1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "qapi/error.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/sysemu.h" 48 #include "sysemu/kvm.h" 49 #include "hw/loader.h" 50 #include "exec/address-spaces.h" 51 #include "qemu/bitops.h" 52 #include "qemu/error-report.h" 53 #include "qemu/module.h" 54 #include "hw/pci-host/gpex.h" 55 #include "hw/arm/sysbus-fdt.h" 56 #include "hw/platform-bus.h" 57 #include "hw/arm/fdt.h" 58 #include "hw/intc/arm_gic.h" 59 #include "hw/intc/arm_gicv3_common.h" 60 #include "kvm_arm.h" 61 #include "hw/firmware/smbios.h" 62 #include "qapi/visitor.h" 63 #include "standard-headers/linux/input.h" 64 #include "hw/arm/smmuv3.h" 65 #include "hw/acpi/acpi.h" 66 #include "target/arm/internals.h" 67 68 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 69 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 70 void *data) \ 71 { \ 72 MachineClass *mc = MACHINE_CLASS(oc); \ 73 virt_machine_##major##_##minor##_options(mc); \ 74 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 75 if (latest) { \ 76 mc->alias = "virt"; \ 77 } \ 78 } \ 79 static const TypeInfo machvirt_##major##_##minor##_info = { \ 80 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 81 .parent = TYPE_VIRT_MACHINE, \ 82 .class_init = virt_##major##_##minor##_class_init, \ 83 }; \ 84 static void machvirt_machine_##major##_##minor##_init(void) \ 85 { \ 86 type_register_static(&machvirt_##major##_##minor##_info); \ 87 } \ 88 type_init(machvirt_machine_##major##_##minor##_init); 89 90 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 91 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 92 #define DEFINE_VIRT_MACHINE(major, minor) \ 93 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 94 95 96 /* Number of external interrupt lines to configure the GIC with */ 97 #define NUM_IRQS 256 98 99 #define PLATFORM_BUS_NUM_IRQS 64 100 101 /* Legacy RAM limit in GB (< version 4.0) */ 102 #define LEGACY_RAMLIMIT_GB 255 103 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 104 105 /* Addresses and sizes of our components. 106 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 107 * 128MB..256MB is used for miscellaneous device I/O. 108 * 256MB..1GB is reserved for possible future PCI support (ie where the 109 * PCI memory window will go if we add a PCI host controller). 110 * 1GB and up is RAM (which may happily spill over into the 111 * high memory region beyond 4GB). 112 * This represents a compromise between how much RAM can be given to 113 * a 32 bit VM and leaving space for expansion and in particular for PCI. 114 * Note that devices should generally be placed at multiples of 0x10000, 115 * to accommodate guests using 64K pages. 116 */ 117 static const MemMapEntry base_memmap[] = { 118 /* Space up to 0x8000000 is reserved for a boot ROM */ 119 [VIRT_FLASH] = { 0, 0x08000000 }, 120 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 121 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 122 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 123 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 124 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 125 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 126 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 127 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 128 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 129 /* This redistributor space allows up to 2*64kB*123 CPUs */ 130 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 131 [VIRT_UART] = { 0x09000000, 0x00001000 }, 132 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 133 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 134 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 135 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 136 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 137 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 138 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 139 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 140 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 141 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 142 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 143 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 144 /* Actual RAM size depends on initial RAM and device memory settings */ 145 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 146 }; 147 148 /* 149 * Highmem IO Regions: This memory map is floating, located after the RAM. 150 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 151 * top of the RAM, so that its base get the same alignment as the size, 152 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 153 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 154 * Note the extended_memmap is sized so that it eventually also includes the 155 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 156 * index of base_memmap). 157 */ 158 static MemMapEntry extended_memmap[] = { 159 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 160 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 161 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 162 /* Second PCIe window */ 163 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 164 }; 165 166 static const int a15irqmap[] = { 167 [VIRT_UART] = 1, 168 [VIRT_RTC] = 2, 169 [VIRT_PCIE] = 3, /* ... to 6 */ 170 [VIRT_GPIO] = 7, 171 [VIRT_SECURE_UART] = 8, 172 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 173 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 174 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 175 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 176 }; 177 178 static const char *valid_cpus[] = { 179 ARM_CPU_TYPE_NAME("cortex-a7"), 180 ARM_CPU_TYPE_NAME("cortex-a15"), 181 ARM_CPU_TYPE_NAME("cortex-a53"), 182 ARM_CPU_TYPE_NAME("cortex-a57"), 183 ARM_CPU_TYPE_NAME("cortex-a72"), 184 ARM_CPU_TYPE_NAME("host"), 185 ARM_CPU_TYPE_NAME("max"), 186 }; 187 188 static bool cpu_type_valid(const char *cpu) 189 { 190 int i; 191 192 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 193 if (strcmp(cpu, valid_cpus[i]) == 0) { 194 return true; 195 } 196 } 197 return false; 198 } 199 200 static void create_fdt(VirtMachineState *vms) 201 { 202 void *fdt = create_device_tree(&vms->fdt_size); 203 204 if (!fdt) { 205 error_report("create_device_tree() failed"); 206 exit(1); 207 } 208 209 vms->fdt = fdt; 210 211 /* Header */ 212 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 213 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 214 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 215 216 /* /chosen must exist for load_dtb to fill in necessary properties later */ 217 qemu_fdt_add_subnode(fdt, "/chosen"); 218 219 /* Clock node, for the benefit of the UART. The kernel device tree 220 * binding documentation claims the PL011 node clock properties are 221 * optional but in practice if you omit them the kernel refuses to 222 * probe for the device. 223 */ 224 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 225 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 226 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 227 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 228 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 229 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 230 "clk24mhz"); 231 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 232 233 if (have_numa_distance) { 234 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 235 uint32_t *matrix = g_malloc0(size); 236 int idx, i, j; 237 238 for (i = 0; i < nb_numa_nodes; i++) { 239 for (j = 0; j < nb_numa_nodes; j++) { 240 idx = (i * nb_numa_nodes + j) * 3; 241 matrix[idx + 0] = cpu_to_be32(i); 242 matrix[idx + 1] = cpu_to_be32(j); 243 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); 244 } 245 } 246 247 qemu_fdt_add_subnode(fdt, "/distance-map"); 248 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 249 "numa-distance-map-v1"); 250 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 251 matrix, size); 252 g_free(matrix); 253 } 254 } 255 256 static void fdt_add_timer_nodes(const VirtMachineState *vms) 257 { 258 /* On real hardware these interrupts are level-triggered. 259 * On KVM they were edge-triggered before host kernel version 4.4, 260 * and level-triggered afterwards. 261 * On emulated QEMU they are level-triggered. 262 * 263 * Getting the DTB info about them wrong is awkward for some 264 * guest kernels: 265 * pre-4.8 ignore the DT and leave the interrupt configured 266 * with whatever the GIC reset value (or the bootloader) left it at 267 * 4.8 before rc6 honour the incorrect data by programming it back 268 * into the GIC, causing problems 269 * 4.8rc6 and later ignore the DT and always write "level triggered" 270 * into the GIC 271 * 272 * For backwards-compatibility, virt-2.8 and earlier will continue 273 * to say these are edge-triggered, but later machines will report 274 * the correct information. 275 */ 276 ARMCPU *armcpu; 277 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 278 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 279 280 if (vmc->claim_edge_triggered_timers) { 281 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 282 } 283 284 if (vms->gic_version == 2) { 285 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 286 GIC_FDT_IRQ_PPI_CPU_WIDTH, 287 (1 << vms->smp_cpus) - 1); 288 } 289 290 qemu_fdt_add_subnode(vms->fdt, "/timer"); 291 292 armcpu = ARM_CPU(qemu_get_cpu(0)); 293 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 294 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 295 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 296 compat, sizeof(compat)); 297 } else { 298 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 299 "arm,armv7-timer"); 300 } 301 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 302 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 303 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 304 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 305 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 306 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 307 } 308 309 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 310 { 311 int cpu; 312 int addr_cells = 1; 313 const MachineState *ms = MACHINE(vms); 314 315 /* 316 * From Documentation/devicetree/bindings/arm/cpus.txt 317 * On ARM v8 64-bit systems value should be set to 2, 318 * that corresponds to the MPIDR_EL1 register size. 319 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 320 * in the system, #address-cells can be set to 1, since 321 * MPIDR_EL1[63:32] bits are not used for CPUs 322 * identification. 323 * 324 * Here we actually don't know whether our system is 32- or 64-bit one. 325 * The simplest way to go is to examine affinity IDs of all our CPUs. If 326 * at least one of them has Aff3 populated, we set #address-cells to 2. 327 */ 328 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 329 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 330 331 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 332 addr_cells = 2; 333 break; 334 } 335 } 336 337 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 338 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 339 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 340 341 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 342 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 343 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 344 CPUState *cs = CPU(armcpu); 345 346 qemu_fdt_add_subnode(vms->fdt, nodename); 347 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 348 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 349 armcpu->dtb_compatible); 350 351 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 352 && vms->smp_cpus > 1) { 353 qemu_fdt_setprop_string(vms->fdt, nodename, 354 "enable-method", "psci"); 355 } 356 357 if (addr_cells == 2) { 358 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 359 armcpu->mp_affinity); 360 } else { 361 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 362 armcpu->mp_affinity); 363 } 364 365 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 366 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 367 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 368 } 369 370 g_free(nodename); 371 } 372 } 373 374 static void fdt_add_its_gic_node(VirtMachineState *vms) 375 { 376 char *nodename; 377 378 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 379 nodename = g_strdup_printf("/intc/its@%" PRIx64, 380 vms->memmap[VIRT_GIC_ITS].base); 381 qemu_fdt_add_subnode(vms->fdt, nodename); 382 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 383 "arm,gic-v3-its"); 384 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 385 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 386 2, vms->memmap[VIRT_GIC_ITS].base, 387 2, vms->memmap[VIRT_GIC_ITS].size); 388 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 389 g_free(nodename); 390 } 391 392 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 393 { 394 char *nodename; 395 396 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 397 vms->memmap[VIRT_GIC_V2M].base); 398 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 399 qemu_fdt_add_subnode(vms->fdt, nodename); 400 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 401 "arm,gic-v2m-frame"); 402 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 403 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 404 2, vms->memmap[VIRT_GIC_V2M].base, 405 2, vms->memmap[VIRT_GIC_V2M].size); 406 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 407 g_free(nodename); 408 } 409 410 static void fdt_add_gic_node(VirtMachineState *vms) 411 { 412 char *nodename; 413 414 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 415 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 416 417 nodename = g_strdup_printf("/intc@%" PRIx64, 418 vms->memmap[VIRT_GIC_DIST].base); 419 qemu_fdt_add_subnode(vms->fdt, nodename); 420 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 421 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 422 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 423 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 424 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 425 if (vms->gic_version == 3) { 426 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 427 428 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 429 "arm,gic-v3"); 430 431 qemu_fdt_setprop_cell(vms->fdt, nodename, 432 "#redistributor-regions", nb_redist_regions); 433 434 if (nb_redist_regions == 1) { 435 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 436 2, vms->memmap[VIRT_GIC_DIST].base, 437 2, vms->memmap[VIRT_GIC_DIST].size, 438 2, vms->memmap[VIRT_GIC_REDIST].base, 439 2, vms->memmap[VIRT_GIC_REDIST].size); 440 } else { 441 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 442 2, vms->memmap[VIRT_GIC_DIST].base, 443 2, vms->memmap[VIRT_GIC_DIST].size, 444 2, vms->memmap[VIRT_GIC_REDIST].base, 445 2, vms->memmap[VIRT_GIC_REDIST].size, 446 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 447 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 448 } 449 450 if (vms->virt) { 451 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 452 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 453 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 454 } 455 } else { 456 /* 'cortex-a15-gic' means 'GIC v2' */ 457 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 458 "arm,cortex-a15-gic"); 459 if (!vms->virt) { 460 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 461 2, vms->memmap[VIRT_GIC_DIST].base, 462 2, vms->memmap[VIRT_GIC_DIST].size, 463 2, vms->memmap[VIRT_GIC_CPU].base, 464 2, vms->memmap[VIRT_GIC_CPU].size); 465 } else { 466 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 467 2, vms->memmap[VIRT_GIC_DIST].base, 468 2, vms->memmap[VIRT_GIC_DIST].size, 469 2, vms->memmap[VIRT_GIC_CPU].base, 470 2, vms->memmap[VIRT_GIC_CPU].size, 471 2, vms->memmap[VIRT_GIC_HYP].base, 472 2, vms->memmap[VIRT_GIC_HYP].size, 473 2, vms->memmap[VIRT_GIC_VCPU].base, 474 2, vms->memmap[VIRT_GIC_VCPU].size); 475 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 476 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 477 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 478 } 479 } 480 481 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 482 g_free(nodename); 483 } 484 485 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 486 { 487 CPUState *cpu; 488 ARMCPU *armcpu; 489 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 490 491 CPU_FOREACH(cpu) { 492 armcpu = ARM_CPU(cpu); 493 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 494 return; 495 } 496 if (kvm_enabled()) { 497 if (kvm_irqchip_in_kernel()) { 498 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 499 } 500 kvm_arm_pmu_init(cpu); 501 } 502 } 503 504 if (vms->gic_version == 2) { 505 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 506 GIC_FDT_IRQ_PPI_CPU_WIDTH, 507 (1 << vms->smp_cpus) - 1); 508 } 509 510 armcpu = ARM_CPU(qemu_get_cpu(0)); 511 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 512 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 513 const char compat[] = "arm,armv8-pmuv3"; 514 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 515 compat, sizeof(compat)); 516 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 517 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 518 } 519 } 520 521 static void create_its(VirtMachineState *vms, DeviceState *gicdev) 522 { 523 const char *itsclass = its_class_name(); 524 DeviceState *dev; 525 526 if (!itsclass) { 527 /* Do nothing if not supported */ 528 return; 529 } 530 531 dev = qdev_create(NULL, itsclass); 532 533 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 534 &error_abort); 535 qdev_init_nofail(dev); 536 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 537 538 fdt_add_its_gic_node(vms); 539 } 540 541 static void create_v2m(VirtMachineState *vms, qemu_irq *pic) 542 { 543 int i; 544 int irq = vms->irqmap[VIRT_GIC_V2M]; 545 DeviceState *dev; 546 547 dev = qdev_create(NULL, "arm-gicv2m"); 548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 549 qdev_prop_set_uint32(dev, "base-spi", irq); 550 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 551 qdev_init_nofail(dev); 552 553 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 554 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 555 } 556 557 fdt_add_v2m_gic_node(vms); 558 } 559 560 static void create_gic(VirtMachineState *vms, qemu_irq *pic) 561 { 562 /* We create a standalone GIC */ 563 DeviceState *gicdev; 564 SysBusDevice *gicbusdev; 565 const char *gictype; 566 int type = vms->gic_version, i; 567 uint32_t nb_redist_regions = 0; 568 569 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 570 571 gicdev = qdev_create(NULL, gictype); 572 qdev_prop_set_uint32(gicdev, "revision", type); 573 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 574 /* Note that the num-irq property counts both internal and external 575 * interrupts; there are always 32 of the former (mandated by GIC spec). 576 */ 577 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 578 if (!kvm_irqchip_in_kernel()) { 579 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); 580 } 581 582 if (type == 3) { 583 uint32_t redist0_capacity = 584 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 585 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 586 587 nb_redist_regions = virt_gicv3_redist_region_count(vms); 588 589 qdev_prop_set_uint32(gicdev, "len-redist-region-count", 590 nb_redist_regions); 591 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count); 592 593 if (nb_redist_regions == 2) { 594 uint32_t redist1_capacity = 595 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 596 597 qdev_prop_set_uint32(gicdev, "redist-region-count[1]", 598 MIN(smp_cpus - redist0_count, redist1_capacity)); 599 } 600 } else { 601 if (!kvm_irqchip_in_kernel()) { 602 qdev_prop_set_bit(gicdev, "has-virtualization-extensions", 603 vms->virt); 604 } 605 } 606 qdev_init_nofail(gicdev); 607 gicbusdev = SYS_BUS_DEVICE(gicdev); 608 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 609 if (type == 3) { 610 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 611 if (nb_redist_regions == 2) { 612 sysbus_mmio_map(gicbusdev, 2, 613 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 614 } 615 } else { 616 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 617 if (vms->virt) { 618 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 619 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 620 } 621 } 622 623 /* Wire the outputs from each CPU's generic timer and the GICv3 624 * maintenance interrupt signal to the appropriate GIC PPI inputs, 625 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 626 */ 627 for (i = 0; i < smp_cpus; i++) { 628 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 629 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 630 int irq; 631 /* Mapping from the output timer irq lines from the CPU to the 632 * GIC PPI inputs we use for the virt board. 633 */ 634 const int timer_irq[] = { 635 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 636 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 637 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 638 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 639 }; 640 641 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 642 qdev_connect_gpio_out(cpudev, irq, 643 qdev_get_gpio_in(gicdev, 644 ppibase + timer_irq[irq])); 645 } 646 647 if (type == 3) { 648 qemu_irq irq = qdev_get_gpio_in(gicdev, 649 ppibase + ARCH_GIC_MAINT_IRQ); 650 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 651 0, irq); 652 } else if (vms->virt) { 653 qemu_irq irq = qdev_get_gpio_in(gicdev, 654 ppibase + ARCH_GIC_MAINT_IRQ); 655 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 656 } 657 658 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 659 qdev_get_gpio_in(gicdev, ppibase 660 + VIRTUAL_PMU_IRQ)); 661 662 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 663 sysbus_connect_irq(gicbusdev, i + smp_cpus, 664 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 665 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 666 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 667 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 668 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 669 } 670 671 for (i = 0; i < NUM_IRQS; i++) { 672 pic[i] = qdev_get_gpio_in(gicdev, i); 673 } 674 675 fdt_add_gic_node(vms); 676 677 if (type == 3 && vms->its) { 678 create_its(vms, gicdev); 679 } else if (type == 2) { 680 create_v2m(vms, pic); 681 } 682 } 683 684 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, 685 MemoryRegion *mem, Chardev *chr) 686 { 687 char *nodename; 688 hwaddr base = vms->memmap[uart].base; 689 hwaddr size = vms->memmap[uart].size; 690 int irq = vms->irqmap[uart]; 691 const char compat[] = "arm,pl011\0arm,primecell"; 692 const char clocknames[] = "uartclk\0apb_pclk"; 693 DeviceState *dev = qdev_create(NULL, "pl011"); 694 SysBusDevice *s = SYS_BUS_DEVICE(dev); 695 696 qdev_prop_set_chr(dev, "chardev", chr); 697 qdev_init_nofail(dev); 698 memory_region_add_subregion(mem, base, 699 sysbus_mmio_get_region(s, 0)); 700 sysbus_connect_irq(s, 0, pic[irq]); 701 702 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 703 qemu_fdt_add_subnode(vms->fdt, nodename); 704 /* Note that we can't use setprop_string because of the embedded NUL */ 705 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 706 compat, sizeof(compat)); 707 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 708 2, base, 2, size); 709 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 710 GIC_FDT_IRQ_TYPE_SPI, irq, 711 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 712 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 713 vms->clock_phandle, vms->clock_phandle); 714 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 715 clocknames, sizeof(clocknames)); 716 717 if (uart == VIRT_UART) { 718 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 719 } else { 720 /* Mark as not usable by the normal world */ 721 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 722 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 723 724 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen"); 725 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 726 nodename); 727 } 728 729 g_free(nodename); 730 } 731 732 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) 733 { 734 char *nodename; 735 hwaddr base = vms->memmap[VIRT_RTC].base; 736 hwaddr size = vms->memmap[VIRT_RTC].size; 737 int irq = vms->irqmap[VIRT_RTC]; 738 const char compat[] = "arm,pl031\0arm,primecell"; 739 740 sysbus_create_simple("pl031", base, pic[irq]); 741 742 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 743 qemu_fdt_add_subnode(vms->fdt, nodename); 744 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 745 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 746 2, base, 2, size); 747 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 748 GIC_FDT_IRQ_TYPE_SPI, irq, 749 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 750 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 751 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 752 g_free(nodename); 753 } 754 755 static DeviceState *gpio_key_dev; 756 static void virt_powerdown_req(Notifier *n, void *opaque) 757 { 758 /* use gpio Pin 3 for power button event */ 759 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 760 } 761 762 static Notifier virt_system_powerdown_notifier = { 763 .notify = virt_powerdown_req 764 }; 765 766 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) 767 { 768 char *nodename; 769 DeviceState *pl061_dev; 770 hwaddr base = vms->memmap[VIRT_GPIO].base; 771 hwaddr size = vms->memmap[VIRT_GPIO].size; 772 int irq = vms->irqmap[VIRT_GPIO]; 773 const char compat[] = "arm,pl061\0arm,primecell"; 774 775 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 776 777 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 778 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 779 qemu_fdt_add_subnode(vms->fdt, nodename); 780 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 781 2, base, 2, size); 782 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 783 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 784 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 785 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 786 GIC_FDT_IRQ_TYPE_SPI, irq, 787 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 788 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 789 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 790 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 791 792 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 793 qdev_get_gpio_in(pl061_dev, 3)); 794 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 795 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 796 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 797 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 798 799 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 800 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 801 "label", "GPIO Key Poweroff"); 802 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 803 KEY_POWER); 804 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 805 "gpios", phandle, 3, 0); 806 807 /* connect powerdown request */ 808 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 809 810 g_free(nodename); 811 } 812 813 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) 814 { 815 int i; 816 hwaddr size = vms->memmap[VIRT_MMIO].size; 817 818 /* We create the transports in forwards order. Since qbus_realize() 819 * prepends (not appends) new child buses, the incrementing loop below will 820 * create a list of virtio-mmio buses with decreasing base addresses. 821 * 822 * When a -device option is processed from the command line, 823 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 824 * order. The upshot is that -device options in increasing command line 825 * order are mapped to virtio-mmio buses with decreasing base addresses. 826 * 827 * When this code was originally written, that arrangement ensured that the 828 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 829 * the first -device on the command line. (The end-to-end order is a 830 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 831 * guest kernel's name-to-address assignment strategy.) 832 * 833 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 834 * the message, if not necessarily the code, of commit 70161ff336. 835 * Therefore the loop now establishes the inverse of the original intent. 836 * 837 * Unfortunately, we can't counteract the kernel change by reversing the 838 * loop; it would break existing command lines. 839 * 840 * In any case, the kernel makes no guarantee about the stability of 841 * enumeration order of virtio devices (as demonstrated by it changing 842 * between kernel versions). For reliable and stable identification 843 * of disks users must use UUIDs or similar mechanisms. 844 */ 845 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 846 int irq = vms->irqmap[VIRT_MMIO] + i; 847 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 848 849 sysbus_create_simple("virtio-mmio", base, pic[irq]); 850 } 851 852 /* We add dtb nodes in reverse order so that they appear in the finished 853 * device tree lowest address first. 854 * 855 * Note that this mapping is independent of the loop above. The previous 856 * loop influences virtio device to virtio transport assignment, whereas 857 * this loop controls how virtio transports are laid out in the dtb. 858 */ 859 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 860 char *nodename; 861 int irq = vms->irqmap[VIRT_MMIO] + i; 862 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 863 864 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 865 qemu_fdt_add_subnode(vms->fdt, nodename); 866 qemu_fdt_setprop_string(vms->fdt, nodename, 867 "compatible", "virtio,mmio"); 868 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 869 2, base, 2, size); 870 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 871 GIC_FDT_IRQ_TYPE_SPI, irq, 872 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 873 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 874 g_free(nodename); 875 } 876 } 877 878 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 879 880 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 881 const char *name, 882 const char *alias_prop_name) 883 { 884 /* 885 * Create a single flash device. We use the same parameters as 886 * the flash devices on the Versatile Express board. 887 */ 888 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01); 889 890 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 891 qdev_prop_set_uint8(dev, "width", 4); 892 qdev_prop_set_uint8(dev, "device-width", 2); 893 qdev_prop_set_bit(dev, "big-endian", false); 894 qdev_prop_set_uint16(dev, "id0", 0x89); 895 qdev_prop_set_uint16(dev, "id1", 0x18); 896 qdev_prop_set_uint16(dev, "id2", 0x00); 897 qdev_prop_set_uint16(dev, "id3", 0x00); 898 qdev_prop_set_string(dev, "name", name); 899 object_property_add_child(OBJECT(vms), name, OBJECT(dev), 900 &error_abort); 901 object_property_add_alias(OBJECT(vms), alias_prop_name, 902 OBJECT(dev), "drive", &error_abort); 903 return PFLASH_CFI01(dev); 904 } 905 906 static void virt_flash_create(VirtMachineState *vms) 907 { 908 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 909 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 910 } 911 912 static void virt_flash_map1(PFlashCFI01 *flash, 913 hwaddr base, hwaddr size, 914 MemoryRegion *sysmem) 915 { 916 DeviceState *dev = DEVICE(flash); 917 918 assert(size % VIRT_FLASH_SECTOR_SIZE == 0); 919 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 920 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 921 qdev_init_nofail(dev); 922 923 memory_region_add_subregion(sysmem, base, 924 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 925 0)); 926 } 927 928 static void virt_flash_map(VirtMachineState *vms, 929 MemoryRegion *sysmem, 930 MemoryRegion *secure_sysmem) 931 { 932 /* 933 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 934 * sysmem is the system memory space. secure_sysmem is the secure view 935 * of the system, and the first flash device should be made visible only 936 * there. The second flash device is visible to both secure and nonsecure. 937 * If sysmem == secure_sysmem this means there is no separate Secure 938 * address space and both flash devices are generally visible. 939 */ 940 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 941 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 942 943 virt_flash_map1(vms->flash[0], flashbase, flashsize, 944 secure_sysmem); 945 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 946 sysmem); 947 } 948 949 static void virt_flash_fdt(VirtMachineState *vms, 950 MemoryRegion *sysmem, 951 MemoryRegion *secure_sysmem) 952 { 953 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 954 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 955 char *nodename; 956 957 if (sysmem == secure_sysmem) { 958 /* Report both flash devices as a single node in the DT */ 959 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 960 qemu_fdt_add_subnode(vms->fdt, nodename); 961 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 962 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 963 2, flashbase, 2, flashsize, 964 2, flashbase + flashsize, 2, flashsize); 965 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 966 g_free(nodename); 967 } else { 968 /* 969 * Report the devices as separate nodes so we can mark one as 970 * only visible to the secure world. 971 */ 972 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 973 qemu_fdt_add_subnode(vms->fdt, nodename); 974 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 975 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 976 2, flashbase, 2, flashsize); 977 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 978 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 979 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 980 g_free(nodename); 981 982 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 983 qemu_fdt_add_subnode(vms->fdt, nodename); 984 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 985 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 986 2, flashbase + flashsize, 2, flashsize); 987 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 988 g_free(nodename); 989 } 990 } 991 992 static bool virt_firmware_init(VirtMachineState *vms, 993 MemoryRegion *sysmem, 994 MemoryRegion *secure_sysmem) 995 { 996 int i; 997 BlockBackend *pflash_blk0; 998 999 /* Map legacy -drive if=pflash to machine properties */ 1000 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1001 pflash_cfi01_legacy_drive(vms->flash[i], 1002 drive_get(IF_PFLASH, 0, i)); 1003 } 1004 1005 virt_flash_map(vms, sysmem, secure_sysmem); 1006 1007 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1008 1009 if (bios_name) { 1010 char *fname; 1011 MemoryRegion *mr; 1012 int image_size; 1013 1014 if (pflash_blk0) { 1015 error_report("The contents of the first flash device may be " 1016 "specified with -bios or with -drive if=pflash... " 1017 "but you cannot use both options at once"); 1018 exit(1); 1019 } 1020 1021 /* Fall back to -bios */ 1022 1023 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1024 if (!fname) { 1025 error_report("Could not find ROM image '%s'", bios_name); 1026 exit(1); 1027 } 1028 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1029 image_size = load_image_mr(fname, mr); 1030 g_free(fname); 1031 if (image_size < 0) { 1032 error_report("Could not load ROM image '%s'", bios_name); 1033 exit(1); 1034 } 1035 } 1036 1037 return pflash_blk0 || bios_name; 1038 } 1039 1040 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1041 { 1042 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1043 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1044 FWCfgState *fw_cfg; 1045 char *nodename; 1046 1047 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1048 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 1049 1050 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1051 qemu_fdt_add_subnode(vms->fdt, nodename); 1052 qemu_fdt_setprop_string(vms->fdt, nodename, 1053 "compatible", "qemu,fw-cfg-mmio"); 1054 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1055 2, base, 2, size); 1056 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1057 g_free(nodename); 1058 return fw_cfg; 1059 } 1060 1061 static void create_pcie_irq_map(const VirtMachineState *vms, 1062 uint32_t gic_phandle, 1063 int first_irq, const char *nodename) 1064 { 1065 int devfn, pin; 1066 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1067 uint32_t *irq_map = full_irq_map; 1068 1069 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1070 for (pin = 0; pin < 4; pin++) { 1071 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1072 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1073 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1074 int i; 1075 1076 uint32_t map[] = { 1077 devfn << 8, 0, 0, /* devfn */ 1078 pin + 1, /* PCI pin */ 1079 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1080 1081 /* Convert map to big endian */ 1082 for (i = 0; i < 10; i++) { 1083 irq_map[i] = cpu_to_be32(map[i]); 1084 } 1085 irq_map += 10; 1086 } 1087 } 1088 1089 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1090 full_irq_map, sizeof(full_irq_map)); 1091 1092 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1093 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1094 0x7 /* PCI irq */); 1095 } 1096 1097 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, 1098 PCIBus *bus) 1099 { 1100 char *node; 1101 const char compat[] = "arm,smmu-v3"; 1102 int irq = vms->irqmap[VIRT_SMMU]; 1103 int i; 1104 hwaddr base = vms->memmap[VIRT_SMMU].base; 1105 hwaddr size = vms->memmap[VIRT_SMMU].size; 1106 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1107 DeviceState *dev; 1108 1109 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1110 return; 1111 } 1112 1113 dev = qdev_create(NULL, "arm-smmuv3"); 1114 1115 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1116 &error_abort); 1117 qdev_init_nofail(dev); 1118 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1119 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1120 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1121 } 1122 1123 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1124 qemu_fdt_add_subnode(vms->fdt, node); 1125 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1126 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1127 1128 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1129 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1130 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1131 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1132 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1133 1134 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1135 sizeof(irq_names)); 1136 1137 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1138 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1139 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1140 1141 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1142 1143 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1144 g_free(node); 1145 } 1146 1147 static void create_pcie(VirtMachineState *vms, qemu_irq *pic) 1148 { 1149 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1150 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1151 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1152 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1153 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1154 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1155 hwaddr base_ecam, size_ecam; 1156 hwaddr base = base_mmio; 1157 int nr_pcie_buses; 1158 int irq = vms->irqmap[VIRT_PCIE]; 1159 MemoryRegion *mmio_alias; 1160 MemoryRegion *mmio_reg; 1161 MemoryRegion *ecam_alias; 1162 MemoryRegion *ecam_reg; 1163 DeviceState *dev; 1164 char *nodename; 1165 int i, ecam_id; 1166 PCIHostState *pci; 1167 1168 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1169 qdev_init_nofail(dev); 1170 1171 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1172 base_ecam = vms->memmap[ecam_id].base; 1173 size_ecam = vms->memmap[ecam_id].size; 1174 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1175 /* Map only the first size_ecam bytes of ECAM space */ 1176 ecam_alias = g_new0(MemoryRegion, 1); 1177 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1178 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1179 ecam_reg, 0, size_ecam); 1180 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1181 1182 /* Map the MMIO window into system address space so as to expose 1183 * the section of PCI MMIO space which starts at the same base address 1184 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1185 * the window). 1186 */ 1187 mmio_alias = g_new0(MemoryRegion, 1); 1188 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1189 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1190 mmio_reg, base_mmio, size_mmio); 1191 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1192 1193 if (vms->highmem) { 1194 /* Map high MMIO space */ 1195 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1196 1197 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1198 mmio_reg, base_mmio_high, size_mmio_high); 1199 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1200 high_mmio_alias); 1201 } 1202 1203 /* Map IO port space */ 1204 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1205 1206 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1207 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1208 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1209 } 1210 1211 pci = PCI_HOST_BRIDGE(dev); 1212 if (pci->bus) { 1213 for (i = 0; i < nb_nics; i++) { 1214 NICInfo *nd = &nd_table[i]; 1215 1216 if (!nd->model) { 1217 nd->model = g_strdup("virtio"); 1218 } 1219 1220 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1221 } 1222 } 1223 1224 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1225 qemu_fdt_add_subnode(vms->fdt, nodename); 1226 qemu_fdt_setprop_string(vms->fdt, nodename, 1227 "compatible", "pci-host-ecam-generic"); 1228 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1229 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1230 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1231 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1232 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1233 nr_pcie_buses - 1); 1234 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1235 1236 if (vms->msi_phandle) { 1237 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1238 vms->msi_phandle); 1239 } 1240 1241 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1242 2, base_ecam, 2, size_ecam); 1243 1244 if (vms->highmem) { 1245 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1246 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1247 2, base_pio, 2, size_pio, 1248 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1249 2, base_mmio, 2, size_mmio, 1250 1, FDT_PCI_RANGE_MMIO_64BIT, 1251 2, base_mmio_high, 1252 2, base_mmio_high, 2, size_mmio_high); 1253 } else { 1254 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1255 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1256 2, base_pio, 2, size_pio, 1257 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1258 2, base_mmio, 2, size_mmio); 1259 } 1260 1261 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1262 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1263 1264 if (vms->iommu) { 1265 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1266 1267 create_smmu(vms, pic, pci->bus); 1268 1269 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1270 0x0, vms->iommu_phandle, 0x0, 0x10000); 1271 } 1272 1273 g_free(nodename); 1274 } 1275 1276 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) 1277 { 1278 DeviceState *dev; 1279 SysBusDevice *s; 1280 int i; 1281 MemoryRegion *sysmem = get_system_memory(); 1282 1283 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1284 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1285 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1286 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1287 qdev_init_nofail(dev); 1288 vms->platform_bus_dev = dev; 1289 1290 s = SYS_BUS_DEVICE(dev); 1291 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1292 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1293 sysbus_connect_irq(s, i, pic[irqn]); 1294 } 1295 1296 memory_region_add_subregion(sysmem, 1297 vms->memmap[VIRT_PLATFORM_BUS].base, 1298 sysbus_mmio_get_region(s, 0)); 1299 } 1300 1301 static void create_secure_ram(VirtMachineState *vms, 1302 MemoryRegion *secure_sysmem) 1303 { 1304 MemoryRegion *secram = g_new(MemoryRegion, 1); 1305 char *nodename; 1306 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1307 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1308 1309 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1310 &error_fatal); 1311 memory_region_add_subregion(secure_sysmem, base, secram); 1312 1313 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1314 qemu_fdt_add_subnode(vms->fdt, nodename); 1315 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1316 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1317 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1318 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1319 1320 g_free(nodename); 1321 } 1322 1323 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1324 { 1325 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1326 bootinfo); 1327 1328 *fdt_size = board->fdt_size; 1329 return board->fdt; 1330 } 1331 1332 static void virt_build_smbios(VirtMachineState *vms) 1333 { 1334 MachineClass *mc = MACHINE_GET_CLASS(vms); 1335 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1336 uint8_t *smbios_tables, *smbios_anchor; 1337 size_t smbios_tables_len, smbios_anchor_len; 1338 const char *product = "QEMU Virtual Machine"; 1339 1340 if (kvm_enabled()) { 1341 product = "KVM Virtual Machine"; 1342 } 1343 1344 smbios_set_defaults("QEMU", product, 1345 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1346 true, SMBIOS_ENTRY_POINT_30); 1347 1348 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1349 &smbios_anchor, &smbios_anchor_len); 1350 1351 if (smbios_anchor) { 1352 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1353 smbios_tables, smbios_tables_len); 1354 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1355 smbios_anchor, smbios_anchor_len); 1356 } 1357 } 1358 1359 static 1360 void virt_machine_done(Notifier *notifier, void *data) 1361 { 1362 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1363 machine_done); 1364 ARMCPU *cpu = ARM_CPU(first_cpu); 1365 struct arm_boot_info *info = &vms->bootinfo; 1366 AddressSpace *as = arm_boot_address_space(cpu, info); 1367 1368 /* 1369 * If the user provided a dtb, we assume the dynamic sysbus nodes 1370 * already are integrated there. This corresponds to a use case where 1371 * the dynamic sysbus nodes are complex and their generation is not yet 1372 * supported. In that case the user can take charge of the guest dt 1373 * while qemu takes charge of the qom stuff. 1374 */ 1375 if (info->dtb_filename == NULL) { 1376 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1377 vms->memmap[VIRT_PLATFORM_BUS].base, 1378 vms->memmap[VIRT_PLATFORM_BUS].size, 1379 vms->irqmap[VIRT_PLATFORM_BUS]); 1380 } 1381 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { 1382 exit(1); 1383 } 1384 1385 virt_acpi_setup(vms); 1386 virt_build_smbios(vms); 1387 } 1388 1389 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1390 { 1391 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1392 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1393 1394 if (!vmc->disallow_affinity_adjustment) { 1395 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1396 * GIC's target-list limitations. 32-bit KVM hosts currently 1397 * always create clusters of 4 CPUs, but that is expected to 1398 * change when they gain support for gicv3. When KVM is enabled 1399 * it will override the changes we make here, therefore our 1400 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1401 * and to improve SGI efficiency. 1402 */ 1403 if (vms->gic_version == 3) { 1404 clustersz = GICV3_TARGETLIST_BITS; 1405 } else { 1406 clustersz = GIC_TARGETLIST_BITS; 1407 } 1408 } 1409 return arm_cpu_mp_affinity(idx, clustersz); 1410 } 1411 1412 static void virt_set_memmap(VirtMachineState *vms) 1413 { 1414 MachineState *ms = MACHINE(vms); 1415 hwaddr base, device_memory_base, device_memory_size; 1416 int i; 1417 1418 vms->memmap = extended_memmap; 1419 1420 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1421 vms->memmap[i] = base_memmap[i]; 1422 } 1423 1424 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1425 error_report("unsupported number of memory slots: %"PRIu64, 1426 ms->ram_slots); 1427 exit(EXIT_FAILURE); 1428 } 1429 1430 /* 1431 * We compute the base of the high IO region depending on the 1432 * amount of initial and device memory. The device memory start/size 1433 * is aligned on 1GiB. We never put the high IO region below 256GiB 1434 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1435 * The device region size assumes 1GiB page max alignment per slot. 1436 */ 1437 device_memory_base = 1438 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1439 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1440 1441 /* Base address of the high IO region */ 1442 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1443 if (base < device_memory_base) { 1444 error_report("maxmem/slots too huge"); 1445 exit(EXIT_FAILURE); 1446 } 1447 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1448 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1449 } 1450 1451 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1452 hwaddr size = extended_memmap[i].size; 1453 1454 base = ROUND_UP(base, size); 1455 vms->memmap[i].base = base; 1456 vms->memmap[i].size = size; 1457 base += size; 1458 } 1459 vms->highest_gpa = base - 1; 1460 if (device_memory_size > 0) { 1461 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1462 ms->device_memory->base = device_memory_base; 1463 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1464 "device-memory", device_memory_size); 1465 } 1466 } 1467 1468 static void machvirt_init(MachineState *machine) 1469 { 1470 VirtMachineState *vms = VIRT_MACHINE(machine); 1471 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1472 MachineClass *mc = MACHINE_GET_CLASS(machine); 1473 const CPUArchIdList *possible_cpus; 1474 qemu_irq pic[NUM_IRQS]; 1475 MemoryRegion *sysmem = get_system_memory(); 1476 MemoryRegion *secure_sysmem = NULL; 1477 int n, virt_max_cpus; 1478 MemoryRegion *ram = g_new(MemoryRegion, 1); 1479 bool firmware_loaded; 1480 bool aarch64 = true; 1481 1482 /* 1483 * In accelerated mode, the memory map is computed earlier in kvm_type() 1484 * to create a VM with the right number of IPA bits. 1485 */ 1486 if (!vms->memmap) { 1487 virt_set_memmap(vms); 1488 } 1489 1490 /* We can probe only here because during property set 1491 * KVM is not available yet 1492 */ 1493 if (vms->gic_version <= 0) { 1494 /* "host" or "max" */ 1495 if (!kvm_enabled()) { 1496 if (vms->gic_version == 0) { 1497 error_report("gic-version=host requires KVM"); 1498 exit(1); 1499 } else { 1500 /* "max": currently means 3 for TCG */ 1501 vms->gic_version = 3; 1502 } 1503 } else { 1504 vms->gic_version = kvm_arm_vgic_probe(); 1505 if (!vms->gic_version) { 1506 error_report( 1507 "Unable to determine GIC version supported by host"); 1508 exit(1); 1509 } 1510 } 1511 } 1512 1513 if (!cpu_type_valid(machine->cpu_type)) { 1514 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1515 exit(1); 1516 } 1517 1518 if (vms->secure) { 1519 if (kvm_enabled()) { 1520 error_report("mach-virt: KVM does not support Security extensions"); 1521 exit(1); 1522 } 1523 1524 /* 1525 * The Secure view of the world is the same as the NonSecure, 1526 * but with a few extra devices. Create it as a container region 1527 * containing the system memory at low priority; any secure-only 1528 * devices go in at higher priority and take precedence. 1529 */ 1530 secure_sysmem = g_new(MemoryRegion, 1); 1531 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1532 UINT64_MAX); 1533 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1534 } 1535 1536 firmware_loaded = virt_firmware_init(vms, sysmem, 1537 secure_sysmem ?: sysmem); 1538 1539 /* If we have an EL3 boot ROM then the assumption is that it will 1540 * implement PSCI itself, so disable QEMU's internal implementation 1541 * so it doesn't get in the way. Instead of starting secondary 1542 * CPUs in PSCI powerdown state we will start them all running and 1543 * let the boot ROM sort them out. 1544 * The usual case is that we do use QEMU's PSCI implementation; 1545 * if the guest has EL2 then we will use SMC as the conduit, 1546 * and otherwise we will use HVC (for backwards compatibility and 1547 * because if we're using KVM then we must use HVC). 1548 */ 1549 if (vms->secure && firmware_loaded) { 1550 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1551 } else if (vms->virt) { 1552 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1553 } else { 1554 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1555 } 1556 1557 /* The maximum number of CPUs depends on the GIC version, or on how 1558 * many redistributors we can fit into the memory map. 1559 */ 1560 if (vms->gic_version == 3) { 1561 virt_max_cpus = 1562 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1563 virt_max_cpus += 1564 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1565 } else { 1566 virt_max_cpus = GIC_NCPU; 1567 } 1568 1569 if (max_cpus > virt_max_cpus) { 1570 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1571 "supported by machine 'mach-virt' (%d)", 1572 max_cpus, virt_max_cpus); 1573 exit(1); 1574 } 1575 1576 vms->smp_cpus = smp_cpus; 1577 1578 if (vms->virt && kvm_enabled()) { 1579 error_report("mach-virt: KVM does not support providing " 1580 "Virtualization extensions to the guest CPU"); 1581 exit(1); 1582 } 1583 1584 create_fdt(vms); 1585 1586 possible_cpus = mc->possible_cpu_arch_ids(machine); 1587 for (n = 0; n < possible_cpus->len; n++) { 1588 Object *cpuobj; 1589 CPUState *cs; 1590 1591 if (n >= smp_cpus) { 1592 break; 1593 } 1594 1595 cpuobj = object_new(possible_cpus->cpus[n].type); 1596 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1597 "mp-affinity", NULL); 1598 1599 cs = CPU(cpuobj); 1600 cs->cpu_index = n; 1601 1602 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1603 &error_fatal); 1604 1605 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1606 1607 if (!vms->secure) { 1608 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1609 } 1610 1611 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1612 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1613 } 1614 1615 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1616 object_property_set_int(cpuobj, vms->psci_conduit, 1617 "psci-conduit", NULL); 1618 1619 /* Secondary CPUs start in PSCI powered-down state */ 1620 if (n > 0) { 1621 object_property_set_bool(cpuobj, true, 1622 "start-powered-off", NULL); 1623 } 1624 } 1625 1626 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1627 object_property_set_bool(cpuobj, false, "pmu", NULL); 1628 } 1629 1630 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1631 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1632 "reset-cbar", &error_abort); 1633 } 1634 1635 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1636 &error_abort); 1637 if (vms->secure) { 1638 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1639 "secure-memory", &error_abort); 1640 } 1641 1642 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1643 object_unref(cpuobj); 1644 } 1645 fdt_add_timer_nodes(vms); 1646 fdt_add_cpu_nodes(vms); 1647 1648 if (!kvm_enabled()) { 1649 ARMCPU *cpu = ARM_CPU(first_cpu); 1650 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL); 1651 1652 if (aarch64 && vms->highmem) { 1653 int requested_pa_size, pamax = arm_pamax(cpu); 1654 1655 requested_pa_size = 64 - clz64(vms->highest_gpa); 1656 if (pamax < requested_pa_size) { 1657 error_report("VCPU supports less PA bits (%d) than requested " 1658 "by the memory map (%d)", pamax, requested_pa_size); 1659 exit(1); 1660 } 1661 } 1662 } 1663 1664 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1665 machine->ram_size); 1666 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1667 if (machine->device_memory) { 1668 memory_region_add_subregion(sysmem, machine->device_memory->base, 1669 &machine->device_memory->mr); 1670 } 1671 1672 virt_flash_fdt(vms, sysmem, secure_sysmem); 1673 1674 create_gic(vms, pic); 1675 1676 fdt_add_pmu_nodes(vms); 1677 1678 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); 1679 1680 if (vms->secure) { 1681 create_secure_ram(vms, secure_sysmem); 1682 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1683 } 1684 1685 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1686 1687 create_rtc(vms, pic); 1688 1689 create_pcie(vms, pic); 1690 1691 create_gpio(vms, pic); 1692 1693 /* Create mmio transports, so the user can create virtio backends 1694 * (which will be automatically plugged in to the transports). If 1695 * no backend is created the transport will just sit harmlessly idle. 1696 */ 1697 create_virtio_devices(vms, pic); 1698 1699 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1700 rom_set_fw(vms->fw_cfg); 1701 1702 create_platform_bus(vms, pic); 1703 1704 vms->bootinfo.ram_size = machine->ram_size; 1705 vms->bootinfo.kernel_filename = machine->kernel_filename; 1706 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1707 vms->bootinfo.initrd_filename = machine->initrd_filename; 1708 vms->bootinfo.nb_cpus = smp_cpus; 1709 vms->bootinfo.board_id = -1; 1710 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1711 vms->bootinfo.get_dtb = machvirt_dtb; 1712 vms->bootinfo.skip_dtb_autoload = true; 1713 vms->bootinfo.firmware_loaded = firmware_loaded; 1714 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); 1715 1716 vms->machine_done.notify = virt_machine_done; 1717 qemu_add_machine_init_done_notifier(&vms->machine_done); 1718 } 1719 1720 static bool virt_get_secure(Object *obj, Error **errp) 1721 { 1722 VirtMachineState *vms = VIRT_MACHINE(obj); 1723 1724 return vms->secure; 1725 } 1726 1727 static void virt_set_secure(Object *obj, bool value, Error **errp) 1728 { 1729 VirtMachineState *vms = VIRT_MACHINE(obj); 1730 1731 vms->secure = value; 1732 } 1733 1734 static bool virt_get_virt(Object *obj, Error **errp) 1735 { 1736 VirtMachineState *vms = VIRT_MACHINE(obj); 1737 1738 return vms->virt; 1739 } 1740 1741 static void virt_set_virt(Object *obj, bool value, Error **errp) 1742 { 1743 VirtMachineState *vms = VIRT_MACHINE(obj); 1744 1745 vms->virt = value; 1746 } 1747 1748 static bool virt_get_highmem(Object *obj, Error **errp) 1749 { 1750 VirtMachineState *vms = VIRT_MACHINE(obj); 1751 1752 return vms->highmem; 1753 } 1754 1755 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1756 { 1757 VirtMachineState *vms = VIRT_MACHINE(obj); 1758 1759 vms->highmem = value; 1760 } 1761 1762 static bool virt_get_its(Object *obj, Error **errp) 1763 { 1764 VirtMachineState *vms = VIRT_MACHINE(obj); 1765 1766 return vms->its; 1767 } 1768 1769 static void virt_set_its(Object *obj, bool value, Error **errp) 1770 { 1771 VirtMachineState *vms = VIRT_MACHINE(obj); 1772 1773 vms->its = value; 1774 } 1775 1776 static char *virt_get_gic_version(Object *obj, Error **errp) 1777 { 1778 VirtMachineState *vms = VIRT_MACHINE(obj); 1779 const char *val = vms->gic_version == 3 ? "3" : "2"; 1780 1781 return g_strdup(val); 1782 } 1783 1784 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1785 { 1786 VirtMachineState *vms = VIRT_MACHINE(obj); 1787 1788 if (!strcmp(value, "3")) { 1789 vms->gic_version = 3; 1790 } else if (!strcmp(value, "2")) { 1791 vms->gic_version = 2; 1792 } else if (!strcmp(value, "host")) { 1793 vms->gic_version = 0; /* Will probe later */ 1794 } else if (!strcmp(value, "max")) { 1795 vms->gic_version = -1; /* Will probe later */ 1796 } else { 1797 error_setg(errp, "Invalid gic-version value"); 1798 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1799 } 1800 } 1801 1802 static char *virt_get_iommu(Object *obj, Error **errp) 1803 { 1804 VirtMachineState *vms = VIRT_MACHINE(obj); 1805 1806 switch (vms->iommu) { 1807 case VIRT_IOMMU_NONE: 1808 return g_strdup("none"); 1809 case VIRT_IOMMU_SMMUV3: 1810 return g_strdup("smmuv3"); 1811 default: 1812 g_assert_not_reached(); 1813 } 1814 } 1815 1816 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1817 { 1818 VirtMachineState *vms = VIRT_MACHINE(obj); 1819 1820 if (!strcmp(value, "smmuv3")) { 1821 vms->iommu = VIRT_IOMMU_SMMUV3; 1822 } else if (!strcmp(value, "none")) { 1823 vms->iommu = VIRT_IOMMU_NONE; 1824 } else { 1825 error_setg(errp, "Invalid iommu value"); 1826 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1827 } 1828 } 1829 1830 static CpuInstanceProperties 1831 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1832 { 1833 MachineClass *mc = MACHINE_GET_CLASS(ms); 1834 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1835 1836 assert(cpu_index < possible_cpus->len); 1837 return possible_cpus->cpus[cpu_index].props; 1838 } 1839 1840 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1841 { 1842 return idx % nb_numa_nodes; 1843 } 1844 1845 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1846 { 1847 int n; 1848 VirtMachineState *vms = VIRT_MACHINE(ms); 1849 1850 if (ms->possible_cpus) { 1851 assert(ms->possible_cpus->len == max_cpus); 1852 return ms->possible_cpus; 1853 } 1854 1855 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1856 sizeof(CPUArchId) * max_cpus); 1857 ms->possible_cpus->len = max_cpus; 1858 for (n = 0; n < ms->possible_cpus->len; n++) { 1859 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1860 ms->possible_cpus->cpus[n].arch_id = 1861 virt_cpu_mp_affinity(vms, n); 1862 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1863 ms->possible_cpus->cpus[n].props.thread_id = n; 1864 } 1865 return ms->possible_cpus; 1866 } 1867 1868 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1869 DeviceState *dev, Error **errp) 1870 { 1871 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1872 1873 if (vms->platform_bus_dev) { 1874 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1875 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1876 SYS_BUS_DEVICE(dev)); 1877 } 1878 } 1879 } 1880 1881 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1882 DeviceState *dev) 1883 { 1884 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1885 return HOTPLUG_HANDLER(machine); 1886 } 1887 1888 return NULL; 1889 } 1890 1891 /* 1892 * for arm64 kvm_type [7-0] encodes the requested number of bits 1893 * in the IPA address space 1894 */ 1895 static int virt_kvm_type(MachineState *ms, const char *type_str) 1896 { 1897 VirtMachineState *vms = VIRT_MACHINE(ms); 1898 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 1899 int requested_pa_size; 1900 1901 /* we freeze the memory map to compute the highest gpa */ 1902 virt_set_memmap(vms); 1903 1904 requested_pa_size = 64 - clz64(vms->highest_gpa); 1905 1906 if (requested_pa_size > max_vm_pa_size) { 1907 error_report("-m and ,maxmem option values " 1908 "require an IPA range (%d bits) larger than " 1909 "the one supported by the host (%d bits)", 1910 requested_pa_size, max_vm_pa_size); 1911 exit(1); 1912 } 1913 /* 1914 * By default we return 0 which corresponds to an implicit legacy 1915 * 40b IPA setting. Otherwise we return the actual requested PA 1916 * logsize 1917 */ 1918 return requested_pa_size > 40 ? requested_pa_size : 0; 1919 } 1920 1921 static void virt_machine_class_init(ObjectClass *oc, void *data) 1922 { 1923 MachineClass *mc = MACHINE_CLASS(oc); 1924 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 1925 1926 mc->init = machvirt_init; 1927 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 1928 * The value may be reduced later when we have more information about the 1929 * configuration of the particular instance. 1930 */ 1931 mc->max_cpus = 512; 1932 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 1933 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 1934 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 1935 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 1936 mc->block_default_type = IF_VIRTIO; 1937 mc->no_cdrom = 1; 1938 mc->pci_allow_0_address = true; 1939 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 1940 mc->minimum_page_bits = 12; 1941 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 1942 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 1943 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 1944 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 1945 mc->kvm_type = virt_kvm_type; 1946 assert(!mc->get_hotplug_handler); 1947 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 1948 hc->plug = virt_machine_device_plug_cb; 1949 } 1950 1951 static void virt_instance_init(Object *obj) 1952 { 1953 VirtMachineState *vms = VIRT_MACHINE(obj); 1954 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1955 1956 /* EL3 is disabled by default on virt: this makes us consistent 1957 * between KVM and TCG for this board, and it also allows us to 1958 * boot UEFI blobs which assume no TrustZone support. 1959 */ 1960 vms->secure = false; 1961 object_property_add_bool(obj, "secure", virt_get_secure, 1962 virt_set_secure, NULL); 1963 object_property_set_description(obj, "secure", 1964 "Set on/off to enable/disable the ARM " 1965 "Security Extensions (TrustZone)", 1966 NULL); 1967 1968 /* EL2 is also disabled by default, for similar reasons */ 1969 vms->virt = false; 1970 object_property_add_bool(obj, "virtualization", virt_get_virt, 1971 virt_set_virt, NULL); 1972 object_property_set_description(obj, "virtualization", 1973 "Set on/off to enable/disable emulating a " 1974 "guest CPU which implements the ARM " 1975 "Virtualization Extensions", 1976 NULL); 1977 1978 /* High memory is enabled by default */ 1979 vms->highmem = true; 1980 object_property_add_bool(obj, "highmem", virt_get_highmem, 1981 virt_set_highmem, NULL); 1982 object_property_set_description(obj, "highmem", 1983 "Set on/off to enable/disable using " 1984 "physical address space above 32 bits", 1985 NULL); 1986 /* Default GIC type is v2 */ 1987 vms->gic_version = 2; 1988 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1989 virt_set_gic_version, NULL); 1990 object_property_set_description(obj, "gic-version", 1991 "Set GIC version. " 1992 "Valid values are 2, 3 and host", NULL); 1993 1994 vms->highmem_ecam = !vmc->no_highmem_ecam; 1995 1996 if (vmc->no_its) { 1997 vms->its = false; 1998 } else { 1999 /* Default allows ITS instantiation */ 2000 vms->its = true; 2001 object_property_add_bool(obj, "its", virt_get_its, 2002 virt_set_its, NULL); 2003 object_property_set_description(obj, "its", 2004 "Set on/off to enable/disable " 2005 "ITS instantiation", 2006 NULL); 2007 } 2008 2009 /* Default disallows iommu instantiation */ 2010 vms->iommu = VIRT_IOMMU_NONE; 2011 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 2012 object_property_set_description(obj, "iommu", 2013 "Set the IOMMU type. " 2014 "Valid values are none and smmuv3", 2015 NULL); 2016 2017 vms->irqmap = a15irqmap; 2018 2019 virt_flash_create(vms); 2020 } 2021 2022 static const TypeInfo virt_machine_info = { 2023 .name = TYPE_VIRT_MACHINE, 2024 .parent = TYPE_MACHINE, 2025 .abstract = true, 2026 .instance_size = sizeof(VirtMachineState), 2027 .class_size = sizeof(VirtMachineClass), 2028 .class_init = virt_machine_class_init, 2029 .instance_init = virt_instance_init, 2030 .interfaces = (InterfaceInfo[]) { 2031 { TYPE_HOTPLUG_HANDLER }, 2032 { } 2033 }, 2034 }; 2035 2036 static void machvirt_machine_init(void) 2037 { 2038 type_register_static(&virt_machine_info); 2039 } 2040 type_init(machvirt_machine_init); 2041 2042 static void virt_machine_4_1_options(MachineClass *mc) 2043 { 2044 } 2045 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1) 2046 2047 static void virt_machine_4_0_options(MachineClass *mc) 2048 { 2049 virt_machine_4_1_options(mc); 2050 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2051 } 2052 DEFINE_VIRT_MACHINE(4, 0) 2053 2054 static void virt_machine_3_1_options(MachineClass *mc) 2055 { 2056 virt_machine_4_0_options(mc); 2057 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2058 } 2059 DEFINE_VIRT_MACHINE(3, 1) 2060 2061 static void virt_machine_3_0_options(MachineClass *mc) 2062 { 2063 virt_machine_3_1_options(mc); 2064 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2065 } 2066 DEFINE_VIRT_MACHINE(3, 0) 2067 2068 static void virt_machine_2_12_options(MachineClass *mc) 2069 { 2070 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2071 2072 virt_machine_3_0_options(mc); 2073 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2074 vmc->no_highmem_ecam = true; 2075 mc->max_cpus = 255; 2076 } 2077 DEFINE_VIRT_MACHINE(2, 12) 2078 2079 static void virt_machine_2_11_options(MachineClass *mc) 2080 { 2081 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2082 2083 virt_machine_2_12_options(mc); 2084 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2085 vmc->smbios_old_sys_ver = true; 2086 } 2087 DEFINE_VIRT_MACHINE(2, 11) 2088 2089 static void virt_machine_2_10_options(MachineClass *mc) 2090 { 2091 virt_machine_2_11_options(mc); 2092 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2093 /* before 2.11 we never faulted accesses to bad addresses */ 2094 mc->ignore_memory_transaction_failures = true; 2095 } 2096 DEFINE_VIRT_MACHINE(2, 10) 2097 2098 static void virt_machine_2_9_options(MachineClass *mc) 2099 { 2100 virt_machine_2_10_options(mc); 2101 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2102 } 2103 DEFINE_VIRT_MACHINE(2, 9) 2104 2105 static void virt_machine_2_8_options(MachineClass *mc) 2106 { 2107 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2108 2109 virt_machine_2_9_options(mc); 2110 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2111 /* For 2.8 and earlier we falsely claimed in the DT that 2112 * our timers were edge-triggered, not level-triggered. 2113 */ 2114 vmc->claim_edge_triggered_timers = true; 2115 } 2116 DEFINE_VIRT_MACHINE(2, 8) 2117 2118 static void virt_machine_2_7_options(MachineClass *mc) 2119 { 2120 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2121 2122 virt_machine_2_8_options(mc); 2123 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2124 /* ITS was introduced with 2.8 */ 2125 vmc->no_its = true; 2126 /* Stick with 1K pages for migration compatibility */ 2127 mc->minimum_page_bits = 0; 2128 } 2129 DEFINE_VIRT_MACHINE(2, 7) 2130 2131 static void virt_machine_2_6_options(MachineClass *mc) 2132 { 2133 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2134 2135 virt_machine_2_7_options(mc); 2136 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2137 vmc->disallow_affinity_adjustment = true; 2138 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2139 vmc->no_pmu = true; 2140 } 2141 DEFINE_VIRT_MACHINE(2, 6) 2142