xref: /openbmc/qemu/hw/arm/virt.c (revision 5cc8767d)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/sysemu.h"
48 #include "sysemu/kvm.h"
49 #include "hw/loader.h"
50 #include "exec/address-spaces.h"
51 #include "qemu/bitops.h"
52 #include "qemu/error-report.h"
53 #include "qemu/module.h"
54 #include "hw/pci-host/gpex.h"
55 #include "hw/arm/sysbus-fdt.h"
56 #include "hw/platform-bus.h"
57 #include "hw/arm/fdt.h"
58 #include "hw/intc/arm_gic.h"
59 #include "hw/intc/arm_gicv3_common.h"
60 #include "kvm_arm.h"
61 #include "hw/firmware/smbios.h"
62 #include "qapi/visitor.h"
63 #include "standard-headers/linux/input.h"
64 #include "hw/arm/smmuv3.h"
65 #include "hw/acpi/acpi.h"
66 #include "target/arm/internals.h"
67 
68 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
69     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
70                                                     void *data) \
71     { \
72         MachineClass *mc = MACHINE_CLASS(oc); \
73         virt_machine_##major##_##minor##_options(mc); \
74         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
75         if (latest) { \
76             mc->alias = "virt"; \
77         } \
78     } \
79     static const TypeInfo machvirt_##major##_##minor##_info = { \
80         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
81         .parent = TYPE_VIRT_MACHINE, \
82         .class_init = virt_##major##_##minor##_class_init, \
83     }; \
84     static void machvirt_machine_##major##_##minor##_init(void) \
85     { \
86         type_register_static(&machvirt_##major##_##minor##_info); \
87     } \
88     type_init(machvirt_machine_##major##_##minor##_init);
89 
90 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
91     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
92 #define DEFINE_VIRT_MACHINE(major, minor) \
93     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
94 
95 
96 /* Number of external interrupt lines to configure the GIC with */
97 #define NUM_IRQS 256
98 
99 #define PLATFORM_BUS_NUM_IRQS 64
100 
101 /* Legacy RAM limit in GB (< version 4.0) */
102 #define LEGACY_RAMLIMIT_GB 255
103 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
104 
105 /* Addresses and sizes of our components.
106  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
107  * 128MB..256MB is used for miscellaneous device I/O.
108  * 256MB..1GB is reserved for possible future PCI support (ie where the
109  * PCI memory window will go if we add a PCI host controller).
110  * 1GB and up is RAM (which may happily spill over into the
111  * high memory region beyond 4GB).
112  * This represents a compromise between how much RAM can be given to
113  * a 32 bit VM and leaving space for expansion and in particular for PCI.
114  * Note that devices should generally be placed at multiples of 0x10000,
115  * to accommodate guests using 64K pages.
116  */
117 static const MemMapEntry base_memmap[] = {
118     /* Space up to 0x8000000 is reserved for a boot ROM */
119     [VIRT_FLASH] =              {          0, 0x08000000 },
120     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
121     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
122     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
123     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
124     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
125     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
126     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
127     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
128     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
129     /* This redistributor space allows up to 2*64kB*123 CPUs */
130     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
131     [VIRT_UART] =               { 0x09000000, 0x00001000 },
132     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
133     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
134     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
135     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
136     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
137     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
138     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
139     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
140     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
141     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
142     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
143     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
144     /* Actual RAM size depends on initial RAM and device memory settings */
145     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
146 };
147 
148 /*
149  * Highmem IO Regions: This memory map is floating, located after the RAM.
150  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
151  * top of the RAM, so that its base get the same alignment as the size,
152  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
153  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
154  * Note the extended_memmap is sized so that it eventually also includes the
155  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
156  * index of base_memmap).
157  */
158 static MemMapEntry extended_memmap[] = {
159     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
160     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
161     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
162     /* Second PCIe window */
163     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
164 };
165 
166 static const int a15irqmap[] = {
167     [VIRT_UART] = 1,
168     [VIRT_RTC] = 2,
169     [VIRT_PCIE] = 3, /* ... to 6 */
170     [VIRT_GPIO] = 7,
171     [VIRT_SECURE_UART] = 8,
172     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
173     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
174     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
175     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
176 };
177 
178 static const char *valid_cpus[] = {
179     ARM_CPU_TYPE_NAME("cortex-a7"),
180     ARM_CPU_TYPE_NAME("cortex-a15"),
181     ARM_CPU_TYPE_NAME("cortex-a53"),
182     ARM_CPU_TYPE_NAME("cortex-a57"),
183     ARM_CPU_TYPE_NAME("cortex-a72"),
184     ARM_CPU_TYPE_NAME("host"),
185     ARM_CPU_TYPE_NAME("max"),
186 };
187 
188 static bool cpu_type_valid(const char *cpu)
189 {
190     int i;
191 
192     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
193         if (strcmp(cpu, valid_cpus[i]) == 0) {
194             return true;
195         }
196     }
197     return false;
198 }
199 
200 static void create_fdt(VirtMachineState *vms)
201 {
202     void *fdt = create_device_tree(&vms->fdt_size);
203 
204     if (!fdt) {
205         error_report("create_device_tree() failed");
206         exit(1);
207     }
208 
209     vms->fdt = fdt;
210 
211     /* Header */
212     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
213     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
214     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
215 
216     /* /chosen must exist for load_dtb to fill in necessary properties later */
217     qemu_fdt_add_subnode(fdt, "/chosen");
218 
219     /* Clock node, for the benefit of the UART. The kernel device tree
220      * binding documentation claims the PL011 node clock properties are
221      * optional but in practice if you omit them the kernel refuses to
222      * probe for the device.
223      */
224     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
225     qemu_fdt_add_subnode(fdt, "/apb-pclk");
226     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
227     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
228     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
229     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
230                                 "clk24mhz");
231     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
232 
233     if (have_numa_distance) {
234         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
235         uint32_t *matrix = g_malloc0(size);
236         int idx, i, j;
237 
238         for (i = 0; i < nb_numa_nodes; i++) {
239             for (j = 0; j < nb_numa_nodes; j++) {
240                 idx = (i * nb_numa_nodes + j) * 3;
241                 matrix[idx + 0] = cpu_to_be32(i);
242                 matrix[idx + 1] = cpu_to_be32(j);
243                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
244             }
245         }
246 
247         qemu_fdt_add_subnode(fdt, "/distance-map");
248         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
249                                 "numa-distance-map-v1");
250         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
251                          matrix, size);
252         g_free(matrix);
253     }
254 }
255 
256 static void fdt_add_timer_nodes(const VirtMachineState *vms)
257 {
258     /* On real hardware these interrupts are level-triggered.
259      * On KVM they were edge-triggered before host kernel version 4.4,
260      * and level-triggered afterwards.
261      * On emulated QEMU they are level-triggered.
262      *
263      * Getting the DTB info about them wrong is awkward for some
264      * guest kernels:
265      *  pre-4.8 ignore the DT and leave the interrupt configured
266      *   with whatever the GIC reset value (or the bootloader) left it at
267      *  4.8 before rc6 honour the incorrect data by programming it back
268      *   into the GIC, causing problems
269      *  4.8rc6 and later ignore the DT and always write "level triggered"
270      *   into the GIC
271      *
272      * For backwards-compatibility, virt-2.8 and earlier will continue
273      * to say these are edge-triggered, but later machines will report
274      * the correct information.
275      */
276     ARMCPU *armcpu;
277     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
278     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
279 
280     if (vmc->claim_edge_triggered_timers) {
281         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
282     }
283 
284     if (vms->gic_version == 2) {
285         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
286                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
287                              (1 << vms->smp_cpus) - 1);
288     }
289 
290     qemu_fdt_add_subnode(vms->fdt, "/timer");
291 
292     armcpu = ARM_CPU(qemu_get_cpu(0));
293     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
294         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
295         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
296                          compat, sizeof(compat));
297     } else {
298         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
299                                 "arm,armv7-timer");
300     }
301     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
302     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
303                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
304                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
305                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
306                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
307 }
308 
309 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
310 {
311     int cpu;
312     int addr_cells = 1;
313     const MachineState *ms = MACHINE(vms);
314 
315     /*
316      * From Documentation/devicetree/bindings/arm/cpus.txt
317      *  On ARM v8 64-bit systems value should be set to 2,
318      *  that corresponds to the MPIDR_EL1 register size.
319      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
320      *  in the system, #address-cells can be set to 1, since
321      *  MPIDR_EL1[63:32] bits are not used for CPUs
322      *  identification.
323      *
324      *  Here we actually don't know whether our system is 32- or 64-bit one.
325      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
326      *  at least one of them has Aff3 populated, we set #address-cells to 2.
327      */
328     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
329         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
330 
331         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
332             addr_cells = 2;
333             break;
334         }
335     }
336 
337     qemu_fdt_add_subnode(vms->fdt, "/cpus");
338     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
339     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
340 
341     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
342         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
343         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
344         CPUState *cs = CPU(armcpu);
345 
346         qemu_fdt_add_subnode(vms->fdt, nodename);
347         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
348         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
349                                     armcpu->dtb_compatible);
350 
351         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
352             && vms->smp_cpus > 1) {
353             qemu_fdt_setprop_string(vms->fdt, nodename,
354                                         "enable-method", "psci");
355         }
356 
357         if (addr_cells == 2) {
358             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
359                                  armcpu->mp_affinity);
360         } else {
361             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
362                                   armcpu->mp_affinity);
363         }
364 
365         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
366             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
367                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
368         }
369 
370         g_free(nodename);
371     }
372 }
373 
374 static void fdt_add_its_gic_node(VirtMachineState *vms)
375 {
376     char *nodename;
377 
378     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
379     nodename = g_strdup_printf("/intc/its@%" PRIx64,
380                                vms->memmap[VIRT_GIC_ITS].base);
381     qemu_fdt_add_subnode(vms->fdt, nodename);
382     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
383                             "arm,gic-v3-its");
384     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
385     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
386                                  2, vms->memmap[VIRT_GIC_ITS].base,
387                                  2, vms->memmap[VIRT_GIC_ITS].size);
388     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
389     g_free(nodename);
390 }
391 
392 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
393 {
394     char *nodename;
395 
396     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
397                                vms->memmap[VIRT_GIC_V2M].base);
398     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
399     qemu_fdt_add_subnode(vms->fdt, nodename);
400     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
401                             "arm,gic-v2m-frame");
402     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
403     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
404                                  2, vms->memmap[VIRT_GIC_V2M].base,
405                                  2, vms->memmap[VIRT_GIC_V2M].size);
406     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
407     g_free(nodename);
408 }
409 
410 static void fdt_add_gic_node(VirtMachineState *vms)
411 {
412     char *nodename;
413 
414     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
415     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
416 
417     nodename = g_strdup_printf("/intc@%" PRIx64,
418                                vms->memmap[VIRT_GIC_DIST].base);
419     qemu_fdt_add_subnode(vms->fdt, nodename);
420     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
421     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
422     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
423     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
424     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
425     if (vms->gic_version == 3) {
426         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
427 
428         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
429                                 "arm,gic-v3");
430 
431         qemu_fdt_setprop_cell(vms->fdt, nodename,
432                               "#redistributor-regions", nb_redist_regions);
433 
434         if (nb_redist_regions == 1) {
435             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
436                                          2, vms->memmap[VIRT_GIC_DIST].base,
437                                          2, vms->memmap[VIRT_GIC_DIST].size,
438                                          2, vms->memmap[VIRT_GIC_REDIST].base,
439                                          2, vms->memmap[VIRT_GIC_REDIST].size);
440         } else {
441             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
442                                  2, vms->memmap[VIRT_GIC_DIST].base,
443                                  2, vms->memmap[VIRT_GIC_DIST].size,
444                                  2, vms->memmap[VIRT_GIC_REDIST].base,
445                                  2, vms->memmap[VIRT_GIC_REDIST].size,
446                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
447                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
448         }
449 
450         if (vms->virt) {
451             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
452                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
453                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
454         }
455     } else {
456         /* 'cortex-a15-gic' means 'GIC v2' */
457         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
458                                 "arm,cortex-a15-gic");
459         if (!vms->virt) {
460             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
461                                          2, vms->memmap[VIRT_GIC_DIST].base,
462                                          2, vms->memmap[VIRT_GIC_DIST].size,
463                                          2, vms->memmap[VIRT_GIC_CPU].base,
464                                          2, vms->memmap[VIRT_GIC_CPU].size);
465         } else {
466             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
467                                          2, vms->memmap[VIRT_GIC_DIST].base,
468                                          2, vms->memmap[VIRT_GIC_DIST].size,
469                                          2, vms->memmap[VIRT_GIC_CPU].base,
470                                          2, vms->memmap[VIRT_GIC_CPU].size,
471                                          2, vms->memmap[VIRT_GIC_HYP].base,
472                                          2, vms->memmap[VIRT_GIC_HYP].size,
473                                          2, vms->memmap[VIRT_GIC_VCPU].base,
474                                          2, vms->memmap[VIRT_GIC_VCPU].size);
475             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
476                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
477                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
478         }
479     }
480 
481     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
482     g_free(nodename);
483 }
484 
485 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
486 {
487     CPUState *cpu;
488     ARMCPU *armcpu;
489     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
490 
491     CPU_FOREACH(cpu) {
492         armcpu = ARM_CPU(cpu);
493         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
494             return;
495         }
496         if (kvm_enabled()) {
497             if (kvm_irqchip_in_kernel()) {
498                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
499             }
500             kvm_arm_pmu_init(cpu);
501         }
502     }
503 
504     if (vms->gic_version == 2) {
505         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
506                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
507                              (1 << vms->smp_cpus) - 1);
508     }
509 
510     armcpu = ARM_CPU(qemu_get_cpu(0));
511     qemu_fdt_add_subnode(vms->fdt, "/pmu");
512     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
513         const char compat[] = "arm,armv8-pmuv3";
514         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
515                          compat, sizeof(compat));
516         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
517                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
518     }
519 }
520 
521 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
522 {
523     const char *itsclass = its_class_name();
524     DeviceState *dev;
525 
526     if (!itsclass) {
527         /* Do nothing if not supported */
528         return;
529     }
530 
531     dev = qdev_create(NULL, itsclass);
532 
533     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
534                              &error_abort);
535     qdev_init_nofail(dev);
536     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
537 
538     fdt_add_its_gic_node(vms);
539 }
540 
541 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
542 {
543     int i;
544     int irq = vms->irqmap[VIRT_GIC_V2M];
545     DeviceState *dev;
546 
547     dev = qdev_create(NULL, "arm-gicv2m");
548     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
549     qdev_prop_set_uint32(dev, "base-spi", irq);
550     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
551     qdev_init_nofail(dev);
552 
553     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
554         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
555     }
556 
557     fdt_add_v2m_gic_node(vms);
558 }
559 
560 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
561 {
562     /* We create a standalone GIC */
563     DeviceState *gicdev;
564     SysBusDevice *gicbusdev;
565     const char *gictype;
566     int type = vms->gic_version, i;
567     uint32_t nb_redist_regions = 0;
568 
569     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
570 
571     gicdev = qdev_create(NULL, gictype);
572     qdev_prop_set_uint32(gicdev, "revision", type);
573     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
574     /* Note that the num-irq property counts both internal and external
575      * interrupts; there are always 32 of the former (mandated by GIC spec).
576      */
577     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
578     if (!kvm_irqchip_in_kernel()) {
579         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
580     }
581 
582     if (type == 3) {
583         uint32_t redist0_capacity =
584                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
585         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
586 
587         nb_redist_regions = virt_gicv3_redist_region_count(vms);
588 
589         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
590                              nb_redist_regions);
591         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
592 
593         if (nb_redist_regions == 2) {
594             uint32_t redist1_capacity =
595                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
596 
597             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
598                 MIN(smp_cpus - redist0_count, redist1_capacity));
599         }
600     } else {
601         if (!kvm_irqchip_in_kernel()) {
602             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
603                               vms->virt);
604         }
605     }
606     qdev_init_nofail(gicdev);
607     gicbusdev = SYS_BUS_DEVICE(gicdev);
608     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
609     if (type == 3) {
610         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
611         if (nb_redist_regions == 2) {
612             sysbus_mmio_map(gicbusdev, 2,
613                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
614         }
615     } else {
616         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
617         if (vms->virt) {
618             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
619             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
620         }
621     }
622 
623     /* Wire the outputs from each CPU's generic timer and the GICv3
624      * maintenance interrupt signal to the appropriate GIC PPI inputs,
625      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
626      */
627     for (i = 0; i < smp_cpus; i++) {
628         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
629         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
630         int irq;
631         /* Mapping from the output timer irq lines from the CPU to the
632          * GIC PPI inputs we use for the virt board.
633          */
634         const int timer_irq[] = {
635             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
636             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
637             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
638             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
639         };
640 
641         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
642             qdev_connect_gpio_out(cpudev, irq,
643                                   qdev_get_gpio_in(gicdev,
644                                                    ppibase + timer_irq[irq]));
645         }
646 
647         if (type == 3) {
648             qemu_irq irq = qdev_get_gpio_in(gicdev,
649                                             ppibase + ARCH_GIC_MAINT_IRQ);
650             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
651                                         0, irq);
652         } else if (vms->virt) {
653             qemu_irq irq = qdev_get_gpio_in(gicdev,
654                                             ppibase + ARCH_GIC_MAINT_IRQ);
655             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
656         }
657 
658         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
659                                     qdev_get_gpio_in(gicdev, ppibase
660                                                      + VIRTUAL_PMU_IRQ));
661 
662         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
663         sysbus_connect_irq(gicbusdev, i + smp_cpus,
664                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
665         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
666                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
667         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
668                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
669     }
670 
671     for (i = 0; i < NUM_IRQS; i++) {
672         pic[i] = qdev_get_gpio_in(gicdev, i);
673     }
674 
675     fdt_add_gic_node(vms);
676 
677     if (type == 3 && vms->its) {
678         create_its(vms, gicdev);
679     } else if (type == 2) {
680         create_v2m(vms, pic);
681     }
682 }
683 
684 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
685                         MemoryRegion *mem, Chardev *chr)
686 {
687     char *nodename;
688     hwaddr base = vms->memmap[uart].base;
689     hwaddr size = vms->memmap[uart].size;
690     int irq = vms->irqmap[uart];
691     const char compat[] = "arm,pl011\0arm,primecell";
692     const char clocknames[] = "uartclk\0apb_pclk";
693     DeviceState *dev = qdev_create(NULL, "pl011");
694     SysBusDevice *s = SYS_BUS_DEVICE(dev);
695 
696     qdev_prop_set_chr(dev, "chardev", chr);
697     qdev_init_nofail(dev);
698     memory_region_add_subregion(mem, base,
699                                 sysbus_mmio_get_region(s, 0));
700     sysbus_connect_irq(s, 0, pic[irq]);
701 
702     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
703     qemu_fdt_add_subnode(vms->fdt, nodename);
704     /* Note that we can't use setprop_string because of the embedded NUL */
705     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
706                          compat, sizeof(compat));
707     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
708                                      2, base, 2, size);
709     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
710                                GIC_FDT_IRQ_TYPE_SPI, irq,
711                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
712     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
713                                vms->clock_phandle, vms->clock_phandle);
714     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
715                          clocknames, sizeof(clocknames));
716 
717     if (uart == VIRT_UART) {
718         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
719     } else {
720         /* Mark as not usable by the normal world */
721         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
722         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
723 
724         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
725         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
726                                 nodename);
727     }
728 
729     g_free(nodename);
730 }
731 
732 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
733 {
734     char *nodename;
735     hwaddr base = vms->memmap[VIRT_RTC].base;
736     hwaddr size = vms->memmap[VIRT_RTC].size;
737     int irq = vms->irqmap[VIRT_RTC];
738     const char compat[] = "arm,pl031\0arm,primecell";
739 
740     sysbus_create_simple("pl031", base, pic[irq]);
741 
742     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
743     qemu_fdt_add_subnode(vms->fdt, nodename);
744     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
745     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
746                                  2, base, 2, size);
747     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
748                            GIC_FDT_IRQ_TYPE_SPI, irq,
749                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
750     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
751     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
752     g_free(nodename);
753 }
754 
755 static DeviceState *gpio_key_dev;
756 static void virt_powerdown_req(Notifier *n, void *opaque)
757 {
758     /* use gpio Pin 3 for power button event */
759     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
760 }
761 
762 static Notifier virt_system_powerdown_notifier = {
763     .notify = virt_powerdown_req
764 };
765 
766 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
767 {
768     char *nodename;
769     DeviceState *pl061_dev;
770     hwaddr base = vms->memmap[VIRT_GPIO].base;
771     hwaddr size = vms->memmap[VIRT_GPIO].size;
772     int irq = vms->irqmap[VIRT_GPIO];
773     const char compat[] = "arm,pl061\0arm,primecell";
774 
775     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
776 
777     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
778     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
779     qemu_fdt_add_subnode(vms->fdt, nodename);
780     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
781                                  2, base, 2, size);
782     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
783     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
784     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
785     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
786                            GIC_FDT_IRQ_TYPE_SPI, irq,
787                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
788     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
789     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
790     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
791 
792     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
793                                         qdev_get_gpio_in(pl061_dev, 3));
794     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
795     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
796     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
797     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
798 
799     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
800     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
801                             "label", "GPIO Key Poweroff");
802     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
803                           KEY_POWER);
804     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
805                            "gpios", phandle, 3, 0);
806 
807     /* connect powerdown request */
808     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
809 
810     g_free(nodename);
811 }
812 
813 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
814 {
815     int i;
816     hwaddr size = vms->memmap[VIRT_MMIO].size;
817 
818     /* We create the transports in forwards order. Since qbus_realize()
819      * prepends (not appends) new child buses, the incrementing loop below will
820      * create a list of virtio-mmio buses with decreasing base addresses.
821      *
822      * When a -device option is processed from the command line,
823      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
824      * order. The upshot is that -device options in increasing command line
825      * order are mapped to virtio-mmio buses with decreasing base addresses.
826      *
827      * When this code was originally written, that arrangement ensured that the
828      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
829      * the first -device on the command line. (The end-to-end order is a
830      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
831      * guest kernel's name-to-address assignment strategy.)
832      *
833      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
834      * the message, if not necessarily the code, of commit 70161ff336.
835      * Therefore the loop now establishes the inverse of the original intent.
836      *
837      * Unfortunately, we can't counteract the kernel change by reversing the
838      * loop; it would break existing command lines.
839      *
840      * In any case, the kernel makes no guarantee about the stability of
841      * enumeration order of virtio devices (as demonstrated by it changing
842      * between kernel versions). For reliable and stable identification
843      * of disks users must use UUIDs or similar mechanisms.
844      */
845     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
846         int irq = vms->irqmap[VIRT_MMIO] + i;
847         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
848 
849         sysbus_create_simple("virtio-mmio", base, pic[irq]);
850     }
851 
852     /* We add dtb nodes in reverse order so that they appear in the finished
853      * device tree lowest address first.
854      *
855      * Note that this mapping is independent of the loop above. The previous
856      * loop influences virtio device to virtio transport assignment, whereas
857      * this loop controls how virtio transports are laid out in the dtb.
858      */
859     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
860         char *nodename;
861         int irq = vms->irqmap[VIRT_MMIO] + i;
862         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
863 
864         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
865         qemu_fdt_add_subnode(vms->fdt, nodename);
866         qemu_fdt_setprop_string(vms->fdt, nodename,
867                                 "compatible", "virtio,mmio");
868         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
869                                      2, base, 2, size);
870         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
871                                GIC_FDT_IRQ_TYPE_SPI, irq,
872                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
873         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
874         g_free(nodename);
875     }
876 }
877 
878 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
879 
880 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
881                                         const char *name,
882                                         const char *alias_prop_name)
883 {
884     /*
885      * Create a single flash device.  We use the same parameters as
886      * the flash devices on the Versatile Express board.
887      */
888     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
889 
890     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
891     qdev_prop_set_uint8(dev, "width", 4);
892     qdev_prop_set_uint8(dev, "device-width", 2);
893     qdev_prop_set_bit(dev, "big-endian", false);
894     qdev_prop_set_uint16(dev, "id0", 0x89);
895     qdev_prop_set_uint16(dev, "id1", 0x18);
896     qdev_prop_set_uint16(dev, "id2", 0x00);
897     qdev_prop_set_uint16(dev, "id3", 0x00);
898     qdev_prop_set_string(dev, "name", name);
899     object_property_add_child(OBJECT(vms), name, OBJECT(dev),
900                               &error_abort);
901     object_property_add_alias(OBJECT(vms), alias_prop_name,
902                               OBJECT(dev), "drive", &error_abort);
903     return PFLASH_CFI01(dev);
904 }
905 
906 static void virt_flash_create(VirtMachineState *vms)
907 {
908     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
909     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
910 }
911 
912 static void virt_flash_map1(PFlashCFI01 *flash,
913                             hwaddr base, hwaddr size,
914                             MemoryRegion *sysmem)
915 {
916     DeviceState *dev = DEVICE(flash);
917 
918     assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
919     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
920     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
921     qdev_init_nofail(dev);
922 
923     memory_region_add_subregion(sysmem, base,
924                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
925                                                        0));
926 }
927 
928 static void virt_flash_map(VirtMachineState *vms,
929                            MemoryRegion *sysmem,
930                            MemoryRegion *secure_sysmem)
931 {
932     /*
933      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
934      * sysmem is the system memory space. secure_sysmem is the secure view
935      * of the system, and the first flash device should be made visible only
936      * there. The second flash device is visible to both secure and nonsecure.
937      * If sysmem == secure_sysmem this means there is no separate Secure
938      * address space and both flash devices are generally visible.
939      */
940     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
941     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
942 
943     virt_flash_map1(vms->flash[0], flashbase, flashsize,
944                     secure_sysmem);
945     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
946                     sysmem);
947 }
948 
949 static void virt_flash_fdt(VirtMachineState *vms,
950                            MemoryRegion *sysmem,
951                            MemoryRegion *secure_sysmem)
952 {
953     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
954     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
955     char *nodename;
956 
957     if (sysmem == secure_sysmem) {
958         /* Report both flash devices as a single node in the DT */
959         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
960         qemu_fdt_add_subnode(vms->fdt, nodename);
961         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
962         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
963                                      2, flashbase, 2, flashsize,
964                                      2, flashbase + flashsize, 2, flashsize);
965         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
966         g_free(nodename);
967     } else {
968         /*
969          * Report the devices as separate nodes so we can mark one as
970          * only visible to the secure world.
971          */
972         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
973         qemu_fdt_add_subnode(vms->fdt, nodename);
974         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
975         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
976                                      2, flashbase, 2, flashsize);
977         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
978         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
979         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
980         g_free(nodename);
981 
982         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
983         qemu_fdt_add_subnode(vms->fdt, nodename);
984         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
985         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
986                                      2, flashbase + flashsize, 2, flashsize);
987         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
988         g_free(nodename);
989     }
990 }
991 
992 static bool virt_firmware_init(VirtMachineState *vms,
993                                MemoryRegion *sysmem,
994                                MemoryRegion *secure_sysmem)
995 {
996     int i;
997     BlockBackend *pflash_blk0;
998 
999     /* Map legacy -drive if=pflash to machine properties */
1000     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1001         pflash_cfi01_legacy_drive(vms->flash[i],
1002                                   drive_get(IF_PFLASH, 0, i));
1003     }
1004 
1005     virt_flash_map(vms, sysmem, secure_sysmem);
1006 
1007     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1008 
1009     if (bios_name) {
1010         char *fname;
1011         MemoryRegion *mr;
1012         int image_size;
1013 
1014         if (pflash_blk0) {
1015             error_report("The contents of the first flash device may be "
1016                          "specified with -bios or with -drive if=pflash... "
1017                          "but you cannot use both options at once");
1018             exit(1);
1019         }
1020 
1021         /* Fall back to -bios */
1022 
1023         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1024         if (!fname) {
1025             error_report("Could not find ROM image '%s'", bios_name);
1026             exit(1);
1027         }
1028         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1029         image_size = load_image_mr(fname, mr);
1030         g_free(fname);
1031         if (image_size < 0) {
1032             error_report("Could not load ROM image '%s'", bios_name);
1033             exit(1);
1034         }
1035     }
1036 
1037     return pflash_blk0 || bios_name;
1038 }
1039 
1040 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1041 {
1042     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1043     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1044     FWCfgState *fw_cfg;
1045     char *nodename;
1046 
1047     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1048     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1049 
1050     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1051     qemu_fdt_add_subnode(vms->fdt, nodename);
1052     qemu_fdt_setprop_string(vms->fdt, nodename,
1053                             "compatible", "qemu,fw-cfg-mmio");
1054     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1055                                  2, base, 2, size);
1056     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1057     g_free(nodename);
1058     return fw_cfg;
1059 }
1060 
1061 static void create_pcie_irq_map(const VirtMachineState *vms,
1062                                 uint32_t gic_phandle,
1063                                 int first_irq, const char *nodename)
1064 {
1065     int devfn, pin;
1066     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1067     uint32_t *irq_map = full_irq_map;
1068 
1069     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1070         for (pin = 0; pin < 4; pin++) {
1071             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1072             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1073             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1074             int i;
1075 
1076             uint32_t map[] = {
1077                 devfn << 8, 0, 0,                           /* devfn */
1078                 pin + 1,                                    /* PCI pin */
1079                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1080 
1081             /* Convert map to big endian */
1082             for (i = 0; i < 10; i++) {
1083                 irq_map[i] = cpu_to_be32(map[i]);
1084             }
1085             irq_map += 10;
1086         }
1087     }
1088 
1089     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1090                      full_irq_map, sizeof(full_irq_map));
1091 
1092     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1093                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1094                            0x7           /* PCI irq */);
1095 }
1096 
1097 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1098                         PCIBus *bus)
1099 {
1100     char *node;
1101     const char compat[] = "arm,smmu-v3";
1102     int irq =  vms->irqmap[VIRT_SMMU];
1103     int i;
1104     hwaddr base = vms->memmap[VIRT_SMMU].base;
1105     hwaddr size = vms->memmap[VIRT_SMMU].size;
1106     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1107     DeviceState *dev;
1108 
1109     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1110         return;
1111     }
1112 
1113     dev = qdev_create(NULL, "arm-smmuv3");
1114 
1115     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1116                              &error_abort);
1117     qdev_init_nofail(dev);
1118     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1119     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1120         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1121     }
1122 
1123     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1124     qemu_fdt_add_subnode(vms->fdt, node);
1125     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1126     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1127 
1128     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1129             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1130             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1131             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1132             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1133 
1134     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1135                      sizeof(irq_names));
1136 
1137     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1138     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1139     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1140 
1141     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1142 
1143     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1144     g_free(node);
1145 }
1146 
1147 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1148 {
1149     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1150     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1151     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1152     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1153     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1154     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1155     hwaddr base_ecam, size_ecam;
1156     hwaddr base = base_mmio;
1157     int nr_pcie_buses;
1158     int irq = vms->irqmap[VIRT_PCIE];
1159     MemoryRegion *mmio_alias;
1160     MemoryRegion *mmio_reg;
1161     MemoryRegion *ecam_alias;
1162     MemoryRegion *ecam_reg;
1163     DeviceState *dev;
1164     char *nodename;
1165     int i, ecam_id;
1166     PCIHostState *pci;
1167 
1168     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1169     qdev_init_nofail(dev);
1170 
1171     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1172     base_ecam = vms->memmap[ecam_id].base;
1173     size_ecam = vms->memmap[ecam_id].size;
1174     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1175     /* Map only the first size_ecam bytes of ECAM space */
1176     ecam_alias = g_new0(MemoryRegion, 1);
1177     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1178     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1179                              ecam_reg, 0, size_ecam);
1180     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1181 
1182     /* Map the MMIO window into system address space so as to expose
1183      * the section of PCI MMIO space which starts at the same base address
1184      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1185      * the window).
1186      */
1187     mmio_alias = g_new0(MemoryRegion, 1);
1188     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1189     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1190                              mmio_reg, base_mmio, size_mmio);
1191     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1192 
1193     if (vms->highmem) {
1194         /* Map high MMIO space */
1195         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1196 
1197         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1198                                  mmio_reg, base_mmio_high, size_mmio_high);
1199         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1200                                     high_mmio_alias);
1201     }
1202 
1203     /* Map IO port space */
1204     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1205 
1206     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1207         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1208         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1209     }
1210 
1211     pci = PCI_HOST_BRIDGE(dev);
1212     if (pci->bus) {
1213         for (i = 0; i < nb_nics; i++) {
1214             NICInfo *nd = &nd_table[i];
1215 
1216             if (!nd->model) {
1217                 nd->model = g_strdup("virtio");
1218             }
1219 
1220             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1221         }
1222     }
1223 
1224     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1225     qemu_fdt_add_subnode(vms->fdt, nodename);
1226     qemu_fdt_setprop_string(vms->fdt, nodename,
1227                             "compatible", "pci-host-ecam-generic");
1228     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1229     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1230     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1231     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1232     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1233                            nr_pcie_buses - 1);
1234     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1235 
1236     if (vms->msi_phandle) {
1237         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1238                                vms->msi_phandle);
1239     }
1240 
1241     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1242                                  2, base_ecam, 2, size_ecam);
1243 
1244     if (vms->highmem) {
1245         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1246                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1247                                      2, base_pio, 2, size_pio,
1248                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1249                                      2, base_mmio, 2, size_mmio,
1250                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1251                                      2, base_mmio_high,
1252                                      2, base_mmio_high, 2, size_mmio_high);
1253     } else {
1254         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1255                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1256                                      2, base_pio, 2, size_pio,
1257                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1258                                      2, base_mmio, 2, size_mmio);
1259     }
1260 
1261     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1262     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1263 
1264     if (vms->iommu) {
1265         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1266 
1267         create_smmu(vms, pic, pci->bus);
1268 
1269         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1270                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1271     }
1272 
1273     g_free(nodename);
1274 }
1275 
1276 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1277 {
1278     DeviceState *dev;
1279     SysBusDevice *s;
1280     int i;
1281     MemoryRegion *sysmem = get_system_memory();
1282 
1283     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1284     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1285     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1286     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1287     qdev_init_nofail(dev);
1288     vms->platform_bus_dev = dev;
1289 
1290     s = SYS_BUS_DEVICE(dev);
1291     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1292         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1293         sysbus_connect_irq(s, i, pic[irqn]);
1294     }
1295 
1296     memory_region_add_subregion(sysmem,
1297                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1298                                 sysbus_mmio_get_region(s, 0));
1299 }
1300 
1301 static void create_secure_ram(VirtMachineState *vms,
1302                               MemoryRegion *secure_sysmem)
1303 {
1304     MemoryRegion *secram = g_new(MemoryRegion, 1);
1305     char *nodename;
1306     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1307     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1308 
1309     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1310                            &error_fatal);
1311     memory_region_add_subregion(secure_sysmem, base, secram);
1312 
1313     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1314     qemu_fdt_add_subnode(vms->fdt, nodename);
1315     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1316     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1317     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1318     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1319 
1320     g_free(nodename);
1321 }
1322 
1323 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1324 {
1325     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1326                                                  bootinfo);
1327 
1328     *fdt_size = board->fdt_size;
1329     return board->fdt;
1330 }
1331 
1332 static void virt_build_smbios(VirtMachineState *vms)
1333 {
1334     MachineClass *mc = MACHINE_GET_CLASS(vms);
1335     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1336     uint8_t *smbios_tables, *smbios_anchor;
1337     size_t smbios_tables_len, smbios_anchor_len;
1338     const char *product = "QEMU Virtual Machine";
1339 
1340     if (kvm_enabled()) {
1341         product = "KVM Virtual Machine";
1342     }
1343 
1344     smbios_set_defaults("QEMU", product,
1345                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1346                         true, SMBIOS_ENTRY_POINT_30);
1347 
1348     smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1349                       &smbios_anchor, &smbios_anchor_len);
1350 
1351     if (smbios_anchor) {
1352         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1353                         smbios_tables, smbios_tables_len);
1354         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1355                         smbios_anchor, smbios_anchor_len);
1356     }
1357 }
1358 
1359 static
1360 void virt_machine_done(Notifier *notifier, void *data)
1361 {
1362     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1363                                          machine_done);
1364     ARMCPU *cpu = ARM_CPU(first_cpu);
1365     struct arm_boot_info *info = &vms->bootinfo;
1366     AddressSpace *as = arm_boot_address_space(cpu, info);
1367 
1368     /*
1369      * If the user provided a dtb, we assume the dynamic sysbus nodes
1370      * already are integrated there. This corresponds to a use case where
1371      * the dynamic sysbus nodes are complex and their generation is not yet
1372      * supported. In that case the user can take charge of the guest dt
1373      * while qemu takes charge of the qom stuff.
1374      */
1375     if (info->dtb_filename == NULL) {
1376         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1377                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1378                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1379                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1380     }
1381     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1382         exit(1);
1383     }
1384 
1385     virt_acpi_setup(vms);
1386     virt_build_smbios(vms);
1387 }
1388 
1389 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1390 {
1391     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1392     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1393 
1394     if (!vmc->disallow_affinity_adjustment) {
1395         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1396          * GIC's target-list limitations. 32-bit KVM hosts currently
1397          * always create clusters of 4 CPUs, but that is expected to
1398          * change when they gain support for gicv3. When KVM is enabled
1399          * it will override the changes we make here, therefore our
1400          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1401          * and to improve SGI efficiency.
1402          */
1403         if (vms->gic_version == 3) {
1404             clustersz = GICV3_TARGETLIST_BITS;
1405         } else {
1406             clustersz = GIC_TARGETLIST_BITS;
1407         }
1408     }
1409     return arm_cpu_mp_affinity(idx, clustersz);
1410 }
1411 
1412 static void virt_set_memmap(VirtMachineState *vms)
1413 {
1414     MachineState *ms = MACHINE(vms);
1415     hwaddr base, device_memory_base, device_memory_size;
1416     int i;
1417 
1418     vms->memmap = extended_memmap;
1419 
1420     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1421         vms->memmap[i] = base_memmap[i];
1422     }
1423 
1424     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1425         error_report("unsupported number of memory slots: %"PRIu64,
1426                      ms->ram_slots);
1427         exit(EXIT_FAILURE);
1428     }
1429 
1430     /*
1431      * We compute the base of the high IO region depending on the
1432      * amount of initial and device memory. The device memory start/size
1433      * is aligned on 1GiB. We never put the high IO region below 256GiB
1434      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1435      * The device region size assumes 1GiB page max alignment per slot.
1436      */
1437     device_memory_base =
1438         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1439     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1440 
1441     /* Base address of the high IO region */
1442     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1443     if (base < device_memory_base) {
1444         error_report("maxmem/slots too huge");
1445         exit(EXIT_FAILURE);
1446     }
1447     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1448         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1449     }
1450 
1451     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1452         hwaddr size = extended_memmap[i].size;
1453 
1454         base = ROUND_UP(base, size);
1455         vms->memmap[i].base = base;
1456         vms->memmap[i].size = size;
1457         base += size;
1458     }
1459     vms->highest_gpa = base - 1;
1460     if (device_memory_size > 0) {
1461         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1462         ms->device_memory->base = device_memory_base;
1463         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1464                            "device-memory", device_memory_size);
1465     }
1466 }
1467 
1468 static void machvirt_init(MachineState *machine)
1469 {
1470     VirtMachineState *vms = VIRT_MACHINE(machine);
1471     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1472     MachineClass *mc = MACHINE_GET_CLASS(machine);
1473     const CPUArchIdList *possible_cpus;
1474     qemu_irq pic[NUM_IRQS];
1475     MemoryRegion *sysmem = get_system_memory();
1476     MemoryRegion *secure_sysmem = NULL;
1477     int n, virt_max_cpus;
1478     MemoryRegion *ram = g_new(MemoryRegion, 1);
1479     bool firmware_loaded;
1480     bool aarch64 = true;
1481 
1482     /*
1483      * In accelerated mode, the memory map is computed earlier in kvm_type()
1484      * to create a VM with the right number of IPA bits.
1485      */
1486     if (!vms->memmap) {
1487         virt_set_memmap(vms);
1488     }
1489 
1490     /* We can probe only here because during property set
1491      * KVM is not available yet
1492      */
1493     if (vms->gic_version <= 0) {
1494         /* "host" or "max" */
1495         if (!kvm_enabled()) {
1496             if (vms->gic_version == 0) {
1497                 error_report("gic-version=host requires KVM");
1498                 exit(1);
1499             } else {
1500                 /* "max": currently means 3 for TCG */
1501                 vms->gic_version = 3;
1502             }
1503         } else {
1504             vms->gic_version = kvm_arm_vgic_probe();
1505             if (!vms->gic_version) {
1506                 error_report(
1507                     "Unable to determine GIC version supported by host");
1508                 exit(1);
1509             }
1510         }
1511     }
1512 
1513     if (!cpu_type_valid(machine->cpu_type)) {
1514         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1515         exit(1);
1516     }
1517 
1518     if (vms->secure) {
1519         if (kvm_enabled()) {
1520             error_report("mach-virt: KVM does not support Security extensions");
1521             exit(1);
1522         }
1523 
1524         /*
1525          * The Secure view of the world is the same as the NonSecure,
1526          * but with a few extra devices. Create it as a container region
1527          * containing the system memory at low priority; any secure-only
1528          * devices go in at higher priority and take precedence.
1529          */
1530         secure_sysmem = g_new(MemoryRegion, 1);
1531         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1532                            UINT64_MAX);
1533         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1534     }
1535 
1536     firmware_loaded = virt_firmware_init(vms, sysmem,
1537                                          secure_sysmem ?: sysmem);
1538 
1539     /* If we have an EL3 boot ROM then the assumption is that it will
1540      * implement PSCI itself, so disable QEMU's internal implementation
1541      * so it doesn't get in the way. Instead of starting secondary
1542      * CPUs in PSCI powerdown state we will start them all running and
1543      * let the boot ROM sort them out.
1544      * The usual case is that we do use QEMU's PSCI implementation;
1545      * if the guest has EL2 then we will use SMC as the conduit,
1546      * and otherwise we will use HVC (for backwards compatibility and
1547      * because if we're using KVM then we must use HVC).
1548      */
1549     if (vms->secure && firmware_loaded) {
1550         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1551     } else if (vms->virt) {
1552         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1553     } else {
1554         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1555     }
1556 
1557     /* The maximum number of CPUs depends on the GIC version, or on how
1558      * many redistributors we can fit into the memory map.
1559      */
1560     if (vms->gic_version == 3) {
1561         virt_max_cpus =
1562             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1563         virt_max_cpus +=
1564             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1565     } else {
1566         virt_max_cpus = GIC_NCPU;
1567     }
1568 
1569     if (max_cpus > virt_max_cpus) {
1570         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1571                      "supported by machine 'mach-virt' (%d)",
1572                      max_cpus, virt_max_cpus);
1573         exit(1);
1574     }
1575 
1576     vms->smp_cpus = smp_cpus;
1577 
1578     if (vms->virt && kvm_enabled()) {
1579         error_report("mach-virt: KVM does not support providing "
1580                      "Virtualization extensions to the guest CPU");
1581         exit(1);
1582     }
1583 
1584     create_fdt(vms);
1585 
1586     possible_cpus = mc->possible_cpu_arch_ids(machine);
1587     for (n = 0; n < possible_cpus->len; n++) {
1588         Object *cpuobj;
1589         CPUState *cs;
1590 
1591         if (n >= smp_cpus) {
1592             break;
1593         }
1594 
1595         cpuobj = object_new(possible_cpus->cpus[n].type);
1596         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1597                                 "mp-affinity", NULL);
1598 
1599         cs = CPU(cpuobj);
1600         cs->cpu_index = n;
1601 
1602         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1603                           &error_fatal);
1604 
1605         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1606 
1607         if (!vms->secure) {
1608             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1609         }
1610 
1611         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1612             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1613         }
1614 
1615         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1616             object_property_set_int(cpuobj, vms->psci_conduit,
1617                                     "psci-conduit", NULL);
1618 
1619             /* Secondary CPUs start in PSCI powered-down state */
1620             if (n > 0) {
1621                 object_property_set_bool(cpuobj, true,
1622                                          "start-powered-off", NULL);
1623             }
1624         }
1625 
1626         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1627             object_property_set_bool(cpuobj, false, "pmu", NULL);
1628         }
1629 
1630         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1631             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1632                                     "reset-cbar", &error_abort);
1633         }
1634 
1635         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1636                                  &error_abort);
1637         if (vms->secure) {
1638             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1639                                      "secure-memory", &error_abort);
1640         }
1641 
1642         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1643         object_unref(cpuobj);
1644     }
1645     fdt_add_timer_nodes(vms);
1646     fdt_add_cpu_nodes(vms);
1647 
1648    if (!kvm_enabled()) {
1649         ARMCPU *cpu = ARM_CPU(first_cpu);
1650         bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1651 
1652         if (aarch64 && vms->highmem) {
1653             int requested_pa_size, pamax = arm_pamax(cpu);
1654 
1655             requested_pa_size = 64 - clz64(vms->highest_gpa);
1656             if (pamax < requested_pa_size) {
1657                 error_report("VCPU supports less PA bits (%d) than requested "
1658                             "by the memory map (%d)", pamax, requested_pa_size);
1659                 exit(1);
1660             }
1661         }
1662     }
1663 
1664     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1665                                          machine->ram_size);
1666     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1667     if (machine->device_memory) {
1668         memory_region_add_subregion(sysmem, machine->device_memory->base,
1669                                     &machine->device_memory->mr);
1670     }
1671 
1672     virt_flash_fdt(vms, sysmem, secure_sysmem);
1673 
1674     create_gic(vms, pic);
1675 
1676     fdt_add_pmu_nodes(vms);
1677 
1678     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1679 
1680     if (vms->secure) {
1681         create_secure_ram(vms, secure_sysmem);
1682         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1683     }
1684 
1685     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1686 
1687     create_rtc(vms, pic);
1688 
1689     create_pcie(vms, pic);
1690 
1691     create_gpio(vms, pic);
1692 
1693     /* Create mmio transports, so the user can create virtio backends
1694      * (which will be automatically plugged in to the transports). If
1695      * no backend is created the transport will just sit harmlessly idle.
1696      */
1697     create_virtio_devices(vms, pic);
1698 
1699     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1700     rom_set_fw(vms->fw_cfg);
1701 
1702     create_platform_bus(vms, pic);
1703 
1704     vms->bootinfo.ram_size = machine->ram_size;
1705     vms->bootinfo.kernel_filename = machine->kernel_filename;
1706     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1707     vms->bootinfo.initrd_filename = machine->initrd_filename;
1708     vms->bootinfo.nb_cpus = smp_cpus;
1709     vms->bootinfo.board_id = -1;
1710     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1711     vms->bootinfo.get_dtb = machvirt_dtb;
1712     vms->bootinfo.skip_dtb_autoload = true;
1713     vms->bootinfo.firmware_loaded = firmware_loaded;
1714     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1715 
1716     vms->machine_done.notify = virt_machine_done;
1717     qemu_add_machine_init_done_notifier(&vms->machine_done);
1718 }
1719 
1720 static bool virt_get_secure(Object *obj, Error **errp)
1721 {
1722     VirtMachineState *vms = VIRT_MACHINE(obj);
1723 
1724     return vms->secure;
1725 }
1726 
1727 static void virt_set_secure(Object *obj, bool value, Error **errp)
1728 {
1729     VirtMachineState *vms = VIRT_MACHINE(obj);
1730 
1731     vms->secure = value;
1732 }
1733 
1734 static bool virt_get_virt(Object *obj, Error **errp)
1735 {
1736     VirtMachineState *vms = VIRT_MACHINE(obj);
1737 
1738     return vms->virt;
1739 }
1740 
1741 static void virt_set_virt(Object *obj, bool value, Error **errp)
1742 {
1743     VirtMachineState *vms = VIRT_MACHINE(obj);
1744 
1745     vms->virt = value;
1746 }
1747 
1748 static bool virt_get_highmem(Object *obj, Error **errp)
1749 {
1750     VirtMachineState *vms = VIRT_MACHINE(obj);
1751 
1752     return vms->highmem;
1753 }
1754 
1755 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1756 {
1757     VirtMachineState *vms = VIRT_MACHINE(obj);
1758 
1759     vms->highmem = value;
1760 }
1761 
1762 static bool virt_get_its(Object *obj, Error **errp)
1763 {
1764     VirtMachineState *vms = VIRT_MACHINE(obj);
1765 
1766     return vms->its;
1767 }
1768 
1769 static void virt_set_its(Object *obj, bool value, Error **errp)
1770 {
1771     VirtMachineState *vms = VIRT_MACHINE(obj);
1772 
1773     vms->its = value;
1774 }
1775 
1776 static char *virt_get_gic_version(Object *obj, Error **errp)
1777 {
1778     VirtMachineState *vms = VIRT_MACHINE(obj);
1779     const char *val = vms->gic_version == 3 ? "3" : "2";
1780 
1781     return g_strdup(val);
1782 }
1783 
1784 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1785 {
1786     VirtMachineState *vms = VIRT_MACHINE(obj);
1787 
1788     if (!strcmp(value, "3")) {
1789         vms->gic_version = 3;
1790     } else if (!strcmp(value, "2")) {
1791         vms->gic_version = 2;
1792     } else if (!strcmp(value, "host")) {
1793         vms->gic_version = 0; /* Will probe later */
1794     } else if (!strcmp(value, "max")) {
1795         vms->gic_version = -1; /* Will probe later */
1796     } else {
1797         error_setg(errp, "Invalid gic-version value");
1798         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1799     }
1800 }
1801 
1802 static char *virt_get_iommu(Object *obj, Error **errp)
1803 {
1804     VirtMachineState *vms = VIRT_MACHINE(obj);
1805 
1806     switch (vms->iommu) {
1807     case VIRT_IOMMU_NONE:
1808         return g_strdup("none");
1809     case VIRT_IOMMU_SMMUV3:
1810         return g_strdup("smmuv3");
1811     default:
1812         g_assert_not_reached();
1813     }
1814 }
1815 
1816 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1817 {
1818     VirtMachineState *vms = VIRT_MACHINE(obj);
1819 
1820     if (!strcmp(value, "smmuv3")) {
1821         vms->iommu = VIRT_IOMMU_SMMUV3;
1822     } else if (!strcmp(value, "none")) {
1823         vms->iommu = VIRT_IOMMU_NONE;
1824     } else {
1825         error_setg(errp, "Invalid iommu value");
1826         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1827     }
1828 }
1829 
1830 static CpuInstanceProperties
1831 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1832 {
1833     MachineClass *mc = MACHINE_GET_CLASS(ms);
1834     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1835 
1836     assert(cpu_index < possible_cpus->len);
1837     return possible_cpus->cpus[cpu_index].props;
1838 }
1839 
1840 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1841 {
1842     return idx % nb_numa_nodes;
1843 }
1844 
1845 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1846 {
1847     int n;
1848     VirtMachineState *vms = VIRT_MACHINE(ms);
1849 
1850     if (ms->possible_cpus) {
1851         assert(ms->possible_cpus->len == max_cpus);
1852         return ms->possible_cpus;
1853     }
1854 
1855     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1856                                   sizeof(CPUArchId) * max_cpus);
1857     ms->possible_cpus->len = max_cpus;
1858     for (n = 0; n < ms->possible_cpus->len; n++) {
1859         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1860         ms->possible_cpus->cpus[n].arch_id =
1861             virt_cpu_mp_affinity(vms, n);
1862         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1863         ms->possible_cpus->cpus[n].props.thread_id = n;
1864     }
1865     return ms->possible_cpus;
1866 }
1867 
1868 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1869                                         DeviceState *dev, Error **errp)
1870 {
1871     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1872 
1873     if (vms->platform_bus_dev) {
1874         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1875             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1876                                      SYS_BUS_DEVICE(dev));
1877         }
1878     }
1879 }
1880 
1881 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1882                                                         DeviceState *dev)
1883 {
1884     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1885         return HOTPLUG_HANDLER(machine);
1886     }
1887 
1888     return NULL;
1889 }
1890 
1891 /*
1892  * for arm64 kvm_type [7-0] encodes the requested number of bits
1893  * in the IPA address space
1894  */
1895 static int virt_kvm_type(MachineState *ms, const char *type_str)
1896 {
1897     VirtMachineState *vms = VIRT_MACHINE(ms);
1898     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1899     int requested_pa_size;
1900 
1901     /* we freeze the memory map to compute the highest gpa */
1902     virt_set_memmap(vms);
1903 
1904     requested_pa_size = 64 - clz64(vms->highest_gpa);
1905 
1906     if (requested_pa_size > max_vm_pa_size) {
1907         error_report("-m and ,maxmem option values "
1908                      "require an IPA range (%d bits) larger than "
1909                      "the one supported by the host (%d bits)",
1910                      requested_pa_size, max_vm_pa_size);
1911        exit(1);
1912     }
1913     /*
1914      * By default we return 0 which corresponds to an implicit legacy
1915      * 40b IPA setting. Otherwise we return the actual requested PA
1916      * logsize
1917      */
1918     return requested_pa_size > 40 ? requested_pa_size : 0;
1919 }
1920 
1921 static void virt_machine_class_init(ObjectClass *oc, void *data)
1922 {
1923     MachineClass *mc = MACHINE_CLASS(oc);
1924     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1925 
1926     mc->init = machvirt_init;
1927     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1928      * The value may be reduced later when we have more information about the
1929      * configuration of the particular instance.
1930      */
1931     mc->max_cpus = 512;
1932     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1933     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1934     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1935     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1936     mc->block_default_type = IF_VIRTIO;
1937     mc->no_cdrom = 1;
1938     mc->pci_allow_0_address = true;
1939     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1940     mc->minimum_page_bits = 12;
1941     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1942     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1943     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1944     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1945     mc->kvm_type = virt_kvm_type;
1946     assert(!mc->get_hotplug_handler);
1947     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1948     hc->plug = virt_machine_device_plug_cb;
1949 }
1950 
1951 static void virt_instance_init(Object *obj)
1952 {
1953     VirtMachineState *vms = VIRT_MACHINE(obj);
1954     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1955 
1956     /* EL3 is disabled by default on virt: this makes us consistent
1957      * between KVM and TCG for this board, and it also allows us to
1958      * boot UEFI blobs which assume no TrustZone support.
1959      */
1960     vms->secure = false;
1961     object_property_add_bool(obj, "secure", virt_get_secure,
1962                              virt_set_secure, NULL);
1963     object_property_set_description(obj, "secure",
1964                                     "Set on/off to enable/disable the ARM "
1965                                     "Security Extensions (TrustZone)",
1966                                     NULL);
1967 
1968     /* EL2 is also disabled by default, for similar reasons */
1969     vms->virt = false;
1970     object_property_add_bool(obj, "virtualization", virt_get_virt,
1971                              virt_set_virt, NULL);
1972     object_property_set_description(obj, "virtualization",
1973                                     "Set on/off to enable/disable emulating a "
1974                                     "guest CPU which implements the ARM "
1975                                     "Virtualization Extensions",
1976                                     NULL);
1977 
1978     /* High memory is enabled by default */
1979     vms->highmem = true;
1980     object_property_add_bool(obj, "highmem", virt_get_highmem,
1981                              virt_set_highmem, NULL);
1982     object_property_set_description(obj, "highmem",
1983                                     "Set on/off to enable/disable using "
1984                                     "physical address space above 32 bits",
1985                                     NULL);
1986     /* Default GIC type is v2 */
1987     vms->gic_version = 2;
1988     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1989                         virt_set_gic_version, NULL);
1990     object_property_set_description(obj, "gic-version",
1991                                     "Set GIC version. "
1992                                     "Valid values are 2, 3 and host", NULL);
1993 
1994     vms->highmem_ecam = !vmc->no_highmem_ecam;
1995 
1996     if (vmc->no_its) {
1997         vms->its = false;
1998     } else {
1999         /* Default allows ITS instantiation */
2000         vms->its = true;
2001         object_property_add_bool(obj, "its", virt_get_its,
2002                                  virt_set_its, NULL);
2003         object_property_set_description(obj, "its",
2004                                         "Set on/off to enable/disable "
2005                                         "ITS instantiation",
2006                                         NULL);
2007     }
2008 
2009     /* Default disallows iommu instantiation */
2010     vms->iommu = VIRT_IOMMU_NONE;
2011     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2012     object_property_set_description(obj, "iommu",
2013                                     "Set the IOMMU type. "
2014                                     "Valid values are none and smmuv3",
2015                                     NULL);
2016 
2017     vms->irqmap = a15irqmap;
2018 
2019     virt_flash_create(vms);
2020 }
2021 
2022 static const TypeInfo virt_machine_info = {
2023     .name          = TYPE_VIRT_MACHINE,
2024     .parent        = TYPE_MACHINE,
2025     .abstract      = true,
2026     .instance_size = sizeof(VirtMachineState),
2027     .class_size    = sizeof(VirtMachineClass),
2028     .class_init    = virt_machine_class_init,
2029     .instance_init = virt_instance_init,
2030     .interfaces = (InterfaceInfo[]) {
2031          { TYPE_HOTPLUG_HANDLER },
2032          { }
2033     },
2034 };
2035 
2036 static void machvirt_machine_init(void)
2037 {
2038     type_register_static(&virt_machine_info);
2039 }
2040 type_init(machvirt_machine_init);
2041 
2042 static void virt_machine_4_1_options(MachineClass *mc)
2043 {
2044 }
2045 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2046 
2047 static void virt_machine_4_0_options(MachineClass *mc)
2048 {
2049     virt_machine_4_1_options(mc);
2050     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2051 }
2052 DEFINE_VIRT_MACHINE(4, 0)
2053 
2054 static void virt_machine_3_1_options(MachineClass *mc)
2055 {
2056     virt_machine_4_0_options(mc);
2057     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2058 }
2059 DEFINE_VIRT_MACHINE(3, 1)
2060 
2061 static void virt_machine_3_0_options(MachineClass *mc)
2062 {
2063     virt_machine_3_1_options(mc);
2064     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2065 }
2066 DEFINE_VIRT_MACHINE(3, 0)
2067 
2068 static void virt_machine_2_12_options(MachineClass *mc)
2069 {
2070     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2071 
2072     virt_machine_3_0_options(mc);
2073     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2074     vmc->no_highmem_ecam = true;
2075     mc->max_cpus = 255;
2076 }
2077 DEFINE_VIRT_MACHINE(2, 12)
2078 
2079 static void virt_machine_2_11_options(MachineClass *mc)
2080 {
2081     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2082 
2083     virt_machine_2_12_options(mc);
2084     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2085     vmc->smbios_old_sys_ver = true;
2086 }
2087 DEFINE_VIRT_MACHINE(2, 11)
2088 
2089 static void virt_machine_2_10_options(MachineClass *mc)
2090 {
2091     virt_machine_2_11_options(mc);
2092     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2093     /* before 2.11 we never faulted accesses to bad addresses */
2094     mc->ignore_memory_transaction_failures = true;
2095 }
2096 DEFINE_VIRT_MACHINE(2, 10)
2097 
2098 static void virt_machine_2_9_options(MachineClass *mc)
2099 {
2100     virt_machine_2_10_options(mc);
2101     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2102 }
2103 DEFINE_VIRT_MACHINE(2, 9)
2104 
2105 static void virt_machine_2_8_options(MachineClass *mc)
2106 {
2107     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2108 
2109     virt_machine_2_9_options(mc);
2110     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2111     /* For 2.8 and earlier we falsely claimed in the DT that
2112      * our timers were edge-triggered, not level-triggered.
2113      */
2114     vmc->claim_edge_triggered_timers = true;
2115 }
2116 DEFINE_VIRT_MACHINE(2, 8)
2117 
2118 static void virt_machine_2_7_options(MachineClass *mc)
2119 {
2120     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2121 
2122     virt_machine_2_8_options(mc);
2123     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2124     /* ITS was introduced with 2.8 */
2125     vmc->no_its = true;
2126     /* Stick with 1K pages for migration compatibility */
2127     mc->minimum_page_bits = 0;
2128 }
2129 DEFINE_VIRT_MACHINE(2, 7)
2130 
2131 static void virt_machine_2_6_options(MachineClass *mc)
2132 {
2133     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2134 
2135     virt_machine_2_7_options(mc);
2136     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2137     vmc->disallow_affinity_adjustment = true;
2138     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2139     vmc->no_pmu = true;
2140 }
2141 DEFINE_VIRT_MACHINE(2, 6)
2142