1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/devices.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/sysemu.h" 38 #include "sysemu/kvm.h" 39 #include "hw/boards.h" 40 #include "exec/address-spaces.h" 41 #include "qemu/bitops.h" 42 #include "qemu/error-report.h" 43 44 #define NUM_VIRTIO_TRANSPORTS 32 45 46 /* Number of external interrupt lines to configure the GIC with */ 47 #define NUM_IRQS 128 48 49 #define GIC_FDT_IRQ_TYPE_SPI 0 50 #define GIC_FDT_IRQ_TYPE_PPI 1 51 52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 56 57 #define GIC_FDT_IRQ_PPI_CPU_START 8 58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 59 60 enum { 61 VIRT_FLASH, 62 VIRT_MEM, 63 VIRT_CPUPERIPHS, 64 VIRT_GIC_DIST, 65 VIRT_GIC_CPU, 66 VIRT_UART, 67 VIRT_MMIO, 68 VIRT_RTC, 69 }; 70 71 typedef struct MemMapEntry { 72 hwaddr base; 73 hwaddr size; 74 } MemMapEntry; 75 76 typedef struct VirtBoardInfo { 77 struct arm_boot_info bootinfo; 78 const char *cpu_model; 79 const MemMapEntry *memmap; 80 const int *irqmap; 81 int smp_cpus; 82 void *fdt; 83 int fdt_size; 84 uint32_t clock_phandle; 85 } VirtBoardInfo; 86 87 /* Addresses and sizes of our components. 88 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 89 * 128MB..256MB is used for miscellaneous device I/O. 90 * 256MB..1GB is reserved for possible future PCI support (ie where the 91 * PCI memory window will go if we add a PCI host controller). 92 * 1GB and up is RAM (which may happily spill over into the 93 * high memory region beyond 4GB). 94 * This represents a compromise between how much RAM can be given to 95 * a 32 bit VM and leaving space for expansion and in particular for PCI. 96 * Note that devices should generally be placed at multiples of 0x10000, 97 * to accommodate guests using 64K pages. 98 */ 99 static const MemMapEntry a15memmap[] = { 100 /* Space up to 0x8000000 is reserved for a boot ROM */ 101 [VIRT_FLASH] = { 0, 0x8000000 }, 102 [VIRT_CPUPERIPHS] = { 0x8000000, 0x20000 }, 103 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 104 [VIRT_GIC_DIST] = { 0x8000000, 0x10000 }, 105 [VIRT_GIC_CPU] = { 0x8010000, 0x10000 }, 106 [VIRT_UART] = { 0x9000000, 0x1000 }, 107 [VIRT_RTC] = { 0x90010000, 0x1000 }, 108 [VIRT_MMIO] = { 0xa000000, 0x200 }, 109 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 110 /* 0x10000000 .. 0x40000000 reserved for PCI */ 111 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 112 }; 113 114 static const int a15irqmap[] = { 115 [VIRT_UART] = 1, 116 [VIRT_RTC] = 2, 117 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 118 }; 119 120 static VirtBoardInfo machines[] = { 121 { 122 .cpu_model = "cortex-a15", 123 .memmap = a15memmap, 124 .irqmap = a15irqmap, 125 }, 126 { 127 .cpu_model = "cortex-a57", 128 .memmap = a15memmap, 129 .irqmap = a15irqmap, 130 }, 131 { 132 .cpu_model = "host", 133 .memmap = a15memmap, 134 .irqmap = a15irqmap, 135 }, 136 }; 137 138 static VirtBoardInfo *find_machine_info(const char *cpu) 139 { 140 int i; 141 142 for (i = 0; i < ARRAY_SIZE(machines); i++) { 143 if (strcmp(cpu, machines[i].cpu_model) == 0) { 144 return &machines[i]; 145 } 146 } 147 return NULL; 148 } 149 150 static void create_fdt(VirtBoardInfo *vbi) 151 { 152 void *fdt = create_device_tree(&vbi->fdt_size); 153 154 if (!fdt) { 155 error_report("create_device_tree() failed"); 156 exit(1); 157 } 158 159 vbi->fdt = fdt; 160 161 /* Header */ 162 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 163 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 164 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 165 166 /* 167 * /chosen and /memory nodes must exist for load_dtb 168 * to fill in necessary properties later 169 */ 170 qemu_fdt_add_subnode(fdt, "/chosen"); 171 qemu_fdt_add_subnode(fdt, "/memory"); 172 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 173 174 /* Clock node, for the benefit of the UART. The kernel device tree 175 * binding documentation claims the PL011 node clock properties are 176 * optional but in practice if you omit them the kernel refuses to 177 * probe for the device. 178 */ 179 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 180 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 181 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 182 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 183 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 184 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 185 "clk24mhz"); 186 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 187 188 } 189 190 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 191 { 192 void *fdt = vbi->fdt; 193 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 194 195 /* No PSCI for TCG yet */ 196 if (kvm_enabled()) { 197 qemu_fdt_add_subnode(fdt, "/psci"); 198 if (armcpu->psci_version == 2) { 199 const char comp[] = "arm,psci-0.2\0arm,psci"; 200 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 201 } else { 202 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 203 } 204 205 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 206 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", 207 PSCI_FN_CPU_SUSPEND); 208 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF); 209 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON); 210 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE); 211 } 212 } 213 214 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 215 { 216 /* Note that on A15 h/w these interrupts are level-triggered, 217 * but for the GIC implementation provided by both QEMU and KVM 218 * they are edge-triggered. 219 */ 220 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 221 222 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 223 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 224 225 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 226 qemu_fdt_setprop_string(vbi->fdt, "/timer", 227 "compatible", "arm,armv7-timer"); 228 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 229 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags, 230 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags, 231 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags, 232 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags); 233 } 234 235 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 236 { 237 int cpu; 238 239 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 240 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); 241 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 242 243 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 244 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 245 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 246 247 qemu_fdt_add_subnode(vbi->fdt, nodename); 248 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 249 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 250 armcpu->dtb_compatible); 251 252 if (vbi->smp_cpus > 1) { 253 qemu_fdt_setprop_string(vbi->fdt, nodename, 254 "enable-method", "psci"); 255 } 256 257 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); 258 g_free(nodename); 259 } 260 } 261 262 static void fdt_add_gic_node(const VirtBoardInfo *vbi) 263 { 264 uint32_t gic_phandle; 265 266 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 267 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle); 268 269 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 270 /* 'cortex-a15-gic' means 'GIC v2' */ 271 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 272 "arm,cortex-a15-gic"); 273 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 274 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 275 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 276 2, vbi->memmap[VIRT_GIC_DIST].base, 277 2, vbi->memmap[VIRT_GIC_DIST].size, 278 2, vbi->memmap[VIRT_GIC_CPU].base, 279 2, vbi->memmap[VIRT_GIC_CPU].size); 280 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle); 281 } 282 283 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic) 284 { 285 /* We create a standalone GIC v2 */ 286 DeviceState *gicdev; 287 SysBusDevice *gicbusdev; 288 const char *gictype = "arm_gic"; 289 int i; 290 291 if (kvm_irqchip_in_kernel()) { 292 gictype = "kvm-arm-gic"; 293 } 294 295 gicdev = qdev_create(NULL, gictype); 296 qdev_prop_set_uint32(gicdev, "revision", 2); 297 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 298 /* Note that the num-irq property counts both internal and external 299 * interrupts; there are always 32 of the former (mandated by GIC spec). 300 */ 301 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 302 qdev_init_nofail(gicdev); 303 gicbusdev = SYS_BUS_DEVICE(gicdev); 304 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 305 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 306 307 /* Wire the outputs from each CPU's generic timer to the 308 * appropriate GIC PPI inputs, and the GIC's IRQ output to 309 * the CPU's IRQ input. 310 */ 311 for (i = 0; i < smp_cpus; i++) { 312 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 313 int ppibase = NUM_IRQS + i * 32; 314 /* physical timer; we wire it up to the non-secure timer's ID, 315 * since a real A15 always has TrustZone but QEMU doesn't. 316 */ 317 qdev_connect_gpio_out(cpudev, 0, 318 qdev_get_gpio_in(gicdev, ppibase + 30)); 319 /* virtual timer */ 320 qdev_connect_gpio_out(cpudev, 1, 321 qdev_get_gpio_in(gicdev, ppibase + 27)); 322 323 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 324 } 325 326 for (i = 0; i < NUM_IRQS; i++) { 327 pic[i] = qdev_get_gpio_in(gicdev, i); 328 } 329 330 fdt_add_gic_node(vbi); 331 } 332 333 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 334 { 335 char *nodename; 336 hwaddr base = vbi->memmap[VIRT_UART].base; 337 hwaddr size = vbi->memmap[VIRT_UART].size; 338 int irq = vbi->irqmap[VIRT_UART]; 339 const char compat[] = "arm,pl011\0arm,primecell"; 340 const char clocknames[] = "uartclk\0apb_pclk"; 341 342 sysbus_create_simple("pl011", base, pic[irq]); 343 344 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 345 qemu_fdt_add_subnode(vbi->fdt, nodename); 346 /* Note that we can't use setprop_string because of the embedded NUL */ 347 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 348 compat, sizeof(compat)); 349 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 350 2, base, 2, size); 351 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 352 GIC_FDT_IRQ_TYPE_SPI, irq, 353 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 354 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 355 vbi->clock_phandle, vbi->clock_phandle); 356 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 357 clocknames, sizeof(clocknames)); 358 g_free(nodename); 359 } 360 361 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 362 { 363 char *nodename; 364 hwaddr base = vbi->memmap[VIRT_RTC].base; 365 hwaddr size = vbi->memmap[VIRT_RTC].size; 366 int irq = vbi->irqmap[VIRT_RTC]; 367 const char compat[] = "arm,pl031\0arm,primecell"; 368 369 sysbus_create_simple("pl031", base, pic[irq]); 370 371 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 372 qemu_fdt_add_subnode(vbi->fdt, nodename); 373 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 374 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 375 2, base, 2, size); 376 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 377 GIC_FDT_IRQ_TYPE_SPI, irq, 378 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 379 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 380 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 381 g_free(nodename); 382 } 383 384 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 385 { 386 int i; 387 hwaddr size = vbi->memmap[VIRT_MMIO].size; 388 389 /* Note that we have to create the transports in forwards order 390 * so that command line devices are inserted lowest address first, 391 * and then add dtb nodes in reverse order so that they appear in 392 * the finished device tree lowest address first. 393 */ 394 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 395 int irq = vbi->irqmap[VIRT_MMIO] + i; 396 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 397 398 sysbus_create_simple("virtio-mmio", base, pic[irq]); 399 } 400 401 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 402 char *nodename; 403 int irq = vbi->irqmap[VIRT_MMIO] + i; 404 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 405 406 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 407 qemu_fdt_add_subnode(vbi->fdt, nodename); 408 qemu_fdt_setprop_string(vbi->fdt, nodename, 409 "compatible", "virtio,mmio"); 410 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 411 2, base, 2, size); 412 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 413 GIC_FDT_IRQ_TYPE_SPI, irq, 414 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 415 g_free(nodename); 416 } 417 } 418 419 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 420 { 421 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 422 423 *fdt_size = board->fdt_size; 424 return board->fdt; 425 } 426 427 static void machvirt_init(MachineState *machine) 428 { 429 qemu_irq pic[NUM_IRQS]; 430 MemoryRegion *sysmem = get_system_memory(); 431 int n; 432 MemoryRegion *ram = g_new(MemoryRegion, 1); 433 const char *cpu_model = machine->cpu_model; 434 VirtBoardInfo *vbi; 435 436 if (!cpu_model) { 437 cpu_model = "cortex-a15"; 438 } 439 440 vbi = find_machine_info(cpu_model); 441 442 if (!vbi) { 443 error_report("mach-virt: CPU %s not supported", cpu_model); 444 exit(1); 445 } 446 447 vbi->smp_cpus = smp_cpus; 448 449 /* 450 * Only supported method of starting secondary CPUs is PSCI and 451 * PSCI is not yet supported with TCG, so limit smp_cpus to 1 452 * if we're not using KVM. 453 */ 454 if (!kvm_enabled() && smp_cpus > 1) { 455 error_report("mach-virt: must enable KVM to use multiple CPUs"); 456 exit(1); 457 } 458 459 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 460 error_report("mach-virt: cannot model more than 30GB RAM"); 461 exit(1); 462 } 463 464 create_fdt(vbi); 465 fdt_add_timer_nodes(vbi); 466 467 for (n = 0; n < smp_cpus; n++) { 468 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); 469 Object *cpuobj; 470 471 if (!oc) { 472 fprintf(stderr, "Unable to find CPU definition\n"); 473 exit(1); 474 } 475 cpuobj = object_new(object_class_get_name(oc)); 476 477 /* Secondary CPUs start in PSCI powered-down state */ 478 if (n > 0) { 479 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 480 } 481 482 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 483 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 484 "reset-cbar", &error_abort); 485 } 486 487 object_property_set_bool(cpuobj, true, "realized", NULL); 488 } 489 fdt_add_cpu_nodes(vbi); 490 fdt_add_psci_node(vbi); 491 492 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size); 493 vmstate_register_ram_global(ram); 494 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 495 496 create_gic(vbi, pic); 497 498 create_uart(vbi, pic); 499 500 create_rtc(vbi, pic); 501 502 /* Create mmio transports, so the user can create virtio backends 503 * (which will be automatically plugged in to the transports). If 504 * no backend is created the transport will just sit harmlessly idle. 505 */ 506 create_virtio_devices(vbi, pic); 507 508 vbi->bootinfo.ram_size = machine->ram_size; 509 vbi->bootinfo.kernel_filename = machine->kernel_filename; 510 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 511 vbi->bootinfo.initrd_filename = machine->initrd_filename; 512 vbi->bootinfo.nb_cpus = smp_cpus; 513 vbi->bootinfo.board_id = -1; 514 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 515 vbi->bootinfo.get_dtb = machvirt_dtb; 516 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 517 } 518 519 static QEMUMachine machvirt_a15_machine = { 520 .name = "virt", 521 .desc = "ARM Virtual Machine", 522 .init = machvirt_init, 523 .max_cpus = 4, 524 }; 525 526 static void machvirt_machine_init(void) 527 { 528 qemu_register_machine(&machvirt_a15_machine); 529 } 530 531 machine_init(machvirt_machine_init); 532