xref: /openbmc/qemu/hw/arm/virt.c (revision 59a3a1c0)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/boards.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/sysemu.h"
50 #include "sysemu/kvm.h"
51 #include "hw/loader.h"
52 #include "exec/address-spaces.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/arm/sysbus-fdt.h"
58 #include "hw/platform-bus.h"
59 #include "hw/qdev-properties.h"
60 #include "hw/arm/fdt.h"
61 #include "hw/intc/arm_gic.h"
62 #include "hw/intc/arm_gicv3_common.h"
63 #include "hw/irq.h"
64 #include "kvm_arm.h"
65 #include "hw/firmware/smbios.h"
66 #include "qapi/visitor.h"
67 #include "standard-headers/linux/input.h"
68 #include "hw/arm/smmuv3.h"
69 #include "hw/acpi/acpi.h"
70 #include "target/arm/internals.h"
71 
72 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
73     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
74                                                     void *data) \
75     { \
76         MachineClass *mc = MACHINE_CLASS(oc); \
77         virt_machine_##major##_##minor##_options(mc); \
78         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
79         if (latest) { \
80             mc->alias = "virt"; \
81         } \
82     } \
83     static const TypeInfo machvirt_##major##_##minor##_info = { \
84         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
85         .parent = TYPE_VIRT_MACHINE, \
86         .class_init = virt_##major##_##minor##_class_init, \
87     }; \
88     static void machvirt_machine_##major##_##minor##_init(void) \
89     { \
90         type_register_static(&machvirt_##major##_##minor##_info); \
91     } \
92     type_init(machvirt_machine_##major##_##minor##_init);
93 
94 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
95     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
96 #define DEFINE_VIRT_MACHINE(major, minor) \
97     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
98 
99 
100 /* Number of external interrupt lines to configure the GIC with */
101 #define NUM_IRQS 256
102 
103 #define PLATFORM_BUS_NUM_IRQS 64
104 
105 /* Legacy RAM limit in GB (< version 4.0) */
106 #define LEGACY_RAMLIMIT_GB 255
107 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
108 
109 /* Addresses and sizes of our components.
110  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
111  * 128MB..256MB is used for miscellaneous device I/O.
112  * 256MB..1GB is reserved for possible future PCI support (ie where the
113  * PCI memory window will go if we add a PCI host controller).
114  * 1GB and up is RAM (which may happily spill over into the
115  * high memory region beyond 4GB).
116  * This represents a compromise between how much RAM can be given to
117  * a 32 bit VM and leaving space for expansion and in particular for PCI.
118  * Note that devices should generally be placed at multiples of 0x10000,
119  * to accommodate guests using 64K pages.
120  */
121 static const MemMapEntry base_memmap[] = {
122     /* Space up to 0x8000000 is reserved for a boot ROM */
123     [VIRT_FLASH] =              {          0, 0x08000000 },
124     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
125     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
126     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
127     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
128     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
129     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
130     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
131     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
132     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
133     /* This redistributor space allows up to 2*64kB*123 CPUs */
134     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
135     [VIRT_UART] =               { 0x09000000, 0x00001000 },
136     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
137     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
138     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
139     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
140     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
141     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
142     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
143     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
144     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
145     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
146     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
147     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
148     /* Actual RAM size depends on initial RAM and device memory settings */
149     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
150 };
151 
152 /*
153  * Highmem IO Regions: This memory map is floating, located after the RAM.
154  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
155  * top of the RAM, so that its base get the same alignment as the size,
156  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
157  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
158  * Note the extended_memmap is sized so that it eventually also includes the
159  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
160  * index of base_memmap).
161  */
162 static MemMapEntry extended_memmap[] = {
163     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
164     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
165     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
166     /* Second PCIe window */
167     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
168 };
169 
170 static const int a15irqmap[] = {
171     [VIRT_UART] = 1,
172     [VIRT_RTC] = 2,
173     [VIRT_PCIE] = 3, /* ... to 6 */
174     [VIRT_GPIO] = 7,
175     [VIRT_SECURE_UART] = 8,
176     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
177     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
178     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
179     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
180 };
181 
182 static const char *valid_cpus[] = {
183     ARM_CPU_TYPE_NAME("cortex-a7"),
184     ARM_CPU_TYPE_NAME("cortex-a15"),
185     ARM_CPU_TYPE_NAME("cortex-a53"),
186     ARM_CPU_TYPE_NAME("cortex-a57"),
187     ARM_CPU_TYPE_NAME("cortex-a72"),
188     ARM_CPU_TYPE_NAME("host"),
189     ARM_CPU_TYPE_NAME("max"),
190 };
191 
192 static bool cpu_type_valid(const char *cpu)
193 {
194     int i;
195 
196     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
197         if (strcmp(cpu, valid_cpus[i]) == 0) {
198             return true;
199         }
200     }
201     return false;
202 }
203 
204 static void create_fdt(VirtMachineState *vms)
205 {
206     void *fdt = create_device_tree(&vms->fdt_size);
207 
208     if (!fdt) {
209         error_report("create_device_tree() failed");
210         exit(1);
211     }
212 
213     vms->fdt = fdt;
214 
215     /* Header */
216     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
217     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
218     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
219 
220     /* /chosen must exist for load_dtb to fill in necessary properties later */
221     qemu_fdt_add_subnode(fdt, "/chosen");
222 
223     /* Clock node, for the benefit of the UART. The kernel device tree
224      * binding documentation claims the PL011 node clock properties are
225      * optional but in practice if you omit them the kernel refuses to
226      * probe for the device.
227      */
228     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
229     qemu_fdt_add_subnode(fdt, "/apb-pclk");
230     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
231     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
232     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
233     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
234                                 "clk24mhz");
235     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
236 
237     if (have_numa_distance) {
238         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
239         uint32_t *matrix = g_malloc0(size);
240         int idx, i, j;
241 
242         for (i = 0; i < nb_numa_nodes; i++) {
243             for (j = 0; j < nb_numa_nodes; j++) {
244                 idx = (i * nb_numa_nodes + j) * 3;
245                 matrix[idx + 0] = cpu_to_be32(i);
246                 matrix[idx + 1] = cpu_to_be32(j);
247                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
248             }
249         }
250 
251         qemu_fdt_add_subnode(fdt, "/distance-map");
252         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
253                                 "numa-distance-map-v1");
254         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
255                          matrix, size);
256         g_free(matrix);
257     }
258 }
259 
260 static void fdt_add_timer_nodes(const VirtMachineState *vms)
261 {
262     /* On real hardware these interrupts are level-triggered.
263      * On KVM they were edge-triggered before host kernel version 4.4,
264      * and level-triggered afterwards.
265      * On emulated QEMU they are level-triggered.
266      *
267      * Getting the DTB info about them wrong is awkward for some
268      * guest kernels:
269      *  pre-4.8 ignore the DT and leave the interrupt configured
270      *   with whatever the GIC reset value (or the bootloader) left it at
271      *  4.8 before rc6 honour the incorrect data by programming it back
272      *   into the GIC, causing problems
273      *  4.8rc6 and later ignore the DT and always write "level triggered"
274      *   into the GIC
275      *
276      * For backwards-compatibility, virt-2.8 and earlier will continue
277      * to say these are edge-triggered, but later machines will report
278      * the correct information.
279      */
280     ARMCPU *armcpu;
281     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
282     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
283 
284     if (vmc->claim_edge_triggered_timers) {
285         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
286     }
287 
288     if (vms->gic_version == 2) {
289         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
290                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
291                              (1 << vms->smp_cpus) - 1);
292     }
293 
294     qemu_fdt_add_subnode(vms->fdt, "/timer");
295 
296     armcpu = ARM_CPU(qemu_get_cpu(0));
297     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
298         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
299         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
300                          compat, sizeof(compat));
301     } else {
302         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
303                                 "arm,armv7-timer");
304     }
305     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
306     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
307                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
308                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
309                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
310                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
311 }
312 
313 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
314 {
315     int cpu;
316     int addr_cells = 1;
317     const MachineState *ms = MACHINE(vms);
318 
319     /*
320      * From Documentation/devicetree/bindings/arm/cpus.txt
321      *  On ARM v8 64-bit systems value should be set to 2,
322      *  that corresponds to the MPIDR_EL1 register size.
323      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
324      *  in the system, #address-cells can be set to 1, since
325      *  MPIDR_EL1[63:32] bits are not used for CPUs
326      *  identification.
327      *
328      *  Here we actually don't know whether our system is 32- or 64-bit one.
329      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
330      *  at least one of them has Aff3 populated, we set #address-cells to 2.
331      */
332     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
333         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
334 
335         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
336             addr_cells = 2;
337             break;
338         }
339     }
340 
341     qemu_fdt_add_subnode(vms->fdt, "/cpus");
342     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
343     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
344 
345     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
346         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
347         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
348         CPUState *cs = CPU(armcpu);
349 
350         qemu_fdt_add_subnode(vms->fdt, nodename);
351         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
352         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
353                                     armcpu->dtb_compatible);
354 
355         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
356             && vms->smp_cpus > 1) {
357             qemu_fdt_setprop_string(vms->fdt, nodename,
358                                         "enable-method", "psci");
359         }
360 
361         if (addr_cells == 2) {
362             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
363                                  armcpu->mp_affinity);
364         } else {
365             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
366                                   armcpu->mp_affinity);
367         }
368 
369         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
370             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
371                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
372         }
373 
374         g_free(nodename);
375     }
376 }
377 
378 static void fdt_add_its_gic_node(VirtMachineState *vms)
379 {
380     char *nodename;
381 
382     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
383     nodename = g_strdup_printf("/intc/its@%" PRIx64,
384                                vms->memmap[VIRT_GIC_ITS].base);
385     qemu_fdt_add_subnode(vms->fdt, nodename);
386     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
387                             "arm,gic-v3-its");
388     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
389     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
390                                  2, vms->memmap[VIRT_GIC_ITS].base,
391                                  2, vms->memmap[VIRT_GIC_ITS].size);
392     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
393     g_free(nodename);
394 }
395 
396 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
397 {
398     char *nodename;
399 
400     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
401                                vms->memmap[VIRT_GIC_V2M].base);
402     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
403     qemu_fdt_add_subnode(vms->fdt, nodename);
404     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
405                             "arm,gic-v2m-frame");
406     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
407     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
408                                  2, vms->memmap[VIRT_GIC_V2M].base,
409                                  2, vms->memmap[VIRT_GIC_V2M].size);
410     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
411     g_free(nodename);
412 }
413 
414 static void fdt_add_gic_node(VirtMachineState *vms)
415 {
416     char *nodename;
417 
418     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
419     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
420 
421     nodename = g_strdup_printf("/intc@%" PRIx64,
422                                vms->memmap[VIRT_GIC_DIST].base);
423     qemu_fdt_add_subnode(vms->fdt, nodename);
424     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
425     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
426     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
427     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
428     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
429     if (vms->gic_version == 3) {
430         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
431 
432         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
433                                 "arm,gic-v3");
434 
435         qemu_fdt_setprop_cell(vms->fdt, nodename,
436                               "#redistributor-regions", nb_redist_regions);
437 
438         if (nb_redist_regions == 1) {
439             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
440                                          2, vms->memmap[VIRT_GIC_DIST].base,
441                                          2, vms->memmap[VIRT_GIC_DIST].size,
442                                          2, vms->memmap[VIRT_GIC_REDIST].base,
443                                          2, vms->memmap[VIRT_GIC_REDIST].size);
444         } else {
445             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
446                                  2, vms->memmap[VIRT_GIC_DIST].base,
447                                  2, vms->memmap[VIRT_GIC_DIST].size,
448                                  2, vms->memmap[VIRT_GIC_REDIST].base,
449                                  2, vms->memmap[VIRT_GIC_REDIST].size,
450                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
451                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
452         }
453 
454         if (vms->virt) {
455             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
456                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
457                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
458         }
459     } else {
460         /* 'cortex-a15-gic' means 'GIC v2' */
461         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
462                                 "arm,cortex-a15-gic");
463         if (!vms->virt) {
464             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
465                                          2, vms->memmap[VIRT_GIC_DIST].base,
466                                          2, vms->memmap[VIRT_GIC_DIST].size,
467                                          2, vms->memmap[VIRT_GIC_CPU].base,
468                                          2, vms->memmap[VIRT_GIC_CPU].size);
469         } else {
470             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
471                                          2, vms->memmap[VIRT_GIC_DIST].base,
472                                          2, vms->memmap[VIRT_GIC_DIST].size,
473                                          2, vms->memmap[VIRT_GIC_CPU].base,
474                                          2, vms->memmap[VIRT_GIC_CPU].size,
475                                          2, vms->memmap[VIRT_GIC_HYP].base,
476                                          2, vms->memmap[VIRT_GIC_HYP].size,
477                                          2, vms->memmap[VIRT_GIC_VCPU].base,
478                                          2, vms->memmap[VIRT_GIC_VCPU].size);
479             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
480                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
481                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
482         }
483     }
484 
485     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
486     g_free(nodename);
487 }
488 
489 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
490 {
491     CPUState *cpu;
492     ARMCPU *armcpu;
493     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
494 
495     CPU_FOREACH(cpu) {
496         armcpu = ARM_CPU(cpu);
497         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
498             return;
499         }
500         if (kvm_enabled()) {
501             if (kvm_irqchip_in_kernel()) {
502                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
503             }
504             kvm_arm_pmu_init(cpu);
505         }
506     }
507 
508     if (vms->gic_version == 2) {
509         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
510                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
511                              (1 << vms->smp_cpus) - 1);
512     }
513 
514     armcpu = ARM_CPU(qemu_get_cpu(0));
515     qemu_fdt_add_subnode(vms->fdt, "/pmu");
516     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
517         const char compat[] = "arm,armv8-pmuv3";
518         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
519                          compat, sizeof(compat));
520         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
521                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
522     }
523 }
524 
525 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
526 {
527     const char *itsclass = its_class_name();
528     DeviceState *dev;
529 
530     if (!itsclass) {
531         /* Do nothing if not supported */
532         return;
533     }
534 
535     dev = qdev_create(NULL, itsclass);
536 
537     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
538                              &error_abort);
539     qdev_init_nofail(dev);
540     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
541 
542     fdt_add_its_gic_node(vms);
543 }
544 
545 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
546 {
547     int i;
548     int irq = vms->irqmap[VIRT_GIC_V2M];
549     DeviceState *dev;
550 
551     dev = qdev_create(NULL, "arm-gicv2m");
552     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
553     qdev_prop_set_uint32(dev, "base-spi", irq);
554     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
555     qdev_init_nofail(dev);
556 
557     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
558         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
559     }
560 
561     fdt_add_v2m_gic_node(vms);
562 }
563 
564 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
565 {
566     MachineState *ms = MACHINE(vms);
567     /* We create a standalone GIC */
568     DeviceState *gicdev;
569     SysBusDevice *gicbusdev;
570     const char *gictype;
571     int type = vms->gic_version, i;
572     unsigned int smp_cpus = ms->smp.cpus;
573     uint32_t nb_redist_regions = 0;
574 
575     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
576 
577     gicdev = qdev_create(NULL, gictype);
578     qdev_prop_set_uint32(gicdev, "revision", type);
579     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
580     /* Note that the num-irq property counts both internal and external
581      * interrupts; there are always 32 of the former (mandated by GIC spec).
582      */
583     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
584     if (!kvm_irqchip_in_kernel()) {
585         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
586     }
587 
588     if (type == 3) {
589         uint32_t redist0_capacity =
590                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
591         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
592 
593         nb_redist_regions = virt_gicv3_redist_region_count(vms);
594 
595         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
596                              nb_redist_regions);
597         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
598 
599         if (nb_redist_regions == 2) {
600             uint32_t redist1_capacity =
601                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
602 
603             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
604                 MIN(smp_cpus - redist0_count, redist1_capacity));
605         }
606     } else {
607         if (!kvm_irqchip_in_kernel()) {
608             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
609                               vms->virt);
610         }
611     }
612     qdev_init_nofail(gicdev);
613     gicbusdev = SYS_BUS_DEVICE(gicdev);
614     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
615     if (type == 3) {
616         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
617         if (nb_redist_regions == 2) {
618             sysbus_mmio_map(gicbusdev, 2,
619                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
620         }
621     } else {
622         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
623         if (vms->virt) {
624             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
625             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
626         }
627     }
628 
629     /* Wire the outputs from each CPU's generic timer and the GICv3
630      * maintenance interrupt signal to the appropriate GIC PPI inputs,
631      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
632      */
633     for (i = 0; i < smp_cpus; i++) {
634         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
635         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
636         int irq;
637         /* Mapping from the output timer irq lines from the CPU to the
638          * GIC PPI inputs we use for the virt board.
639          */
640         const int timer_irq[] = {
641             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
642             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
643             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
644             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
645         };
646 
647         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
648             qdev_connect_gpio_out(cpudev, irq,
649                                   qdev_get_gpio_in(gicdev,
650                                                    ppibase + timer_irq[irq]));
651         }
652 
653         if (type == 3) {
654             qemu_irq irq = qdev_get_gpio_in(gicdev,
655                                             ppibase + ARCH_GIC_MAINT_IRQ);
656             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
657                                         0, irq);
658         } else if (vms->virt) {
659             qemu_irq irq = qdev_get_gpio_in(gicdev,
660                                             ppibase + ARCH_GIC_MAINT_IRQ);
661             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
662         }
663 
664         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
665                                     qdev_get_gpio_in(gicdev, ppibase
666                                                      + VIRTUAL_PMU_IRQ));
667 
668         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
669         sysbus_connect_irq(gicbusdev, i + smp_cpus,
670                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
671         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
672                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
673         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
674                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
675     }
676 
677     for (i = 0; i < NUM_IRQS; i++) {
678         pic[i] = qdev_get_gpio_in(gicdev, i);
679     }
680 
681     fdt_add_gic_node(vms);
682 
683     if (type == 3 && vms->its) {
684         create_its(vms, gicdev);
685     } else if (type == 2) {
686         create_v2m(vms, pic);
687     }
688 }
689 
690 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
691                         MemoryRegion *mem, Chardev *chr)
692 {
693     char *nodename;
694     hwaddr base = vms->memmap[uart].base;
695     hwaddr size = vms->memmap[uart].size;
696     int irq = vms->irqmap[uart];
697     const char compat[] = "arm,pl011\0arm,primecell";
698     const char clocknames[] = "uartclk\0apb_pclk";
699     DeviceState *dev = qdev_create(NULL, "pl011");
700     SysBusDevice *s = SYS_BUS_DEVICE(dev);
701 
702     qdev_prop_set_chr(dev, "chardev", chr);
703     qdev_init_nofail(dev);
704     memory_region_add_subregion(mem, base,
705                                 sysbus_mmio_get_region(s, 0));
706     sysbus_connect_irq(s, 0, pic[irq]);
707 
708     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
709     qemu_fdt_add_subnode(vms->fdt, nodename);
710     /* Note that we can't use setprop_string because of the embedded NUL */
711     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
712                          compat, sizeof(compat));
713     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
714                                      2, base, 2, size);
715     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
716                                GIC_FDT_IRQ_TYPE_SPI, irq,
717                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
718     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
719                                vms->clock_phandle, vms->clock_phandle);
720     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
721                          clocknames, sizeof(clocknames));
722 
723     if (uart == VIRT_UART) {
724         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
725     } else {
726         /* Mark as not usable by the normal world */
727         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
728         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
729 
730         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
731         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
732                                 nodename);
733     }
734 
735     g_free(nodename);
736 }
737 
738 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
739 {
740     char *nodename;
741     hwaddr base = vms->memmap[VIRT_RTC].base;
742     hwaddr size = vms->memmap[VIRT_RTC].size;
743     int irq = vms->irqmap[VIRT_RTC];
744     const char compat[] = "arm,pl031\0arm,primecell";
745 
746     sysbus_create_simple("pl031", base, pic[irq]);
747 
748     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
749     qemu_fdt_add_subnode(vms->fdt, nodename);
750     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
751     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
752                                  2, base, 2, size);
753     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
754                            GIC_FDT_IRQ_TYPE_SPI, irq,
755                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
756     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
757     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
758     g_free(nodename);
759 }
760 
761 static DeviceState *gpio_key_dev;
762 static void virt_powerdown_req(Notifier *n, void *opaque)
763 {
764     /* use gpio Pin 3 for power button event */
765     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
766 }
767 
768 static Notifier virt_system_powerdown_notifier = {
769     .notify = virt_powerdown_req
770 };
771 
772 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
773 {
774     char *nodename;
775     DeviceState *pl061_dev;
776     hwaddr base = vms->memmap[VIRT_GPIO].base;
777     hwaddr size = vms->memmap[VIRT_GPIO].size;
778     int irq = vms->irqmap[VIRT_GPIO];
779     const char compat[] = "arm,pl061\0arm,primecell";
780 
781     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
782 
783     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
784     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
785     qemu_fdt_add_subnode(vms->fdt, nodename);
786     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
787                                  2, base, 2, size);
788     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
789     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
790     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
791     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
792                            GIC_FDT_IRQ_TYPE_SPI, irq,
793                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
794     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
795     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
796     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
797 
798     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
799                                         qdev_get_gpio_in(pl061_dev, 3));
800     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
801     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
802     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
803     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
804 
805     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
806     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
807                             "label", "GPIO Key Poweroff");
808     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
809                           KEY_POWER);
810     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
811                            "gpios", phandle, 3, 0);
812 
813     /* connect powerdown request */
814     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
815 
816     g_free(nodename);
817 }
818 
819 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
820 {
821     int i;
822     hwaddr size = vms->memmap[VIRT_MMIO].size;
823 
824     /* We create the transports in forwards order. Since qbus_realize()
825      * prepends (not appends) new child buses, the incrementing loop below will
826      * create a list of virtio-mmio buses with decreasing base addresses.
827      *
828      * When a -device option is processed from the command line,
829      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
830      * order. The upshot is that -device options in increasing command line
831      * order are mapped to virtio-mmio buses with decreasing base addresses.
832      *
833      * When this code was originally written, that arrangement ensured that the
834      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
835      * the first -device on the command line. (The end-to-end order is a
836      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
837      * guest kernel's name-to-address assignment strategy.)
838      *
839      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
840      * the message, if not necessarily the code, of commit 70161ff336.
841      * Therefore the loop now establishes the inverse of the original intent.
842      *
843      * Unfortunately, we can't counteract the kernel change by reversing the
844      * loop; it would break existing command lines.
845      *
846      * In any case, the kernel makes no guarantee about the stability of
847      * enumeration order of virtio devices (as demonstrated by it changing
848      * between kernel versions). For reliable and stable identification
849      * of disks users must use UUIDs or similar mechanisms.
850      */
851     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
852         int irq = vms->irqmap[VIRT_MMIO] + i;
853         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
854 
855         sysbus_create_simple("virtio-mmio", base, pic[irq]);
856     }
857 
858     /* We add dtb nodes in reverse order so that they appear in the finished
859      * device tree lowest address first.
860      *
861      * Note that this mapping is independent of the loop above. The previous
862      * loop influences virtio device to virtio transport assignment, whereas
863      * this loop controls how virtio transports are laid out in the dtb.
864      */
865     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
866         char *nodename;
867         int irq = vms->irqmap[VIRT_MMIO] + i;
868         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
869 
870         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
871         qemu_fdt_add_subnode(vms->fdt, nodename);
872         qemu_fdt_setprop_string(vms->fdt, nodename,
873                                 "compatible", "virtio,mmio");
874         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
875                                      2, base, 2, size);
876         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
877                                GIC_FDT_IRQ_TYPE_SPI, irq,
878                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
879         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
880         g_free(nodename);
881     }
882 }
883 
884 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
885 
886 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
887                                         const char *name,
888                                         const char *alias_prop_name)
889 {
890     /*
891      * Create a single flash device.  We use the same parameters as
892      * the flash devices on the Versatile Express board.
893      */
894     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
895 
896     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
897     qdev_prop_set_uint8(dev, "width", 4);
898     qdev_prop_set_uint8(dev, "device-width", 2);
899     qdev_prop_set_bit(dev, "big-endian", false);
900     qdev_prop_set_uint16(dev, "id0", 0x89);
901     qdev_prop_set_uint16(dev, "id1", 0x18);
902     qdev_prop_set_uint16(dev, "id2", 0x00);
903     qdev_prop_set_uint16(dev, "id3", 0x00);
904     qdev_prop_set_string(dev, "name", name);
905     object_property_add_child(OBJECT(vms), name, OBJECT(dev),
906                               &error_abort);
907     object_property_add_alias(OBJECT(vms), alias_prop_name,
908                               OBJECT(dev), "drive", &error_abort);
909     return PFLASH_CFI01(dev);
910 }
911 
912 static void virt_flash_create(VirtMachineState *vms)
913 {
914     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
915     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
916 }
917 
918 static void virt_flash_map1(PFlashCFI01 *flash,
919                             hwaddr base, hwaddr size,
920                             MemoryRegion *sysmem)
921 {
922     DeviceState *dev = DEVICE(flash);
923 
924     assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
925     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
926     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
927     qdev_init_nofail(dev);
928 
929     memory_region_add_subregion(sysmem, base,
930                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
931                                                        0));
932 }
933 
934 static void virt_flash_map(VirtMachineState *vms,
935                            MemoryRegion *sysmem,
936                            MemoryRegion *secure_sysmem)
937 {
938     /*
939      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
940      * sysmem is the system memory space. secure_sysmem is the secure view
941      * of the system, and the first flash device should be made visible only
942      * there. The second flash device is visible to both secure and nonsecure.
943      * If sysmem == secure_sysmem this means there is no separate Secure
944      * address space and both flash devices are generally visible.
945      */
946     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
947     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
948 
949     virt_flash_map1(vms->flash[0], flashbase, flashsize,
950                     secure_sysmem);
951     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
952                     sysmem);
953 }
954 
955 static void virt_flash_fdt(VirtMachineState *vms,
956                            MemoryRegion *sysmem,
957                            MemoryRegion *secure_sysmem)
958 {
959     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
960     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
961     char *nodename;
962 
963     if (sysmem == secure_sysmem) {
964         /* Report both flash devices as a single node in the DT */
965         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
966         qemu_fdt_add_subnode(vms->fdt, nodename);
967         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
968         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
969                                      2, flashbase, 2, flashsize,
970                                      2, flashbase + flashsize, 2, flashsize);
971         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
972         g_free(nodename);
973     } else {
974         /*
975          * Report the devices as separate nodes so we can mark one as
976          * only visible to the secure world.
977          */
978         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
979         qemu_fdt_add_subnode(vms->fdt, nodename);
980         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
981         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
982                                      2, flashbase, 2, flashsize);
983         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
984         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
985         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
986         g_free(nodename);
987 
988         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
989         qemu_fdt_add_subnode(vms->fdt, nodename);
990         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
991         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
992                                      2, flashbase + flashsize, 2, flashsize);
993         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
994         g_free(nodename);
995     }
996 }
997 
998 static bool virt_firmware_init(VirtMachineState *vms,
999                                MemoryRegion *sysmem,
1000                                MemoryRegion *secure_sysmem)
1001 {
1002     int i;
1003     BlockBackend *pflash_blk0;
1004 
1005     /* Map legacy -drive if=pflash to machine properties */
1006     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1007         pflash_cfi01_legacy_drive(vms->flash[i],
1008                                   drive_get(IF_PFLASH, 0, i));
1009     }
1010 
1011     virt_flash_map(vms, sysmem, secure_sysmem);
1012 
1013     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1014 
1015     if (bios_name) {
1016         char *fname;
1017         MemoryRegion *mr;
1018         int image_size;
1019 
1020         if (pflash_blk0) {
1021             error_report("The contents of the first flash device may be "
1022                          "specified with -bios or with -drive if=pflash... "
1023                          "but you cannot use both options at once");
1024             exit(1);
1025         }
1026 
1027         /* Fall back to -bios */
1028 
1029         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1030         if (!fname) {
1031             error_report("Could not find ROM image '%s'", bios_name);
1032             exit(1);
1033         }
1034         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1035         image_size = load_image_mr(fname, mr);
1036         g_free(fname);
1037         if (image_size < 0) {
1038             error_report("Could not load ROM image '%s'", bios_name);
1039             exit(1);
1040         }
1041     }
1042 
1043     return pflash_blk0 || bios_name;
1044 }
1045 
1046 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1047 {
1048     MachineState *ms = MACHINE(vms);
1049     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1050     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1051     FWCfgState *fw_cfg;
1052     char *nodename;
1053 
1054     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1055     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1056 
1057     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1058     qemu_fdt_add_subnode(vms->fdt, nodename);
1059     qemu_fdt_setprop_string(vms->fdt, nodename,
1060                             "compatible", "qemu,fw-cfg-mmio");
1061     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1062                                  2, base, 2, size);
1063     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1064     g_free(nodename);
1065     return fw_cfg;
1066 }
1067 
1068 static void create_pcie_irq_map(const VirtMachineState *vms,
1069                                 uint32_t gic_phandle,
1070                                 int first_irq, const char *nodename)
1071 {
1072     int devfn, pin;
1073     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1074     uint32_t *irq_map = full_irq_map;
1075 
1076     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1077         for (pin = 0; pin < 4; pin++) {
1078             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1079             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1080             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1081             int i;
1082 
1083             uint32_t map[] = {
1084                 devfn << 8, 0, 0,                           /* devfn */
1085                 pin + 1,                                    /* PCI pin */
1086                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1087 
1088             /* Convert map to big endian */
1089             for (i = 0; i < 10; i++) {
1090                 irq_map[i] = cpu_to_be32(map[i]);
1091             }
1092             irq_map += 10;
1093         }
1094     }
1095 
1096     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1097                      full_irq_map, sizeof(full_irq_map));
1098 
1099     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1100                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1101                            0x7           /* PCI irq */);
1102 }
1103 
1104 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1105                         PCIBus *bus)
1106 {
1107     char *node;
1108     const char compat[] = "arm,smmu-v3";
1109     int irq =  vms->irqmap[VIRT_SMMU];
1110     int i;
1111     hwaddr base = vms->memmap[VIRT_SMMU].base;
1112     hwaddr size = vms->memmap[VIRT_SMMU].size;
1113     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1114     DeviceState *dev;
1115 
1116     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1117         return;
1118     }
1119 
1120     dev = qdev_create(NULL, "arm-smmuv3");
1121 
1122     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1123                              &error_abort);
1124     qdev_init_nofail(dev);
1125     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1126     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1127         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1128     }
1129 
1130     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1131     qemu_fdt_add_subnode(vms->fdt, node);
1132     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1133     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1134 
1135     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1136             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1137             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1138             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1139             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1140 
1141     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1142                      sizeof(irq_names));
1143 
1144     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1145     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1146     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1147 
1148     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1149 
1150     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1151     g_free(node);
1152 }
1153 
1154 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1155 {
1156     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1157     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1158     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1159     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1160     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1161     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1162     hwaddr base_ecam, size_ecam;
1163     hwaddr base = base_mmio;
1164     int nr_pcie_buses;
1165     int irq = vms->irqmap[VIRT_PCIE];
1166     MemoryRegion *mmio_alias;
1167     MemoryRegion *mmio_reg;
1168     MemoryRegion *ecam_alias;
1169     MemoryRegion *ecam_reg;
1170     DeviceState *dev;
1171     char *nodename;
1172     int i, ecam_id;
1173     PCIHostState *pci;
1174 
1175     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1176     qdev_init_nofail(dev);
1177 
1178     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1179     base_ecam = vms->memmap[ecam_id].base;
1180     size_ecam = vms->memmap[ecam_id].size;
1181     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1182     /* Map only the first size_ecam bytes of ECAM space */
1183     ecam_alias = g_new0(MemoryRegion, 1);
1184     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1185     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1186                              ecam_reg, 0, size_ecam);
1187     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1188 
1189     /* Map the MMIO window into system address space so as to expose
1190      * the section of PCI MMIO space which starts at the same base address
1191      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1192      * the window).
1193      */
1194     mmio_alias = g_new0(MemoryRegion, 1);
1195     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1196     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1197                              mmio_reg, base_mmio, size_mmio);
1198     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1199 
1200     if (vms->highmem) {
1201         /* Map high MMIO space */
1202         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1203 
1204         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1205                                  mmio_reg, base_mmio_high, size_mmio_high);
1206         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1207                                     high_mmio_alias);
1208     }
1209 
1210     /* Map IO port space */
1211     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1212 
1213     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1214         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1215         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1216     }
1217 
1218     pci = PCI_HOST_BRIDGE(dev);
1219     if (pci->bus) {
1220         for (i = 0; i < nb_nics; i++) {
1221             NICInfo *nd = &nd_table[i];
1222 
1223             if (!nd->model) {
1224                 nd->model = g_strdup("virtio");
1225             }
1226 
1227             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1228         }
1229     }
1230 
1231     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1232     qemu_fdt_add_subnode(vms->fdt, nodename);
1233     qemu_fdt_setprop_string(vms->fdt, nodename,
1234                             "compatible", "pci-host-ecam-generic");
1235     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1236     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1237     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1238     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1239     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1240                            nr_pcie_buses - 1);
1241     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1242 
1243     if (vms->msi_phandle) {
1244         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1245                                vms->msi_phandle);
1246     }
1247 
1248     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1249                                  2, base_ecam, 2, size_ecam);
1250 
1251     if (vms->highmem) {
1252         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1253                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1254                                      2, base_pio, 2, size_pio,
1255                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1256                                      2, base_mmio, 2, size_mmio,
1257                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1258                                      2, base_mmio_high,
1259                                      2, base_mmio_high, 2, size_mmio_high);
1260     } else {
1261         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1262                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1263                                      2, base_pio, 2, size_pio,
1264                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1265                                      2, base_mmio, 2, size_mmio);
1266     }
1267 
1268     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1269     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1270 
1271     if (vms->iommu) {
1272         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1273 
1274         create_smmu(vms, pic, pci->bus);
1275 
1276         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1277                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1278     }
1279 
1280     g_free(nodename);
1281 }
1282 
1283 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1284 {
1285     DeviceState *dev;
1286     SysBusDevice *s;
1287     int i;
1288     MemoryRegion *sysmem = get_system_memory();
1289 
1290     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1291     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1292     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1293     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1294     qdev_init_nofail(dev);
1295     vms->platform_bus_dev = dev;
1296 
1297     s = SYS_BUS_DEVICE(dev);
1298     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1299         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1300         sysbus_connect_irq(s, i, pic[irqn]);
1301     }
1302 
1303     memory_region_add_subregion(sysmem,
1304                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1305                                 sysbus_mmio_get_region(s, 0));
1306 }
1307 
1308 static void create_secure_ram(VirtMachineState *vms,
1309                               MemoryRegion *secure_sysmem)
1310 {
1311     MemoryRegion *secram = g_new(MemoryRegion, 1);
1312     char *nodename;
1313     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1314     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1315 
1316     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1317                            &error_fatal);
1318     memory_region_add_subregion(secure_sysmem, base, secram);
1319 
1320     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1321     qemu_fdt_add_subnode(vms->fdt, nodename);
1322     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1323     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1324     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1325     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1326 
1327     g_free(nodename);
1328 }
1329 
1330 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1331 {
1332     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1333                                                  bootinfo);
1334 
1335     *fdt_size = board->fdt_size;
1336     return board->fdt;
1337 }
1338 
1339 static void virt_build_smbios(VirtMachineState *vms)
1340 {
1341     MachineClass *mc = MACHINE_GET_CLASS(vms);
1342     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1343     uint8_t *smbios_tables, *smbios_anchor;
1344     size_t smbios_tables_len, smbios_anchor_len;
1345     const char *product = "QEMU Virtual Machine";
1346 
1347     if (kvm_enabled()) {
1348         product = "KVM Virtual Machine";
1349     }
1350 
1351     smbios_set_defaults("QEMU", product,
1352                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1353                         true, SMBIOS_ENTRY_POINT_30);
1354 
1355     smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1356                       &smbios_anchor, &smbios_anchor_len);
1357 
1358     if (smbios_anchor) {
1359         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1360                         smbios_tables, smbios_tables_len);
1361         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1362                         smbios_anchor, smbios_anchor_len);
1363     }
1364 }
1365 
1366 static
1367 void virt_machine_done(Notifier *notifier, void *data)
1368 {
1369     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1370                                          machine_done);
1371     ARMCPU *cpu = ARM_CPU(first_cpu);
1372     struct arm_boot_info *info = &vms->bootinfo;
1373     AddressSpace *as = arm_boot_address_space(cpu, info);
1374 
1375     /*
1376      * If the user provided a dtb, we assume the dynamic sysbus nodes
1377      * already are integrated there. This corresponds to a use case where
1378      * the dynamic sysbus nodes are complex and their generation is not yet
1379      * supported. In that case the user can take charge of the guest dt
1380      * while qemu takes charge of the qom stuff.
1381      */
1382     if (info->dtb_filename == NULL) {
1383         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1384                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1385                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1386                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1387     }
1388     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1389         exit(1);
1390     }
1391 
1392     virt_acpi_setup(vms);
1393     virt_build_smbios(vms);
1394 }
1395 
1396 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1397 {
1398     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1399     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1400 
1401     if (!vmc->disallow_affinity_adjustment) {
1402         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1403          * GIC's target-list limitations. 32-bit KVM hosts currently
1404          * always create clusters of 4 CPUs, but that is expected to
1405          * change when they gain support for gicv3. When KVM is enabled
1406          * it will override the changes we make here, therefore our
1407          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1408          * and to improve SGI efficiency.
1409          */
1410         if (vms->gic_version == 3) {
1411             clustersz = GICV3_TARGETLIST_BITS;
1412         } else {
1413             clustersz = GIC_TARGETLIST_BITS;
1414         }
1415     }
1416     return arm_cpu_mp_affinity(idx, clustersz);
1417 }
1418 
1419 static void virt_set_memmap(VirtMachineState *vms)
1420 {
1421     MachineState *ms = MACHINE(vms);
1422     hwaddr base, device_memory_base, device_memory_size;
1423     int i;
1424 
1425     vms->memmap = extended_memmap;
1426 
1427     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1428         vms->memmap[i] = base_memmap[i];
1429     }
1430 
1431     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1432         error_report("unsupported number of memory slots: %"PRIu64,
1433                      ms->ram_slots);
1434         exit(EXIT_FAILURE);
1435     }
1436 
1437     /*
1438      * We compute the base of the high IO region depending on the
1439      * amount of initial and device memory. The device memory start/size
1440      * is aligned on 1GiB. We never put the high IO region below 256GiB
1441      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1442      * The device region size assumes 1GiB page max alignment per slot.
1443      */
1444     device_memory_base =
1445         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1446     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1447 
1448     /* Base address of the high IO region */
1449     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1450     if (base < device_memory_base) {
1451         error_report("maxmem/slots too huge");
1452         exit(EXIT_FAILURE);
1453     }
1454     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1455         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1456     }
1457 
1458     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1459         hwaddr size = extended_memmap[i].size;
1460 
1461         base = ROUND_UP(base, size);
1462         vms->memmap[i].base = base;
1463         vms->memmap[i].size = size;
1464         base += size;
1465     }
1466     vms->highest_gpa = base - 1;
1467     if (device_memory_size > 0) {
1468         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1469         ms->device_memory->base = device_memory_base;
1470         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1471                            "device-memory", device_memory_size);
1472     }
1473 }
1474 
1475 static void machvirt_init(MachineState *machine)
1476 {
1477     VirtMachineState *vms = VIRT_MACHINE(machine);
1478     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1479     MachineClass *mc = MACHINE_GET_CLASS(machine);
1480     const CPUArchIdList *possible_cpus;
1481     qemu_irq pic[NUM_IRQS];
1482     MemoryRegion *sysmem = get_system_memory();
1483     MemoryRegion *secure_sysmem = NULL;
1484     int n, virt_max_cpus;
1485     MemoryRegion *ram = g_new(MemoryRegion, 1);
1486     bool firmware_loaded;
1487     bool aarch64 = true;
1488     unsigned int smp_cpus = machine->smp.cpus;
1489     unsigned int max_cpus = machine->smp.max_cpus;
1490 
1491     /*
1492      * In accelerated mode, the memory map is computed earlier in kvm_type()
1493      * to create a VM with the right number of IPA bits.
1494      */
1495     if (!vms->memmap) {
1496         virt_set_memmap(vms);
1497     }
1498 
1499     /* We can probe only here because during property set
1500      * KVM is not available yet
1501      */
1502     if (vms->gic_version <= 0) {
1503         /* "host" or "max" */
1504         if (!kvm_enabled()) {
1505             if (vms->gic_version == 0) {
1506                 error_report("gic-version=host requires KVM");
1507                 exit(1);
1508             } else {
1509                 /* "max": currently means 3 for TCG */
1510                 vms->gic_version = 3;
1511             }
1512         } else {
1513             vms->gic_version = kvm_arm_vgic_probe();
1514             if (!vms->gic_version) {
1515                 error_report(
1516                     "Unable to determine GIC version supported by host");
1517                 exit(1);
1518             }
1519         }
1520     }
1521 
1522     if (!cpu_type_valid(machine->cpu_type)) {
1523         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1524         exit(1);
1525     }
1526 
1527     if (vms->secure) {
1528         if (kvm_enabled()) {
1529             error_report("mach-virt: KVM does not support Security extensions");
1530             exit(1);
1531         }
1532 
1533         /*
1534          * The Secure view of the world is the same as the NonSecure,
1535          * but with a few extra devices. Create it as a container region
1536          * containing the system memory at low priority; any secure-only
1537          * devices go in at higher priority and take precedence.
1538          */
1539         secure_sysmem = g_new(MemoryRegion, 1);
1540         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1541                            UINT64_MAX);
1542         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1543     }
1544 
1545     firmware_loaded = virt_firmware_init(vms, sysmem,
1546                                          secure_sysmem ?: sysmem);
1547 
1548     /* If we have an EL3 boot ROM then the assumption is that it will
1549      * implement PSCI itself, so disable QEMU's internal implementation
1550      * so it doesn't get in the way. Instead of starting secondary
1551      * CPUs in PSCI powerdown state we will start them all running and
1552      * let the boot ROM sort them out.
1553      * The usual case is that we do use QEMU's PSCI implementation;
1554      * if the guest has EL2 then we will use SMC as the conduit,
1555      * and otherwise we will use HVC (for backwards compatibility and
1556      * because if we're using KVM then we must use HVC).
1557      */
1558     if (vms->secure && firmware_loaded) {
1559         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1560     } else if (vms->virt) {
1561         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1562     } else {
1563         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1564     }
1565 
1566     /* The maximum number of CPUs depends on the GIC version, or on how
1567      * many redistributors we can fit into the memory map.
1568      */
1569     if (vms->gic_version == 3) {
1570         virt_max_cpus =
1571             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1572         virt_max_cpus +=
1573             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1574     } else {
1575         virt_max_cpus = GIC_NCPU;
1576     }
1577 
1578     if (max_cpus > virt_max_cpus) {
1579         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1580                      "supported by machine 'mach-virt' (%d)",
1581                      max_cpus, virt_max_cpus);
1582         exit(1);
1583     }
1584 
1585     vms->smp_cpus = smp_cpus;
1586 
1587     if (vms->virt && kvm_enabled()) {
1588         error_report("mach-virt: KVM does not support providing "
1589                      "Virtualization extensions to the guest CPU");
1590         exit(1);
1591     }
1592 
1593     create_fdt(vms);
1594 
1595     possible_cpus = mc->possible_cpu_arch_ids(machine);
1596     for (n = 0; n < possible_cpus->len; n++) {
1597         Object *cpuobj;
1598         CPUState *cs;
1599 
1600         if (n >= smp_cpus) {
1601             break;
1602         }
1603 
1604         cpuobj = object_new(possible_cpus->cpus[n].type);
1605         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1606                                 "mp-affinity", NULL);
1607 
1608         cs = CPU(cpuobj);
1609         cs->cpu_index = n;
1610 
1611         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1612                           &error_fatal);
1613 
1614         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1615 
1616         if (!vms->secure) {
1617             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1618         }
1619 
1620         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1621             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1622         }
1623 
1624         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1625             object_property_set_int(cpuobj, vms->psci_conduit,
1626                                     "psci-conduit", NULL);
1627 
1628             /* Secondary CPUs start in PSCI powered-down state */
1629             if (n > 0) {
1630                 object_property_set_bool(cpuobj, true,
1631                                          "start-powered-off", NULL);
1632             }
1633         }
1634 
1635         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1636             object_property_set_bool(cpuobj, false, "pmu", NULL);
1637         }
1638 
1639         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1640             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1641                                     "reset-cbar", &error_abort);
1642         }
1643 
1644         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1645                                  &error_abort);
1646         if (vms->secure) {
1647             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1648                                      "secure-memory", &error_abort);
1649         }
1650 
1651         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1652         object_unref(cpuobj);
1653     }
1654     fdt_add_timer_nodes(vms);
1655     fdt_add_cpu_nodes(vms);
1656 
1657    if (!kvm_enabled()) {
1658         ARMCPU *cpu = ARM_CPU(first_cpu);
1659         bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1660 
1661         if (aarch64 && vms->highmem) {
1662             int requested_pa_size, pamax = arm_pamax(cpu);
1663 
1664             requested_pa_size = 64 - clz64(vms->highest_gpa);
1665             if (pamax < requested_pa_size) {
1666                 error_report("VCPU supports less PA bits (%d) than requested "
1667                             "by the memory map (%d)", pamax, requested_pa_size);
1668                 exit(1);
1669             }
1670         }
1671     }
1672 
1673     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1674                                          machine->ram_size);
1675     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1676     if (machine->device_memory) {
1677         memory_region_add_subregion(sysmem, machine->device_memory->base,
1678                                     &machine->device_memory->mr);
1679     }
1680 
1681     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1682 
1683     create_gic(vms, pic);
1684 
1685     fdt_add_pmu_nodes(vms);
1686 
1687     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1688 
1689     if (vms->secure) {
1690         create_secure_ram(vms, secure_sysmem);
1691         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1692     }
1693 
1694     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1695 
1696     create_rtc(vms, pic);
1697 
1698     create_pcie(vms, pic);
1699 
1700     create_gpio(vms, pic);
1701 
1702     /* Create mmio transports, so the user can create virtio backends
1703      * (which will be automatically plugged in to the transports). If
1704      * no backend is created the transport will just sit harmlessly idle.
1705      */
1706     create_virtio_devices(vms, pic);
1707 
1708     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1709     rom_set_fw(vms->fw_cfg);
1710 
1711     create_platform_bus(vms, pic);
1712 
1713     vms->bootinfo.ram_size = machine->ram_size;
1714     vms->bootinfo.kernel_filename = machine->kernel_filename;
1715     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1716     vms->bootinfo.initrd_filename = machine->initrd_filename;
1717     vms->bootinfo.nb_cpus = smp_cpus;
1718     vms->bootinfo.board_id = -1;
1719     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1720     vms->bootinfo.get_dtb = machvirt_dtb;
1721     vms->bootinfo.skip_dtb_autoload = true;
1722     vms->bootinfo.firmware_loaded = firmware_loaded;
1723     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1724 
1725     vms->machine_done.notify = virt_machine_done;
1726     qemu_add_machine_init_done_notifier(&vms->machine_done);
1727 }
1728 
1729 static bool virt_get_secure(Object *obj, Error **errp)
1730 {
1731     VirtMachineState *vms = VIRT_MACHINE(obj);
1732 
1733     return vms->secure;
1734 }
1735 
1736 static void virt_set_secure(Object *obj, bool value, Error **errp)
1737 {
1738     VirtMachineState *vms = VIRT_MACHINE(obj);
1739 
1740     vms->secure = value;
1741 }
1742 
1743 static bool virt_get_virt(Object *obj, Error **errp)
1744 {
1745     VirtMachineState *vms = VIRT_MACHINE(obj);
1746 
1747     return vms->virt;
1748 }
1749 
1750 static void virt_set_virt(Object *obj, bool value, Error **errp)
1751 {
1752     VirtMachineState *vms = VIRT_MACHINE(obj);
1753 
1754     vms->virt = value;
1755 }
1756 
1757 static bool virt_get_highmem(Object *obj, Error **errp)
1758 {
1759     VirtMachineState *vms = VIRT_MACHINE(obj);
1760 
1761     return vms->highmem;
1762 }
1763 
1764 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1765 {
1766     VirtMachineState *vms = VIRT_MACHINE(obj);
1767 
1768     vms->highmem = value;
1769 }
1770 
1771 static bool virt_get_its(Object *obj, Error **errp)
1772 {
1773     VirtMachineState *vms = VIRT_MACHINE(obj);
1774 
1775     return vms->its;
1776 }
1777 
1778 static void virt_set_its(Object *obj, bool value, Error **errp)
1779 {
1780     VirtMachineState *vms = VIRT_MACHINE(obj);
1781 
1782     vms->its = value;
1783 }
1784 
1785 static char *virt_get_gic_version(Object *obj, Error **errp)
1786 {
1787     VirtMachineState *vms = VIRT_MACHINE(obj);
1788     const char *val = vms->gic_version == 3 ? "3" : "2";
1789 
1790     return g_strdup(val);
1791 }
1792 
1793 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1794 {
1795     VirtMachineState *vms = VIRT_MACHINE(obj);
1796 
1797     if (!strcmp(value, "3")) {
1798         vms->gic_version = 3;
1799     } else if (!strcmp(value, "2")) {
1800         vms->gic_version = 2;
1801     } else if (!strcmp(value, "host")) {
1802         vms->gic_version = 0; /* Will probe later */
1803     } else if (!strcmp(value, "max")) {
1804         vms->gic_version = -1; /* Will probe later */
1805     } else {
1806         error_setg(errp, "Invalid gic-version value");
1807         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1808     }
1809 }
1810 
1811 static char *virt_get_iommu(Object *obj, Error **errp)
1812 {
1813     VirtMachineState *vms = VIRT_MACHINE(obj);
1814 
1815     switch (vms->iommu) {
1816     case VIRT_IOMMU_NONE:
1817         return g_strdup("none");
1818     case VIRT_IOMMU_SMMUV3:
1819         return g_strdup("smmuv3");
1820     default:
1821         g_assert_not_reached();
1822     }
1823 }
1824 
1825 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1826 {
1827     VirtMachineState *vms = VIRT_MACHINE(obj);
1828 
1829     if (!strcmp(value, "smmuv3")) {
1830         vms->iommu = VIRT_IOMMU_SMMUV3;
1831     } else if (!strcmp(value, "none")) {
1832         vms->iommu = VIRT_IOMMU_NONE;
1833     } else {
1834         error_setg(errp, "Invalid iommu value");
1835         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1836     }
1837 }
1838 
1839 static CpuInstanceProperties
1840 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1841 {
1842     MachineClass *mc = MACHINE_GET_CLASS(ms);
1843     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1844 
1845     assert(cpu_index < possible_cpus->len);
1846     return possible_cpus->cpus[cpu_index].props;
1847 }
1848 
1849 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1850 {
1851     return idx % nb_numa_nodes;
1852 }
1853 
1854 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1855 {
1856     int n;
1857     unsigned int max_cpus = ms->smp.max_cpus;
1858     VirtMachineState *vms = VIRT_MACHINE(ms);
1859 
1860     if (ms->possible_cpus) {
1861         assert(ms->possible_cpus->len == max_cpus);
1862         return ms->possible_cpus;
1863     }
1864 
1865     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1866                                   sizeof(CPUArchId) * max_cpus);
1867     ms->possible_cpus->len = max_cpus;
1868     for (n = 0; n < ms->possible_cpus->len; n++) {
1869         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1870         ms->possible_cpus->cpus[n].arch_id =
1871             virt_cpu_mp_affinity(vms, n);
1872         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1873         ms->possible_cpus->cpus[n].props.thread_id = n;
1874     }
1875     return ms->possible_cpus;
1876 }
1877 
1878 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1879                                         DeviceState *dev, Error **errp)
1880 {
1881     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1882 
1883     if (vms->platform_bus_dev) {
1884         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1885             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1886                                      SYS_BUS_DEVICE(dev));
1887         }
1888     }
1889 }
1890 
1891 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1892                                                         DeviceState *dev)
1893 {
1894     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1895         return HOTPLUG_HANDLER(machine);
1896     }
1897 
1898     return NULL;
1899 }
1900 
1901 /*
1902  * for arm64 kvm_type [7-0] encodes the requested number of bits
1903  * in the IPA address space
1904  */
1905 static int virt_kvm_type(MachineState *ms, const char *type_str)
1906 {
1907     VirtMachineState *vms = VIRT_MACHINE(ms);
1908     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1909     int requested_pa_size;
1910 
1911     /* we freeze the memory map to compute the highest gpa */
1912     virt_set_memmap(vms);
1913 
1914     requested_pa_size = 64 - clz64(vms->highest_gpa);
1915 
1916     if (requested_pa_size > max_vm_pa_size) {
1917         error_report("-m and ,maxmem option values "
1918                      "require an IPA range (%d bits) larger than "
1919                      "the one supported by the host (%d bits)",
1920                      requested_pa_size, max_vm_pa_size);
1921        exit(1);
1922     }
1923     /*
1924      * By default we return 0 which corresponds to an implicit legacy
1925      * 40b IPA setting. Otherwise we return the actual requested PA
1926      * logsize
1927      */
1928     return requested_pa_size > 40 ? requested_pa_size : 0;
1929 }
1930 
1931 static void virt_machine_class_init(ObjectClass *oc, void *data)
1932 {
1933     MachineClass *mc = MACHINE_CLASS(oc);
1934     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1935 
1936     mc->init = machvirt_init;
1937     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1938      * The value may be reduced later when we have more information about the
1939      * configuration of the particular instance.
1940      */
1941     mc->max_cpus = 512;
1942     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1943     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1944     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1945     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1946     mc->block_default_type = IF_VIRTIO;
1947     mc->no_cdrom = 1;
1948     mc->pci_allow_0_address = true;
1949     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1950     mc->minimum_page_bits = 12;
1951     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1952     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1953     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1954     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1955     mc->kvm_type = virt_kvm_type;
1956     assert(!mc->get_hotplug_handler);
1957     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1958     hc->plug = virt_machine_device_plug_cb;
1959     mc->numa_mem_supported = true;
1960 }
1961 
1962 static void virt_instance_init(Object *obj)
1963 {
1964     VirtMachineState *vms = VIRT_MACHINE(obj);
1965     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1966 
1967     /* EL3 is disabled by default on virt: this makes us consistent
1968      * between KVM and TCG for this board, and it also allows us to
1969      * boot UEFI blobs which assume no TrustZone support.
1970      */
1971     vms->secure = false;
1972     object_property_add_bool(obj, "secure", virt_get_secure,
1973                              virt_set_secure, NULL);
1974     object_property_set_description(obj, "secure",
1975                                     "Set on/off to enable/disable the ARM "
1976                                     "Security Extensions (TrustZone)",
1977                                     NULL);
1978 
1979     /* EL2 is also disabled by default, for similar reasons */
1980     vms->virt = false;
1981     object_property_add_bool(obj, "virtualization", virt_get_virt,
1982                              virt_set_virt, NULL);
1983     object_property_set_description(obj, "virtualization",
1984                                     "Set on/off to enable/disable emulating a "
1985                                     "guest CPU which implements the ARM "
1986                                     "Virtualization Extensions",
1987                                     NULL);
1988 
1989     /* High memory is enabled by default */
1990     vms->highmem = true;
1991     object_property_add_bool(obj, "highmem", virt_get_highmem,
1992                              virt_set_highmem, NULL);
1993     object_property_set_description(obj, "highmem",
1994                                     "Set on/off to enable/disable using "
1995                                     "physical address space above 32 bits",
1996                                     NULL);
1997     /* Default GIC type is v2 */
1998     vms->gic_version = 2;
1999     object_property_add_str(obj, "gic-version", virt_get_gic_version,
2000                         virt_set_gic_version, NULL);
2001     object_property_set_description(obj, "gic-version",
2002                                     "Set GIC version. "
2003                                     "Valid values are 2, 3 and host", NULL);
2004 
2005     vms->highmem_ecam = !vmc->no_highmem_ecam;
2006 
2007     if (vmc->no_its) {
2008         vms->its = false;
2009     } else {
2010         /* Default allows ITS instantiation */
2011         vms->its = true;
2012         object_property_add_bool(obj, "its", virt_get_its,
2013                                  virt_set_its, NULL);
2014         object_property_set_description(obj, "its",
2015                                         "Set on/off to enable/disable "
2016                                         "ITS instantiation",
2017                                         NULL);
2018     }
2019 
2020     /* Default disallows iommu instantiation */
2021     vms->iommu = VIRT_IOMMU_NONE;
2022     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2023     object_property_set_description(obj, "iommu",
2024                                     "Set the IOMMU type. "
2025                                     "Valid values are none and smmuv3",
2026                                     NULL);
2027 
2028     vms->irqmap = a15irqmap;
2029 
2030     virt_flash_create(vms);
2031 }
2032 
2033 static const TypeInfo virt_machine_info = {
2034     .name          = TYPE_VIRT_MACHINE,
2035     .parent        = TYPE_MACHINE,
2036     .abstract      = true,
2037     .instance_size = sizeof(VirtMachineState),
2038     .class_size    = sizeof(VirtMachineClass),
2039     .class_init    = virt_machine_class_init,
2040     .instance_init = virt_instance_init,
2041     .interfaces = (InterfaceInfo[]) {
2042          { TYPE_HOTPLUG_HANDLER },
2043          { }
2044     },
2045 };
2046 
2047 static void machvirt_machine_init(void)
2048 {
2049     type_register_static(&virt_machine_info);
2050 }
2051 type_init(machvirt_machine_init);
2052 
2053 static void virt_machine_4_1_options(MachineClass *mc)
2054 {
2055 }
2056 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2057 
2058 static void virt_machine_4_0_options(MachineClass *mc)
2059 {
2060     virt_machine_4_1_options(mc);
2061     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2062 }
2063 DEFINE_VIRT_MACHINE(4, 0)
2064 
2065 static void virt_machine_3_1_options(MachineClass *mc)
2066 {
2067     virt_machine_4_0_options(mc);
2068     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2069 }
2070 DEFINE_VIRT_MACHINE(3, 1)
2071 
2072 static void virt_machine_3_0_options(MachineClass *mc)
2073 {
2074     virt_machine_3_1_options(mc);
2075     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2076 }
2077 DEFINE_VIRT_MACHINE(3, 0)
2078 
2079 static void virt_machine_2_12_options(MachineClass *mc)
2080 {
2081     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2082 
2083     virt_machine_3_0_options(mc);
2084     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2085     vmc->no_highmem_ecam = true;
2086     mc->max_cpus = 255;
2087 }
2088 DEFINE_VIRT_MACHINE(2, 12)
2089 
2090 static void virt_machine_2_11_options(MachineClass *mc)
2091 {
2092     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2093 
2094     virt_machine_2_12_options(mc);
2095     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2096     vmc->smbios_old_sys_ver = true;
2097 }
2098 DEFINE_VIRT_MACHINE(2, 11)
2099 
2100 static void virt_machine_2_10_options(MachineClass *mc)
2101 {
2102     virt_machine_2_11_options(mc);
2103     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2104     /* before 2.11 we never faulted accesses to bad addresses */
2105     mc->ignore_memory_transaction_failures = true;
2106 }
2107 DEFINE_VIRT_MACHINE(2, 10)
2108 
2109 static void virt_machine_2_9_options(MachineClass *mc)
2110 {
2111     virt_machine_2_10_options(mc);
2112     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2113 }
2114 DEFINE_VIRT_MACHINE(2, 9)
2115 
2116 static void virt_machine_2_8_options(MachineClass *mc)
2117 {
2118     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2119 
2120     virt_machine_2_9_options(mc);
2121     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2122     /* For 2.8 and earlier we falsely claimed in the DT that
2123      * our timers were edge-triggered, not level-triggered.
2124      */
2125     vmc->claim_edge_triggered_timers = true;
2126 }
2127 DEFINE_VIRT_MACHINE(2, 8)
2128 
2129 static void virt_machine_2_7_options(MachineClass *mc)
2130 {
2131     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2132 
2133     virt_machine_2_8_options(mc);
2134     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2135     /* ITS was introduced with 2.8 */
2136     vmc->no_its = true;
2137     /* Stick with 1K pages for migration compatibility */
2138     mc->minimum_page_bits = 0;
2139 }
2140 DEFINE_VIRT_MACHINE(2, 7)
2141 
2142 static void virt_machine_2_6_options(MachineClass *mc)
2143 {
2144     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2145 
2146     virt_machine_2_7_options(mc);
2147     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2148     vmc->disallow_affinity_adjustment = true;
2149     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2150     vmc->no_pmu = true;
2151 }
2152 DEFINE_VIRT_MACHINE(2, 6)
2153