1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/runstate.h" 48 #include "sysemu/tpm.h" 49 #include "sysemu/tcg.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hvf.h" 52 #include "sysemu/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/core/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/intc/arm_gicv3_its_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "standard-headers/linux/input.h" 73 #include "hw/arm/smmuv3.h" 74 #include "hw/acpi/acpi.h" 75 #include "target/arm/internals.h" 76 #include "hw/mem/pc-dimm.h" 77 #include "hw/mem/nvdimm.h" 78 #include "hw/acpi/generic_event_device.h" 79 #include "hw/virtio/virtio-md-pci.h" 80 #include "hw/virtio/virtio-iommu.h" 81 #include "hw/char/pl011.h" 82 #include "qemu/guest-random.h" 83 84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 86 void *data) \ 87 { \ 88 MachineClass *mc = MACHINE_CLASS(oc); \ 89 virt_machine_##major##_##minor##_options(mc); \ 90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 91 if (latest) { \ 92 mc->alias = "virt"; \ 93 } \ 94 } \ 95 static const TypeInfo machvirt_##major##_##minor##_info = { \ 96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 97 .parent = TYPE_VIRT_MACHINE, \ 98 .class_init = virt_##major##_##minor##_class_init, \ 99 }; \ 100 static void machvirt_machine_##major##_##minor##_init(void) \ 101 { \ 102 type_register_static(&machvirt_##major##_##minor##_info); \ 103 } \ 104 type_init(machvirt_machine_##major##_##minor##_init); 105 106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 108 #define DEFINE_VIRT_MACHINE(major, minor) \ 109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 110 111 112 /* Number of external interrupt lines to configure the GIC with */ 113 #define NUM_IRQS 256 114 115 #define PLATFORM_BUS_NUM_IRQS 64 116 117 /* Legacy RAM limit in GB (< version 4.0) */ 118 #define LEGACY_RAMLIMIT_GB 255 119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 120 121 /* Addresses and sizes of our components. 122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 123 * 128MB..256MB is used for miscellaneous device I/O. 124 * 256MB..1GB is reserved for possible future PCI support (ie where the 125 * PCI memory window will go if we add a PCI host controller). 126 * 1GB and up is RAM (which may happily spill over into the 127 * high memory region beyond 4GB). 128 * This represents a compromise between how much RAM can be given to 129 * a 32 bit VM and leaving space for expansion and in particular for PCI. 130 * Note that devices should generally be placed at multiples of 0x10000, 131 * to accommodate guests using 64K pages. 132 */ 133 static const MemMapEntry base_memmap[] = { 134 /* Space up to 0x8000000 is reserved for a boot ROM */ 135 [VIRT_FLASH] = { 0, 0x08000000 }, 136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 145 /* This redistributor space allows up to 2*64kB*123 CPUs */ 146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 147 [VIRT_UART] = { 0x09000000, 0x00001000 }, 148 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 150 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 152 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 165 /* Actual RAM size depends on initial RAM and device memory settings */ 166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 167 }; 168 169 /* 170 * Highmem IO Regions: This memory map is floating, located after the RAM. 171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 172 * top of the RAM, so that its base get the same alignment as the size, 173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 175 * Note the extended_memmap is sized so that it eventually also includes the 176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 177 * index of base_memmap). 178 * 179 * The memory map for these Highmem IO Regions can be in legacy or compact 180 * layout, depending on 'compact-highmem' property. With legacy layout, the 181 * PA space for one specific region is always reserved, even if the region 182 * has been disabled or doesn't fit into the PA space. However, the PA space 183 * for the region won't be reserved in these circumstances with compact layout. 184 */ 185 static MemMapEntry extended_memmap[] = { 186 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 187 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 188 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 189 /* Second PCIe window */ 190 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 191 }; 192 193 static const int a15irqmap[] = { 194 [VIRT_UART] = 1, 195 [VIRT_RTC] = 2, 196 [VIRT_PCIE] = 3, /* ... to 6 */ 197 [VIRT_GPIO] = 7, 198 [VIRT_SECURE_UART] = 8, 199 [VIRT_ACPI_GED] = 9, 200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 202 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 203 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 204 }; 205 206 static const char *valid_cpus[] = { 207 #ifdef CONFIG_TCG 208 ARM_CPU_TYPE_NAME("cortex-a7"), 209 ARM_CPU_TYPE_NAME("cortex-a15"), 210 ARM_CPU_TYPE_NAME("cortex-a35"), 211 ARM_CPU_TYPE_NAME("cortex-a55"), 212 ARM_CPU_TYPE_NAME("cortex-a72"), 213 ARM_CPU_TYPE_NAME("cortex-a76"), 214 ARM_CPU_TYPE_NAME("cortex-a710"), 215 ARM_CPU_TYPE_NAME("a64fx"), 216 ARM_CPU_TYPE_NAME("neoverse-n1"), 217 ARM_CPU_TYPE_NAME("neoverse-v1"), 218 ARM_CPU_TYPE_NAME("neoverse-n2"), 219 #endif 220 ARM_CPU_TYPE_NAME("cortex-a53"), 221 ARM_CPU_TYPE_NAME("cortex-a57"), 222 ARM_CPU_TYPE_NAME("host"), 223 ARM_CPU_TYPE_NAME("max"), 224 }; 225 226 static bool cpu_type_valid(const char *cpu) 227 { 228 int i; 229 230 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 231 if (strcmp(cpu, valid_cpus[i]) == 0) { 232 return true; 233 } 234 } 235 return false; 236 } 237 238 static void create_randomness(MachineState *ms, const char *node) 239 { 240 struct { 241 uint64_t kaslr; 242 uint8_t rng[32]; 243 } seed; 244 245 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 246 return; 247 } 248 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 249 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 250 } 251 252 static void create_fdt(VirtMachineState *vms) 253 { 254 MachineState *ms = MACHINE(vms); 255 int nb_numa_nodes = ms->numa_state->num_nodes; 256 void *fdt = create_device_tree(&vms->fdt_size); 257 258 if (!fdt) { 259 error_report("create_device_tree() failed"); 260 exit(1); 261 } 262 263 ms->fdt = fdt; 264 265 /* Header */ 266 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 267 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 268 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 269 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 270 271 /* /chosen must exist for load_dtb to fill in necessary properties later */ 272 qemu_fdt_add_subnode(fdt, "/chosen"); 273 if (vms->dtb_randomness) { 274 create_randomness(ms, "/chosen"); 275 } 276 277 if (vms->secure) { 278 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 279 if (vms->dtb_randomness) { 280 create_randomness(ms, "/secure-chosen"); 281 } 282 } 283 284 /* Clock node, for the benefit of the UART. The kernel device tree 285 * binding documentation claims the PL011 node clock properties are 286 * optional but in practice if you omit them the kernel refuses to 287 * probe for the device. 288 */ 289 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 290 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 291 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 292 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 293 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 294 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 295 "clk24mhz"); 296 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 297 298 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 299 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 300 uint32_t *matrix = g_malloc0(size); 301 int idx, i, j; 302 303 for (i = 0; i < nb_numa_nodes; i++) { 304 for (j = 0; j < nb_numa_nodes; j++) { 305 idx = (i * nb_numa_nodes + j) * 3; 306 matrix[idx + 0] = cpu_to_be32(i); 307 matrix[idx + 1] = cpu_to_be32(j); 308 matrix[idx + 2] = 309 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 310 } 311 } 312 313 qemu_fdt_add_subnode(fdt, "/distance-map"); 314 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 315 "numa-distance-map-v1"); 316 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 317 matrix, size); 318 g_free(matrix); 319 } 320 } 321 322 static void fdt_add_timer_nodes(const VirtMachineState *vms) 323 { 324 /* On real hardware these interrupts are level-triggered. 325 * On KVM they were edge-triggered before host kernel version 4.4, 326 * and level-triggered afterwards. 327 * On emulated QEMU they are level-triggered. 328 * 329 * Getting the DTB info about them wrong is awkward for some 330 * guest kernels: 331 * pre-4.8 ignore the DT and leave the interrupt configured 332 * with whatever the GIC reset value (or the bootloader) left it at 333 * 4.8 before rc6 honour the incorrect data by programming it back 334 * into the GIC, causing problems 335 * 4.8rc6 and later ignore the DT and always write "level triggered" 336 * into the GIC 337 * 338 * For backwards-compatibility, virt-2.8 and earlier will continue 339 * to say these are edge-triggered, but later machines will report 340 * the correct information. 341 */ 342 ARMCPU *armcpu; 343 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 344 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 345 MachineState *ms = MACHINE(vms); 346 347 if (vmc->claim_edge_triggered_timers) { 348 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 349 } 350 351 if (vms->gic_version == VIRT_GIC_VERSION_2) { 352 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 353 GIC_FDT_IRQ_PPI_CPU_WIDTH, 354 (1 << MACHINE(vms)->smp.cpus) - 1); 355 } 356 357 qemu_fdt_add_subnode(ms->fdt, "/timer"); 358 359 armcpu = ARM_CPU(qemu_get_cpu(0)); 360 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 361 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 362 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 363 compat, sizeof(compat)); 364 } else { 365 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 366 "arm,armv7-timer"); 367 } 368 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 369 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 370 GIC_FDT_IRQ_TYPE_PPI, 371 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 372 GIC_FDT_IRQ_TYPE_PPI, 373 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 374 GIC_FDT_IRQ_TYPE_PPI, 375 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 376 GIC_FDT_IRQ_TYPE_PPI, 377 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 378 } 379 380 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 381 { 382 int cpu; 383 int addr_cells = 1; 384 const MachineState *ms = MACHINE(vms); 385 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 386 int smp_cpus = ms->smp.cpus; 387 388 /* 389 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 390 * On ARM v8 64-bit systems value should be set to 2, 391 * that corresponds to the MPIDR_EL1 register size. 392 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 393 * in the system, #address-cells can be set to 1, since 394 * MPIDR_EL1[63:32] bits are not used for CPUs 395 * identification. 396 * 397 * Here we actually don't know whether our system is 32- or 64-bit one. 398 * The simplest way to go is to examine affinity IDs of all our CPUs. If 399 * at least one of them has Aff3 populated, we set #address-cells to 2. 400 */ 401 for (cpu = 0; cpu < smp_cpus; cpu++) { 402 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 403 404 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 405 addr_cells = 2; 406 break; 407 } 408 } 409 410 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 411 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 412 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 413 414 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 415 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 416 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 417 CPUState *cs = CPU(armcpu); 418 419 qemu_fdt_add_subnode(ms->fdt, nodename); 420 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 421 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 422 armcpu->dtb_compatible); 423 424 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 425 qemu_fdt_setprop_string(ms->fdt, nodename, 426 "enable-method", "psci"); 427 } 428 429 if (addr_cells == 2) { 430 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 431 armcpu->mp_affinity); 432 } else { 433 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 434 armcpu->mp_affinity); 435 } 436 437 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 438 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 439 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 440 } 441 442 if (!vmc->no_cpu_topology) { 443 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 444 qemu_fdt_alloc_phandle(ms->fdt)); 445 } 446 447 g_free(nodename); 448 } 449 450 if (!vmc->no_cpu_topology) { 451 /* 452 * Add vCPU topology description through fdt node cpu-map. 453 * 454 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 455 * In a SMP system, the hierarchy of CPUs can be defined through 456 * four entities that are used to describe the layout of CPUs in 457 * the system: socket/cluster/core/thread. 458 * 459 * A socket node represents the boundary of system physical package 460 * and its child nodes must be one or more cluster nodes. A system 461 * can contain several layers of clustering within a single physical 462 * package and cluster nodes can be contained in parent cluster nodes. 463 * 464 * Note: currently we only support one layer of clustering within 465 * each physical package. 466 */ 467 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 468 469 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 470 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 471 char *map_path; 472 473 if (ms->smp.threads > 1) { 474 map_path = g_strdup_printf( 475 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 476 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 477 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 478 (cpu / ms->smp.threads) % ms->smp.cores, 479 cpu % ms->smp.threads); 480 } else { 481 map_path = g_strdup_printf( 482 "/cpus/cpu-map/socket%d/cluster%d/core%d", 483 cpu / (ms->smp.clusters * ms->smp.cores), 484 (cpu / ms->smp.cores) % ms->smp.clusters, 485 cpu % ms->smp.cores); 486 } 487 qemu_fdt_add_path(ms->fdt, map_path); 488 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 489 490 g_free(map_path); 491 g_free(cpu_path); 492 } 493 } 494 } 495 496 static void fdt_add_its_gic_node(VirtMachineState *vms) 497 { 498 char *nodename; 499 MachineState *ms = MACHINE(vms); 500 501 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 502 nodename = g_strdup_printf("/intc/its@%" PRIx64, 503 vms->memmap[VIRT_GIC_ITS].base); 504 qemu_fdt_add_subnode(ms->fdt, nodename); 505 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 506 "arm,gic-v3-its"); 507 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 508 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 510 2, vms->memmap[VIRT_GIC_ITS].base, 511 2, vms->memmap[VIRT_GIC_ITS].size); 512 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 513 g_free(nodename); 514 } 515 516 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 517 { 518 MachineState *ms = MACHINE(vms); 519 char *nodename; 520 521 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 522 vms->memmap[VIRT_GIC_V2M].base); 523 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 524 qemu_fdt_add_subnode(ms->fdt, nodename); 525 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 526 "arm,gic-v2m-frame"); 527 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 528 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 529 2, vms->memmap[VIRT_GIC_V2M].base, 530 2, vms->memmap[VIRT_GIC_V2M].size); 531 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 532 g_free(nodename); 533 } 534 535 static void fdt_add_gic_node(VirtMachineState *vms) 536 { 537 MachineState *ms = MACHINE(vms); 538 char *nodename; 539 540 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 541 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 542 543 nodename = g_strdup_printf("/intc@%" PRIx64, 544 vms->memmap[VIRT_GIC_DIST].base); 545 qemu_fdt_add_subnode(ms->fdt, nodename); 546 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 547 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 548 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 549 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 550 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 551 if (vms->gic_version != VIRT_GIC_VERSION_2) { 552 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 553 554 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 555 "arm,gic-v3"); 556 557 qemu_fdt_setprop_cell(ms->fdt, nodename, 558 "#redistributor-regions", nb_redist_regions); 559 560 if (nb_redist_regions == 1) { 561 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 562 2, vms->memmap[VIRT_GIC_DIST].base, 563 2, vms->memmap[VIRT_GIC_DIST].size, 564 2, vms->memmap[VIRT_GIC_REDIST].base, 565 2, vms->memmap[VIRT_GIC_REDIST].size); 566 } else { 567 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 568 2, vms->memmap[VIRT_GIC_DIST].base, 569 2, vms->memmap[VIRT_GIC_DIST].size, 570 2, vms->memmap[VIRT_GIC_REDIST].base, 571 2, vms->memmap[VIRT_GIC_REDIST].size, 572 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 573 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 574 } 575 576 if (vms->virt) { 577 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 578 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 579 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 580 } 581 } else { 582 /* 'cortex-a15-gic' means 'GIC v2' */ 583 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 584 "arm,cortex-a15-gic"); 585 if (!vms->virt) { 586 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 587 2, vms->memmap[VIRT_GIC_DIST].base, 588 2, vms->memmap[VIRT_GIC_DIST].size, 589 2, vms->memmap[VIRT_GIC_CPU].base, 590 2, vms->memmap[VIRT_GIC_CPU].size); 591 } else { 592 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 593 2, vms->memmap[VIRT_GIC_DIST].base, 594 2, vms->memmap[VIRT_GIC_DIST].size, 595 2, vms->memmap[VIRT_GIC_CPU].base, 596 2, vms->memmap[VIRT_GIC_CPU].size, 597 2, vms->memmap[VIRT_GIC_HYP].base, 598 2, vms->memmap[VIRT_GIC_HYP].size, 599 2, vms->memmap[VIRT_GIC_VCPU].base, 600 2, vms->memmap[VIRT_GIC_VCPU].size); 601 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 602 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 603 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 604 } 605 } 606 607 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 608 g_free(nodename); 609 } 610 611 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 612 { 613 ARMCPU *armcpu = ARM_CPU(first_cpu); 614 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 615 MachineState *ms = MACHINE(vms); 616 617 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 618 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 619 return; 620 } 621 622 if (vms->gic_version == VIRT_GIC_VERSION_2) { 623 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 624 GIC_FDT_IRQ_PPI_CPU_WIDTH, 625 (1 << MACHINE(vms)->smp.cpus) - 1); 626 } 627 628 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 629 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 630 const char compat[] = "arm,armv8-pmuv3"; 631 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 632 compat, sizeof(compat)); 633 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 634 GIC_FDT_IRQ_TYPE_PPI, 635 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 636 } 637 } 638 639 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 640 { 641 DeviceState *dev; 642 MachineState *ms = MACHINE(vms); 643 int irq = vms->irqmap[VIRT_ACPI_GED]; 644 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 645 646 if (ms->ram_slots) { 647 event |= ACPI_GED_MEM_HOTPLUG_EVT; 648 } 649 650 if (ms->nvdimms_state->is_enabled) { 651 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 652 } 653 654 dev = qdev_new(TYPE_ACPI_GED); 655 qdev_prop_set_uint32(dev, "ged-event", event); 656 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 657 658 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 659 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 660 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 661 662 return dev; 663 } 664 665 static void create_its(VirtMachineState *vms) 666 { 667 const char *itsclass = its_class_name(); 668 DeviceState *dev; 669 670 if (!strcmp(itsclass, "arm-gicv3-its")) { 671 if (!vms->tcg_its) { 672 itsclass = NULL; 673 } 674 } 675 676 if (!itsclass) { 677 /* Do nothing if not supported */ 678 return; 679 } 680 681 dev = qdev_new(itsclass); 682 683 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 684 &error_abort); 685 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 686 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 687 688 fdt_add_its_gic_node(vms); 689 vms->msi_controller = VIRT_MSI_CTRL_ITS; 690 } 691 692 static void create_v2m(VirtMachineState *vms) 693 { 694 int i; 695 int irq = vms->irqmap[VIRT_GIC_V2M]; 696 DeviceState *dev; 697 698 dev = qdev_new("arm-gicv2m"); 699 qdev_prop_set_uint32(dev, "base-spi", irq); 700 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 701 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 702 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 703 704 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 705 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 706 qdev_get_gpio_in(vms->gic, irq + i)); 707 } 708 709 fdt_add_v2m_gic_node(vms); 710 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 711 } 712 713 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 714 { 715 MachineState *ms = MACHINE(vms); 716 /* We create a standalone GIC */ 717 SysBusDevice *gicbusdev; 718 const char *gictype; 719 int i; 720 unsigned int smp_cpus = ms->smp.cpus; 721 uint32_t nb_redist_regions = 0; 722 int revision; 723 724 if (vms->gic_version == VIRT_GIC_VERSION_2) { 725 gictype = gic_class_name(); 726 } else { 727 gictype = gicv3_class_name(); 728 } 729 730 switch (vms->gic_version) { 731 case VIRT_GIC_VERSION_2: 732 revision = 2; 733 break; 734 case VIRT_GIC_VERSION_3: 735 revision = 3; 736 break; 737 case VIRT_GIC_VERSION_4: 738 revision = 4; 739 break; 740 default: 741 g_assert_not_reached(); 742 } 743 vms->gic = qdev_new(gictype); 744 qdev_prop_set_uint32(vms->gic, "revision", revision); 745 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 746 /* Note that the num-irq property counts both internal and external 747 * interrupts; there are always 32 of the former (mandated by GIC spec). 748 */ 749 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 750 if (!kvm_irqchip_in_kernel()) { 751 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 752 } 753 754 if (vms->gic_version != VIRT_GIC_VERSION_2) { 755 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 756 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 757 758 nb_redist_regions = virt_gicv3_redist_region_count(vms); 759 760 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 761 nb_redist_regions); 762 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 763 764 if (!kvm_irqchip_in_kernel()) { 765 if (vms->tcg_its) { 766 object_property_set_link(OBJECT(vms->gic), "sysmem", 767 OBJECT(mem), &error_fatal); 768 qdev_prop_set_bit(vms->gic, "has-lpi", true); 769 } 770 } 771 772 if (nb_redist_regions == 2) { 773 uint32_t redist1_capacity = 774 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 775 776 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 777 MIN(smp_cpus - redist0_count, redist1_capacity)); 778 } 779 } else { 780 if (!kvm_irqchip_in_kernel()) { 781 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 782 vms->virt); 783 } 784 } 785 gicbusdev = SYS_BUS_DEVICE(vms->gic); 786 sysbus_realize_and_unref(gicbusdev, &error_fatal); 787 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 788 if (vms->gic_version != VIRT_GIC_VERSION_2) { 789 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 790 if (nb_redist_regions == 2) { 791 sysbus_mmio_map(gicbusdev, 2, 792 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 793 } 794 } else { 795 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 796 if (vms->virt) { 797 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 798 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 799 } 800 } 801 802 /* Wire the outputs from each CPU's generic timer and the GICv3 803 * maintenance interrupt signal to the appropriate GIC PPI inputs, 804 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 805 */ 806 for (i = 0; i < smp_cpus; i++) { 807 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 808 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 809 /* Mapping from the output timer irq lines from the CPU to the 810 * GIC PPI inputs we use for the virt board. 811 */ 812 const int timer_irq[] = { 813 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 814 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 815 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 816 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 817 }; 818 819 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 820 qdev_connect_gpio_out(cpudev, irq, 821 qdev_get_gpio_in(vms->gic, 822 intidbase + timer_irq[irq])); 823 } 824 825 if (vms->gic_version != VIRT_GIC_VERSION_2) { 826 qemu_irq irq = qdev_get_gpio_in(vms->gic, 827 intidbase + ARCH_GIC_MAINT_IRQ); 828 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 829 0, irq); 830 } else if (vms->virt) { 831 qemu_irq irq = qdev_get_gpio_in(vms->gic, 832 intidbase + ARCH_GIC_MAINT_IRQ); 833 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 834 } 835 836 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 837 qdev_get_gpio_in(vms->gic, intidbase 838 + VIRTUAL_PMU_IRQ)); 839 840 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 841 sysbus_connect_irq(gicbusdev, i + smp_cpus, 842 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 843 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 844 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 845 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 846 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 847 } 848 849 fdt_add_gic_node(vms); 850 851 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 852 create_its(vms); 853 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 854 create_v2m(vms); 855 } 856 } 857 858 static void create_uart(const VirtMachineState *vms, int uart, 859 MemoryRegion *mem, Chardev *chr) 860 { 861 char *nodename; 862 hwaddr base = vms->memmap[uart].base; 863 hwaddr size = vms->memmap[uart].size; 864 int irq = vms->irqmap[uart]; 865 const char compat[] = "arm,pl011\0arm,primecell"; 866 const char clocknames[] = "uartclk\0apb_pclk"; 867 DeviceState *dev = qdev_new(TYPE_PL011); 868 SysBusDevice *s = SYS_BUS_DEVICE(dev); 869 MachineState *ms = MACHINE(vms); 870 871 qdev_prop_set_chr(dev, "chardev", chr); 872 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 873 memory_region_add_subregion(mem, base, 874 sysbus_mmio_get_region(s, 0)); 875 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 876 877 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 878 qemu_fdt_add_subnode(ms->fdt, nodename); 879 /* Note that we can't use setprop_string because of the embedded NUL */ 880 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 881 compat, sizeof(compat)); 882 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 883 2, base, 2, size); 884 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 885 GIC_FDT_IRQ_TYPE_SPI, irq, 886 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 887 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 888 vms->clock_phandle, vms->clock_phandle); 889 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 890 clocknames, sizeof(clocknames)); 891 892 if (uart == VIRT_UART) { 893 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 894 } else { 895 /* Mark as not usable by the normal world */ 896 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 897 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 898 899 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 900 nodename); 901 } 902 903 g_free(nodename); 904 } 905 906 static void create_rtc(const VirtMachineState *vms) 907 { 908 char *nodename; 909 hwaddr base = vms->memmap[VIRT_RTC].base; 910 hwaddr size = vms->memmap[VIRT_RTC].size; 911 int irq = vms->irqmap[VIRT_RTC]; 912 const char compat[] = "arm,pl031\0arm,primecell"; 913 MachineState *ms = MACHINE(vms); 914 915 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 916 917 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 918 qemu_fdt_add_subnode(ms->fdt, nodename); 919 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 920 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 921 2, base, 2, size); 922 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 923 GIC_FDT_IRQ_TYPE_SPI, irq, 924 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 925 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 926 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 927 g_free(nodename); 928 } 929 930 static DeviceState *gpio_key_dev; 931 static void virt_powerdown_req(Notifier *n, void *opaque) 932 { 933 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 934 935 if (s->acpi_dev) { 936 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 937 } else { 938 /* use gpio Pin 3 for power button event */ 939 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 940 } 941 } 942 943 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 944 uint32_t phandle) 945 { 946 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 947 qdev_get_gpio_in(pl061_dev, 3)); 948 949 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 950 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 951 952 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 953 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 954 "label", "GPIO Key Poweroff"); 955 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 956 KEY_POWER); 957 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 958 "gpios", phandle, 3, 0); 959 } 960 961 #define SECURE_GPIO_POWEROFF 0 962 #define SECURE_GPIO_RESET 1 963 964 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 965 uint32_t phandle) 966 { 967 DeviceState *gpio_pwr_dev; 968 969 /* gpio-pwr */ 970 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 971 972 /* connect secure pl061 to gpio-pwr */ 973 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 974 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 975 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 976 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 977 978 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 979 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 980 "gpio-poweroff"); 981 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 982 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 983 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 984 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 985 "okay"); 986 987 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 988 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 989 "gpio-restart"); 990 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 991 "gpios", phandle, SECURE_GPIO_RESET, 0); 992 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 993 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 994 "okay"); 995 } 996 997 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 998 MemoryRegion *mem) 999 { 1000 char *nodename; 1001 DeviceState *pl061_dev; 1002 hwaddr base = vms->memmap[gpio].base; 1003 hwaddr size = vms->memmap[gpio].size; 1004 int irq = vms->irqmap[gpio]; 1005 const char compat[] = "arm,pl061\0arm,primecell"; 1006 SysBusDevice *s; 1007 MachineState *ms = MACHINE(vms); 1008 1009 pl061_dev = qdev_new("pl061"); 1010 /* Pull lines down to 0 if not driven by the PL061 */ 1011 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1012 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1013 s = SYS_BUS_DEVICE(pl061_dev); 1014 sysbus_realize_and_unref(s, &error_fatal); 1015 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1016 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1017 1018 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1019 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1020 qemu_fdt_add_subnode(ms->fdt, nodename); 1021 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1022 2, base, 2, size); 1023 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1024 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1025 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1026 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1027 GIC_FDT_IRQ_TYPE_SPI, irq, 1028 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1029 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1030 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1031 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1032 1033 if (gpio != VIRT_GPIO) { 1034 /* Mark as not usable by the normal world */ 1035 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1036 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1037 } 1038 g_free(nodename); 1039 1040 /* Child gpio devices */ 1041 if (gpio == VIRT_GPIO) { 1042 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1043 } else { 1044 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1045 } 1046 } 1047 1048 static void create_virtio_devices(const VirtMachineState *vms) 1049 { 1050 int i; 1051 hwaddr size = vms->memmap[VIRT_MMIO].size; 1052 MachineState *ms = MACHINE(vms); 1053 1054 /* We create the transports in forwards order. Since qbus_realize() 1055 * prepends (not appends) new child buses, the incrementing loop below will 1056 * create a list of virtio-mmio buses with decreasing base addresses. 1057 * 1058 * When a -device option is processed from the command line, 1059 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1060 * order. The upshot is that -device options in increasing command line 1061 * order are mapped to virtio-mmio buses with decreasing base addresses. 1062 * 1063 * When this code was originally written, that arrangement ensured that the 1064 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1065 * the first -device on the command line. (The end-to-end order is a 1066 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1067 * guest kernel's name-to-address assignment strategy.) 1068 * 1069 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1070 * the message, if not necessarily the code, of commit 70161ff336. 1071 * Therefore the loop now establishes the inverse of the original intent. 1072 * 1073 * Unfortunately, we can't counteract the kernel change by reversing the 1074 * loop; it would break existing command lines. 1075 * 1076 * In any case, the kernel makes no guarantee about the stability of 1077 * enumeration order of virtio devices (as demonstrated by it changing 1078 * between kernel versions). For reliable and stable identification 1079 * of disks users must use UUIDs or similar mechanisms. 1080 */ 1081 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1082 int irq = vms->irqmap[VIRT_MMIO] + i; 1083 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1084 1085 sysbus_create_simple("virtio-mmio", base, 1086 qdev_get_gpio_in(vms->gic, irq)); 1087 } 1088 1089 /* We add dtb nodes in reverse order so that they appear in the finished 1090 * device tree lowest address first. 1091 * 1092 * Note that this mapping is independent of the loop above. The previous 1093 * loop influences virtio device to virtio transport assignment, whereas 1094 * this loop controls how virtio transports are laid out in the dtb. 1095 */ 1096 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1097 char *nodename; 1098 int irq = vms->irqmap[VIRT_MMIO] + i; 1099 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1100 1101 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1102 qemu_fdt_add_subnode(ms->fdt, nodename); 1103 qemu_fdt_setprop_string(ms->fdt, nodename, 1104 "compatible", "virtio,mmio"); 1105 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1106 2, base, 2, size); 1107 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1108 GIC_FDT_IRQ_TYPE_SPI, irq, 1109 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1110 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1111 g_free(nodename); 1112 } 1113 } 1114 1115 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1116 1117 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1118 const char *name, 1119 const char *alias_prop_name) 1120 { 1121 /* 1122 * Create a single flash device. We use the same parameters as 1123 * the flash devices on the Versatile Express board. 1124 */ 1125 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1126 1127 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1128 qdev_prop_set_uint8(dev, "width", 4); 1129 qdev_prop_set_uint8(dev, "device-width", 2); 1130 qdev_prop_set_bit(dev, "big-endian", false); 1131 qdev_prop_set_uint16(dev, "id0", 0x89); 1132 qdev_prop_set_uint16(dev, "id1", 0x18); 1133 qdev_prop_set_uint16(dev, "id2", 0x00); 1134 qdev_prop_set_uint16(dev, "id3", 0x00); 1135 qdev_prop_set_string(dev, "name", name); 1136 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1137 object_property_add_alias(OBJECT(vms), alias_prop_name, 1138 OBJECT(dev), "drive"); 1139 return PFLASH_CFI01(dev); 1140 } 1141 1142 static void virt_flash_create(VirtMachineState *vms) 1143 { 1144 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1145 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1146 } 1147 1148 static void virt_flash_map1(PFlashCFI01 *flash, 1149 hwaddr base, hwaddr size, 1150 MemoryRegion *sysmem) 1151 { 1152 DeviceState *dev = DEVICE(flash); 1153 1154 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1155 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1156 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1157 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1158 1159 memory_region_add_subregion(sysmem, base, 1160 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1161 0)); 1162 } 1163 1164 static void virt_flash_map(VirtMachineState *vms, 1165 MemoryRegion *sysmem, 1166 MemoryRegion *secure_sysmem) 1167 { 1168 /* 1169 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1170 * sysmem is the system memory space. secure_sysmem is the secure view 1171 * of the system, and the first flash device should be made visible only 1172 * there. The second flash device is visible to both secure and nonsecure. 1173 * If sysmem == secure_sysmem this means there is no separate Secure 1174 * address space and both flash devices are generally visible. 1175 */ 1176 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1177 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1178 1179 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1180 secure_sysmem); 1181 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1182 sysmem); 1183 } 1184 1185 static void virt_flash_fdt(VirtMachineState *vms, 1186 MemoryRegion *sysmem, 1187 MemoryRegion *secure_sysmem) 1188 { 1189 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1190 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1191 MachineState *ms = MACHINE(vms); 1192 char *nodename; 1193 1194 if (sysmem == secure_sysmem) { 1195 /* Report both flash devices as a single node in the DT */ 1196 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1197 qemu_fdt_add_subnode(ms->fdt, nodename); 1198 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1199 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1200 2, flashbase, 2, flashsize, 1201 2, flashbase + flashsize, 2, flashsize); 1202 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1203 g_free(nodename); 1204 } else { 1205 /* 1206 * Report the devices as separate nodes so we can mark one as 1207 * only visible to the secure world. 1208 */ 1209 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1210 qemu_fdt_add_subnode(ms->fdt, nodename); 1211 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1212 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1213 2, flashbase, 2, flashsize); 1214 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1215 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1216 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1217 g_free(nodename); 1218 1219 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1220 qemu_fdt_add_subnode(ms->fdt, nodename); 1221 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1222 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1223 2, flashbase + flashsize, 2, flashsize); 1224 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1225 g_free(nodename); 1226 } 1227 } 1228 1229 static bool virt_firmware_init(VirtMachineState *vms, 1230 MemoryRegion *sysmem, 1231 MemoryRegion *secure_sysmem) 1232 { 1233 int i; 1234 const char *bios_name; 1235 BlockBackend *pflash_blk0; 1236 1237 /* Map legacy -drive if=pflash to machine properties */ 1238 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1239 pflash_cfi01_legacy_drive(vms->flash[i], 1240 drive_get(IF_PFLASH, 0, i)); 1241 } 1242 1243 virt_flash_map(vms, sysmem, secure_sysmem); 1244 1245 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1246 1247 bios_name = MACHINE(vms)->firmware; 1248 if (bios_name) { 1249 char *fname; 1250 MemoryRegion *mr; 1251 int image_size; 1252 1253 if (pflash_blk0) { 1254 error_report("The contents of the first flash device may be " 1255 "specified with -bios or with -drive if=pflash... " 1256 "but you cannot use both options at once"); 1257 exit(1); 1258 } 1259 1260 /* Fall back to -bios */ 1261 1262 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1263 if (!fname) { 1264 error_report("Could not find ROM image '%s'", bios_name); 1265 exit(1); 1266 } 1267 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1268 image_size = load_image_mr(fname, mr); 1269 g_free(fname); 1270 if (image_size < 0) { 1271 error_report("Could not load ROM image '%s'", bios_name); 1272 exit(1); 1273 } 1274 } 1275 1276 return pflash_blk0 || bios_name; 1277 } 1278 1279 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1280 { 1281 MachineState *ms = MACHINE(vms); 1282 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1283 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1284 FWCfgState *fw_cfg; 1285 char *nodename; 1286 1287 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1288 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1289 1290 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1291 qemu_fdt_add_subnode(ms->fdt, nodename); 1292 qemu_fdt_setprop_string(ms->fdt, nodename, 1293 "compatible", "qemu,fw-cfg-mmio"); 1294 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1295 2, base, 2, size); 1296 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1297 g_free(nodename); 1298 return fw_cfg; 1299 } 1300 1301 static void create_pcie_irq_map(const MachineState *ms, 1302 uint32_t gic_phandle, 1303 int first_irq, const char *nodename) 1304 { 1305 int devfn, pin; 1306 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1307 uint32_t *irq_map = full_irq_map; 1308 1309 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1310 for (pin = 0; pin < 4; pin++) { 1311 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1312 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1313 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1314 int i; 1315 1316 uint32_t map[] = { 1317 devfn << 8, 0, 0, /* devfn */ 1318 pin + 1, /* PCI pin */ 1319 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1320 1321 /* Convert map to big endian */ 1322 for (i = 0; i < 10; i++) { 1323 irq_map[i] = cpu_to_be32(map[i]); 1324 } 1325 irq_map += 10; 1326 } 1327 } 1328 1329 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1330 full_irq_map, sizeof(full_irq_map)); 1331 1332 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1333 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1334 0, 0, 1335 0x7 /* PCI irq */); 1336 } 1337 1338 static void create_smmu(const VirtMachineState *vms, 1339 PCIBus *bus) 1340 { 1341 char *node; 1342 const char compat[] = "arm,smmu-v3"; 1343 int irq = vms->irqmap[VIRT_SMMU]; 1344 int i; 1345 hwaddr base = vms->memmap[VIRT_SMMU].base; 1346 hwaddr size = vms->memmap[VIRT_SMMU].size; 1347 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1348 DeviceState *dev; 1349 MachineState *ms = MACHINE(vms); 1350 1351 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1352 return; 1353 } 1354 1355 dev = qdev_new(TYPE_ARM_SMMUV3); 1356 1357 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1358 &error_abort); 1359 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1360 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1361 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1362 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1363 qdev_get_gpio_in(vms->gic, irq + i)); 1364 } 1365 1366 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1367 qemu_fdt_add_subnode(ms->fdt, node); 1368 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1369 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1370 1371 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1372 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1373 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1374 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1375 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1376 1377 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1378 sizeof(irq_names)); 1379 1380 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1381 1382 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1383 1384 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1385 g_free(node); 1386 } 1387 1388 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1389 { 1390 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1391 uint16_t bdf = vms->virtio_iommu_bdf; 1392 MachineState *ms = MACHINE(vms); 1393 char *node; 1394 1395 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1396 1397 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1398 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1399 qemu_fdt_add_subnode(ms->fdt, node); 1400 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1401 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1402 1, bdf << 8, 1, 0, 1, 0, 1403 1, 0, 1, 0); 1404 1405 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1406 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1407 g_free(node); 1408 1409 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1410 0x0, vms->iommu_phandle, 0x0, bdf, 1411 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1412 } 1413 1414 static void create_pcie(VirtMachineState *vms) 1415 { 1416 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1417 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1418 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1419 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1420 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1421 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1422 hwaddr base_ecam, size_ecam; 1423 hwaddr base = base_mmio; 1424 int nr_pcie_buses; 1425 int irq = vms->irqmap[VIRT_PCIE]; 1426 MemoryRegion *mmio_alias; 1427 MemoryRegion *mmio_reg; 1428 MemoryRegion *ecam_alias; 1429 MemoryRegion *ecam_reg; 1430 DeviceState *dev; 1431 char *nodename; 1432 int i, ecam_id; 1433 PCIHostState *pci; 1434 MachineState *ms = MACHINE(vms); 1435 MachineClass *mc = MACHINE_GET_CLASS(ms); 1436 1437 dev = qdev_new(TYPE_GPEX_HOST); 1438 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1439 1440 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1441 base_ecam = vms->memmap[ecam_id].base; 1442 size_ecam = vms->memmap[ecam_id].size; 1443 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1444 /* Map only the first size_ecam bytes of ECAM space */ 1445 ecam_alias = g_new0(MemoryRegion, 1); 1446 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1447 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1448 ecam_reg, 0, size_ecam); 1449 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1450 1451 /* Map the MMIO window into system address space so as to expose 1452 * the section of PCI MMIO space which starts at the same base address 1453 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1454 * the window). 1455 */ 1456 mmio_alias = g_new0(MemoryRegion, 1); 1457 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1458 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1459 mmio_reg, base_mmio, size_mmio); 1460 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1461 1462 if (vms->highmem_mmio) { 1463 /* Map high MMIO space */ 1464 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1465 1466 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1467 mmio_reg, base_mmio_high, size_mmio_high); 1468 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1469 high_mmio_alias); 1470 } 1471 1472 /* Map IO port space */ 1473 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1474 1475 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1476 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1477 qdev_get_gpio_in(vms->gic, irq + i)); 1478 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1479 } 1480 1481 pci = PCI_HOST_BRIDGE(dev); 1482 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1483 vms->bus = pci->bus; 1484 if (vms->bus) { 1485 for (i = 0; i < nb_nics; i++) { 1486 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL); 1487 } 1488 } 1489 1490 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1491 qemu_fdt_add_subnode(ms->fdt, nodename); 1492 qemu_fdt_setprop_string(ms->fdt, nodename, 1493 "compatible", "pci-host-ecam-generic"); 1494 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1495 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1496 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1497 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1498 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1499 nr_pcie_buses - 1); 1500 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1501 1502 if (vms->msi_phandle) { 1503 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1504 0, vms->msi_phandle, 0, 0x10000); 1505 } 1506 1507 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1508 2, base_ecam, 2, size_ecam); 1509 1510 if (vms->highmem_mmio) { 1511 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1512 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1513 2, base_pio, 2, size_pio, 1514 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1515 2, base_mmio, 2, size_mmio, 1516 1, FDT_PCI_RANGE_MMIO_64BIT, 1517 2, base_mmio_high, 1518 2, base_mmio_high, 2, size_mmio_high); 1519 } else { 1520 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1521 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1522 2, base_pio, 2, size_pio, 1523 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1524 2, base_mmio, 2, size_mmio); 1525 } 1526 1527 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1528 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1529 1530 if (vms->iommu) { 1531 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1532 1533 switch (vms->iommu) { 1534 case VIRT_IOMMU_SMMUV3: 1535 create_smmu(vms, vms->bus); 1536 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1537 0x0, vms->iommu_phandle, 0x0, 0x10000); 1538 break; 1539 default: 1540 g_assert_not_reached(); 1541 } 1542 } 1543 } 1544 1545 static void create_platform_bus(VirtMachineState *vms) 1546 { 1547 DeviceState *dev; 1548 SysBusDevice *s; 1549 int i; 1550 MemoryRegion *sysmem = get_system_memory(); 1551 1552 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1553 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1554 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1555 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1556 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1557 vms->platform_bus_dev = dev; 1558 1559 s = SYS_BUS_DEVICE(dev); 1560 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1561 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1562 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1563 } 1564 1565 memory_region_add_subregion(sysmem, 1566 vms->memmap[VIRT_PLATFORM_BUS].base, 1567 sysbus_mmio_get_region(s, 0)); 1568 } 1569 1570 static void create_tag_ram(MemoryRegion *tag_sysmem, 1571 hwaddr base, hwaddr size, 1572 const char *name) 1573 { 1574 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1575 1576 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1577 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1578 } 1579 1580 static void create_secure_ram(VirtMachineState *vms, 1581 MemoryRegion *secure_sysmem, 1582 MemoryRegion *secure_tag_sysmem) 1583 { 1584 MemoryRegion *secram = g_new(MemoryRegion, 1); 1585 char *nodename; 1586 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1587 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1588 MachineState *ms = MACHINE(vms); 1589 1590 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1591 &error_fatal); 1592 memory_region_add_subregion(secure_sysmem, base, secram); 1593 1594 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1595 qemu_fdt_add_subnode(ms->fdt, nodename); 1596 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1597 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1598 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1599 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1600 1601 if (secure_tag_sysmem) { 1602 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1603 } 1604 1605 g_free(nodename); 1606 } 1607 1608 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1609 { 1610 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1611 bootinfo); 1612 MachineState *ms = MACHINE(board); 1613 1614 1615 *fdt_size = board->fdt_size; 1616 return ms->fdt; 1617 } 1618 1619 static void virt_build_smbios(VirtMachineState *vms) 1620 { 1621 MachineClass *mc = MACHINE_GET_CLASS(vms); 1622 MachineState *ms = MACHINE(vms); 1623 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1624 uint8_t *smbios_tables, *smbios_anchor; 1625 size_t smbios_tables_len, smbios_anchor_len; 1626 struct smbios_phys_mem_area mem_array; 1627 const char *product = "QEMU Virtual Machine"; 1628 1629 if (kvm_enabled()) { 1630 product = "KVM Virtual Machine"; 1631 } 1632 1633 smbios_set_defaults("QEMU", product, 1634 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1635 true, SMBIOS_ENTRY_POINT_TYPE_64); 1636 1637 /* build the array of physical mem area from base_memmap */ 1638 mem_array.address = vms->memmap[VIRT_MEM].base; 1639 mem_array.length = ms->ram_size; 1640 1641 smbios_get_tables(ms, &mem_array, 1, 1642 &smbios_tables, &smbios_tables_len, 1643 &smbios_anchor, &smbios_anchor_len, 1644 &error_fatal); 1645 1646 if (smbios_anchor) { 1647 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1648 smbios_tables, smbios_tables_len); 1649 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1650 smbios_anchor, smbios_anchor_len); 1651 } 1652 } 1653 1654 static 1655 void virt_machine_done(Notifier *notifier, void *data) 1656 { 1657 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1658 machine_done); 1659 MachineState *ms = MACHINE(vms); 1660 ARMCPU *cpu = ARM_CPU(first_cpu); 1661 struct arm_boot_info *info = &vms->bootinfo; 1662 AddressSpace *as = arm_boot_address_space(cpu, info); 1663 1664 /* 1665 * If the user provided a dtb, we assume the dynamic sysbus nodes 1666 * already are integrated there. This corresponds to a use case where 1667 * the dynamic sysbus nodes are complex and their generation is not yet 1668 * supported. In that case the user can take charge of the guest dt 1669 * while qemu takes charge of the qom stuff. 1670 */ 1671 if (info->dtb_filename == NULL) { 1672 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1673 vms->memmap[VIRT_PLATFORM_BUS].base, 1674 vms->memmap[VIRT_PLATFORM_BUS].size, 1675 vms->irqmap[VIRT_PLATFORM_BUS]); 1676 } 1677 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1678 exit(1); 1679 } 1680 1681 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1682 1683 virt_acpi_setup(vms); 1684 virt_build_smbios(vms); 1685 } 1686 1687 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1688 { 1689 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1690 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1691 1692 if (!vmc->disallow_affinity_adjustment) { 1693 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1694 * GIC's target-list limitations. 32-bit KVM hosts currently 1695 * always create clusters of 4 CPUs, but that is expected to 1696 * change when they gain support for gicv3. When KVM is enabled 1697 * it will override the changes we make here, therefore our 1698 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1699 * and to improve SGI efficiency. 1700 */ 1701 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1702 clustersz = GIC_TARGETLIST_BITS; 1703 } else { 1704 clustersz = GICV3_TARGETLIST_BITS; 1705 } 1706 } 1707 return arm_cpu_mp_affinity(idx, clustersz); 1708 } 1709 1710 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1711 int index) 1712 { 1713 bool *enabled_array[] = { 1714 &vms->highmem_redists, 1715 &vms->highmem_ecam, 1716 &vms->highmem_mmio, 1717 }; 1718 1719 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1720 ARRAY_SIZE(enabled_array)); 1721 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1722 1723 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1724 } 1725 1726 static void virt_set_high_memmap(VirtMachineState *vms, 1727 hwaddr base, int pa_bits) 1728 { 1729 hwaddr region_base, region_size; 1730 bool *region_enabled, fits; 1731 int i; 1732 1733 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1734 region_enabled = virt_get_high_memmap_enabled(vms, i); 1735 region_base = ROUND_UP(base, extended_memmap[i].size); 1736 region_size = extended_memmap[i].size; 1737 1738 vms->memmap[i].base = region_base; 1739 vms->memmap[i].size = region_size; 1740 1741 /* 1742 * Check each device to see if it fits in the PA space, 1743 * moving highest_gpa as we go. For compatibility, move 1744 * highest_gpa for disabled fitting devices as well, if 1745 * the compact layout has been disabled. 1746 * 1747 * For each device that doesn't fit, disable it. 1748 */ 1749 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1750 *region_enabled &= fits; 1751 if (vms->highmem_compact && !*region_enabled) { 1752 continue; 1753 } 1754 1755 base = region_base + region_size; 1756 if (fits) { 1757 vms->highest_gpa = base - 1; 1758 } 1759 } 1760 } 1761 1762 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1763 { 1764 MachineState *ms = MACHINE(vms); 1765 hwaddr base, device_memory_base, device_memory_size, memtop; 1766 int i; 1767 1768 vms->memmap = extended_memmap; 1769 1770 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1771 vms->memmap[i] = base_memmap[i]; 1772 } 1773 1774 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1775 error_report("unsupported number of memory slots: %"PRIu64, 1776 ms->ram_slots); 1777 exit(EXIT_FAILURE); 1778 } 1779 1780 /* 1781 * !highmem is exactly the same as limiting the PA space to 32bit, 1782 * irrespective of the underlying capabilities of the HW. 1783 */ 1784 if (!vms->highmem) { 1785 pa_bits = 32; 1786 } 1787 1788 /* 1789 * We compute the base of the high IO region depending on the 1790 * amount of initial and device memory. The device memory start/size 1791 * is aligned on 1GiB. We never put the high IO region below 256GiB 1792 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1793 * The device region size assumes 1GiB page max alignment per slot. 1794 */ 1795 device_memory_base = 1796 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1797 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1798 1799 /* Base address of the high IO region */ 1800 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1801 if (memtop > BIT_ULL(pa_bits)) { 1802 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n", 1803 pa_bits, memtop - BIT_ULL(pa_bits)); 1804 exit(EXIT_FAILURE); 1805 } 1806 if (base < device_memory_base) { 1807 error_report("maxmem/slots too huge"); 1808 exit(EXIT_FAILURE); 1809 } 1810 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1811 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1812 } 1813 1814 /* We know for sure that at least the memory fits in the PA space */ 1815 vms->highest_gpa = memtop - 1; 1816 1817 virt_set_high_memmap(vms, base, pa_bits); 1818 1819 if (device_memory_size > 0) { 1820 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1821 } 1822 } 1823 1824 static VirtGICType finalize_gic_version_do(const char *accel_name, 1825 VirtGICType gic_version, 1826 int gics_supported, 1827 unsigned int max_cpus) 1828 { 1829 /* Convert host/max/nosel to GIC version number */ 1830 switch (gic_version) { 1831 case VIRT_GIC_VERSION_HOST: 1832 if (!kvm_enabled()) { 1833 error_report("gic-version=host requires KVM"); 1834 exit(1); 1835 } 1836 1837 /* For KVM, gic-version=host means gic-version=max */ 1838 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1839 gics_supported, max_cpus); 1840 case VIRT_GIC_VERSION_MAX: 1841 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1842 gic_version = VIRT_GIC_VERSION_4; 1843 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1844 gic_version = VIRT_GIC_VERSION_3; 1845 } else { 1846 gic_version = VIRT_GIC_VERSION_2; 1847 } 1848 break; 1849 case VIRT_GIC_VERSION_NOSEL: 1850 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1851 max_cpus <= GIC_NCPU) { 1852 gic_version = VIRT_GIC_VERSION_2; 1853 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1854 /* 1855 * in case the host does not support v2 emulation or 1856 * the end-user requested more than 8 VCPUs we now default 1857 * to v3. In any case defaulting to v2 would be broken. 1858 */ 1859 gic_version = VIRT_GIC_VERSION_3; 1860 } else if (max_cpus > GIC_NCPU) { 1861 error_report("%s only supports GICv2 emulation but more than 8 " 1862 "vcpus are requested", accel_name); 1863 exit(1); 1864 } 1865 break; 1866 case VIRT_GIC_VERSION_2: 1867 case VIRT_GIC_VERSION_3: 1868 case VIRT_GIC_VERSION_4: 1869 break; 1870 } 1871 1872 /* Check chosen version is effectively supported */ 1873 switch (gic_version) { 1874 case VIRT_GIC_VERSION_2: 1875 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1876 error_report("%s does not support GICv2 emulation", accel_name); 1877 exit(1); 1878 } 1879 break; 1880 case VIRT_GIC_VERSION_3: 1881 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1882 error_report("%s does not support GICv3 emulation", accel_name); 1883 exit(1); 1884 } 1885 break; 1886 case VIRT_GIC_VERSION_4: 1887 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1888 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1889 accel_name); 1890 exit(1); 1891 } 1892 break; 1893 default: 1894 error_report("logic error in finalize_gic_version"); 1895 exit(1); 1896 break; 1897 } 1898 1899 return gic_version; 1900 } 1901 1902 /* 1903 * finalize_gic_version - Determines the final gic_version 1904 * according to the gic-version property 1905 * 1906 * Default GIC type is v2 1907 */ 1908 static void finalize_gic_version(VirtMachineState *vms) 1909 { 1910 const char *accel_name = current_accel_name(); 1911 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1912 int gics_supported = 0; 1913 1914 /* Determine which GIC versions the current environment supports */ 1915 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1916 int probe_bitmap = kvm_arm_vgic_probe(); 1917 1918 if (!probe_bitmap) { 1919 error_report("Unable to determine GIC version supported by host"); 1920 exit(1); 1921 } 1922 1923 if (probe_bitmap & KVM_ARM_VGIC_V2) { 1924 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1925 } 1926 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1927 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1928 } 1929 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 1930 /* KVM w/o kernel irqchip can only deal with GICv2 */ 1931 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1932 accel_name = "KVM with kernel-irqchip=off"; 1933 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 1934 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1935 if (module_object_class_by_name("arm-gicv3")) { 1936 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1937 if (vms->virt) { 1938 /* GICv4 only makes sense if CPU has EL2 */ 1939 gics_supported |= VIRT_GIC_VERSION_4_MASK; 1940 } 1941 } 1942 } else { 1943 error_report("Unsupported accelerator, can not determine GIC support"); 1944 exit(1); 1945 } 1946 1947 /* 1948 * Then convert helpers like host/max to concrete GIC versions and ensure 1949 * the desired version is supported 1950 */ 1951 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 1952 gics_supported, max_cpus); 1953 } 1954 1955 /* 1956 * virt_cpu_post_init() must be called after the CPUs have 1957 * been realized and the GIC has been created. 1958 */ 1959 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1960 { 1961 int max_cpus = MACHINE(vms)->smp.max_cpus; 1962 bool aarch64, pmu, steal_time; 1963 CPUState *cpu; 1964 1965 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1966 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1967 steal_time = object_property_get_bool(OBJECT(first_cpu), 1968 "kvm-steal-time", NULL); 1969 1970 if (kvm_enabled()) { 1971 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1972 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1973 1974 if (steal_time) { 1975 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1976 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1977 1978 /* The memory region size must be a multiple of host page size. */ 1979 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1980 1981 if (pvtime_size > pvtime_reg_size) { 1982 error_report("pvtime requires a %" HWADDR_PRId 1983 " byte memory region for %d CPUs," 1984 " but only %" HWADDR_PRId " has been reserved", 1985 pvtime_size, max_cpus, pvtime_reg_size); 1986 exit(1); 1987 } 1988 1989 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1990 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1991 } 1992 1993 CPU_FOREACH(cpu) { 1994 if (pmu) { 1995 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1996 if (kvm_irqchip_in_kernel()) { 1997 kvm_arm_pmu_set_irq(cpu, VIRTUAL_PMU_IRQ); 1998 } 1999 kvm_arm_pmu_init(cpu); 2000 } 2001 if (steal_time) { 2002 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 2003 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 2004 } 2005 } 2006 } else { 2007 if (aarch64 && vms->highmem) { 2008 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2009 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2010 2011 if (pamax < requested_pa_size) { 2012 error_report("VCPU supports less PA bits (%d) than " 2013 "requested by the memory map (%d)", 2014 pamax, requested_pa_size); 2015 exit(1); 2016 } 2017 } 2018 } 2019 } 2020 2021 static void machvirt_init(MachineState *machine) 2022 { 2023 VirtMachineState *vms = VIRT_MACHINE(machine); 2024 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2025 MachineClass *mc = MACHINE_GET_CLASS(machine); 2026 const CPUArchIdList *possible_cpus; 2027 MemoryRegion *sysmem = get_system_memory(); 2028 MemoryRegion *secure_sysmem = NULL; 2029 MemoryRegion *tag_sysmem = NULL; 2030 MemoryRegion *secure_tag_sysmem = NULL; 2031 int n, virt_max_cpus; 2032 bool firmware_loaded; 2033 bool aarch64 = true; 2034 bool has_ged = !vmc->no_ged; 2035 unsigned int smp_cpus = machine->smp.cpus; 2036 unsigned int max_cpus = machine->smp.max_cpus; 2037 2038 if (!cpu_type_valid(machine->cpu_type)) { 2039 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 2040 exit(1); 2041 } 2042 2043 possible_cpus = mc->possible_cpu_arch_ids(machine); 2044 2045 /* 2046 * In accelerated mode, the memory map is computed earlier in kvm_type() 2047 * to create a VM with the right number of IPA bits. 2048 */ 2049 if (!vms->memmap) { 2050 Object *cpuobj; 2051 ARMCPU *armcpu; 2052 int pa_bits; 2053 2054 /* 2055 * Instantiate a temporary CPU object to find out about what 2056 * we are about to deal with. Once this is done, get rid of 2057 * the object. 2058 */ 2059 cpuobj = object_new(possible_cpus->cpus[0].type); 2060 armcpu = ARM_CPU(cpuobj); 2061 2062 pa_bits = arm_pamax(armcpu); 2063 2064 object_unref(cpuobj); 2065 2066 virt_set_memmap(vms, pa_bits); 2067 } 2068 2069 /* We can probe only here because during property set 2070 * KVM is not available yet 2071 */ 2072 finalize_gic_version(vms); 2073 2074 if (vms->secure) { 2075 /* 2076 * The Secure view of the world is the same as the NonSecure, 2077 * but with a few extra devices. Create it as a container region 2078 * containing the system memory at low priority; any secure-only 2079 * devices go in at higher priority and take precedence. 2080 */ 2081 secure_sysmem = g_new(MemoryRegion, 1); 2082 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2083 UINT64_MAX); 2084 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2085 } 2086 2087 firmware_loaded = virt_firmware_init(vms, sysmem, 2088 secure_sysmem ?: sysmem); 2089 2090 /* If we have an EL3 boot ROM then the assumption is that it will 2091 * implement PSCI itself, so disable QEMU's internal implementation 2092 * so it doesn't get in the way. Instead of starting secondary 2093 * CPUs in PSCI powerdown state we will start them all running and 2094 * let the boot ROM sort them out. 2095 * The usual case is that we do use QEMU's PSCI implementation; 2096 * if the guest has EL2 then we will use SMC as the conduit, 2097 * and otherwise we will use HVC (for backwards compatibility and 2098 * because if we're using KVM then we must use HVC). 2099 */ 2100 if (vms->secure && firmware_loaded) { 2101 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2102 } else if (vms->virt) { 2103 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2104 } else { 2105 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2106 } 2107 2108 /* 2109 * The maximum number of CPUs depends on the GIC version, or on how 2110 * many redistributors we can fit into the memory map (which in turn 2111 * depends on whether this is a GICv3 or v4). 2112 */ 2113 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2114 virt_max_cpus = GIC_NCPU; 2115 } else { 2116 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2117 if (vms->highmem_redists) { 2118 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2119 } 2120 } 2121 2122 if (max_cpus > virt_max_cpus) { 2123 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2124 "supported by machine 'mach-virt' (%d)", 2125 max_cpus, virt_max_cpus); 2126 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2127 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2128 } 2129 2130 exit(1); 2131 } 2132 2133 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2134 error_report("mach-virt: %s does not support providing " 2135 "Security extensions (TrustZone) to the guest CPU", 2136 current_accel_name()); 2137 exit(1); 2138 } 2139 2140 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2141 error_report("mach-virt: %s does not support providing " 2142 "Virtualization extensions to the guest CPU", 2143 current_accel_name()); 2144 exit(1); 2145 } 2146 2147 if (vms->mte && (kvm_enabled() || hvf_enabled())) { 2148 error_report("mach-virt: %s does not support providing " 2149 "MTE to the guest CPU", 2150 current_accel_name()); 2151 exit(1); 2152 } 2153 2154 create_fdt(vms); 2155 2156 assert(possible_cpus->len == max_cpus); 2157 for (n = 0; n < possible_cpus->len; n++) { 2158 Object *cpuobj; 2159 CPUState *cs; 2160 2161 if (n >= smp_cpus) { 2162 break; 2163 } 2164 2165 cpuobj = object_new(possible_cpus->cpus[n].type); 2166 object_property_set_int(cpuobj, "mp-affinity", 2167 possible_cpus->cpus[n].arch_id, NULL); 2168 2169 cs = CPU(cpuobj); 2170 cs->cpu_index = n; 2171 2172 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2173 &error_fatal); 2174 2175 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2176 2177 if (!vms->secure) { 2178 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2179 } 2180 2181 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2182 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2183 } 2184 2185 if (vmc->kvm_no_adjvtime && 2186 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2187 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2188 } 2189 2190 if (vmc->no_kvm_steal_time && 2191 object_property_find(cpuobj, "kvm-steal-time")) { 2192 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2193 } 2194 2195 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2196 object_property_set_bool(cpuobj, "pmu", false, NULL); 2197 } 2198 2199 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2200 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2201 } 2202 2203 if (object_property_find(cpuobj, "reset-cbar")) { 2204 object_property_set_int(cpuobj, "reset-cbar", 2205 vms->memmap[VIRT_CPUPERIPHS].base, 2206 &error_abort); 2207 } 2208 2209 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2210 &error_abort); 2211 if (vms->secure) { 2212 object_property_set_link(cpuobj, "secure-memory", 2213 OBJECT(secure_sysmem), &error_abort); 2214 } 2215 2216 if (vms->mte) { 2217 /* Create the memory region only once, but link to all cpus. */ 2218 if (!tag_sysmem) { 2219 /* 2220 * The property exists only if MemTag is supported. 2221 * If it is, we must allocate the ram to back that up. 2222 */ 2223 if (!object_property_find(cpuobj, "tag-memory")) { 2224 error_report("MTE requested, but not supported " 2225 "by the guest CPU"); 2226 exit(1); 2227 } 2228 2229 tag_sysmem = g_new(MemoryRegion, 1); 2230 memory_region_init(tag_sysmem, OBJECT(machine), 2231 "tag-memory", UINT64_MAX / 32); 2232 2233 if (vms->secure) { 2234 secure_tag_sysmem = g_new(MemoryRegion, 1); 2235 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2236 "secure-tag-memory", UINT64_MAX / 32); 2237 2238 /* As with ram, secure-tag takes precedence over tag. */ 2239 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2240 tag_sysmem, -1); 2241 } 2242 } 2243 2244 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2245 &error_abort); 2246 if (vms->secure) { 2247 object_property_set_link(cpuobj, "secure-tag-memory", 2248 OBJECT(secure_tag_sysmem), 2249 &error_abort); 2250 } 2251 } 2252 2253 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2254 object_unref(cpuobj); 2255 } 2256 fdt_add_timer_nodes(vms); 2257 fdt_add_cpu_nodes(vms); 2258 2259 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2260 machine->ram); 2261 2262 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2263 2264 create_gic(vms, sysmem); 2265 2266 virt_cpu_post_init(vms, sysmem); 2267 2268 fdt_add_pmu_nodes(vms); 2269 2270 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2271 2272 if (vms->secure) { 2273 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2274 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2275 } 2276 2277 if (tag_sysmem) { 2278 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2279 machine->ram_size, "mach-virt.tag"); 2280 } 2281 2282 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2283 2284 create_rtc(vms); 2285 2286 create_pcie(vms); 2287 2288 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2289 vms->acpi_dev = create_acpi_ged(vms); 2290 } else { 2291 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2292 } 2293 2294 if (vms->secure && !vmc->no_secure_gpio) { 2295 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2296 } 2297 2298 /* connect powerdown request */ 2299 vms->powerdown_notifier.notify = virt_powerdown_req; 2300 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2301 2302 /* Create mmio transports, so the user can create virtio backends 2303 * (which will be automatically plugged in to the transports). If 2304 * no backend is created the transport will just sit harmlessly idle. 2305 */ 2306 create_virtio_devices(vms); 2307 2308 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2309 rom_set_fw(vms->fw_cfg); 2310 2311 create_platform_bus(vms); 2312 2313 if (machine->nvdimms_state->is_enabled) { 2314 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2315 .space_id = AML_AS_SYSTEM_MEMORY, 2316 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2317 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2318 }; 2319 2320 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2321 arm_virt_nvdimm_acpi_dsmio, 2322 vms->fw_cfg, OBJECT(vms)); 2323 } 2324 2325 vms->bootinfo.ram_size = machine->ram_size; 2326 vms->bootinfo.board_id = -1; 2327 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2328 vms->bootinfo.get_dtb = machvirt_dtb; 2329 vms->bootinfo.skip_dtb_autoload = true; 2330 vms->bootinfo.firmware_loaded = firmware_loaded; 2331 vms->bootinfo.psci_conduit = vms->psci_conduit; 2332 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2333 2334 vms->machine_done.notify = virt_machine_done; 2335 qemu_add_machine_init_done_notifier(&vms->machine_done); 2336 } 2337 2338 static bool virt_get_secure(Object *obj, Error **errp) 2339 { 2340 VirtMachineState *vms = VIRT_MACHINE(obj); 2341 2342 return vms->secure; 2343 } 2344 2345 static void virt_set_secure(Object *obj, bool value, Error **errp) 2346 { 2347 VirtMachineState *vms = VIRT_MACHINE(obj); 2348 2349 vms->secure = value; 2350 } 2351 2352 static bool virt_get_virt(Object *obj, Error **errp) 2353 { 2354 VirtMachineState *vms = VIRT_MACHINE(obj); 2355 2356 return vms->virt; 2357 } 2358 2359 static void virt_set_virt(Object *obj, bool value, Error **errp) 2360 { 2361 VirtMachineState *vms = VIRT_MACHINE(obj); 2362 2363 vms->virt = value; 2364 } 2365 2366 static bool virt_get_highmem(Object *obj, Error **errp) 2367 { 2368 VirtMachineState *vms = VIRT_MACHINE(obj); 2369 2370 return vms->highmem; 2371 } 2372 2373 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2374 { 2375 VirtMachineState *vms = VIRT_MACHINE(obj); 2376 2377 vms->highmem = value; 2378 } 2379 2380 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2381 { 2382 VirtMachineState *vms = VIRT_MACHINE(obj); 2383 2384 return vms->highmem_compact; 2385 } 2386 2387 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2388 { 2389 VirtMachineState *vms = VIRT_MACHINE(obj); 2390 2391 vms->highmem_compact = value; 2392 } 2393 2394 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2395 { 2396 VirtMachineState *vms = VIRT_MACHINE(obj); 2397 2398 return vms->highmem_redists; 2399 } 2400 2401 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2402 { 2403 VirtMachineState *vms = VIRT_MACHINE(obj); 2404 2405 vms->highmem_redists = value; 2406 } 2407 2408 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2409 { 2410 VirtMachineState *vms = VIRT_MACHINE(obj); 2411 2412 return vms->highmem_ecam; 2413 } 2414 2415 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2416 { 2417 VirtMachineState *vms = VIRT_MACHINE(obj); 2418 2419 vms->highmem_ecam = value; 2420 } 2421 2422 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2423 { 2424 VirtMachineState *vms = VIRT_MACHINE(obj); 2425 2426 return vms->highmem_mmio; 2427 } 2428 2429 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2430 { 2431 VirtMachineState *vms = VIRT_MACHINE(obj); 2432 2433 vms->highmem_mmio = value; 2434 } 2435 2436 2437 static bool virt_get_its(Object *obj, Error **errp) 2438 { 2439 VirtMachineState *vms = VIRT_MACHINE(obj); 2440 2441 return vms->its; 2442 } 2443 2444 static void virt_set_its(Object *obj, bool value, Error **errp) 2445 { 2446 VirtMachineState *vms = VIRT_MACHINE(obj); 2447 2448 vms->its = value; 2449 } 2450 2451 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2452 { 2453 VirtMachineState *vms = VIRT_MACHINE(obj); 2454 2455 return vms->dtb_randomness; 2456 } 2457 2458 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2459 { 2460 VirtMachineState *vms = VIRT_MACHINE(obj); 2461 2462 vms->dtb_randomness = value; 2463 } 2464 2465 static char *virt_get_oem_id(Object *obj, Error **errp) 2466 { 2467 VirtMachineState *vms = VIRT_MACHINE(obj); 2468 2469 return g_strdup(vms->oem_id); 2470 } 2471 2472 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2473 { 2474 VirtMachineState *vms = VIRT_MACHINE(obj); 2475 size_t len = strlen(value); 2476 2477 if (len > 6) { 2478 error_setg(errp, 2479 "User specified oem-id value is bigger than 6 bytes in size"); 2480 return; 2481 } 2482 2483 strncpy(vms->oem_id, value, 6); 2484 } 2485 2486 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2487 { 2488 VirtMachineState *vms = VIRT_MACHINE(obj); 2489 2490 return g_strdup(vms->oem_table_id); 2491 } 2492 2493 static void virt_set_oem_table_id(Object *obj, const char *value, 2494 Error **errp) 2495 { 2496 VirtMachineState *vms = VIRT_MACHINE(obj); 2497 size_t len = strlen(value); 2498 2499 if (len > 8) { 2500 error_setg(errp, 2501 "User specified oem-table-id value is bigger than 8 bytes in size"); 2502 return; 2503 } 2504 strncpy(vms->oem_table_id, value, 8); 2505 } 2506 2507 2508 bool virt_is_acpi_enabled(VirtMachineState *vms) 2509 { 2510 if (vms->acpi == ON_OFF_AUTO_OFF) { 2511 return false; 2512 } 2513 return true; 2514 } 2515 2516 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2517 void *opaque, Error **errp) 2518 { 2519 VirtMachineState *vms = VIRT_MACHINE(obj); 2520 OnOffAuto acpi = vms->acpi; 2521 2522 visit_type_OnOffAuto(v, name, &acpi, errp); 2523 } 2524 2525 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2526 void *opaque, Error **errp) 2527 { 2528 VirtMachineState *vms = VIRT_MACHINE(obj); 2529 2530 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2531 } 2532 2533 static bool virt_get_ras(Object *obj, Error **errp) 2534 { 2535 VirtMachineState *vms = VIRT_MACHINE(obj); 2536 2537 return vms->ras; 2538 } 2539 2540 static void virt_set_ras(Object *obj, bool value, Error **errp) 2541 { 2542 VirtMachineState *vms = VIRT_MACHINE(obj); 2543 2544 vms->ras = value; 2545 } 2546 2547 static bool virt_get_mte(Object *obj, Error **errp) 2548 { 2549 VirtMachineState *vms = VIRT_MACHINE(obj); 2550 2551 return vms->mte; 2552 } 2553 2554 static void virt_set_mte(Object *obj, bool value, Error **errp) 2555 { 2556 VirtMachineState *vms = VIRT_MACHINE(obj); 2557 2558 vms->mte = value; 2559 } 2560 2561 static char *virt_get_gic_version(Object *obj, Error **errp) 2562 { 2563 VirtMachineState *vms = VIRT_MACHINE(obj); 2564 const char *val; 2565 2566 switch (vms->gic_version) { 2567 case VIRT_GIC_VERSION_4: 2568 val = "4"; 2569 break; 2570 case VIRT_GIC_VERSION_3: 2571 val = "3"; 2572 break; 2573 default: 2574 val = "2"; 2575 break; 2576 } 2577 return g_strdup(val); 2578 } 2579 2580 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2581 { 2582 VirtMachineState *vms = VIRT_MACHINE(obj); 2583 2584 if (!strcmp(value, "4")) { 2585 vms->gic_version = VIRT_GIC_VERSION_4; 2586 } else if (!strcmp(value, "3")) { 2587 vms->gic_version = VIRT_GIC_VERSION_3; 2588 } else if (!strcmp(value, "2")) { 2589 vms->gic_version = VIRT_GIC_VERSION_2; 2590 } else if (!strcmp(value, "host")) { 2591 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2592 } else if (!strcmp(value, "max")) { 2593 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2594 } else { 2595 error_setg(errp, "Invalid gic-version value"); 2596 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2597 } 2598 } 2599 2600 static char *virt_get_iommu(Object *obj, Error **errp) 2601 { 2602 VirtMachineState *vms = VIRT_MACHINE(obj); 2603 2604 switch (vms->iommu) { 2605 case VIRT_IOMMU_NONE: 2606 return g_strdup("none"); 2607 case VIRT_IOMMU_SMMUV3: 2608 return g_strdup("smmuv3"); 2609 default: 2610 g_assert_not_reached(); 2611 } 2612 } 2613 2614 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2615 { 2616 VirtMachineState *vms = VIRT_MACHINE(obj); 2617 2618 if (!strcmp(value, "smmuv3")) { 2619 vms->iommu = VIRT_IOMMU_SMMUV3; 2620 } else if (!strcmp(value, "none")) { 2621 vms->iommu = VIRT_IOMMU_NONE; 2622 } else { 2623 error_setg(errp, "Invalid iommu value"); 2624 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2625 } 2626 } 2627 2628 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2629 { 2630 VirtMachineState *vms = VIRT_MACHINE(obj); 2631 2632 return vms->default_bus_bypass_iommu; 2633 } 2634 2635 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2636 Error **errp) 2637 { 2638 VirtMachineState *vms = VIRT_MACHINE(obj); 2639 2640 vms->default_bus_bypass_iommu = value; 2641 } 2642 2643 static CpuInstanceProperties 2644 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2645 { 2646 MachineClass *mc = MACHINE_GET_CLASS(ms); 2647 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2648 2649 assert(cpu_index < possible_cpus->len); 2650 return possible_cpus->cpus[cpu_index].props; 2651 } 2652 2653 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2654 { 2655 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2656 2657 return socket_id % ms->numa_state->num_nodes; 2658 } 2659 2660 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2661 { 2662 int n; 2663 unsigned int max_cpus = ms->smp.max_cpus; 2664 VirtMachineState *vms = VIRT_MACHINE(ms); 2665 MachineClass *mc = MACHINE_GET_CLASS(vms); 2666 2667 if (ms->possible_cpus) { 2668 assert(ms->possible_cpus->len == max_cpus); 2669 return ms->possible_cpus; 2670 } 2671 2672 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2673 sizeof(CPUArchId) * max_cpus); 2674 ms->possible_cpus->len = max_cpus; 2675 for (n = 0; n < ms->possible_cpus->len; n++) { 2676 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2677 ms->possible_cpus->cpus[n].arch_id = 2678 virt_cpu_mp_affinity(vms, n); 2679 2680 assert(!mc->smp_props.dies_supported); 2681 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2682 ms->possible_cpus->cpus[n].props.socket_id = 2683 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2684 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2685 ms->possible_cpus->cpus[n].props.cluster_id = 2686 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2687 ms->possible_cpus->cpus[n].props.has_core_id = true; 2688 ms->possible_cpus->cpus[n].props.core_id = 2689 (n / ms->smp.threads) % ms->smp.cores; 2690 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2691 ms->possible_cpus->cpus[n].props.thread_id = 2692 n % ms->smp.threads; 2693 } 2694 return ms->possible_cpus; 2695 } 2696 2697 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2698 Error **errp) 2699 { 2700 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2701 const MachineState *ms = MACHINE(hotplug_dev); 2702 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2703 2704 if (!vms->acpi_dev) { 2705 error_setg(errp, 2706 "memory hotplug is not enabled: missing acpi-ged device"); 2707 return; 2708 } 2709 2710 if (vms->mte) { 2711 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2712 return; 2713 } 2714 2715 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2716 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2717 return; 2718 } 2719 2720 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2721 } 2722 2723 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2724 DeviceState *dev, Error **errp) 2725 { 2726 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2727 MachineState *ms = MACHINE(hotplug_dev); 2728 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2729 2730 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2731 2732 if (is_nvdimm) { 2733 nvdimm_plug(ms->nvdimms_state); 2734 } 2735 2736 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2737 dev, &error_abort); 2738 } 2739 2740 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2741 DeviceState *dev, Error **errp) 2742 { 2743 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2744 2745 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2746 virt_memory_pre_plug(hotplug_dev, dev, errp); 2747 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2748 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2749 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2750 hwaddr db_start = 0, db_end = 0; 2751 char *resv_prop_str; 2752 2753 if (vms->iommu != VIRT_IOMMU_NONE) { 2754 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2755 return; 2756 } 2757 2758 switch (vms->msi_controller) { 2759 case VIRT_MSI_CTRL_NONE: 2760 return; 2761 case VIRT_MSI_CTRL_ITS: 2762 /* GITS_TRANSLATER page */ 2763 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2764 db_end = base_memmap[VIRT_GIC_ITS].base + 2765 base_memmap[VIRT_GIC_ITS].size - 1; 2766 break; 2767 case VIRT_MSI_CTRL_GICV2M: 2768 /* MSI_SETSPI_NS page */ 2769 db_start = base_memmap[VIRT_GIC_V2M].base; 2770 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2771 break; 2772 } 2773 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2774 db_start, db_end, 2775 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2776 2777 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp); 2778 object_property_set_str(OBJECT(dev), "reserved-regions[0]", 2779 resv_prop_str, errp); 2780 g_free(resv_prop_str); 2781 } 2782 } 2783 2784 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2785 DeviceState *dev, Error **errp) 2786 { 2787 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2788 2789 if (vms->platform_bus_dev) { 2790 MachineClass *mc = MACHINE_GET_CLASS(vms); 2791 2792 if (device_is_dynamic_sysbus(mc, dev)) { 2793 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2794 SYS_BUS_DEVICE(dev)); 2795 } 2796 } 2797 2798 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2799 virt_memory_plug(hotplug_dev, dev, errp); 2800 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2801 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2802 } 2803 2804 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2805 PCIDevice *pdev = PCI_DEVICE(dev); 2806 2807 vms->iommu = VIRT_IOMMU_VIRTIO; 2808 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2809 create_virtio_iommu_dt_bindings(vms); 2810 } 2811 } 2812 2813 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2814 DeviceState *dev, Error **errp) 2815 { 2816 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2817 2818 if (!vms->acpi_dev) { 2819 error_setg(errp, 2820 "memory hotplug is not enabled: missing acpi-ged device"); 2821 return; 2822 } 2823 2824 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2825 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2826 return; 2827 } 2828 2829 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2830 errp); 2831 } 2832 2833 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2834 DeviceState *dev, Error **errp) 2835 { 2836 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2837 Error *local_err = NULL; 2838 2839 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2840 if (local_err) { 2841 goto out; 2842 } 2843 2844 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2845 qdev_unrealize(dev); 2846 2847 out: 2848 error_propagate(errp, local_err); 2849 } 2850 2851 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2852 DeviceState *dev, Error **errp) 2853 { 2854 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2855 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2856 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2857 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 2858 errp); 2859 } else { 2860 error_setg(errp, "device unplug request for unsupported device" 2861 " type: %s", object_get_typename(OBJECT(dev))); 2862 } 2863 } 2864 2865 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2866 DeviceState *dev, Error **errp) 2867 { 2868 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2869 virt_dimm_unplug(hotplug_dev, dev, errp); 2870 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2871 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2872 } else { 2873 error_setg(errp, "virt: device unplug for unsupported device" 2874 " type: %s", object_get_typename(OBJECT(dev))); 2875 } 2876 } 2877 2878 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2879 DeviceState *dev) 2880 { 2881 MachineClass *mc = MACHINE_GET_CLASS(machine); 2882 2883 if (device_is_dynamic_sysbus(mc, dev) || 2884 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2885 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 2886 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2887 return HOTPLUG_HANDLER(machine); 2888 } 2889 return NULL; 2890 } 2891 2892 /* 2893 * for arm64 kvm_type [7-0] encodes the requested number of bits 2894 * in the IPA address space 2895 */ 2896 static int virt_kvm_type(MachineState *ms, const char *type_str) 2897 { 2898 VirtMachineState *vms = VIRT_MACHINE(ms); 2899 int max_vm_pa_size, requested_pa_size; 2900 bool fixed_ipa; 2901 2902 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2903 2904 /* we freeze the memory map to compute the highest gpa */ 2905 virt_set_memmap(vms, max_vm_pa_size); 2906 2907 requested_pa_size = 64 - clz64(vms->highest_gpa); 2908 2909 /* 2910 * KVM requires the IPA size to be at least 32 bits. 2911 */ 2912 if (requested_pa_size < 32) { 2913 requested_pa_size = 32; 2914 } 2915 2916 if (requested_pa_size > max_vm_pa_size) { 2917 error_report("-m and ,maxmem option values " 2918 "require an IPA range (%d bits) larger than " 2919 "the one supported by the host (%d bits)", 2920 requested_pa_size, max_vm_pa_size); 2921 return -1; 2922 } 2923 /* 2924 * We return the requested PA log size, unless KVM only supports 2925 * the implicit legacy 40b IPA setting, in which case the kvm_type 2926 * must be 0. 2927 */ 2928 return fixed_ipa ? 0 : requested_pa_size; 2929 } 2930 2931 static void virt_machine_class_init(ObjectClass *oc, void *data) 2932 { 2933 MachineClass *mc = MACHINE_CLASS(oc); 2934 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2935 2936 mc->init = machvirt_init; 2937 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2938 * The value may be reduced later when we have more information about the 2939 * configuration of the particular instance. 2940 */ 2941 mc->max_cpus = 512; 2942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2943 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2944 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2945 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2946 #ifdef CONFIG_TPM 2947 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2948 #endif 2949 mc->block_default_type = IF_VIRTIO; 2950 mc->no_cdrom = 1; 2951 mc->pci_allow_0_address = true; 2952 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2953 mc->minimum_page_bits = 12; 2954 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2955 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2956 #ifdef CONFIG_TCG 2957 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2958 #else 2959 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 2960 #endif 2961 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2962 mc->kvm_type = virt_kvm_type; 2963 assert(!mc->get_hotplug_handler); 2964 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2965 hc->pre_plug = virt_machine_device_pre_plug_cb; 2966 hc->plug = virt_machine_device_plug_cb; 2967 hc->unplug_request = virt_machine_device_unplug_request_cb; 2968 hc->unplug = virt_machine_device_unplug_cb; 2969 mc->nvdimm_supported = true; 2970 mc->smp_props.clusters_supported = true; 2971 mc->auto_enable_numa_with_memhp = true; 2972 mc->auto_enable_numa_with_memdev = true; 2973 /* platform instead of architectural choice */ 2974 mc->cpu_cluster_has_numa_boundary = true; 2975 mc->default_ram_id = "mach-virt.ram"; 2976 mc->default_nic = "virtio-net-pci"; 2977 2978 object_class_property_add(oc, "acpi", "OnOffAuto", 2979 virt_get_acpi, virt_set_acpi, 2980 NULL, NULL); 2981 object_class_property_set_description(oc, "acpi", 2982 "Enable ACPI"); 2983 object_class_property_add_bool(oc, "secure", virt_get_secure, 2984 virt_set_secure); 2985 object_class_property_set_description(oc, "secure", 2986 "Set on/off to enable/disable the ARM " 2987 "Security Extensions (TrustZone)"); 2988 2989 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2990 virt_set_virt); 2991 object_class_property_set_description(oc, "virtualization", 2992 "Set on/off to enable/disable emulating a " 2993 "guest CPU which implements the ARM " 2994 "Virtualization Extensions"); 2995 2996 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2997 virt_set_highmem); 2998 object_class_property_set_description(oc, "highmem", 2999 "Set on/off to enable/disable using " 3000 "physical address space above 32 bits"); 3001 3002 object_class_property_add_bool(oc, "compact-highmem", 3003 virt_get_compact_highmem, 3004 virt_set_compact_highmem); 3005 object_class_property_set_description(oc, "compact-highmem", 3006 "Set on/off to enable/disable compact " 3007 "layout for high memory regions"); 3008 3009 object_class_property_add_bool(oc, "highmem-redists", 3010 virt_get_highmem_redists, 3011 virt_set_highmem_redists); 3012 object_class_property_set_description(oc, "highmem-redists", 3013 "Set on/off to enable/disable high " 3014 "memory region for GICv3 or GICv4 " 3015 "redistributor"); 3016 3017 object_class_property_add_bool(oc, "highmem-ecam", 3018 virt_get_highmem_ecam, 3019 virt_set_highmem_ecam); 3020 object_class_property_set_description(oc, "highmem-ecam", 3021 "Set on/off to enable/disable high " 3022 "memory region for PCI ECAM"); 3023 3024 object_class_property_add_bool(oc, "highmem-mmio", 3025 virt_get_highmem_mmio, 3026 virt_set_highmem_mmio); 3027 object_class_property_set_description(oc, "highmem-mmio", 3028 "Set on/off to enable/disable high " 3029 "memory region for PCI MMIO"); 3030 3031 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3032 virt_set_gic_version); 3033 object_class_property_set_description(oc, "gic-version", 3034 "Set GIC version. " 3035 "Valid values are 2, 3, 4, host and max"); 3036 3037 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3038 object_class_property_set_description(oc, "iommu", 3039 "Set the IOMMU type. " 3040 "Valid values are none and smmuv3"); 3041 3042 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3043 virt_get_default_bus_bypass_iommu, 3044 virt_set_default_bus_bypass_iommu); 3045 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3046 "Set on/off to enable/disable " 3047 "bypass_iommu for default root bus"); 3048 3049 object_class_property_add_bool(oc, "ras", virt_get_ras, 3050 virt_set_ras); 3051 object_class_property_set_description(oc, "ras", 3052 "Set on/off to enable/disable reporting host memory errors " 3053 "to a KVM guest using ACPI and guest external abort exceptions"); 3054 3055 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3056 object_class_property_set_description(oc, "mte", 3057 "Set on/off to enable/disable emulating a " 3058 "guest CPU which implements the ARM " 3059 "Memory Tagging Extension"); 3060 3061 object_class_property_add_bool(oc, "its", virt_get_its, 3062 virt_set_its); 3063 object_class_property_set_description(oc, "its", 3064 "Set on/off to enable/disable " 3065 "ITS instantiation"); 3066 3067 object_class_property_add_bool(oc, "dtb-randomness", 3068 virt_get_dtb_randomness, 3069 virt_set_dtb_randomness); 3070 object_class_property_set_description(oc, "dtb-randomness", 3071 "Set off to disable passing random or " 3072 "non-deterministic dtb nodes to guest"); 3073 3074 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3075 virt_get_dtb_randomness, 3076 virt_set_dtb_randomness); 3077 object_class_property_set_description(oc, "dtb-kaslr-seed", 3078 "Deprecated synonym of dtb-randomness"); 3079 3080 object_class_property_add_str(oc, "x-oem-id", 3081 virt_get_oem_id, 3082 virt_set_oem_id); 3083 object_class_property_set_description(oc, "x-oem-id", 3084 "Override the default value of field OEMID " 3085 "in ACPI table header." 3086 "The string may be up to 6 bytes in size"); 3087 3088 3089 object_class_property_add_str(oc, "x-oem-table-id", 3090 virt_get_oem_table_id, 3091 virt_set_oem_table_id); 3092 object_class_property_set_description(oc, "x-oem-table-id", 3093 "Override the default value of field OEM Table ID " 3094 "in ACPI table header." 3095 "The string may be up to 8 bytes in size"); 3096 3097 } 3098 3099 static void virt_instance_init(Object *obj) 3100 { 3101 VirtMachineState *vms = VIRT_MACHINE(obj); 3102 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3103 3104 /* EL3 is disabled by default on virt: this makes us consistent 3105 * between KVM and TCG for this board, and it also allows us to 3106 * boot UEFI blobs which assume no TrustZone support. 3107 */ 3108 vms->secure = false; 3109 3110 /* EL2 is also disabled by default, for similar reasons */ 3111 vms->virt = false; 3112 3113 /* High memory is enabled by default */ 3114 vms->highmem = true; 3115 vms->highmem_compact = !vmc->no_highmem_compact; 3116 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3117 3118 vms->highmem_ecam = !vmc->no_highmem_ecam; 3119 vms->highmem_mmio = true; 3120 vms->highmem_redists = true; 3121 3122 if (vmc->no_its) { 3123 vms->its = false; 3124 } else { 3125 /* Default allows ITS instantiation */ 3126 vms->its = true; 3127 3128 if (vmc->no_tcg_its) { 3129 vms->tcg_its = false; 3130 } else { 3131 vms->tcg_its = true; 3132 } 3133 } 3134 3135 /* Default disallows iommu instantiation */ 3136 vms->iommu = VIRT_IOMMU_NONE; 3137 3138 /* The default root bus is attached to iommu by default */ 3139 vms->default_bus_bypass_iommu = false; 3140 3141 /* Default disallows RAS instantiation */ 3142 vms->ras = false; 3143 3144 /* MTE is disabled by default. */ 3145 vms->mte = false; 3146 3147 /* Supply kaslr-seed and rng-seed by default */ 3148 vms->dtb_randomness = true; 3149 3150 vms->irqmap = a15irqmap; 3151 3152 virt_flash_create(vms); 3153 3154 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3155 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3156 } 3157 3158 static const TypeInfo virt_machine_info = { 3159 .name = TYPE_VIRT_MACHINE, 3160 .parent = TYPE_MACHINE, 3161 .abstract = true, 3162 .instance_size = sizeof(VirtMachineState), 3163 .class_size = sizeof(VirtMachineClass), 3164 .class_init = virt_machine_class_init, 3165 .instance_init = virt_instance_init, 3166 .interfaces = (InterfaceInfo[]) { 3167 { TYPE_HOTPLUG_HANDLER }, 3168 { } 3169 }, 3170 }; 3171 3172 static void machvirt_machine_init(void) 3173 { 3174 type_register_static(&virt_machine_info); 3175 } 3176 type_init(machvirt_machine_init); 3177 3178 static void virt_machine_8_2_options(MachineClass *mc) 3179 { 3180 } 3181 DEFINE_VIRT_MACHINE_AS_LATEST(8, 2) 3182 3183 static void virt_machine_8_1_options(MachineClass *mc) 3184 { 3185 virt_machine_8_2_options(mc); 3186 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3187 } 3188 DEFINE_VIRT_MACHINE(8, 1) 3189 3190 static void virt_machine_8_0_options(MachineClass *mc) 3191 { 3192 virt_machine_8_1_options(mc); 3193 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3194 } 3195 DEFINE_VIRT_MACHINE(8, 0) 3196 3197 static void virt_machine_7_2_options(MachineClass *mc) 3198 { 3199 virt_machine_8_0_options(mc); 3200 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3201 } 3202 DEFINE_VIRT_MACHINE(7, 2) 3203 3204 static void virt_machine_7_1_options(MachineClass *mc) 3205 { 3206 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3207 3208 virt_machine_7_2_options(mc); 3209 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3210 /* Compact layout for high memory regions was introduced with 7.2 */ 3211 vmc->no_highmem_compact = true; 3212 } 3213 DEFINE_VIRT_MACHINE(7, 1) 3214 3215 static void virt_machine_7_0_options(MachineClass *mc) 3216 { 3217 virt_machine_7_1_options(mc); 3218 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3219 } 3220 DEFINE_VIRT_MACHINE(7, 0) 3221 3222 static void virt_machine_6_2_options(MachineClass *mc) 3223 { 3224 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3225 3226 virt_machine_7_0_options(mc); 3227 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3228 vmc->no_tcg_lpa2 = true; 3229 } 3230 DEFINE_VIRT_MACHINE(6, 2) 3231 3232 static void virt_machine_6_1_options(MachineClass *mc) 3233 { 3234 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3235 3236 virt_machine_6_2_options(mc); 3237 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3238 mc->smp_props.prefer_sockets = true; 3239 vmc->no_cpu_topology = true; 3240 3241 /* qemu ITS was introduced with 6.2 */ 3242 vmc->no_tcg_its = true; 3243 } 3244 DEFINE_VIRT_MACHINE(6, 1) 3245 3246 static void virt_machine_6_0_options(MachineClass *mc) 3247 { 3248 virt_machine_6_1_options(mc); 3249 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3250 } 3251 DEFINE_VIRT_MACHINE(6, 0) 3252 3253 static void virt_machine_5_2_options(MachineClass *mc) 3254 { 3255 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3256 3257 virt_machine_6_0_options(mc); 3258 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3259 vmc->no_secure_gpio = true; 3260 } 3261 DEFINE_VIRT_MACHINE(5, 2) 3262 3263 static void virt_machine_5_1_options(MachineClass *mc) 3264 { 3265 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3266 3267 virt_machine_5_2_options(mc); 3268 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3269 vmc->no_kvm_steal_time = true; 3270 } 3271 DEFINE_VIRT_MACHINE(5, 1) 3272 3273 static void virt_machine_5_0_options(MachineClass *mc) 3274 { 3275 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3276 3277 virt_machine_5_1_options(mc); 3278 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3279 mc->numa_mem_supported = true; 3280 vmc->acpi_expose_flash = true; 3281 mc->auto_enable_numa_with_memdev = false; 3282 } 3283 DEFINE_VIRT_MACHINE(5, 0) 3284 3285 static void virt_machine_4_2_options(MachineClass *mc) 3286 { 3287 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3288 3289 virt_machine_5_0_options(mc); 3290 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3291 vmc->kvm_no_adjvtime = true; 3292 } 3293 DEFINE_VIRT_MACHINE(4, 2) 3294 3295 static void virt_machine_4_1_options(MachineClass *mc) 3296 { 3297 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3298 3299 virt_machine_4_2_options(mc); 3300 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3301 vmc->no_ged = true; 3302 mc->auto_enable_numa_with_memhp = false; 3303 } 3304 DEFINE_VIRT_MACHINE(4, 1) 3305 3306 static void virt_machine_4_0_options(MachineClass *mc) 3307 { 3308 virt_machine_4_1_options(mc); 3309 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3310 } 3311 DEFINE_VIRT_MACHINE(4, 0) 3312 3313 static void virt_machine_3_1_options(MachineClass *mc) 3314 { 3315 virt_machine_4_0_options(mc); 3316 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3317 } 3318 DEFINE_VIRT_MACHINE(3, 1) 3319 3320 static void virt_machine_3_0_options(MachineClass *mc) 3321 { 3322 virt_machine_3_1_options(mc); 3323 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3324 } 3325 DEFINE_VIRT_MACHINE(3, 0) 3326 3327 static void virt_machine_2_12_options(MachineClass *mc) 3328 { 3329 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3330 3331 virt_machine_3_0_options(mc); 3332 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3333 vmc->no_highmem_ecam = true; 3334 mc->max_cpus = 255; 3335 } 3336 DEFINE_VIRT_MACHINE(2, 12) 3337 3338 static void virt_machine_2_11_options(MachineClass *mc) 3339 { 3340 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3341 3342 virt_machine_2_12_options(mc); 3343 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3344 vmc->smbios_old_sys_ver = true; 3345 } 3346 DEFINE_VIRT_MACHINE(2, 11) 3347 3348 static void virt_machine_2_10_options(MachineClass *mc) 3349 { 3350 virt_machine_2_11_options(mc); 3351 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3352 /* before 2.11 we never faulted accesses to bad addresses */ 3353 mc->ignore_memory_transaction_failures = true; 3354 } 3355 DEFINE_VIRT_MACHINE(2, 10) 3356 3357 static void virt_machine_2_9_options(MachineClass *mc) 3358 { 3359 virt_machine_2_10_options(mc); 3360 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3361 } 3362 DEFINE_VIRT_MACHINE(2, 9) 3363 3364 static void virt_machine_2_8_options(MachineClass *mc) 3365 { 3366 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3367 3368 virt_machine_2_9_options(mc); 3369 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3370 /* For 2.8 and earlier we falsely claimed in the DT that 3371 * our timers were edge-triggered, not level-triggered. 3372 */ 3373 vmc->claim_edge_triggered_timers = true; 3374 } 3375 DEFINE_VIRT_MACHINE(2, 8) 3376 3377 static void virt_machine_2_7_options(MachineClass *mc) 3378 { 3379 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3380 3381 virt_machine_2_8_options(mc); 3382 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3383 /* ITS was introduced with 2.8 */ 3384 vmc->no_its = true; 3385 /* Stick with 1K pages for migration compatibility */ 3386 mc->minimum_page_bits = 0; 3387 } 3388 DEFINE_VIRT_MACHINE(2, 7) 3389 3390 static void virt_machine_2_6_options(MachineClass *mc) 3391 { 3392 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3393 3394 virt_machine_2_7_options(mc); 3395 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3396 vmc->disallow_affinity_adjustment = true; 3397 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3398 vmc->no_pmu = true; 3399 } 3400 DEFINE_VIRT_MACHINE(2, 6) 3401