); 1990 object_property_set_description(obj, "highmem", 1991 "Set on/off to enable/disable using " 1992 "physical address space above 32 bits", 1993 NULL); 1994 /* Default GIC type is v2 */ 1995 vms->gic_version = 2; 1996 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1997 virt_set_gic_version, NULL); 1998 object_property_set_description(obj, "gic-version", 1999 "Set GIC version. " 2000 "Valid values are 2, 3 and host", NULL); 2001 2002 vms->highmem_ecam = !vmc->no_highmem_ecam; 2003 2004 if (vmc->no_its) { 2005 vms->its = false; 2006 } else { 2007 /* Default allows ITS instantiation */ 2008 vms->its = true; 2009 object_property_add_bool(obj, "its", virt_get_its, 2010 virt_set_its, NULL); 2011 object_property_set_description(obj, "its", 2012 "Set on/off to enable/disable " 2013 "ITS instantiation", 2014 NULL); 2015 } 2016 2017 /* Default disallows iommu instantiation */ 2018 vms->iommu = VIRT_IOMMU_NONE; 2019 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 2020 object_property_set_description(obj, "iommu", 2021 "Set the IOMMU type. " 2022 "Valid values are none and smmuv3", 2023 NULL); 2024 2025 vms->irqmap = a15irqmap; 2026 2027 virt_flash_create(vms); 2028 } 2029 2030 static const TypeInfo virt_machine_info = { 2031 .name = TYPE_VIRT_MACHINE, 2032 .parent = TYPE_MACHINE, 2033 .abstract = true, 2034 .instance_size = sizeof(VirtMachineState), 2035 .class_size = sizeof(VirtMachineClass), 2036 .class_init = virt_machine_class_init, 2037 .instance_init = virt_instance_init, 2038 .interfaces = (InterfaceInfo[]) { 2039 { TYPE_HOTPLUG_HANDLER }, 2040 { } 2041 }, 2042 }; 2043 2044 static void machvirt_machine_init(void) 2045 { 2046 type_register_static(&virt_machine_info); 2047 } 2048 type_init(machvirt_machine_init); 2049 2050 static void virt_machine_4_1_options(MachineClass *mc) 2051 { 2052 } 2053 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1) 2054 2055 static void virt_machine_4_0_options(MachineClass *mc) 2056 { 2057 virt_machine_4_1_options(mc); 2058 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2059 } 2060 DEFINE_VIRT_MACHINE(4, 0) 2061 2062 static void virt_machine_3_1_options(MachineClass *mc) 2063 { 2064 virt_machine_4_0_options(mc); 2065 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2066 } 2067 DEFINE_VIRT_MACHINE(3, 1) 2068 2069 static void virt_machine_3_0_options(MachineClass *mc) 2070 { 2071 virt_machine_3_1_options(mc); 2072 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2073 } 2074 DEFINE_VIRT_MACHINE(3, 0) 2075 2076 static void virt_machine_2_12_options(MachineClass *mc) 2077 { 2078 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2079 2080 virt_machine_3_0_options(mc); 2081 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2082 vmc->no_highmem_ecam = true; 2083 mc->max_cpus = 255; 2084 } 2085 DEFINE_VIRT_MACHINE(2, 12) 2086 2087 static void virt_machine_2_11_options(MachineClass *mc) 2088 { 2089 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2090 2091 virt_machine_2_12_options(mc); 2092 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2093 vmc->smbios_old_sys_ver = true; 2094 } 2095 DEFINE_VIRT_MACHINE(2, 11) 2096 2097 static void virt_machine_2_10_options(MachineClass *mc) 2098 { 2099 virt_machine_2_11_options(mc); 2100 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2101 /* before 2.11 we never faulted accesses to bad addresses */ 2102 mc->ignore_memory_transaction_failures = true; 2103 } 2104 DEFINE_VIRT_MACHINE(2, 10) 2105 2106 static void virt_machine_2_9_options(MachineClass *mc) 2107 { 2108 virt_machine_2_10_options(mc); 2109 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2110 } 2111 DEFINE_VIRT_MACHINE(2, 9) 2112 2113 static void virt_machine_2_8_options(MachineClass *mc) 2114 { 2115 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2116 2117 virt_machine_2_9_options(mc); 2118 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2119 /* For 2.8 and earlier we falsely claimed in the DT that 2120 * our timers were edge-triggered, not level-triggered. 2121 */ 2122 vmc->claim_edge_triggered_timers = true; 2123 } 2124 DEFINE_VIRT_MACHINE(2, 8) 2125 2126 static void virt_machine_2_7_options(MachineClass *mc) 2127 { 2128 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2129 2130 virt_machine_2_8_options(mc); 2131 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2132 /* ITS was introduced with 2.8 */ 2133 vmc->no_its = true; 2134 /* Stick with 1K pages for migration compatibility */ 2135 mc->minimum_page_bits = 0; 2136 } 2137 DEFINE_VIRT_MACHINE(2, 7) 2138 2139 static void virt_machine_2_6_options(MachineClass *mc) 2140 { 2141 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2142 2143 virt_machine_2_7_options(mc); 2144 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2145 vmc->disallow_affinity_adjustment = true; 2146 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2147 vmc->no_pmu = true; 2148 } 2149 DEFINE_VIRT_MACHINE(2, 6) 2150