1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/datadir.h" 34 #include "qemu/units.h" 35 #include "qemu/option.h" 36 #include "monitor/qdev.h" 37 #include "qapi/error.h" 38 #include "hw/sysbus.h" 39 #include "hw/arm/boot.h" 40 #include "hw/arm/primecell.h" 41 #include "hw/arm/virt.h" 42 #include "hw/block/flash.h" 43 #include "hw/vfio/vfio-calxeda-xgmac.h" 44 #include "hw/vfio/vfio-amd-xgbe.h" 45 #include "hw/display/ramfb.h" 46 #include "net/net.h" 47 #include "sysemu/device_tree.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/runstate.h" 50 #include "sysemu/tpm.h" 51 #include "sysemu/kvm.h" 52 #include "hw/loader.h" 53 #include "qapi/error.h" 54 #include "qemu/bitops.h" 55 #include "qemu/error-report.h" 56 #include "qemu/module.h" 57 #include "hw/pci-host/gpex.h" 58 #include "hw/virtio/virtio-pci.h" 59 #include "hw/arm/sysbus-fdt.h" 60 #include "hw/platform-bus.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/arm/fdt.h" 63 #include "hw/intc/arm_gic.h" 64 #include "hw/intc/arm_gicv3_common.h" 65 #include "hw/irq.h" 66 #include "kvm_arm.h" 67 #include "hw/firmware/smbios.h" 68 #include "qapi/visitor.h" 69 #include "qapi/qapi-visit-common.h" 70 #include "standard-headers/linux/input.h" 71 #include "hw/arm/smmuv3.h" 72 #include "hw/acpi/acpi.h" 73 #include "target/arm/internals.h" 74 #include "hw/mem/pc-dimm.h" 75 #include "hw/mem/nvdimm.h" 76 #include "hw/acpi/generic_event_device.h" 77 #include "hw/virtio/virtio-iommu.h" 78 #include "hw/char/pl011.h" 79 #include "qemu/guest-random.h" 80 81 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 82 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 83 void *data) \ 84 { \ 85 MachineClass *mc = MACHINE_CLASS(oc); \ 86 virt_machine_##major##_##minor##_options(mc); \ 87 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 88 if (latest) { \ 89 mc->alias = "virt"; \ 90 } \ 91 } \ 92 static const TypeInfo machvirt_##major##_##minor##_info = { \ 93 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 94 .parent = TYPE_VIRT_MACHINE, \ 95 .class_init = virt_##major##_##minor##_class_init, \ 96 }; \ 97 static void machvirt_machine_##major##_##minor##_init(void) \ 98 { \ 99 type_register_static(&machvirt_##major##_##minor##_info); \ 100 } \ 101 type_init(machvirt_machine_##major##_##minor##_init); 102 103 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 104 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 105 #define DEFINE_VIRT_MACHINE(major, minor) \ 106 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 107 108 109 /* Number of external interrupt lines to configure the GIC with */ 110 #define NUM_IRQS 256 111 112 #define PLATFORM_BUS_NUM_IRQS 64 113 114 /* Legacy RAM limit in GB (< version 4.0) */ 115 #define LEGACY_RAMLIMIT_GB 255 116 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 117 118 /* Addresses and sizes of our components. 119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 120 * 128MB..256MB is used for miscellaneous device I/O. 121 * 256MB..1GB is reserved for possible future PCI support (ie where the 122 * PCI memory window will go if we add a PCI host controller). 123 * 1GB and up is RAM (which may happily spill over into the 124 * high memory region beyond 4GB). 125 * This represents a compromise between how much RAM can be given to 126 * a 32 bit VM and leaving space for expansion and in particular for PCI. 127 * Note that devices should generally be placed at multiples of 0x10000, 128 * to accommodate guests using 64K pages. 129 */ 130 static const MemMapEntry base_memmap[] = { 131 /* Space up to 0x8000000 is reserved for a boot ROM */ 132 [VIRT_FLASH] = { 0, 0x08000000 }, 133 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 135 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 136 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 137 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 138 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 139 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 140 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 141 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 142 /* This redistributor space allows up to 2*64kB*123 CPUs */ 143 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 144 [VIRT_UART] = { 0x09000000, 0x00001000 }, 145 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 146 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 147 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 148 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 149 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 150 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 151 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 152 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 153 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 154 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 155 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 156 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 157 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 158 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 159 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 160 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 161 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 162 /* Actual RAM size depends on initial RAM and device memory settings */ 163 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 164 }; 165 166 /* 167 * Highmem IO Regions: This memory map is floating, located after the RAM. 168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 169 * top of the RAM, so that its base get the same alignment as the size, 170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 172 * Note the extended_memmap is sized so that it eventually also includes the 173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 174 * index of base_memmap). 175 */ 176 static MemMapEntry extended_memmap[] = { 177 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 178 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 179 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 180 /* Second PCIe window */ 181 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 182 }; 183 184 static const int a15irqmap[] = { 185 [VIRT_UART] = 1, 186 [VIRT_RTC] = 2, 187 [VIRT_PCIE] = 3, /* ... to 6 */ 188 [VIRT_GPIO] = 7, 189 [VIRT_SECURE_UART] = 8, 190 [VIRT_ACPI_GED] = 9, 191 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 192 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 193 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 194 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 195 }; 196 197 static const char *valid_cpus[] = { 198 ARM_CPU_TYPE_NAME("cortex-a7"), 199 ARM_CPU_TYPE_NAME("cortex-a15"), 200 ARM_CPU_TYPE_NAME("cortex-a53"), 201 ARM_CPU_TYPE_NAME("cortex-a57"), 202 ARM_CPU_TYPE_NAME("cortex-a72"), 203 ARM_CPU_TYPE_NAME("host"), 204 ARM_CPU_TYPE_NAME("max"), 205 }; 206 207 static bool cpu_type_valid(const char *cpu) 208 { 209 int i; 210 211 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 212 if (strcmp(cpu, valid_cpus[i]) == 0) { 213 return true; 214 } 215 } 216 return false; 217 } 218 219 static void create_kaslr_seed(MachineState *ms, const char *node) 220 { 221 uint64_t seed; 222 223 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 224 return; 225 } 226 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed); 227 } 228 229 static void create_fdt(VirtMachineState *vms) 230 { 231 MachineState *ms = MACHINE(vms); 232 int nb_numa_nodes = ms->numa_state->num_nodes; 233 void *fdt = create_device_tree(&vms->fdt_size); 234 235 if (!fdt) { 236 error_report("create_device_tree() failed"); 237 exit(1); 238 } 239 240 ms->fdt = fdt; 241 242 /* Header */ 243 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 244 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 245 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 246 247 /* /chosen must exist for load_dtb to fill in necessary properties later */ 248 qemu_fdt_add_subnode(fdt, "/chosen"); 249 create_kaslr_seed(ms, "/chosen"); 250 251 if (vms->secure) { 252 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 253 create_kaslr_seed(ms, "/secure-chosen"); 254 } 255 256 /* Clock node, for the benefit of the UART. The kernel device tree 257 * binding documentation claims the PL011 node clock properties are 258 * optional but in practice if you omit them the kernel refuses to 259 * probe for the device. 260 */ 261 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 262 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 263 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 264 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 266 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 267 "clk24mhz"); 268 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 269 270 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 271 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 272 uint32_t *matrix = g_malloc0(size); 273 int idx, i, j; 274 275 for (i = 0; i < nb_numa_nodes; i++) { 276 for (j = 0; j < nb_numa_nodes; j++) { 277 idx = (i * nb_numa_nodes + j) * 3; 278 matrix[idx + 0] = cpu_to_be32(i); 279 matrix[idx + 1] = cpu_to_be32(j); 280 matrix[idx + 2] = 281 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 282 } 283 } 284 285 qemu_fdt_add_subnode(fdt, "/distance-map"); 286 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 287 "numa-distance-map-v1"); 288 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 289 matrix, size); 290 g_free(matrix); 291 } 292 } 293 294 static void fdt_add_timer_nodes(const VirtMachineState *vms) 295 { 296 /* On real hardware these interrupts are level-triggered. 297 * On KVM they were edge-triggered before host kernel version 4.4, 298 * and level-triggered afterwards. 299 * On emulated QEMU they are level-triggered. 300 * 301 * Getting the DTB info about them wrong is awkward for some 302 * guest kernels: 303 * pre-4.8 ignore the DT and leave the interrupt configured 304 * with whatever the GIC reset value (or the bootloader) left it at 305 * 4.8 before rc6 honour the incorrect data by programming it back 306 * into the GIC, causing problems 307 * 4.8rc6 and later ignore the DT and always write "level triggered" 308 * into the GIC 309 * 310 * For backwards-compatibility, virt-2.8 and earlier will continue 311 * to say these are edge-triggered, but later machines will report 312 * the correct information. 313 */ 314 ARMCPU *armcpu; 315 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 316 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 317 MachineState *ms = MACHINE(vms); 318 319 if (vmc->claim_edge_triggered_timers) { 320 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 321 } 322 323 if (vms->gic_version == VIRT_GIC_VERSION_2) { 324 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 325 GIC_FDT_IRQ_PPI_CPU_WIDTH, 326 (1 << MACHINE(vms)->smp.cpus) - 1); 327 } 328 329 qemu_fdt_add_subnode(ms->fdt, "/timer"); 330 331 armcpu = ARM_CPU(qemu_get_cpu(0)); 332 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 333 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 334 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 335 compat, sizeof(compat)); 336 } else { 337 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 338 "arm,armv7-timer"); 339 } 340 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 341 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 346 } 347 348 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 349 { 350 int cpu; 351 int addr_cells = 1; 352 const MachineState *ms = MACHINE(vms); 353 int smp_cpus = ms->smp.cpus; 354 355 /* 356 * From Documentation/devicetree/bindings/arm/cpus.txt 357 * On ARM v8 64-bit systems value should be set to 2, 358 * that corresponds to the MPIDR_EL1 register size. 359 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 360 * in the system, #address-cells can be set to 1, since 361 * MPIDR_EL1[63:32] bits are not used for CPUs 362 * identification. 363 * 364 * Here we actually don't know whether our system is 32- or 64-bit one. 365 * The simplest way to go is to examine affinity IDs of all our CPUs. If 366 * at least one of them has Aff3 populated, we set #address-cells to 2. 367 */ 368 for (cpu = 0; cpu < smp_cpus; cpu++) { 369 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 370 371 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 372 addr_cells = 2; 373 break; 374 } 375 } 376 377 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 378 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 379 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 380 381 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 382 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 383 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 384 CPUState *cs = CPU(armcpu); 385 386 qemu_fdt_add_subnode(ms->fdt, nodename); 387 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 388 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 389 armcpu->dtb_compatible); 390 391 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 392 qemu_fdt_setprop_string(ms->fdt, nodename, 393 "enable-method", "psci"); 394 } 395 396 if (addr_cells == 2) { 397 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 398 armcpu->mp_affinity); 399 } else { 400 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 401 armcpu->mp_affinity); 402 } 403 404 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 405 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 406 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 407 } 408 409 g_free(nodename); 410 } 411 } 412 413 static void fdt_add_its_gic_node(VirtMachineState *vms) 414 { 415 char *nodename; 416 MachineState *ms = MACHINE(vms); 417 418 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 419 nodename = g_strdup_printf("/intc/its@%" PRIx64, 420 vms->memmap[VIRT_GIC_ITS].base); 421 qemu_fdt_add_subnode(ms->fdt, nodename); 422 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 423 "arm,gic-v3-its"); 424 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 425 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 426 2, vms->memmap[VIRT_GIC_ITS].base, 427 2, vms->memmap[VIRT_GIC_ITS].size); 428 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 429 g_free(nodename); 430 } 431 432 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 433 { 434 MachineState *ms = MACHINE(vms); 435 char *nodename; 436 437 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 438 vms->memmap[VIRT_GIC_V2M].base); 439 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 440 qemu_fdt_add_subnode(ms->fdt, nodename); 441 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 442 "arm,gic-v2m-frame"); 443 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 444 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 445 2, vms->memmap[VIRT_GIC_V2M].base, 446 2, vms->memmap[VIRT_GIC_V2M].size); 447 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 448 g_free(nodename); 449 } 450 451 static void fdt_add_gic_node(VirtMachineState *vms) 452 { 453 MachineState *ms = MACHINE(vms); 454 char *nodename; 455 456 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 457 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 458 459 nodename = g_strdup_printf("/intc@%" PRIx64, 460 vms->memmap[VIRT_GIC_DIST].base); 461 qemu_fdt_add_subnode(ms->fdt, nodename); 462 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 463 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 464 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 465 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 466 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 467 if (vms->gic_version == VIRT_GIC_VERSION_3) { 468 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 469 470 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 471 "arm,gic-v3"); 472 473 qemu_fdt_setprop_cell(ms->fdt, nodename, 474 "#redistributor-regions", nb_redist_regions); 475 476 if (nb_redist_regions == 1) { 477 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 478 2, vms->memmap[VIRT_GIC_DIST].base, 479 2, vms->memmap[VIRT_GIC_DIST].size, 480 2, vms->memmap[VIRT_GIC_REDIST].base, 481 2, vms->memmap[VIRT_GIC_REDIST].size); 482 } else { 483 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 484 2, vms->memmap[VIRT_GIC_DIST].base, 485 2, vms->memmap[VIRT_GIC_DIST].size, 486 2, vms->memmap[VIRT_GIC_REDIST].base, 487 2, vms->memmap[VIRT_GIC_REDIST].size, 488 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 489 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 490 } 491 492 if (vms->virt) { 493 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 494 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 495 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 496 } 497 } else { 498 /* 'cortex-a15-gic' means 'GIC v2' */ 499 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 500 "arm,cortex-a15-gic"); 501 if (!vms->virt) { 502 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 503 2, vms->memmap[VIRT_GIC_DIST].base, 504 2, vms->memmap[VIRT_GIC_DIST].size, 505 2, vms->memmap[VIRT_GIC_CPU].base, 506 2, vms->memmap[VIRT_GIC_CPU].size); 507 } else { 508 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 509 2, vms->memmap[VIRT_GIC_DIST].base, 510 2, vms->memmap[VIRT_GIC_DIST].size, 511 2, vms->memmap[VIRT_GIC_CPU].base, 512 2, vms->memmap[VIRT_GIC_CPU].size, 513 2, vms->memmap[VIRT_GIC_HYP].base, 514 2, vms->memmap[VIRT_GIC_HYP].size, 515 2, vms->memmap[VIRT_GIC_VCPU].base, 516 2, vms->memmap[VIRT_GIC_VCPU].size); 517 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 518 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 519 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 520 } 521 } 522 523 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 524 g_free(nodename); 525 } 526 527 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 528 { 529 ARMCPU *armcpu = ARM_CPU(first_cpu); 530 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 531 MachineState *ms = MACHINE(vms); 532 533 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 534 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 535 return; 536 } 537 538 if (vms->gic_version == VIRT_GIC_VERSION_2) { 539 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 540 GIC_FDT_IRQ_PPI_CPU_WIDTH, 541 (1 << MACHINE(vms)->smp.cpus) - 1); 542 } 543 544 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 545 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 546 const char compat[] = "arm,armv8-pmuv3"; 547 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 548 compat, sizeof(compat)); 549 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 550 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 551 } 552 } 553 554 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 555 { 556 DeviceState *dev; 557 MachineState *ms = MACHINE(vms); 558 int irq = vms->irqmap[VIRT_ACPI_GED]; 559 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 560 561 if (ms->ram_slots) { 562 event |= ACPI_GED_MEM_HOTPLUG_EVT; 563 } 564 565 if (ms->nvdimms_state->is_enabled) { 566 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 567 } 568 569 dev = qdev_new(TYPE_ACPI_GED); 570 qdev_prop_set_uint32(dev, "ged-event", event); 571 572 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 573 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 574 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 575 576 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 577 578 return dev; 579 } 580 581 static void create_its(VirtMachineState *vms) 582 { 583 const char *itsclass = its_class_name(); 584 DeviceState *dev; 585 586 if (!itsclass) { 587 /* Do nothing if not supported */ 588 return; 589 } 590 591 dev = qdev_new(itsclass); 592 593 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 594 &error_abort); 595 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 596 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 597 598 fdt_add_its_gic_node(vms); 599 vms->msi_controller = VIRT_MSI_CTRL_ITS; 600 } 601 602 static void create_v2m(VirtMachineState *vms) 603 { 604 int i; 605 int irq = vms->irqmap[VIRT_GIC_V2M]; 606 DeviceState *dev; 607 608 dev = qdev_new("arm-gicv2m"); 609 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 610 qdev_prop_set_uint32(dev, "base-spi", irq); 611 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 612 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 613 614 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 615 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 616 qdev_get_gpio_in(vms->gic, irq + i)); 617 } 618 619 fdt_add_v2m_gic_node(vms); 620 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 621 } 622 623 static void create_gic(VirtMachineState *vms) 624 { 625 MachineState *ms = MACHINE(vms); 626 /* We create a standalone GIC */ 627 SysBusDevice *gicbusdev; 628 const char *gictype; 629 int type = vms->gic_version, i; 630 unsigned int smp_cpus = ms->smp.cpus; 631 uint32_t nb_redist_regions = 0; 632 633 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 634 635 vms->gic = qdev_new(gictype); 636 qdev_prop_set_uint32(vms->gic, "revision", type); 637 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 638 /* Note that the num-irq property counts both internal and external 639 * interrupts; there are always 32 of the former (mandated by GIC spec). 640 */ 641 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 642 if (!kvm_irqchip_in_kernel()) { 643 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 644 } 645 646 if (type == 3) { 647 uint32_t redist0_capacity = 648 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 649 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 650 651 nb_redist_regions = virt_gicv3_redist_region_count(vms); 652 653 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 654 nb_redist_regions); 655 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 656 657 if (nb_redist_regions == 2) { 658 uint32_t redist1_capacity = 659 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 660 661 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 662 MIN(smp_cpus - redist0_count, redist1_capacity)); 663 } 664 } else { 665 if (!kvm_irqchip_in_kernel()) { 666 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 667 vms->virt); 668 } 669 } 670 gicbusdev = SYS_BUS_DEVICE(vms->gic); 671 sysbus_realize_and_unref(gicbusdev, &error_fatal); 672 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 673 if (type == 3) { 674 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 675 if (nb_redist_regions == 2) { 676 sysbus_mmio_map(gicbusdev, 2, 677 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 678 } 679 } else { 680 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 681 if (vms->virt) { 682 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 683 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 684 } 685 } 686 687 /* Wire the outputs from each CPU's generic timer and the GICv3 688 * maintenance interrupt signal to the appropriate GIC PPI inputs, 689 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 690 */ 691 for (i = 0; i < smp_cpus; i++) { 692 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 693 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 694 int irq; 695 /* Mapping from the output timer irq lines from the CPU to the 696 * GIC PPI inputs we use for the virt board. 697 */ 698 const int timer_irq[] = { 699 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 700 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 701 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 702 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 703 }; 704 705 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 706 qdev_connect_gpio_out(cpudev, irq, 707 qdev_get_gpio_in(vms->gic, 708 ppibase + timer_irq[irq])); 709 } 710 711 if (type == 3) { 712 qemu_irq irq = qdev_get_gpio_in(vms->gic, 713 ppibase + ARCH_GIC_MAINT_IRQ); 714 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 715 0, irq); 716 } else if (vms->virt) { 717 qemu_irq irq = qdev_get_gpio_in(vms->gic, 718 ppibase + ARCH_GIC_MAINT_IRQ); 719 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 720 } 721 722 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 723 qdev_get_gpio_in(vms->gic, ppibase 724 + VIRTUAL_PMU_IRQ)); 725 726 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 727 sysbus_connect_irq(gicbusdev, i + smp_cpus, 728 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 729 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 730 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 731 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 732 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 733 } 734 735 fdt_add_gic_node(vms); 736 737 if (type == 3 && vms->its) { 738 create_its(vms); 739 } else if (type == 2) { 740 create_v2m(vms); 741 } 742 } 743 744 static void create_uart(const VirtMachineState *vms, int uart, 745 MemoryRegion *mem, Chardev *chr) 746 { 747 char *nodename; 748 hwaddr base = vms->memmap[uart].base; 749 hwaddr size = vms->memmap[uart].size; 750 int irq = vms->irqmap[uart]; 751 const char compat[] = "arm,pl011\0arm,primecell"; 752 const char clocknames[] = "uartclk\0apb_pclk"; 753 DeviceState *dev = qdev_new(TYPE_PL011); 754 SysBusDevice *s = SYS_BUS_DEVICE(dev); 755 MachineState *ms = MACHINE(vms); 756 757 qdev_prop_set_chr(dev, "chardev", chr); 758 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 759 memory_region_add_subregion(mem, base, 760 sysbus_mmio_get_region(s, 0)); 761 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 762 763 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 764 qemu_fdt_add_subnode(ms->fdt, nodename); 765 /* Note that we can't use setprop_string because of the embedded NUL */ 766 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 767 compat, sizeof(compat)); 768 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 769 2, base, 2, size); 770 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 771 GIC_FDT_IRQ_TYPE_SPI, irq, 772 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 773 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 774 vms->clock_phandle, vms->clock_phandle); 775 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 776 clocknames, sizeof(clocknames)); 777 778 if (uart == VIRT_UART) { 779 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 780 } else { 781 /* Mark as not usable by the normal world */ 782 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 783 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 784 785 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 786 nodename); 787 } 788 789 g_free(nodename); 790 } 791 792 static void create_rtc(const VirtMachineState *vms) 793 { 794 char *nodename; 795 hwaddr base = vms->memmap[VIRT_RTC].base; 796 hwaddr size = vms->memmap[VIRT_RTC].size; 797 int irq = vms->irqmap[VIRT_RTC]; 798 const char compat[] = "arm,pl031\0arm,primecell"; 799 MachineState *ms = MACHINE(vms); 800 801 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 802 803 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 804 qemu_fdt_add_subnode(ms->fdt, nodename); 805 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 806 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 807 2, base, 2, size); 808 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 809 GIC_FDT_IRQ_TYPE_SPI, irq, 810 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 811 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 812 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 813 g_free(nodename); 814 } 815 816 static DeviceState *gpio_key_dev; 817 static void virt_powerdown_req(Notifier *n, void *opaque) 818 { 819 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 820 821 if (s->acpi_dev) { 822 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 823 } else { 824 /* use gpio Pin 3 for power button event */ 825 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 826 } 827 } 828 829 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 830 uint32_t phandle) 831 { 832 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 833 qdev_get_gpio_in(pl061_dev, 3)); 834 835 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 836 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 837 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0); 838 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1); 839 840 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 841 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 842 "label", "GPIO Key Poweroff"); 843 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 844 KEY_POWER); 845 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 846 "gpios", phandle, 3, 0); 847 } 848 849 #define SECURE_GPIO_POWEROFF 0 850 #define SECURE_GPIO_RESET 1 851 852 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 853 uint32_t phandle) 854 { 855 DeviceState *gpio_pwr_dev; 856 857 /* gpio-pwr */ 858 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 859 860 /* connect secure pl061 to gpio-pwr */ 861 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 862 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 863 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 864 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 865 866 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 867 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 868 "gpio-poweroff"); 869 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 870 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 871 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 872 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 873 "okay"); 874 875 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 876 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 877 "gpio-restart"); 878 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 879 "gpios", phandle, SECURE_GPIO_RESET, 0); 880 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 881 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 882 "okay"); 883 } 884 885 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 886 MemoryRegion *mem) 887 { 888 char *nodename; 889 DeviceState *pl061_dev; 890 hwaddr base = vms->memmap[gpio].base; 891 hwaddr size = vms->memmap[gpio].size; 892 int irq = vms->irqmap[gpio]; 893 const char compat[] = "arm,pl061\0arm,primecell"; 894 SysBusDevice *s; 895 MachineState *ms = MACHINE(vms); 896 897 pl061_dev = qdev_new("pl061"); 898 /* Pull lines down to 0 if not driven by the PL061 */ 899 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 900 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 901 s = SYS_BUS_DEVICE(pl061_dev); 902 sysbus_realize_and_unref(s, &error_fatal); 903 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 904 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 905 906 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 907 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 908 qemu_fdt_add_subnode(ms->fdt, nodename); 909 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 910 2, base, 2, size); 911 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 912 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 913 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 914 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 915 GIC_FDT_IRQ_TYPE_SPI, irq, 916 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 917 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 918 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 919 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 920 921 if (gpio != VIRT_GPIO) { 922 /* Mark as not usable by the normal world */ 923 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 924 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 925 } 926 g_free(nodename); 927 928 /* Child gpio devices */ 929 if (gpio == VIRT_GPIO) { 930 create_gpio_keys(ms->fdt, pl061_dev, phandle); 931 } else { 932 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 933 } 934 } 935 936 static void create_virtio_devices(const VirtMachineState *vms) 937 { 938 int i; 939 hwaddr size = vms->memmap[VIRT_MMIO].size; 940 MachineState *ms = MACHINE(vms); 941 942 /* We create the transports in forwards order. Since qbus_realize() 943 * prepends (not appends) new child buses, the incrementing loop below will 944 * create a list of virtio-mmio buses with decreasing base addresses. 945 * 946 * When a -device option is processed from the command line, 947 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 948 * order. The upshot is that -device options in increasing command line 949 * order are mapped to virtio-mmio buses with decreasing base addresses. 950 * 951 * When this code was originally written, that arrangement ensured that the 952 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 953 * the first -device on the command line. (The end-to-end order is a 954 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 955 * guest kernel's name-to-address assignment strategy.) 956 * 957 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 958 * the message, if not necessarily the code, of commit 70161ff336. 959 * Therefore the loop now establishes the inverse of the original intent. 960 * 961 * Unfortunately, we can't counteract the kernel change by reversing the 962 * loop; it would break existing command lines. 963 * 964 * In any case, the kernel makes no guarantee about the stability of 965 * enumeration order of virtio devices (as demonstrated by it changing 966 * between kernel versions). For reliable and stable identification 967 * of disks users must use UUIDs or similar mechanisms. 968 */ 969 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 970 int irq = vms->irqmap[VIRT_MMIO] + i; 971 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 972 973 sysbus_create_simple("virtio-mmio", base, 974 qdev_get_gpio_in(vms->gic, irq)); 975 } 976 977 /* We add dtb nodes in reverse order so that they appear in the finished 978 * device tree lowest address first. 979 * 980 * Note that this mapping is independent of the loop above. The previous 981 * loop influences virtio device to virtio transport assignment, whereas 982 * this loop controls how virtio transports are laid out in the dtb. 983 */ 984 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 985 char *nodename; 986 int irq = vms->irqmap[VIRT_MMIO] + i; 987 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 988 989 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 990 qemu_fdt_add_subnode(ms->fdt, nodename); 991 qemu_fdt_setprop_string(ms->fdt, nodename, 992 "compatible", "virtio,mmio"); 993 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 994 2, base, 2, size); 995 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 996 GIC_FDT_IRQ_TYPE_SPI, irq, 997 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 998 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 999 g_free(nodename); 1000 } 1001 } 1002 1003 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1004 1005 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1006 const char *name, 1007 const char *alias_prop_name) 1008 { 1009 /* 1010 * Create a single flash device. We use the same parameters as 1011 * the flash devices on the Versatile Express board. 1012 */ 1013 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1014 1015 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1016 qdev_prop_set_uint8(dev, "width", 4); 1017 qdev_prop_set_uint8(dev, "device-width", 2); 1018 qdev_prop_set_bit(dev, "big-endian", false); 1019 qdev_prop_set_uint16(dev, "id0", 0x89); 1020 qdev_prop_set_uint16(dev, "id1", 0x18); 1021 qdev_prop_set_uint16(dev, "id2", 0x00); 1022 qdev_prop_set_uint16(dev, "id3", 0x00); 1023 qdev_prop_set_string(dev, "name", name); 1024 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1025 object_property_add_alias(OBJECT(vms), alias_prop_name, 1026 OBJECT(dev), "drive"); 1027 return PFLASH_CFI01(dev); 1028 } 1029 1030 static void virt_flash_create(VirtMachineState *vms) 1031 { 1032 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1033 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1034 } 1035 1036 static void virt_flash_map1(PFlashCFI01 *flash, 1037 hwaddr base, hwaddr size, 1038 MemoryRegion *sysmem) 1039 { 1040 DeviceState *dev = DEVICE(flash); 1041 1042 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1043 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1044 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1045 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1046 1047 memory_region_add_subregion(sysmem, base, 1048 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1049 0)); 1050 } 1051 1052 static void virt_flash_map(VirtMachineState *vms, 1053 MemoryRegion *sysmem, 1054 MemoryRegion *secure_sysmem) 1055 { 1056 /* 1057 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1058 * sysmem is the system memory space. secure_sysmem is the secure view 1059 * of the system, and the first flash device should be made visible only 1060 * there. The second flash device is visible to both secure and nonsecure. 1061 * If sysmem == secure_sysmem this means there is no separate Secure 1062 * address space and both flash devices are generally visible. 1063 */ 1064 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1065 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1066 1067 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1068 secure_sysmem); 1069 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1070 sysmem); 1071 } 1072 1073 static void virt_flash_fdt(VirtMachineState *vms, 1074 MemoryRegion *sysmem, 1075 MemoryRegion *secure_sysmem) 1076 { 1077 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1078 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1079 MachineState *ms = MACHINE(vms); 1080 char *nodename; 1081 1082 if (sysmem == secure_sysmem) { 1083 /* Report both flash devices as a single node in the DT */ 1084 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1085 qemu_fdt_add_subnode(ms->fdt, nodename); 1086 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1087 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1088 2, flashbase, 2, flashsize, 1089 2, flashbase + flashsize, 2, flashsize); 1090 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1091 g_free(nodename); 1092 } else { 1093 /* 1094 * Report the devices as separate nodes so we can mark one as 1095 * only visible to the secure world. 1096 */ 1097 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1098 qemu_fdt_add_subnode(ms->fdt, nodename); 1099 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1100 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1101 2, flashbase, 2, flashsize); 1102 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1103 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1104 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1105 g_free(nodename); 1106 1107 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1108 qemu_fdt_add_subnode(ms->fdt, nodename); 1109 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1110 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1111 2, flashbase + flashsize, 2, flashsize); 1112 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1113 g_free(nodename); 1114 } 1115 } 1116 1117 static bool virt_firmware_init(VirtMachineState *vms, 1118 MemoryRegion *sysmem, 1119 MemoryRegion *secure_sysmem) 1120 { 1121 int i; 1122 const char *bios_name; 1123 BlockBackend *pflash_blk0; 1124 1125 /* Map legacy -drive if=pflash to machine properties */ 1126 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1127 pflash_cfi01_legacy_drive(vms->flash[i], 1128 drive_get(IF_PFLASH, 0, i)); 1129 } 1130 1131 virt_flash_map(vms, sysmem, secure_sysmem); 1132 1133 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1134 1135 bios_name = MACHINE(vms)->firmware; 1136 if (bios_name) { 1137 char *fname; 1138 MemoryRegion *mr; 1139 int image_size; 1140 1141 if (pflash_blk0) { 1142 error_report("The contents of the first flash device may be " 1143 "specified with -bios or with -drive if=pflash... " 1144 "but you cannot use both options at once"); 1145 exit(1); 1146 } 1147 1148 /* Fall back to -bios */ 1149 1150 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1151 if (!fname) { 1152 error_report("Could not find ROM image '%s'", bios_name); 1153 exit(1); 1154 } 1155 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1156 image_size = load_image_mr(fname, mr); 1157 g_free(fname); 1158 if (image_size < 0) { 1159 error_report("Could not load ROM image '%s'", bios_name); 1160 exit(1); 1161 } 1162 } 1163 1164 return pflash_blk0 || bios_name; 1165 } 1166 1167 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1168 { 1169 MachineState *ms = MACHINE(vms); 1170 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1171 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1172 FWCfgState *fw_cfg; 1173 char *nodename; 1174 1175 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1176 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1177 1178 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1179 qemu_fdt_add_subnode(ms->fdt, nodename); 1180 qemu_fdt_setprop_string(ms->fdt, nodename, 1181 "compatible", "qemu,fw-cfg-mmio"); 1182 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1183 2, base, 2, size); 1184 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1185 g_free(nodename); 1186 return fw_cfg; 1187 } 1188 1189 static void create_pcie_irq_map(const MachineState *ms, 1190 uint32_t gic_phandle, 1191 int first_irq, const char *nodename) 1192 { 1193 int devfn, pin; 1194 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1195 uint32_t *irq_map = full_irq_map; 1196 1197 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1198 for (pin = 0; pin < 4; pin++) { 1199 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1200 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1201 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1202 int i; 1203 1204 uint32_t map[] = { 1205 devfn << 8, 0, 0, /* devfn */ 1206 pin + 1, /* PCI pin */ 1207 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1208 1209 /* Convert map to big endian */ 1210 for (i = 0; i < 10; i++) { 1211 irq_map[i] = cpu_to_be32(map[i]); 1212 } 1213 irq_map += 10; 1214 } 1215 } 1216 1217 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1218 full_irq_map, sizeof(full_irq_map)); 1219 1220 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1221 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1222 0, 0, 1223 0x7 /* PCI irq */); 1224 } 1225 1226 static void create_smmu(const VirtMachineState *vms, 1227 PCIBus *bus) 1228 { 1229 char *node; 1230 const char compat[] = "arm,smmu-v3"; 1231 int irq = vms->irqmap[VIRT_SMMU]; 1232 int i; 1233 hwaddr base = vms->memmap[VIRT_SMMU].base; 1234 hwaddr size = vms->memmap[VIRT_SMMU].size; 1235 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1236 DeviceState *dev; 1237 MachineState *ms = MACHINE(vms); 1238 1239 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1240 return; 1241 } 1242 1243 dev = qdev_new("arm-smmuv3"); 1244 1245 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1246 &error_abort); 1247 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1248 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1249 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1250 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1251 qdev_get_gpio_in(vms->gic, irq + i)); 1252 } 1253 1254 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1255 qemu_fdt_add_subnode(ms->fdt, node); 1256 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1257 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1258 1259 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1260 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1261 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1262 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1263 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1264 1265 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1266 sizeof(irq_names)); 1267 1268 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle); 1269 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk"); 1270 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1271 1272 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1273 1274 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1275 g_free(node); 1276 } 1277 1278 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1279 { 1280 const char compat[] = "virtio,pci-iommu"; 1281 uint16_t bdf = vms->virtio_iommu_bdf; 1282 MachineState *ms = MACHINE(vms); 1283 char *node; 1284 1285 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1286 1287 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1288 qemu_fdt_add_subnode(ms->fdt, node); 1289 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1290 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1291 1, bdf << 8, 1, 0, 1, 0, 1292 1, 0, 1, 0); 1293 1294 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1295 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1296 g_free(node); 1297 1298 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1299 0x0, vms->iommu_phandle, 0x0, bdf, 1300 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1301 } 1302 1303 static void create_pcie(VirtMachineState *vms) 1304 { 1305 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1306 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1307 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1308 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1309 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1310 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1311 hwaddr base_ecam, size_ecam; 1312 hwaddr base = base_mmio; 1313 int nr_pcie_buses; 1314 int irq = vms->irqmap[VIRT_PCIE]; 1315 MemoryRegion *mmio_alias; 1316 MemoryRegion *mmio_reg; 1317 MemoryRegion *ecam_alias; 1318 MemoryRegion *ecam_reg; 1319 DeviceState *dev; 1320 char *nodename; 1321 int i, ecam_id; 1322 PCIHostState *pci; 1323 MachineState *ms = MACHINE(vms); 1324 1325 dev = qdev_new(TYPE_GPEX_HOST); 1326 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1327 1328 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1329 base_ecam = vms->memmap[ecam_id].base; 1330 size_ecam = vms->memmap[ecam_id].size; 1331 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1332 /* Map only the first size_ecam bytes of ECAM space */ 1333 ecam_alias = g_new0(MemoryRegion, 1); 1334 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1335 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1336 ecam_reg, 0, size_ecam); 1337 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1338 1339 /* Map the MMIO window into system address space so as to expose 1340 * the section of PCI MMIO space which starts at the same base address 1341 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1342 * the window). 1343 */ 1344 mmio_alias = g_new0(MemoryRegion, 1); 1345 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1346 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1347 mmio_reg, base_mmio, size_mmio); 1348 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1349 1350 if (vms->highmem) { 1351 /* Map high MMIO space */ 1352 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1353 1354 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1355 mmio_reg, base_mmio_high, size_mmio_high); 1356 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1357 high_mmio_alias); 1358 } 1359 1360 /* Map IO port space */ 1361 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1362 1363 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1364 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1365 qdev_get_gpio_in(vms->gic, irq + i)); 1366 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1367 } 1368 1369 pci = PCI_HOST_BRIDGE(dev); 1370 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1371 vms->bus = pci->bus; 1372 if (vms->bus) { 1373 for (i = 0; i < nb_nics; i++) { 1374 NICInfo *nd = &nd_table[i]; 1375 1376 if (!nd->model) { 1377 nd->model = g_strdup("virtio"); 1378 } 1379 1380 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1381 } 1382 } 1383 1384 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1385 qemu_fdt_add_subnode(ms->fdt, nodename); 1386 qemu_fdt_setprop_string(ms->fdt, nodename, 1387 "compatible", "pci-host-ecam-generic"); 1388 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1389 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1390 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1391 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1392 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1393 nr_pcie_buses - 1); 1394 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1395 1396 if (vms->msi_phandle) { 1397 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent", 1398 vms->msi_phandle); 1399 } 1400 1401 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1402 2, base_ecam, 2, size_ecam); 1403 1404 if (vms->highmem) { 1405 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1406 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1407 2, base_pio, 2, size_pio, 1408 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1409 2, base_mmio, 2, size_mmio, 1410 1, FDT_PCI_RANGE_MMIO_64BIT, 1411 2, base_mmio_high, 1412 2, base_mmio_high, 2, size_mmio_high); 1413 } else { 1414 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1415 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1416 2, base_pio, 2, size_pio, 1417 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1418 2, base_mmio, 2, size_mmio); 1419 } 1420 1421 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1422 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1423 1424 if (vms->iommu) { 1425 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1426 1427 switch (vms->iommu) { 1428 case VIRT_IOMMU_SMMUV3: 1429 create_smmu(vms, vms->bus); 1430 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1431 0x0, vms->iommu_phandle, 0x0, 0x10000); 1432 break; 1433 default: 1434 g_assert_not_reached(); 1435 } 1436 } 1437 } 1438 1439 static void create_platform_bus(VirtMachineState *vms) 1440 { 1441 DeviceState *dev; 1442 SysBusDevice *s; 1443 int i; 1444 MemoryRegion *sysmem = get_system_memory(); 1445 1446 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1447 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1448 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1449 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1450 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1451 vms->platform_bus_dev = dev; 1452 1453 s = SYS_BUS_DEVICE(dev); 1454 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1455 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1456 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1457 } 1458 1459 memory_region_add_subregion(sysmem, 1460 vms->memmap[VIRT_PLATFORM_BUS].base, 1461 sysbus_mmio_get_region(s, 0)); 1462 } 1463 1464 static void create_tag_ram(MemoryRegion *tag_sysmem, 1465 hwaddr base, hwaddr size, 1466 const char *name) 1467 { 1468 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1469 1470 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1471 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1472 } 1473 1474 static void create_secure_ram(VirtMachineState *vms, 1475 MemoryRegion *secure_sysmem, 1476 MemoryRegion *secure_tag_sysmem) 1477 { 1478 MemoryRegion *secram = g_new(MemoryRegion, 1); 1479 char *nodename; 1480 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1481 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1482 MachineState *ms = MACHINE(vms); 1483 1484 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1485 &error_fatal); 1486 memory_region_add_subregion(secure_sysmem, base, secram); 1487 1488 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1489 qemu_fdt_add_subnode(ms->fdt, nodename); 1490 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1491 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1492 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1493 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1494 1495 if (secure_tag_sysmem) { 1496 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1497 } 1498 1499 g_free(nodename); 1500 } 1501 1502 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1503 { 1504 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1505 bootinfo); 1506 MachineState *ms = MACHINE(board); 1507 1508 1509 *fdt_size = board->fdt_size; 1510 return ms->fdt; 1511 } 1512 1513 static void virt_build_smbios(VirtMachineState *vms) 1514 { 1515 MachineClass *mc = MACHINE_GET_CLASS(vms); 1516 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1517 uint8_t *smbios_tables, *smbios_anchor; 1518 size_t smbios_tables_len, smbios_anchor_len; 1519 const char *product = "QEMU Virtual Machine"; 1520 1521 if (kvm_enabled()) { 1522 product = "KVM Virtual Machine"; 1523 } 1524 1525 smbios_set_defaults("QEMU", product, 1526 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1527 true, SMBIOS_ENTRY_POINT_30); 1528 1529 smbios_get_tables(MACHINE(vms), NULL, 0, 1530 &smbios_tables, &smbios_tables_len, 1531 &smbios_anchor, &smbios_anchor_len, 1532 &error_fatal); 1533 1534 if (smbios_anchor) { 1535 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1536 smbios_tables, smbios_tables_len); 1537 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1538 smbios_anchor, smbios_anchor_len); 1539 } 1540 } 1541 1542 static 1543 void virt_machine_done(Notifier *notifier, void *data) 1544 { 1545 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1546 machine_done); 1547 MachineState *ms = MACHINE(vms); 1548 ARMCPU *cpu = ARM_CPU(first_cpu); 1549 struct arm_boot_info *info = &vms->bootinfo; 1550 AddressSpace *as = arm_boot_address_space(cpu, info); 1551 1552 /* 1553 * If the user provided a dtb, we assume the dynamic sysbus nodes 1554 * already are integrated there. This corresponds to a use case where 1555 * the dynamic sysbus nodes are complex and their generation is not yet 1556 * supported. In that case the user can take charge of the guest dt 1557 * while qemu takes charge of the qom stuff. 1558 */ 1559 if (info->dtb_filename == NULL) { 1560 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1561 vms->memmap[VIRT_PLATFORM_BUS].base, 1562 vms->memmap[VIRT_PLATFORM_BUS].size, 1563 vms->irqmap[VIRT_PLATFORM_BUS]); 1564 } 1565 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1566 exit(1); 1567 } 1568 1569 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1570 1571 virt_acpi_setup(vms); 1572 virt_build_smbios(vms); 1573 } 1574 1575 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1576 { 1577 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1578 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1579 1580 if (!vmc->disallow_affinity_adjustment) { 1581 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1582 * GIC's target-list limitations. 32-bit KVM hosts currently 1583 * always create clusters of 4 CPUs, but that is expected to 1584 * change when they gain support for gicv3. When KVM is enabled 1585 * it will override the changes we make here, therefore our 1586 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1587 * and to improve SGI efficiency. 1588 */ 1589 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1590 clustersz = GICV3_TARGETLIST_BITS; 1591 } else { 1592 clustersz = GIC_TARGETLIST_BITS; 1593 } 1594 } 1595 return arm_cpu_mp_affinity(idx, clustersz); 1596 } 1597 1598 static void virt_set_memmap(VirtMachineState *vms) 1599 { 1600 MachineState *ms = MACHINE(vms); 1601 hwaddr base, device_memory_base, device_memory_size; 1602 int i; 1603 1604 vms->memmap = extended_memmap; 1605 1606 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1607 vms->memmap[i] = base_memmap[i]; 1608 } 1609 1610 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1611 error_report("unsupported number of memory slots: %"PRIu64, 1612 ms->ram_slots); 1613 exit(EXIT_FAILURE); 1614 } 1615 1616 /* 1617 * We compute the base of the high IO region depending on the 1618 * amount of initial and device memory. The device memory start/size 1619 * is aligned on 1GiB. We never put the high IO region below 256GiB 1620 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1621 * The device region size assumes 1GiB page max alignment per slot. 1622 */ 1623 device_memory_base = 1624 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1625 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1626 1627 /* Base address of the high IO region */ 1628 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1629 if (base < device_memory_base) { 1630 error_report("maxmem/slots too huge"); 1631 exit(EXIT_FAILURE); 1632 } 1633 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1634 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1635 } 1636 1637 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1638 hwaddr size = extended_memmap[i].size; 1639 1640 base = ROUND_UP(base, size); 1641 vms->memmap[i].base = base; 1642 vms->memmap[i].size = size; 1643 base += size; 1644 } 1645 vms->highest_gpa = base - 1; 1646 if (device_memory_size > 0) { 1647 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1648 ms->device_memory->base = device_memory_base; 1649 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1650 "device-memory", device_memory_size); 1651 } 1652 } 1653 1654 /* 1655 * finalize_gic_version - Determines the final gic_version 1656 * according to the gic-version property 1657 * 1658 * Default GIC type is v2 1659 */ 1660 static void finalize_gic_version(VirtMachineState *vms) 1661 { 1662 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1663 1664 if (kvm_enabled()) { 1665 int probe_bitmap; 1666 1667 if (!kvm_irqchip_in_kernel()) { 1668 switch (vms->gic_version) { 1669 case VIRT_GIC_VERSION_HOST: 1670 warn_report( 1671 "gic-version=host not relevant with kernel-irqchip=off " 1672 "as only userspace GICv2 is supported. Using v2 ..."); 1673 return; 1674 case VIRT_GIC_VERSION_MAX: 1675 case VIRT_GIC_VERSION_NOSEL: 1676 vms->gic_version = VIRT_GIC_VERSION_2; 1677 return; 1678 case VIRT_GIC_VERSION_2: 1679 return; 1680 case VIRT_GIC_VERSION_3: 1681 error_report( 1682 "gic-version=3 is not supported with kernel-irqchip=off"); 1683 exit(1); 1684 } 1685 } 1686 1687 probe_bitmap = kvm_arm_vgic_probe(); 1688 if (!probe_bitmap) { 1689 error_report("Unable to determine GIC version supported by host"); 1690 exit(1); 1691 } 1692 1693 switch (vms->gic_version) { 1694 case VIRT_GIC_VERSION_HOST: 1695 case VIRT_GIC_VERSION_MAX: 1696 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1697 vms->gic_version = VIRT_GIC_VERSION_3; 1698 } else { 1699 vms->gic_version = VIRT_GIC_VERSION_2; 1700 } 1701 return; 1702 case VIRT_GIC_VERSION_NOSEL: 1703 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1704 vms->gic_version = VIRT_GIC_VERSION_2; 1705 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1706 /* 1707 * in case the host does not support v2 in-kernel emulation or 1708 * the end-user requested more than 8 VCPUs we now default 1709 * to v3. In any case defaulting to v2 would be broken. 1710 */ 1711 vms->gic_version = VIRT_GIC_VERSION_3; 1712 } else if (max_cpus > GIC_NCPU) { 1713 error_report("host only supports in-kernel GICv2 emulation " 1714 "but more than 8 vcpus are requested"); 1715 exit(1); 1716 } 1717 break; 1718 case VIRT_GIC_VERSION_2: 1719 case VIRT_GIC_VERSION_3: 1720 break; 1721 } 1722 1723 /* Check chosen version is effectively supported by the host */ 1724 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1725 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1726 error_report("host does not support in-kernel GICv2 emulation"); 1727 exit(1); 1728 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1729 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1730 error_report("host does not support in-kernel GICv3 emulation"); 1731 exit(1); 1732 } 1733 return; 1734 } 1735 1736 /* TCG mode */ 1737 switch (vms->gic_version) { 1738 case VIRT_GIC_VERSION_NOSEL: 1739 vms->gic_version = VIRT_GIC_VERSION_2; 1740 break; 1741 case VIRT_GIC_VERSION_MAX: 1742 vms->gic_version = VIRT_GIC_VERSION_3; 1743 break; 1744 case VIRT_GIC_VERSION_HOST: 1745 error_report("gic-version=host requires KVM"); 1746 exit(1); 1747 case VIRT_GIC_VERSION_2: 1748 case VIRT_GIC_VERSION_3: 1749 break; 1750 } 1751 } 1752 1753 /* 1754 * virt_cpu_post_init() must be called after the CPUs have 1755 * been realized and the GIC has been created. 1756 */ 1757 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1758 { 1759 int max_cpus = MACHINE(vms)->smp.max_cpus; 1760 bool aarch64, pmu, steal_time; 1761 CPUState *cpu; 1762 1763 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1764 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1765 steal_time = object_property_get_bool(OBJECT(first_cpu), 1766 "kvm-steal-time", NULL); 1767 1768 if (kvm_enabled()) { 1769 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1770 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1771 1772 if (steal_time) { 1773 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1774 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1775 1776 /* The memory region size must be a multiple of host page size. */ 1777 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1778 1779 if (pvtime_size > pvtime_reg_size) { 1780 error_report("pvtime requires a %" HWADDR_PRId 1781 " byte memory region for %d CPUs," 1782 " but only %" HWADDR_PRId " has been reserved", 1783 pvtime_size, max_cpus, pvtime_reg_size); 1784 exit(1); 1785 } 1786 1787 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1788 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1789 } 1790 1791 CPU_FOREACH(cpu) { 1792 if (pmu) { 1793 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1794 if (kvm_irqchip_in_kernel()) { 1795 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 1796 } 1797 kvm_arm_pmu_init(cpu); 1798 } 1799 if (steal_time) { 1800 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 1801 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 1802 } 1803 } 1804 } else { 1805 if (aarch64 && vms->highmem) { 1806 int requested_pa_size = 64 - clz64(vms->highest_gpa); 1807 int pamax = arm_pamax(ARM_CPU(first_cpu)); 1808 1809 if (pamax < requested_pa_size) { 1810 error_report("VCPU supports less PA bits (%d) than " 1811 "requested by the memory map (%d)", 1812 pamax, requested_pa_size); 1813 exit(1); 1814 } 1815 } 1816 } 1817 } 1818 1819 static void machvirt_init(MachineState *machine) 1820 { 1821 VirtMachineState *vms = VIRT_MACHINE(machine); 1822 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1823 MachineClass *mc = MACHINE_GET_CLASS(machine); 1824 const CPUArchIdList *possible_cpus; 1825 MemoryRegion *sysmem = get_system_memory(); 1826 MemoryRegion *secure_sysmem = NULL; 1827 MemoryRegion *tag_sysmem = NULL; 1828 MemoryRegion *secure_tag_sysmem = NULL; 1829 int n, virt_max_cpus; 1830 bool firmware_loaded; 1831 bool aarch64 = true; 1832 bool has_ged = !vmc->no_ged; 1833 unsigned int smp_cpus = machine->smp.cpus; 1834 unsigned int max_cpus = machine->smp.max_cpus; 1835 1836 /* 1837 * In accelerated mode, the memory map is computed earlier in kvm_type() 1838 * to create a VM with the right number of IPA bits. 1839 */ 1840 if (!vms->memmap) { 1841 virt_set_memmap(vms); 1842 } 1843 1844 /* We can probe only here because during property set 1845 * KVM is not available yet 1846 */ 1847 finalize_gic_version(vms); 1848 1849 if (!cpu_type_valid(machine->cpu_type)) { 1850 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1851 exit(1); 1852 } 1853 1854 if (vms->secure) { 1855 if (kvm_enabled()) { 1856 error_report("mach-virt: KVM does not support Security extensions"); 1857 exit(1); 1858 } 1859 1860 /* 1861 * The Secure view of the world is the same as the NonSecure, 1862 * but with a few extra devices. Create it as a container region 1863 * containing the system memory at low priority; any secure-only 1864 * devices go in at higher priority and take precedence. 1865 */ 1866 secure_sysmem = g_new(MemoryRegion, 1); 1867 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1868 UINT64_MAX); 1869 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1870 } 1871 1872 firmware_loaded = virt_firmware_init(vms, sysmem, 1873 secure_sysmem ?: sysmem); 1874 1875 /* If we have an EL3 boot ROM then the assumption is that it will 1876 * implement PSCI itself, so disable QEMU's internal implementation 1877 * so it doesn't get in the way. Instead of starting secondary 1878 * CPUs in PSCI powerdown state we will start them all running and 1879 * let the boot ROM sort them out. 1880 * The usual case is that we do use QEMU's PSCI implementation; 1881 * if the guest has EL2 then we will use SMC as the conduit, 1882 * and otherwise we will use HVC (for backwards compatibility and 1883 * because if we're using KVM then we must use HVC). 1884 */ 1885 if (vms->secure && firmware_loaded) { 1886 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1887 } else if (vms->virt) { 1888 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1889 } else { 1890 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1891 } 1892 1893 /* The maximum number of CPUs depends on the GIC version, or on how 1894 * many redistributors we can fit into the memory map. 1895 */ 1896 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1897 virt_max_cpus = 1898 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1899 virt_max_cpus += 1900 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1901 } else { 1902 virt_max_cpus = GIC_NCPU; 1903 } 1904 1905 if (max_cpus > virt_max_cpus) { 1906 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1907 "supported by machine 'mach-virt' (%d)", 1908 max_cpus, virt_max_cpus); 1909 exit(1); 1910 } 1911 1912 if (vms->virt && kvm_enabled()) { 1913 error_report("mach-virt: KVM does not support providing " 1914 "Virtualization extensions to the guest CPU"); 1915 exit(1); 1916 } 1917 1918 if (vms->mte && kvm_enabled()) { 1919 error_report("mach-virt: KVM does not support providing " 1920 "MTE to the guest CPU"); 1921 exit(1); 1922 } 1923 1924 create_fdt(vms); 1925 1926 possible_cpus = mc->possible_cpu_arch_ids(machine); 1927 assert(possible_cpus->len == max_cpus); 1928 for (n = 0; n < possible_cpus->len; n++) { 1929 Object *cpuobj; 1930 CPUState *cs; 1931 1932 if (n >= smp_cpus) { 1933 break; 1934 } 1935 1936 cpuobj = object_new(possible_cpus->cpus[n].type); 1937 object_property_set_int(cpuobj, "mp-affinity", 1938 possible_cpus->cpus[n].arch_id, NULL); 1939 1940 cs = CPU(cpuobj); 1941 cs->cpu_index = n; 1942 1943 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1944 &error_fatal); 1945 1946 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1947 1948 if (!vms->secure) { 1949 object_property_set_bool(cpuobj, "has_el3", false, NULL); 1950 } 1951 1952 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 1953 object_property_set_bool(cpuobj, "has_el2", false, NULL); 1954 } 1955 1956 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1957 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, 1958 NULL); 1959 1960 /* Secondary CPUs start in PSCI powered-down state */ 1961 if (n > 0) { 1962 object_property_set_bool(cpuobj, "start-powered-off", true, 1963 NULL); 1964 } 1965 } 1966 1967 if (vmc->kvm_no_adjvtime && 1968 object_property_find(cpuobj, "kvm-no-adjvtime")) { 1969 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 1970 } 1971 1972 if (vmc->no_kvm_steal_time && 1973 object_property_find(cpuobj, "kvm-steal-time")) { 1974 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 1975 } 1976 1977 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 1978 object_property_set_bool(cpuobj, "pmu", false, NULL); 1979 } 1980 1981 if (object_property_find(cpuobj, "reset-cbar")) { 1982 object_property_set_int(cpuobj, "reset-cbar", 1983 vms->memmap[VIRT_CPUPERIPHS].base, 1984 &error_abort); 1985 } 1986 1987 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 1988 &error_abort); 1989 if (vms->secure) { 1990 object_property_set_link(cpuobj, "secure-memory", 1991 OBJECT(secure_sysmem), &error_abort); 1992 } 1993 1994 if (vms->mte) { 1995 /* Create the memory region only once, but link to all cpus. */ 1996 if (!tag_sysmem) { 1997 /* 1998 * The property exists only if MemTag is supported. 1999 * If it is, we must allocate the ram to back that up. 2000 */ 2001 if (!object_property_find(cpuobj, "tag-memory")) { 2002 error_report("MTE requested, but not supported " 2003 "by the guest CPU"); 2004 exit(1); 2005 } 2006 2007 tag_sysmem = g_new(MemoryRegion, 1); 2008 memory_region_init(tag_sysmem, OBJECT(machine), 2009 "tag-memory", UINT64_MAX / 32); 2010 2011 if (vms->secure) { 2012 secure_tag_sysmem = g_new(MemoryRegion, 1); 2013 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2014 "secure-tag-memory", UINT64_MAX / 32); 2015 2016 /* As with ram, secure-tag takes precedence over tag. */ 2017 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2018 tag_sysmem, -1); 2019 } 2020 } 2021 2022 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2023 &error_abort); 2024 if (vms->secure) { 2025 object_property_set_link(cpuobj, "secure-tag-memory", 2026 OBJECT(secure_tag_sysmem), 2027 &error_abort); 2028 } 2029 } 2030 2031 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2032 object_unref(cpuobj); 2033 } 2034 fdt_add_timer_nodes(vms); 2035 fdt_add_cpu_nodes(vms); 2036 2037 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2038 machine->ram); 2039 if (machine->device_memory) { 2040 memory_region_add_subregion(sysmem, machine->device_memory->base, 2041 &machine->device_memory->mr); 2042 } 2043 2044 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2045 2046 create_gic(vms); 2047 2048 virt_cpu_post_init(vms, sysmem); 2049 2050 fdt_add_pmu_nodes(vms); 2051 2052 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2053 2054 if (vms->secure) { 2055 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2056 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2057 } 2058 2059 if (tag_sysmem) { 2060 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2061 machine->ram_size, "mach-virt.tag"); 2062 } 2063 2064 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 2065 2066 create_rtc(vms); 2067 2068 create_pcie(vms); 2069 2070 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2071 vms->acpi_dev = create_acpi_ged(vms); 2072 } else { 2073 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2074 } 2075 2076 if (vms->secure && !vmc->no_secure_gpio) { 2077 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2078 } 2079 2080 /* connect powerdown request */ 2081 vms->powerdown_notifier.notify = virt_powerdown_req; 2082 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2083 2084 /* Create mmio transports, so the user can create virtio backends 2085 * (which will be automatically plugged in to the transports). If 2086 * no backend is created the transport will just sit harmlessly idle. 2087 */ 2088 create_virtio_devices(vms); 2089 2090 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2091 rom_set_fw(vms->fw_cfg); 2092 2093 create_platform_bus(vms); 2094 2095 if (machine->nvdimms_state->is_enabled) { 2096 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2097 .space_id = AML_AS_SYSTEM_MEMORY, 2098 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2099 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2100 }; 2101 2102 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2103 arm_virt_nvdimm_acpi_dsmio, 2104 vms->fw_cfg, OBJECT(vms)); 2105 } 2106 2107 vms->bootinfo.ram_size = machine->ram_size; 2108 vms->bootinfo.nb_cpus = smp_cpus; 2109 vms->bootinfo.board_id = -1; 2110 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2111 vms->bootinfo.get_dtb = machvirt_dtb; 2112 vms->bootinfo.skip_dtb_autoload = true; 2113 vms->bootinfo.firmware_loaded = firmware_loaded; 2114 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2115 2116 vms->machine_done.notify = virt_machine_done; 2117 qemu_add_machine_init_done_notifier(&vms->machine_done); 2118 } 2119 2120 static bool virt_get_secure(Object *obj, Error **errp) 2121 { 2122 VirtMachineState *vms = VIRT_MACHINE(obj); 2123 2124 return vms->secure; 2125 } 2126 2127 static void virt_set_secure(Object *obj, bool value, Error **errp) 2128 { 2129 VirtMachineState *vms = VIRT_MACHINE(obj); 2130 2131 vms->secure = value; 2132 } 2133 2134 static bool virt_get_virt(Object *obj, Error **errp) 2135 { 2136 VirtMachineState *vms = VIRT_MACHINE(obj); 2137 2138 return vms->virt; 2139 } 2140 2141 static void virt_set_virt(Object *obj, bool value, Error **errp) 2142 { 2143 VirtMachineState *vms = VIRT_MACHINE(obj); 2144 2145 vms->virt = value; 2146 } 2147 2148 static bool virt_get_highmem(Object *obj, Error **errp) 2149 { 2150 VirtMachineState *vms = VIRT_MACHINE(obj); 2151 2152 return vms->highmem; 2153 } 2154 2155 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2156 { 2157 VirtMachineState *vms = VIRT_MACHINE(obj); 2158 2159 vms->highmem = value; 2160 } 2161 2162 static bool virt_get_its(Object *obj, Error **errp) 2163 { 2164 VirtMachineState *vms = VIRT_MACHINE(obj); 2165 2166 return vms->its; 2167 } 2168 2169 static void virt_set_its(Object *obj, bool value, Error **errp) 2170 { 2171 VirtMachineState *vms = VIRT_MACHINE(obj); 2172 2173 vms->its = value; 2174 } 2175 2176 static char *virt_get_oem_id(Object *obj, Error **errp) 2177 { 2178 VirtMachineState *vms = VIRT_MACHINE(obj); 2179 2180 return g_strdup(vms->oem_id); 2181 } 2182 2183 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2184 { 2185 VirtMachineState *vms = VIRT_MACHINE(obj); 2186 size_t len = strlen(value); 2187 2188 if (len > 6) { 2189 error_setg(errp, 2190 "User specified oem-id value is bigger than 6 bytes in size"); 2191 return; 2192 } 2193 2194 strncpy(vms->oem_id, value, 6); 2195 } 2196 2197 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2198 { 2199 VirtMachineState *vms = VIRT_MACHINE(obj); 2200 2201 return g_strdup(vms->oem_table_id); 2202 } 2203 2204 static void virt_set_oem_table_id(Object *obj, const char *value, 2205 Error **errp) 2206 { 2207 VirtMachineState *vms = VIRT_MACHINE(obj); 2208 size_t len = strlen(value); 2209 2210 if (len > 8) { 2211 error_setg(errp, 2212 "User specified oem-table-id value is bigger than 8 bytes in size"); 2213 return; 2214 } 2215 strncpy(vms->oem_table_id, value, 8); 2216 } 2217 2218 2219 bool virt_is_acpi_enabled(VirtMachineState *vms) 2220 { 2221 if (vms->acpi == ON_OFF_AUTO_OFF) { 2222 return false; 2223 } 2224 return true; 2225 } 2226 2227 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2228 void *opaque, Error **errp) 2229 { 2230 VirtMachineState *vms = VIRT_MACHINE(obj); 2231 OnOffAuto acpi = vms->acpi; 2232 2233 visit_type_OnOffAuto(v, name, &acpi, errp); 2234 } 2235 2236 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2237 void *opaque, Error **errp) 2238 { 2239 VirtMachineState *vms = VIRT_MACHINE(obj); 2240 2241 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2242 } 2243 2244 static bool virt_get_ras(Object *obj, Error **errp) 2245 { 2246 VirtMachineState *vms = VIRT_MACHINE(obj); 2247 2248 return vms->ras; 2249 } 2250 2251 static void virt_set_ras(Object *obj, bool value, Error **errp) 2252 { 2253 VirtMachineState *vms = VIRT_MACHINE(obj); 2254 2255 vms->ras = value; 2256 } 2257 2258 static bool virt_get_mte(Object *obj, Error **errp) 2259 { 2260 VirtMachineState *vms = VIRT_MACHINE(obj); 2261 2262 return vms->mte; 2263 } 2264 2265 static void virt_set_mte(Object *obj, bool value, Error **errp) 2266 { 2267 VirtMachineState *vms = VIRT_MACHINE(obj); 2268 2269 vms->mte = value; 2270 } 2271 2272 static char *virt_get_gic_version(Object *obj, Error **errp) 2273 { 2274 VirtMachineState *vms = VIRT_MACHINE(obj); 2275 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2276 2277 return g_strdup(val); 2278 } 2279 2280 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2281 { 2282 VirtMachineState *vms = VIRT_MACHINE(obj); 2283 2284 if (!strcmp(value, "3")) { 2285 vms->gic_version = VIRT_GIC_VERSION_3; 2286 } else if (!strcmp(value, "2")) { 2287 vms->gic_version = VIRT_GIC_VERSION_2; 2288 } else if (!strcmp(value, "host")) { 2289 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2290 } else if (!strcmp(value, "max")) { 2291 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2292 } else { 2293 error_setg(errp, "Invalid gic-version value"); 2294 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2295 } 2296 } 2297 2298 static char *virt_get_iommu(Object *obj, Error **errp) 2299 { 2300 VirtMachineState *vms = VIRT_MACHINE(obj); 2301 2302 switch (vms->iommu) { 2303 case VIRT_IOMMU_NONE: 2304 return g_strdup("none"); 2305 case VIRT_IOMMU_SMMUV3: 2306 return g_strdup("smmuv3"); 2307 default: 2308 g_assert_not_reached(); 2309 } 2310 } 2311 2312 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2313 { 2314 VirtMachineState *vms = VIRT_MACHINE(obj); 2315 2316 if (!strcmp(value, "smmuv3")) { 2317 vms->iommu = VIRT_IOMMU_SMMUV3; 2318 } else if (!strcmp(value, "none")) { 2319 vms->iommu = VIRT_IOMMU_NONE; 2320 } else { 2321 error_setg(errp, "Invalid iommu value"); 2322 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2323 } 2324 } 2325 2326 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2327 { 2328 VirtMachineState *vms = VIRT_MACHINE(obj); 2329 2330 return vms->default_bus_bypass_iommu; 2331 } 2332 2333 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2334 Error **errp) 2335 { 2336 VirtMachineState *vms = VIRT_MACHINE(obj); 2337 2338 vms->default_bus_bypass_iommu = value; 2339 } 2340 2341 static CpuInstanceProperties 2342 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2343 { 2344 MachineClass *mc = MACHINE_GET_CLASS(ms); 2345 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2346 2347 assert(cpu_index < possible_cpus->len); 2348 return possible_cpus->cpus[cpu_index].props; 2349 } 2350 2351 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2352 { 2353 return idx % ms->numa_state->num_nodes; 2354 } 2355 2356 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2357 { 2358 int n; 2359 unsigned int max_cpus = ms->smp.max_cpus; 2360 VirtMachineState *vms = VIRT_MACHINE(ms); 2361 2362 if (ms->possible_cpus) { 2363 assert(ms->possible_cpus->len == max_cpus); 2364 return ms->possible_cpus; 2365 } 2366 2367 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2368 sizeof(CPUArchId) * max_cpus); 2369 ms->possible_cpus->len = max_cpus; 2370 for (n = 0; n < ms->possible_cpus->len; n++) { 2371 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2372 ms->possible_cpus->cpus[n].arch_id = 2373 virt_cpu_mp_affinity(vms, n); 2374 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2375 ms->possible_cpus->cpus[n].props.thread_id = n; 2376 } 2377 return ms->possible_cpus; 2378 } 2379 2380 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2381 Error **errp) 2382 { 2383 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2384 const MachineState *ms = MACHINE(hotplug_dev); 2385 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2386 2387 if (!vms->acpi_dev) { 2388 error_setg(errp, 2389 "memory hotplug is not enabled: missing acpi-ged device"); 2390 return; 2391 } 2392 2393 if (vms->mte) { 2394 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2395 return; 2396 } 2397 2398 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2399 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2400 return; 2401 } 2402 2403 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2404 } 2405 2406 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2407 DeviceState *dev, Error **errp) 2408 { 2409 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2410 MachineState *ms = MACHINE(hotplug_dev); 2411 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2412 2413 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2414 2415 if (is_nvdimm) { 2416 nvdimm_plug(ms->nvdimms_state); 2417 } 2418 2419 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2420 dev, &error_abort); 2421 } 2422 2423 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2424 DeviceState *dev, Error **errp) 2425 { 2426 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2427 2428 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2429 virt_memory_pre_plug(hotplug_dev, dev, errp); 2430 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2431 hwaddr db_start = 0, db_end = 0; 2432 char *resv_prop_str; 2433 2434 switch (vms->msi_controller) { 2435 case VIRT_MSI_CTRL_NONE: 2436 return; 2437 case VIRT_MSI_CTRL_ITS: 2438 /* GITS_TRANSLATER page */ 2439 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2440 db_end = base_memmap[VIRT_GIC_ITS].base + 2441 base_memmap[VIRT_GIC_ITS].size - 1; 2442 break; 2443 case VIRT_MSI_CTRL_GICV2M: 2444 /* MSI_SETSPI_NS page */ 2445 db_start = base_memmap[VIRT_GIC_V2M].base; 2446 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2447 break; 2448 } 2449 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2450 db_start, db_end, 2451 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2452 2453 qdev_prop_set_uint32(dev, "len-reserved-regions", 1); 2454 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); 2455 g_free(resv_prop_str); 2456 } 2457 } 2458 2459 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2460 DeviceState *dev, Error **errp) 2461 { 2462 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2463 2464 if (vms->platform_bus_dev) { 2465 MachineClass *mc = MACHINE_GET_CLASS(vms); 2466 2467 if (device_is_dynamic_sysbus(mc, dev)) { 2468 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2469 SYS_BUS_DEVICE(dev)); 2470 } 2471 } 2472 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2473 virt_memory_plug(hotplug_dev, dev, errp); 2474 } 2475 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2476 PCIDevice *pdev = PCI_DEVICE(dev); 2477 2478 vms->iommu = VIRT_IOMMU_VIRTIO; 2479 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2480 create_virtio_iommu_dt_bindings(vms); 2481 } 2482 } 2483 2484 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2485 DeviceState *dev, Error **errp) 2486 { 2487 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2488 Error *local_err = NULL; 2489 2490 if (!vms->acpi_dev) { 2491 error_setg(&local_err, 2492 "memory hotplug is not enabled: missing acpi-ged device"); 2493 goto out; 2494 } 2495 2496 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2497 error_setg(&local_err, 2498 "nvdimm device hot unplug is not supported yet."); 2499 goto out; 2500 } 2501 2502 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2503 &local_err); 2504 out: 2505 error_propagate(errp, local_err); 2506 } 2507 2508 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2509 DeviceState *dev, Error **errp) 2510 { 2511 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2512 Error *local_err = NULL; 2513 2514 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2515 if (local_err) { 2516 goto out; 2517 } 2518 2519 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2520 qdev_unrealize(dev); 2521 2522 out: 2523 error_propagate(errp, local_err); 2524 } 2525 2526 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2527 DeviceState *dev, Error **errp) 2528 { 2529 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2530 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2531 } else { 2532 error_setg(errp, "device unplug request for unsupported device" 2533 " type: %s", object_get_typename(OBJECT(dev))); 2534 } 2535 } 2536 2537 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2538 DeviceState *dev, Error **errp) 2539 { 2540 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2541 virt_dimm_unplug(hotplug_dev, dev, errp); 2542 } else { 2543 error_setg(errp, "virt: device unplug for unsupported device" 2544 " type: %s", object_get_typename(OBJECT(dev))); 2545 } 2546 } 2547 2548 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2549 DeviceState *dev) 2550 { 2551 MachineClass *mc = MACHINE_GET_CLASS(machine); 2552 2553 if (device_is_dynamic_sysbus(mc, dev) || 2554 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2555 return HOTPLUG_HANDLER(machine); 2556 } 2557 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2558 VirtMachineState *vms = VIRT_MACHINE(machine); 2559 2560 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2561 return HOTPLUG_HANDLER(machine); 2562 } 2563 } 2564 return NULL; 2565 } 2566 2567 /* 2568 * for arm64 kvm_type [7-0] encodes the requested number of bits 2569 * in the IPA address space 2570 */ 2571 static int virt_kvm_type(MachineState *ms, const char *type_str) 2572 { 2573 VirtMachineState *vms = VIRT_MACHINE(ms); 2574 int max_vm_pa_size, requested_pa_size; 2575 bool fixed_ipa; 2576 2577 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2578 2579 /* we freeze the memory map to compute the highest gpa */ 2580 virt_set_memmap(vms); 2581 2582 requested_pa_size = 64 - clz64(vms->highest_gpa); 2583 2584 /* 2585 * KVM requires the IPA size to be at least 32 bits. 2586 */ 2587 if (requested_pa_size < 32) { 2588 requested_pa_size = 32; 2589 } 2590 2591 if (requested_pa_size > max_vm_pa_size) { 2592 error_report("-m and ,maxmem option values " 2593 "require an IPA range (%d bits) larger than " 2594 "the one supported by the host (%d bits)", 2595 requested_pa_size, max_vm_pa_size); 2596 exit(1); 2597 } 2598 /* 2599 * We return the requested PA log size, unless KVM only supports 2600 * the implicit legacy 40b IPA setting, in which case the kvm_type 2601 * must be 0. 2602 */ 2603 return fixed_ipa ? 0 : requested_pa_size; 2604 } 2605 2606 static void virt_machine_class_init(ObjectClass *oc, void *data) 2607 { 2608 MachineClass *mc = MACHINE_CLASS(oc); 2609 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2610 2611 mc->init = machvirt_init; 2612 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2613 * The value may be reduced later when we have more information about the 2614 * configuration of the particular instance. 2615 */ 2616 mc->max_cpus = 512; 2617 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2618 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2619 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2620 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2621 #ifdef CONFIG_TPM 2622 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2623 #endif 2624 mc->block_default_type = IF_VIRTIO; 2625 mc->no_cdrom = 1; 2626 mc->pci_allow_0_address = true; 2627 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2628 mc->minimum_page_bits = 12; 2629 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2630 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2631 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2632 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2633 mc->kvm_type = virt_kvm_type; 2634 assert(!mc->get_hotplug_handler); 2635 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2636 hc->pre_plug = virt_machine_device_pre_plug_cb; 2637 hc->plug = virt_machine_device_plug_cb; 2638 hc->unplug_request = virt_machine_device_unplug_request_cb; 2639 hc->unplug = virt_machine_device_unplug_cb; 2640 mc->nvdimm_supported = true; 2641 mc->auto_enable_numa_with_memhp = true; 2642 mc->auto_enable_numa_with_memdev = true; 2643 mc->default_ram_id = "mach-virt.ram"; 2644 2645 object_class_property_add(oc, "acpi", "OnOffAuto", 2646 virt_get_acpi, virt_set_acpi, 2647 NULL, NULL); 2648 object_class_property_set_description(oc, "acpi", 2649 "Enable ACPI"); 2650 object_class_property_add_bool(oc, "secure", virt_get_secure, 2651 virt_set_secure); 2652 object_class_property_set_description(oc, "secure", 2653 "Set on/off to enable/disable the ARM " 2654 "Security Extensions (TrustZone)"); 2655 2656 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2657 virt_set_virt); 2658 object_class_property_set_description(oc, "virtualization", 2659 "Set on/off to enable/disable emulating a " 2660 "guest CPU which implements the ARM " 2661 "Virtualization Extensions"); 2662 2663 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2664 virt_set_highmem); 2665 object_class_property_set_description(oc, "highmem", 2666 "Set on/off to enable/disable using " 2667 "physical address space above 32 bits"); 2668 2669 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 2670 virt_set_gic_version); 2671 object_class_property_set_description(oc, "gic-version", 2672 "Set GIC version. " 2673 "Valid values are 2, 3, host and max"); 2674 2675 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 2676 object_class_property_set_description(oc, "iommu", 2677 "Set the IOMMU type. " 2678 "Valid values are none and smmuv3"); 2679 2680 object_class_property_add_bool(oc, "default_bus_bypass_iommu", 2681 virt_get_default_bus_bypass_iommu, 2682 virt_set_default_bus_bypass_iommu); 2683 object_class_property_set_description(oc, "default_bus_bypass_iommu", 2684 "Set on/off to enable/disable " 2685 "bypass_iommu for default root bus"); 2686 2687 object_class_property_add_bool(oc, "ras", virt_get_ras, 2688 virt_set_ras); 2689 object_class_property_set_description(oc, "ras", 2690 "Set on/off to enable/disable reporting host memory errors " 2691 "to a KVM guest using ACPI and guest external abort exceptions"); 2692 2693 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 2694 object_class_property_set_description(oc, "mte", 2695 "Set on/off to enable/disable emulating a " 2696 "guest CPU which implements the ARM " 2697 "Memory Tagging Extension"); 2698 2699 object_class_property_add_bool(oc, "its", virt_get_its, 2700 virt_set_its); 2701 object_class_property_set_description(oc, "its", 2702 "Set on/off to enable/disable " 2703 "ITS instantiation"); 2704 2705 object_class_property_add_str(oc, "x-oem-id", 2706 virt_get_oem_id, 2707 virt_set_oem_id); 2708 object_class_property_set_description(oc, "x-oem-id", 2709 "Override the default value of field OEMID " 2710 "in ACPI table header." 2711 "The string may be up to 6 bytes in size"); 2712 2713 2714 object_class_property_add_str(oc, "x-oem-table-id", 2715 virt_get_oem_table_id, 2716 virt_set_oem_table_id); 2717 object_class_property_set_description(oc, "x-oem-table-id", 2718 "Override the default value of field OEM Table ID " 2719 "in ACPI table header." 2720 "The string may be up to 8 bytes in size"); 2721 2722 } 2723 2724 static void virt_instance_init(Object *obj) 2725 { 2726 VirtMachineState *vms = VIRT_MACHINE(obj); 2727 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2728 2729 /* EL3 is disabled by default on virt: this makes us consistent 2730 * between KVM and TCG for this board, and it also allows us to 2731 * boot UEFI blobs which assume no TrustZone support. 2732 */ 2733 vms->secure = false; 2734 2735 /* EL2 is also disabled by default, for similar reasons */ 2736 vms->virt = false; 2737 2738 /* High memory is enabled by default */ 2739 vms->highmem = true; 2740 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2741 2742 vms->highmem_ecam = !vmc->no_highmem_ecam; 2743 2744 if (vmc->no_its) { 2745 vms->its = false; 2746 } else { 2747 /* Default allows ITS instantiation */ 2748 vms->its = true; 2749 } 2750 2751 /* Default disallows iommu instantiation */ 2752 vms->iommu = VIRT_IOMMU_NONE; 2753 2754 /* The default root bus is attached to iommu by default */ 2755 vms->default_bus_bypass_iommu = false; 2756 2757 /* Default disallows RAS instantiation */ 2758 vms->ras = false; 2759 2760 /* MTE is disabled by default. */ 2761 vms->mte = false; 2762 2763 vms->irqmap = a15irqmap; 2764 2765 virt_flash_create(vms); 2766 2767 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 2768 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 2769 } 2770 2771 static const TypeInfo virt_machine_info = { 2772 .name = TYPE_VIRT_MACHINE, 2773 .parent = TYPE_MACHINE, 2774 .abstract = true, 2775 .instance_size = sizeof(VirtMachineState), 2776 .class_size = sizeof(VirtMachineClass), 2777 .class_init = virt_machine_class_init, 2778 .instance_init = virt_instance_init, 2779 .interfaces = (InterfaceInfo[]) { 2780 { TYPE_HOTPLUG_HANDLER }, 2781 { } 2782 }, 2783 }; 2784 2785 static void machvirt_machine_init(void) 2786 { 2787 type_register_static(&virt_machine_info); 2788 } 2789 type_init(machvirt_machine_init); 2790 2791 static void virt_machine_6_1_options(MachineClass *mc) 2792 { 2793 } 2794 DEFINE_VIRT_MACHINE_AS_LATEST(6, 1) 2795 2796 static void virt_machine_6_0_options(MachineClass *mc) 2797 { 2798 virt_machine_6_1_options(mc); 2799 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 2800 } 2801 DEFINE_VIRT_MACHINE(6, 0) 2802 2803 static void virt_machine_5_2_options(MachineClass *mc) 2804 { 2805 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2806 2807 virt_machine_6_0_options(mc); 2808 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 2809 vmc->no_secure_gpio = true; 2810 } 2811 DEFINE_VIRT_MACHINE(5, 2) 2812 2813 static void virt_machine_5_1_options(MachineClass *mc) 2814 { 2815 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2816 2817 virt_machine_5_2_options(mc); 2818 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 2819 vmc->no_kvm_steal_time = true; 2820 } 2821 DEFINE_VIRT_MACHINE(5, 1) 2822 2823 static void virt_machine_5_0_options(MachineClass *mc) 2824 { 2825 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2826 2827 virt_machine_5_1_options(mc); 2828 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 2829 mc->numa_mem_supported = true; 2830 vmc->acpi_expose_flash = true; 2831 mc->auto_enable_numa_with_memdev = false; 2832 } 2833 DEFINE_VIRT_MACHINE(5, 0) 2834 2835 static void virt_machine_4_2_options(MachineClass *mc) 2836 { 2837 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2838 2839 virt_machine_5_0_options(mc); 2840 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2841 vmc->kvm_no_adjvtime = true; 2842 } 2843 DEFINE_VIRT_MACHINE(4, 2) 2844 2845 static void virt_machine_4_1_options(MachineClass *mc) 2846 { 2847 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2848 2849 virt_machine_4_2_options(mc); 2850 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2851 vmc->no_ged = true; 2852 mc->auto_enable_numa_with_memhp = false; 2853 } 2854 DEFINE_VIRT_MACHINE(4, 1) 2855 2856 static void virt_machine_4_0_options(MachineClass *mc) 2857 { 2858 virt_machine_4_1_options(mc); 2859 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2860 } 2861 DEFINE_VIRT_MACHINE(4, 0) 2862 2863 static void virt_machine_3_1_options(MachineClass *mc) 2864 { 2865 virt_machine_4_0_options(mc); 2866 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2867 } 2868 DEFINE_VIRT_MACHINE(3, 1) 2869 2870 static void virt_machine_3_0_options(MachineClass *mc) 2871 { 2872 virt_machine_3_1_options(mc); 2873 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2874 } 2875 DEFINE_VIRT_MACHINE(3, 0) 2876 2877 static void virt_machine_2_12_options(MachineClass *mc) 2878 { 2879 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2880 2881 virt_machine_3_0_options(mc); 2882 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2883 vmc->no_highmem_ecam = true; 2884 mc->max_cpus = 255; 2885 } 2886 DEFINE_VIRT_MACHINE(2, 12) 2887 2888 static void virt_machine_2_11_options(MachineClass *mc) 2889 { 2890 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2891 2892 virt_machine_2_12_options(mc); 2893 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2894 vmc->smbios_old_sys_ver = true; 2895 } 2896 DEFINE_VIRT_MACHINE(2, 11) 2897 2898 static void virt_machine_2_10_options(MachineClass *mc) 2899 { 2900 virt_machine_2_11_options(mc); 2901 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2902 /* before 2.11 we never faulted accesses to bad addresses */ 2903 mc->ignore_memory_transaction_failures = true; 2904 } 2905 DEFINE_VIRT_MACHINE(2, 10) 2906 2907 static void virt_machine_2_9_options(MachineClass *mc) 2908 { 2909 virt_machine_2_10_options(mc); 2910 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2911 } 2912 DEFINE_VIRT_MACHINE(2, 9) 2913 2914 static void virt_machine_2_8_options(MachineClass *mc) 2915 { 2916 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2917 2918 virt_machine_2_9_options(mc); 2919 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2920 /* For 2.8 and earlier we falsely claimed in the DT that 2921 * our timers were edge-triggered, not level-triggered. 2922 */ 2923 vmc->claim_edge_triggered_timers = true; 2924 } 2925 DEFINE_VIRT_MACHINE(2, 8) 2926 2927 static void virt_machine_2_7_options(MachineClass *mc) 2928 { 2929 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2930 2931 virt_machine_2_8_options(mc); 2932 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2933 /* ITS was introduced with 2.8 */ 2934 vmc->no_its = true; 2935 /* Stick with 1K pages for migration compatibility */ 2936 mc->minimum_page_bits = 0; 2937 } 2938 DEFINE_VIRT_MACHINE(2, 7) 2939 2940 static void virt_machine_2_6_options(MachineClass *mc) 2941 { 2942 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2943 2944 virt_machine_2_7_options(mc); 2945 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2946 vmc->disallow_affinity_adjustment = true; 2947 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2948 vmc->no_pmu = true; 2949 } 2950 DEFINE_VIRT_MACHINE(2, 6) 2951