1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/arm/virt.h" 35 #include "hw/devices.h" 36 #include "net/net.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/kvm.h" 41 #include "hw/boards.h" 42 #include "hw/loader.h" 43 #include "exec/address-spaces.h" 44 #include "qemu/bitops.h" 45 #include "qemu/error-report.h" 46 #include "hw/pci-host/gpex.h" 47 #include "hw/arm/virt-acpi-build.h" 48 #include "hw/arm/sysbus-fdt.h" 49 #include "hw/platform-bus.h" 50 #include "hw/arm/fdt.h" 51 #include "hw/intc/arm_gic_common.h" 52 #include "kvm_arm.h" 53 #include "hw/smbios/smbios.h" 54 #include "qapi/visitor.h" 55 56 /* Number of external interrupt lines to configure the GIC with */ 57 #define NUM_IRQS 256 58 59 #define PLATFORM_BUS_NUM_IRQS 64 60 61 static ARMPlatformBusSystemParams platform_bus_params; 62 63 typedef struct VirtBoardInfo { 64 struct arm_boot_info bootinfo; 65 const char *cpu_model; 66 const MemMapEntry *memmap; 67 const int *irqmap; 68 int smp_cpus; 69 void *fdt; 70 int fdt_size; 71 uint32_t clock_phandle; 72 uint32_t gic_phandle; 73 uint32_t v2m_phandle; 74 } VirtBoardInfo; 75 76 typedef struct { 77 MachineClass parent; 78 VirtBoardInfo *daughterboard; 79 } VirtMachineClass; 80 81 typedef struct { 82 MachineState parent; 83 bool secure; 84 bool highmem; 85 int32_t gic_version; 86 } VirtMachineState; 87 88 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 89 #define VIRT_MACHINE(obj) \ 90 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 91 #define VIRT_MACHINE_GET_CLASS(obj) \ 92 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 93 #define VIRT_MACHINE_CLASS(klass) \ 94 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 95 96 /* Addresses and sizes of our components. 97 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 98 * 128MB..256MB is used for miscellaneous device I/O. 99 * 256MB..1GB is reserved for possible future PCI support (ie where the 100 * PCI memory window will go if we add a PCI host controller). 101 * 1GB and up is RAM (which may happily spill over into the 102 * high memory region beyond 4GB). 103 * This represents a compromise between how much RAM can be given to 104 * a 32 bit VM and leaving space for expansion and in particular for PCI. 105 * Note that devices should generally be placed at multiples of 0x10000, 106 * to accommodate guests using 64K pages. 107 */ 108 static const MemMapEntry a15memmap[] = { 109 /* Space up to 0x8000000 is reserved for a boot ROM */ 110 [VIRT_FLASH] = { 0, 0x08000000 }, 111 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 112 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 113 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 114 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 115 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 116 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 117 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 118 /* This redistributor space allows up to 2*64kB*123 CPUs */ 119 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 120 [VIRT_UART] = { 0x09000000, 0x00001000 }, 121 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 122 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 123 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 124 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 125 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 126 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 127 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 128 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 129 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 130 /* Second PCIe window, 512GB wide at the 512GB boundary */ 131 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 132 }; 133 134 static const int a15irqmap[] = { 135 [VIRT_UART] = 1, 136 [VIRT_RTC] = 2, 137 [VIRT_PCIE] = 3, /* ... to 6 */ 138 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 139 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 140 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 141 }; 142 143 static VirtBoardInfo machines[] = { 144 { 145 .cpu_model = "cortex-a15", 146 .memmap = a15memmap, 147 .irqmap = a15irqmap, 148 }, 149 { 150 .cpu_model = "cortex-a53", 151 .memmap = a15memmap, 152 .irqmap = a15irqmap, 153 }, 154 { 155 .cpu_model = "cortex-a57", 156 .memmap = a15memmap, 157 .irqmap = a15irqmap, 158 }, 159 { 160 .cpu_model = "host", 161 .memmap = a15memmap, 162 .irqmap = a15irqmap, 163 }, 164 }; 165 166 static VirtBoardInfo *find_machine_info(const char *cpu) 167 { 168 int i; 169 170 for (i = 0; i < ARRAY_SIZE(machines); i++) { 171 if (strcmp(cpu, machines[i].cpu_model) == 0) { 172 return &machines[i]; 173 } 174 } 175 return NULL; 176 } 177 178 static void create_fdt(VirtBoardInfo *vbi) 179 { 180 void *fdt = create_device_tree(&vbi->fdt_size); 181 182 if (!fdt) { 183 error_report("create_device_tree() failed"); 184 exit(1); 185 } 186 187 vbi->fdt = fdt; 188 189 /* Header */ 190 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 191 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 192 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 193 194 /* 195 * /chosen and /memory nodes must exist for load_dtb 196 * to fill in necessary properties later 197 */ 198 qemu_fdt_add_subnode(fdt, "/chosen"); 199 qemu_fdt_add_subnode(fdt, "/memory"); 200 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 201 202 /* Clock node, for the benefit of the UART. The kernel device tree 203 * binding documentation claims the PL011 node clock properties are 204 * optional but in practice if you omit them the kernel refuses to 205 * probe for the device. 206 */ 207 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 208 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 209 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 210 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 211 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 212 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 213 "clk24mhz"); 214 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 215 216 } 217 218 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 219 { 220 uint32_t cpu_suspend_fn; 221 uint32_t cpu_off_fn; 222 uint32_t cpu_on_fn; 223 uint32_t migrate_fn; 224 void *fdt = vbi->fdt; 225 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 226 227 qemu_fdt_add_subnode(fdt, "/psci"); 228 if (armcpu->psci_version == 2) { 229 const char comp[] = "arm,psci-0.2\0arm,psci"; 230 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 231 232 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 233 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 234 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 235 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 236 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 237 } else { 238 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 239 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 240 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 241 } 242 } else { 243 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 244 245 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 246 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 247 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 248 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 249 } 250 251 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 252 * to the instruction that should be used to invoke PSCI functions. 253 * However, the device tree binding uses 'method' instead, so that is 254 * what we should use here. 255 */ 256 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 257 258 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 259 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 260 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 261 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 262 } 263 264 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 265 { 266 /* Note that on A15 h/w these interrupts are level-triggered, 267 * but for the GIC implementation provided by both QEMU and KVM 268 * they are edge-triggered. 269 */ 270 ARMCPU *armcpu; 271 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 272 273 if (gictype == 2) { 274 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 275 GIC_FDT_IRQ_PPI_CPU_WIDTH, 276 (1 << vbi->smp_cpus) - 1); 277 } 278 279 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 280 281 armcpu = ARM_CPU(qemu_get_cpu(0)); 282 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 283 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 284 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 285 compat, sizeof(compat)); 286 } else { 287 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 288 "arm,armv7-timer"); 289 } 290 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 291 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 292 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 293 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 294 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 295 } 296 297 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 298 { 299 int cpu; 300 int addr_cells = 1; 301 302 /* 303 * From Documentation/devicetree/bindings/arm/cpus.txt 304 * On ARM v8 64-bit systems value should be set to 2, 305 * that corresponds to the MPIDR_EL1 register size. 306 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 307 * in the system, #address-cells can be set to 1, since 308 * MPIDR_EL1[63:32] bits are not used for CPUs 309 * identification. 310 * 311 * Here we actually don't know whether our system is 32- or 64-bit one. 312 * The simplest way to go is to examine affinity IDs of all our CPUs. If 313 * at least one of them has Aff3 populated, we set #address-cells to 2. 314 */ 315 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 316 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 317 318 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 319 addr_cells = 2; 320 break; 321 } 322 } 323 324 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 325 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 326 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 327 328 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 329 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 330 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 331 332 qemu_fdt_add_subnode(vbi->fdt, nodename); 333 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 334 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 335 armcpu->dtb_compatible); 336 337 if (vbi->smp_cpus > 1) { 338 qemu_fdt_setprop_string(vbi->fdt, nodename, 339 "enable-method", "psci"); 340 } 341 342 if (addr_cells == 2) { 343 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 344 armcpu->mp_affinity); 345 } else { 346 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 347 armcpu->mp_affinity); 348 } 349 350 g_free(nodename); 351 } 352 } 353 354 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 355 { 356 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 357 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 358 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 359 "arm,gic-v2m-frame"); 360 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 361 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 362 2, vbi->memmap[VIRT_GIC_V2M].base, 363 2, vbi->memmap[VIRT_GIC_V2M].size); 364 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 365 } 366 367 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 368 { 369 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 370 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 371 372 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 373 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 374 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 375 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 376 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 377 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 378 if (type == 3) { 379 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 380 "arm,gic-v3"); 381 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 382 2, vbi->memmap[VIRT_GIC_DIST].base, 383 2, vbi->memmap[VIRT_GIC_DIST].size, 384 2, vbi->memmap[VIRT_GIC_REDIST].base, 385 2, vbi->memmap[VIRT_GIC_REDIST].size); 386 } else { 387 /* 'cortex-a15-gic' means 'GIC v2' */ 388 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 389 "arm,cortex-a15-gic"); 390 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 391 2, vbi->memmap[VIRT_GIC_DIST].base, 392 2, vbi->memmap[VIRT_GIC_DIST].size, 393 2, vbi->memmap[VIRT_GIC_CPU].base, 394 2, vbi->memmap[VIRT_GIC_CPU].size); 395 } 396 397 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 398 } 399 400 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 401 { 402 int i; 403 int irq = vbi->irqmap[VIRT_GIC_V2M]; 404 DeviceState *dev; 405 406 dev = qdev_create(NULL, "arm-gicv2m"); 407 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 408 qdev_prop_set_uint32(dev, "base-spi", irq); 409 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 410 qdev_init_nofail(dev); 411 412 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 413 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 414 } 415 416 fdt_add_v2m_gic_node(vbi); 417 } 418 419 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 420 { 421 /* We create a standalone GIC */ 422 DeviceState *gicdev; 423 SysBusDevice *gicbusdev; 424 const char *gictype; 425 int i; 426 427 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 428 429 gicdev = qdev_create(NULL, gictype); 430 qdev_prop_set_uint32(gicdev, "revision", type); 431 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 432 /* Note that the num-irq property counts both internal and external 433 * interrupts; there are always 32 of the former (mandated by GIC spec). 434 */ 435 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 436 if (!kvm_irqchip_in_kernel()) { 437 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 438 } 439 qdev_init_nofail(gicdev); 440 gicbusdev = SYS_BUS_DEVICE(gicdev); 441 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 442 if (type == 3) { 443 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 444 } else { 445 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 446 } 447 448 /* Wire the outputs from each CPU's generic timer to the 449 * appropriate GIC PPI inputs, and the GIC's IRQ output to 450 * the CPU's IRQ input. 451 */ 452 for (i = 0; i < smp_cpus; i++) { 453 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 454 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 455 int irq; 456 /* Mapping from the output timer irq lines from the CPU to the 457 * GIC PPI inputs we use for the virt board. 458 */ 459 const int timer_irq[] = { 460 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 461 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 462 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 463 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 464 }; 465 466 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 467 qdev_connect_gpio_out(cpudev, irq, 468 qdev_get_gpio_in(gicdev, 469 ppibase + timer_irq[irq])); 470 } 471 472 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 473 sysbus_connect_irq(gicbusdev, i + smp_cpus, 474 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 475 } 476 477 for (i = 0; i < NUM_IRQS; i++) { 478 pic[i] = qdev_get_gpio_in(gicdev, i); 479 } 480 481 fdt_add_gic_node(vbi, type); 482 483 if (type == 2) { 484 create_v2m(vbi, pic); 485 } 486 } 487 488 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 489 { 490 char *nodename; 491 hwaddr base = vbi->memmap[VIRT_UART].base; 492 hwaddr size = vbi->memmap[VIRT_UART].size; 493 int irq = vbi->irqmap[VIRT_UART]; 494 const char compat[] = "arm,pl011\0arm,primecell"; 495 const char clocknames[] = "uartclk\0apb_pclk"; 496 497 sysbus_create_simple("pl011", base, pic[irq]); 498 499 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 500 qemu_fdt_add_subnode(vbi->fdt, nodename); 501 /* Note that we can't use setprop_string because of the embedded NUL */ 502 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 503 compat, sizeof(compat)); 504 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 505 2, base, 2, size); 506 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 507 GIC_FDT_IRQ_TYPE_SPI, irq, 508 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 509 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 510 vbi->clock_phandle, vbi->clock_phandle); 511 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 512 clocknames, sizeof(clocknames)); 513 514 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 515 g_free(nodename); 516 } 517 518 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 519 { 520 char *nodename; 521 hwaddr base = vbi->memmap[VIRT_RTC].base; 522 hwaddr size = vbi->memmap[VIRT_RTC].size; 523 int irq = vbi->irqmap[VIRT_RTC]; 524 const char compat[] = "arm,pl031\0arm,primecell"; 525 526 sysbus_create_simple("pl031", base, pic[irq]); 527 528 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 529 qemu_fdt_add_subnode(vbi->fdt, nodename); 530 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 531 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 532 2, base, 2, size); 533 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 534 GIC_FDT_IRQ_TYPE_SPI, irq, 535 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 536 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 537 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 538 g_free(nodename); 539 } 540 541 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 542 { 543 int i; 544 hwaddr size = vbi->memmap[VIRT_MMIO].size; 545 546 /* We create the transports in forwards order. Since qbus_realize() 547 * prepends (not appends) new child buses, the incrementing loop below will 548 * create a list of virtio-mmio buses with decreasing base addresses. 549 * 550 * When a -device option is processed from the command line, 551 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 552 * order. The upshot is that -device options in increasing command line 553 * order are mapped to virtio-mmio buses with decreasing base addresses. 554 * 555 * When this code was originally written, that arrangement ensured that the 556 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 557 * the first -device on the command line. (The end-to-end order is a 558 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 559 * guest kernel's name-to-address assignment strategy.) 560 * 561 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 562 * the message, if not necessarily the code, of commit 70161ff336. 563 * Therefore the loop now establishes the inverse of the original intent. 564 * 565 * Unfortunately, we can't counteract the kernel change by reversing the 566 * loop; it would break existing command lines. 567 * 568 * In any case, the kernel makes no guarantee about the stability of 569 * enumeration order of virtio devices (as demonstrated by it changing 570 * between kernel versions). For reliable and stable identification 571 * of disks users must use UUIDs or similar mechanisms. 572 */ 573 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 574 int irq = vbi->irqmap[VIRT_MMIO] + i; 575 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 576 577 sysbus_create_simple("virtio-mmio", base, pic[irq]); 578 } 579 580 /* We add dtb nodes in reverse order so that they appear in the finished 581 * device tree lowest address first. 582 * 583 * Note that this mapping is independent of the loop above. The previous 584 * loop influences virtio device to virtio transport assignment, whereas 585 * this loop controls how virtio transports are laid out in the dtb. 586 */ 587 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 588 char *nodename; 589 int irq = vbi->irqmap[VIRT_MMIO] + i; 590 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 591 592 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 593 qemu_fdt_add_subnode(vbi->fdt, nodename); 594 qemu_fdt_setprop_string(vbi->fdt, nodename, 595 "compatible", "virtio,mmio"); 596 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 597 2, base, 2, size); 598 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 599 GIC_FDT_IRQ_TYPE_SPI, irq, 600 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 601 g_free(nodename); 602 } 603 } 604 605 static void create_one_flash(const char *name, hwaddr flashbase, 606 hwaddr flashsize) 607 { 608 /* Create and map a single flash device. We use the same 609 * parameters as the flash devices on the Versatile Express board. 610 */ 611 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 612 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 613 const uint64_t sectorlength = 256 * 1024; 614 615 if (dinfo) { 616 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 617 &error_abort); 618 } 619 620 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 621 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 622 qdev_prop_set_uint8(dev, "width", 4); 623 qdev_prop_set_uint8(dev, "device-width", 2); 624 qdev_prop_set_bit(dev, "big-endian", false); 625 qdev_prop_set_uint16(dev, "id0", 0x89); 626 qdev_prop_set_uint16(dev, "id1", 0x18); 627 qdev_prop_set_uint16(dev, "id2", 0x00); 628 qdev_prop_set_uint16(dev, "id3", 0x00); 629 qdev_prop_set_string(dev, "name", name); 630 qdev_init_nofail(dev); 631 632 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 633 } 634 635 static void create_flash(const VirtBoardInfo *vbi) 636 { 637 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 638 * Any file passed via -bios goes in the first of these. 639 */ 640 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 641 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 642 char *nodename; 643 644 if (bios_name) { 645 char *fn; 646 int image_size; 647 648 if (drive_get(IF_PFLASH, 0, 0)) { 649 error_report("The contents of the first flash device may be " 650 "specified with -bios or with -drive if=pflash... " 651 "but you cannot use both options at once"); 652 exit(1); 653 } 654 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 655 if (!fn) { 656 error_report("Could not find ROM image '%s'", bios_name); 657 exit(1); 658 } 659 image_size = load_image_targphys(fn, flashbase, flashsize); 660 g_free(fn); 661 if (image_size < 0) { 662 error_report("Could not load ROM image '%s'", bios_name); 663 exit(1); 664 } 665 } 666 667 create_one_flash("virt.flash0", flashbase, flashsize); 668 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 669 670 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 671 qemu_fdt_add_subnode(vbi->fdt, nodename); 672 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 673 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 674 2, flashbase, 2, flashsize, 675 2, flashbase + flashsize, 2, flashsize); 676 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 677 g_free(nodename); 678 } 679 680 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 681 { 682 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 683 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 684 char *nodename; 685 686 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 687 688 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 689 qemu_fdt_add_subnode(vbi->fdt, nodename); 690 qemu_fdt_setprop_string(vbi->fdt, nodename, 691 "compatible", "qemu,fw-cfg-mmio"); 692 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 693 2, base, 2, size); 694 g_free(nodename); 695 } 696 697 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 698 int first_irq, const char *nodename) 699 { 700 int devfn, pin; 701 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 702 uint32_t *irq_map = full_irq_map; 703 704 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 705 for (pin = 0; pin < 4; pin++) { 706 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 707 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 708 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 709 int i; 710 711 uint32_t map[] = { 712 devfn << 8, 0, 0, /* devfn */ 713 pin + 1, /* PCI pin */ 714 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 715 716 /* Convert map to big endian */ 717 for (i = 0; i < 10; i++) { 718 irq_map[i] = cpu_to_be32(map[i]); 719 } 720 irq_map += 10; 721 } 722 } 723 724 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 725 full_irq_map, sizeof(full_irq_map)); 726 727 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 728 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 729 0x7 /* PCI irq */); 730 } 731 732 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 733 bool use_highmem) 734 { 735 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 736 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 737 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 738 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 739 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 740 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 741 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 742 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 743 hwaddr base = base_mmio; 744 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 745 int irq = vbi->irqmap[VIRT_PCIE]; 746 MemoryRegion *mmio_alias; 747 MemoryRegion *mmio_reg; 748 MemoryRegion *ecam_alias; 749 MemoryRegion *ecam_reg; 750 DeviceState *dev; 751 char *nodename; 752 int i; 753 754 dev = qdev_create(NULL, TYPE_GPEX_HOST); 755 qdev_init_nofail(dev); 756 757 /* Map only the first size_ecam bytes of ECAM space */ 758 ecam_alias = g_new0(MemoryRegion, 1); 759 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 760 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 761 ecam_reg, 0, size_ecam); 762 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 763 764 /* Map the MMIO window into system address space so as to expose 765 * the section of PCI MMIO space which starts at the same base address 766 * (ie 1:1 mapping for that part of PCI MMIO space visible through 767 * the window). 768 */ 769 mmio_alias = g_new0(MemoryRegion, 1); 770 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 771 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 772 mmio_reg, base_mmio, size_mmio); 773 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 774 775 if (use_highmem) { 776 /* Map high MMIO space */ 777 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 778 779 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 780 mmio_reg, base_mmio_high, size_mmio_high); 781 memory_region_add_subregion(get_system_memory(), base_mmio_high, 782 high_mmio_alias); 783 } 784 785 /* Map IO port space */ 786 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 787 788 for (i = 0; i < GPEX_NUM_IRQS; i++) { 789 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 790 } 791 792 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 793 qemu_fdt_add_subnode(vbi->fdt, nodename); 794 qemu_fdt_setprop_string(vbi->fdt, nodename, 795 "compatible", "pci-host-ecam-generic"); 796 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 797 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 798 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 799 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 800 nr_pcie_buses - 1); 801 802 if (vbi->v2m_phandle) { 803 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 804 vbi->v2m_phandle); 805 } 806 807 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 808 2, base_ecam, 2, size_ecam); 809 810 if (use_highmem) { 811 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 812 1, FDT_PCI_RANGE_IOPORT, 2, 0, 813 2, base_pio, 2, size_pio, 814 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 815 2, base_mmio, 2, size_mmio, 816 1, FDT_PCI_RANGE_MMIO_64BIT, 817 2, base_mmio_high, 818 2, base_mmio_high, 2, size_mmio_high); 819 } else { 820 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 821 1, FDT_PCI_RANGE_IOPORT, 2, 0, 822 2, base_pio, 2, size_pio, 823 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 824 2, base_mmio, 2, size_mmio); 825 } 826 827 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 828 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 829 830 g_free(nodename); 831 } 832 833 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 834 { 835 DeviceState *dev; 836 SysBusDevice *s; 837 int i; 838 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 839 MemoryRegion *sysmem = get_system_memory(); 840 841 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 842 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 843 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 844 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 845 846 fdt_params->system_params = &platform_bus_params; 847 fdt_params->binfo = &vbi->bootinfo; 848 fdt_params->intc = "/intc"; 849 /* 850 * register a machine init done notifier that creates the device tree 851 * nodes of the platform bus and its children dynamic sysbus devices 852 */ 853 arm_register_platform_bus_fdt_creator(fdt_params); 854 855 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 856 dev->id = TYPE_PLATFORM_BUS_DEVICE; 857 qdev_prop_set_uint32(dev, "num_irqs", 858 platform_bus_params.platform_bus_num_irqs); 859 qdev_prop_set_uint32(dev, "mmio_size", 860 platform_bus_params.platform_bus_size); 861 qdev_init_nofail(dev); 862 s = SYS_BUS_DEVICE(dev); 863 864 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 865 int irqn = platform_bus_params.platform_bus_first_irq + i; 866 sysbus_connect_irq(s, i, pic[irqn]); 867 } 868 869 memory_region_add_subregion(sysmem, 870 platform_bus_params.platform_bus_base, 871 sysbus_mmio_get_region(s, 0)); 872 } 873 874 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 875 { 876 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 877 878 *fdt_size = board->fdt_size; 879 return board->fdt; 880 } 881 882 static void virt_build_smbios(VirtGuestInfo *guest_info) 883 { 884 FWCfgState *fw_cfg = guest_info->fw_cfg; 885 uint8_t *smbios_tables, *smbios_anchor; 886 size_t smbios_tables_len, smbios_anchor_len; 887 const char *product = "QEMU Virtual Machine"; 888 889 if (!fw_cfg) { 890 return; 891 } 892 893 if (kvm_enabled()) { 894 product = "KVM Virtual Machine"; 895 } 896 897 smbios_set_defaults("QEMU", product, 898 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 899 900 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 901 &smbios_anchor, &smbios_anchor_len); 902 903 if (smbios_anchor) { 904 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 905 smbios_tables, smbios_tables_len); 906 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 907 smbios_anchor, smbios_anchor_len); 908 } 909 } 910 911 static 912 void virt_guest_info_machine_done(Notifier *notifier, void *data) 913 { 914 VirtGuestInfoState *guest_info_state = container_of(notifier, 915 VirtGuestInfoState, machine_done); 916 virt_acpi_setup(&guest_info_state->info); 917 virt_build_smbios(&guest_info_state->info); 918 } 919 920 static void machvirt_init(MachineState *machine) 921 { 922 VirtMachineState *vms = VIRT_MACHINE(machine); 923 qemu_irq pic[NUM_IRQS]; 924 MemoryRegion *sysmem = get_system_memory(); 925 int gic_version = vms->gic_version; 926 int n, max_cpus; 927 MemoryRegion *ram = g_new(MemoryRegion, 1); 928 const char *cpu_model = machine->cpu_model; 929 VirtBoardInfo *vbi; 930 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 931 VirtGuestInfo *guest_info = &guest_info_state->info; 932 char **cpustr; 933 934 if (!cpu_model) { 935 cpu_model = "cortex-a15"; 936 } 937 938 /* We can probe only here because during property set 939 * KVM is not available yet 940 */ 941 if (!gic_version) { 942 gic_version = kvm_arm_vgic_probe(); 943 if (!gic_version) { 944 error_report("Unable to determine GIC version supported by host"); 945 error_printf("KVM acceleration is probably not supported\n"); 946 exit(1); 947 } 948 } 949 950 /* Separate the actual CPU model name from any appended features */ 951 cpustr = g_strsplit(cpu_model, ",", 2); 952 953 vbi = find_machine_info(cpustr[0]); 954 955 if (!vbi) { 956 error_report("mach-virt: CPU %s not supported", cpustr[0]); 957 exit(1); 958 } 959 960 /* The maximum number of CPUs depends on the GIC version, or on how 961 * many redistributors we can fit into the memory map. 962 */ 963 if (gic_version == 3) { 964 max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 965 } else { 966 max_cpus = GIC_NCPU; 967 } 968 969 if (smp_cpus > max_cpus) { 970 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 971 "supported by machine 'mach-virt' (%d)", 972 smp_cpus, max_cpus); 973 exit(1); 974 } 975 976 vbi->smp_cpus = smp_cpus; 977 978 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 979 error_report("mach-virt: cannot model more than 30GB RAM"); 980 exit(1); 981 } 982 983 create_fdt(vbi); 984 985 for (n = 0; n < smp_cpus; n++) { 986 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 987 CPUClass *cc = CPU_CLASS(oc); 988 Object *cpuobj; 989 Error *err = NULL; 990 char *cpuopts = g_strdup(cpustr[1]); 991 992 if (!oc) { 993 error_report("Unable to find CPU definition"); 994 exit(1); 995 } 996 cpuobj = object_new(object_class_get_name(oc)); 997 998 /* Handle any CPU options specified by the user */ 999 cc->parse_features(CPU(cpuobj), cpuopts, &err); 1000 g_free(cpuopts); 1001 if (err) { 1002 error_report_err(err); 1003 exit(1); 1004 } 1005 1006 if (!vms->secure) { 1007 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1008 } 1009 1010 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 1011 NULL); 1012 1013 /* Secondary CPUs start in PSCI powered-down state */ 1014 if (n > 0) { 1015 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 1016 } 1017 1018 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1019 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1020 "reset-cbar", &error_abort); 1021 } 1022 1023 object_property_set_bool(cpuobj, true, "realized", NULL); 1024 } 1025 g_strfreev(cpustr); 1026 fdt_add_timer_nodes(vbi, gic_version); 1027 fdt_add_cpu_nodes(vbi); 1028 fdt_add_psci_node(vbi); 1029 1030 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1031 machine->ram_size); 1032 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1033 1034 create_flash(vbi); 1035 1036 create_gic(vbi, pic, gic_version, vms->secure); 1037 1038 create_uart(vbi, pic); 1039 1040 create_rtc(vbi, pic); 1041 1042 create_pcie(vbi, pic, vms->highmem); 1043 1044 /* Create mmio transports, so the user can create virtio backends 1045 * (which will be automatically plugged in to the transports). If 1046 * no backend is created the transport will just sit harmlessly idle. 1047 */ 1048 create_virtio_devices(vbi, pic); 1049 1050 create_fw_cfg(vbi, &address_space_memory); 1051 rom_set_fw(fw_cfg_find()); 1052 1053 guest_info->smp_cpus = smp_cpus; 1054 guest_info->fw_cfg = fw_cfg_find(); 1055 guest_info->memmap = vbi->memmap; 1056 guest_info->irqmap = vbi->irqmap; 1057 guest_info->use_highmem = vms->highmem; 1058 guest_info->gic_version = gic_version; 1059 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1060 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1061 1062 vbi->bootinfo.ram_size = machine->ram_size; 1063 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1064 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1065 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1066 vbi->bootinfo.nb_cpus = smp_cpus; 1067 vbi->bootinfo.board_id = -1; 1068 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1069 vbi->bootinfo.get_dtb = machvirt_dtb; 1070 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1071 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1072 1073 /* 1074 * arm_load_kernel machine init done notifier registration must 1075 * happen before the platform_bus_create call. In this latter, 1076 * another notifier is registered which adds platform bus nodes. 1077 * Notifiers are executed in registration reverse order. 1078 */ 1079 create_platform_bus(vbi, pic); 1080 } 1081 1082 static bool virt_get_secure(Object *obj, Error **errp) 1083 { 1084 VirtMachineState *vms = VIRT_MACHINE(obj); 1085 1086 return vms->secure; 1087 } 1088 1089 static void virt_set_secure(Object *obj, bool value, Error **errp) 1090 { 1091 VirtMachineState *vms = VIRT_MACHINE(obj); 1092 1093 vms->secure = value; 1094 } 1095 1096 static bool virt_get_highmem(Object *obj, Error **errp) 1097 { 1098 VirtMachineState *vms = VIRT_MACHINE(obj); 1099 1100 return vms->highmem; 1101 } 1102 1103 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1104 { 1105 VirtMachineState *vms = VIRT_MACHINE(obj); 1106 1107 vms->highmem = value; 1108 } 1109 1110 static char *virt_get_gic_version(Object *obj, Error **errp) 1111 { 1112 VirtMachineState *vms = VIRT_MACHINE(obj); 1113 const char *val = vms->gic_version == 3 ? "3" : "2"; 1114 1115 return g_strdup(val); 1116 } 1117 1118 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1119 { 1120 VirtMachineState *vms = VIRT_MACHINE(obj); 1121 1122 if (!strcmp(value, "3")) { 1123 vms->gic_version = 3; 1124 } else if (!strcmp(value, "2")) { 1125 vms->gic_version = 2; 1126 } else if (!strcmp(value, "host")) { 1127 vms->gic_version = 0; /* Will probe later */ 1128 } else { 1129 error_report("Invalid gic-version option value"); 1130 error_printf("Allowed gic-version values are: 3, 2, host\n"); 1131 exit(1); 1132 } 1133 } 1134 1135 static void virt_instance_init(Object *obj) 1136 { 1137 VirtMachineState *vms = VIRT_MACHINE(obj); 1138 1139 /* EL3 is disabled by default on virt: this makes us consistent 1140 * between KVM and TCG for this board, and it also allows us to 1141 * boot UEFI blobs which assume no TrustZone support. 1142 */ 1143 vms->secure = false; 1144 object_property_add_bool(obj, "secure", virt_get_secure, 1145 virt_set_secure, NULL); 1146 object_property_set_description(obj, "secure", 1147 "Set on/off to enable/disable the ARM " 1148 "Security Extensions (TrustZone)", 1149 NULL); 1150 1151 /* High memory is enabled by default */ 1152 vms->highmem = true; 1153 object_property_add_bool(obj, "highmem", virt_get_highmem, 1154 virt_set_highmem, NULL); 1155 object_property_set_description(obj, "highmem", 1156 "Set on/off to enable/disable using " 1157 "physical address space above 32 bits", 1158 NULL); 1159 /* Default GIC type is v2 */ 1160 vms->gic_version = 2; 1161 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1162 virt_set_gic_version, NULL); 1163 object_property_set_description(obj, "gic-version", 1164 "Set GIC version. " 1165 "Valid values are 2, 3 and host", NULL); 1166 } 1167 1168 static void virt_class_init(ObjectClass *oc, void *data) 1169 { 1170 MachineClass *mc = MACHINE_CLASS(oc); 1171 1172 mc->desc = "ARM Virtual Machine", 1173 mc->init = machvirt_init; 1174 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1175 * it later in machvirt_init, where we have more information about the 1176 * configuration of the particular instance. 1177 */ 1178 mc->max_cpus = MAX_CPUMASK_BITS; 1179 mc->has_dynamic_sysbus = true; 1180 mc->block_default_type = IF_VIRTIO; 1181 mc->no_cdrom = 1; 1182 mc->pci_allow_0_address = true; 1183 } 1184 1185 static const TypeInfo machvirt_info = { 1186 .name = TYPE_VIRT_MACHINE, 1187 .parent = TYPE_MACHINE, 1188 .instance_size = sizeof(VirtMachineState), 1189 .instance_init = virt_instance_init, 1190 .class_size = sizeof(VirtMachineClass), 1191 .class_init = virt_class_init, 1192 }; 1193 1194 static void machvirt_machine_init(void) 1195 { 1196 type_register_static(&machvirt_info); 1197 } 1198 1199 machine_init(machvirt_machine_init); 1200