1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/arm/virt.h" 35 #include "hw/devices.h" 36 #include "net/net.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/kvm.h" 41 #include "hw/boards.h" 42 #include "hw/loader.h" 43 #include "exec/address-spaces.h" 44 #include "qemu/bitops.h" 45 #include "qemu/error-report.h" 46 #include "hw/pci-host/gpex.h" 47 #include "hw/arm/virt-acpi-build.h" 48 #include "hw/arm/sysbus-fdt.h" 49 #include "hw/platform-bus.h" 50 #include "hw/arm/fdt.h" 51 #include "hw/intc/arm_gic_common.h" 52 #include "kvm_arm.h" 53 #include "hw/smbios/smbios.h" 54 55 /* Number of external interrupt lines to configure the GIC with */ 56 #define NUM_IRQS 256 57 58 #define PLATFORM_BUS_NUM_IRQS 64 59 60 static ARMPlatformBusSystemParams platform_bus_params; 61 62 typedef struct VirtBoardInfo { 63 struct arm_boot_info bootinfo; 64 const char *cpu_model; 65 const MemMapEntry *memmap; 66 const int *irqmap; 67 int smp_cpus; 68 void *fdt; 69 int fdt_size; 70 uint32_t clock_phandle; 71 uint32_t gic_phandle; 72 uint32_t v2m_phandle; 73 } VirtBoardInfo; 74 75 typedef struct { 76 MachineClass parent; 77 VirtBoardInfo *daughterboard; 78 } VirtMachineClass; 79 80 typedef struct { 81 MachineState parent; 82 bool secure; 83 bool highmem; 84 } VirtMachineState; 85 86 #define TYPE_VIRT_MACHINE "virt" 87 #define VIRT_MACHINE(obj) \ 88 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 89 #define VIRT_MACHINE_GET_CLASS(obj) \ 90 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 91 #define VIRT_MACHINE_CLASS(klass) \ 92 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 93 94 /* Addresses and sizes of our components. 95 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 96 * 128MB..256MB is used for miscellaneous device I/O. 97 * 256MB..1GB is reserved for possible future PCI support (ie where the 98 * PCI memory window will go if we add a PCI host controller). 99 * 1GB and up is RAM (which may happily spill over into the 100 * high memory region beyond 4GB). 101 * This represents a compromise between how much RAM can be given to 102 * a 32 bit VM and leaving space for expansion and in particular for PCI. 103 * Note that devices should generally be placed at multiples of 0x10000, 104 * to accommodate guests using 64K pages. 105 */ 106 static const MemMapEntry a15memmap[] = { 107 /* Space up to 0x8000000 is reserved for a boot ROM */ 108 [VIRT_FLASH] = { 0, 0x08000000 }, 109 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 110 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 111 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 112 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 113 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 114 [VIRT_UART] = { 0x09000000, 0x00001000 }, 115 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 116 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, 117 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 118 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 119 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 120 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 121 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 122 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 123 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 124 /* Second PCIe window, 512GB wide at the 512GB boundary */ 125 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 126 }; 127 128 static const int a15irqmap[] = { 129 [VIRT_UART] = 1, 130 [VIRT_RTC] = 2, 131 [VIRT_PCIE] = 3, /* ... to 6 */ 132 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 133 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 134 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 135 }; 136 137 static VirtBoardInfo machines[] = { 138 { 139 .cpu_model = "cortex-a15", 140 .memmap = a15memmap, 141 .irqmap = a15irqmap, 142 }, 143 { 144 .cpu_model = "cortex-a53", 145 .memmap = a15memmap, 146 .irqmap = a15irqmap, 147 }, 148 { 149 .cpu_model = "cortex-a57", 150 .memmap = a15memmap, 151 .irqmap = a15irqmap, 152 }, 153 { 154 .cpu_model = "host", 155 .memmap = a15memmap, 156 .irqmap = a15irqmap, 157 }, 158 }; 159 160 static VirtBoardInfo *find_machine_info(const char *cpu) 161 { 162 int i; 163 164 for (i = 0; i < ARRAY_SIZE(machines); i++) { 165 if (strcmp(cpu, machines[i].cpu_model) == 0) { 166 return &machines[i]; 167 } 168 } 169 return NULL; 170 } 171 172 static void create_fdt(VirtBoardInfo *vbi) 173 { 174 void *fdt = create_device_tree(&vbi->fdt_size); 175 176 if (!fdt) { 177 error_report("create_device_tree() failed"); 178 exit(1); 179 } 180 181 vbi->fdt = fdt; 182 183 /* Header */ 184 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 185 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 186 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 187 188 /* 189 * /chosen and /memory nodes must exist for load_dtb 190 * to fill in necessary properties later 191 */ 192 qemu_fdt_add_subnode(fdt, "/chosen"); 193 qemu_fdt_add_subnode(fdt, "/memory"); 194 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 195 196 /* Clock node, for the benefit of the UART. The kernel device tree 197 * binding documentation claims the PL011 node clock properties are 198 * optional but in practice if you omit them the kernel refuses to 199 * probe for the device. 200 */ 201 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 202 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 203 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 204 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 205 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 206 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 207 "clk24mhz"); 208 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 209 210 } 211 212 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 213 { 214 uint32_t cpu_suspend_fn; 215 uint32_t cpu_off_fn; 216 uint32_t cpu_on_fn; 217 uint32_t migrate_fn; 218 void *fdt = vbi->fdt; 219 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 220 221 qemu_fdt_add_subnode(fdt, "/psci"); 222 if (armcpu->psci_version == 2) { 223 const char comp[] = "arm,psci-0.2\0arm,psci"; 224 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 225 226 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 227 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 228 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 229 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 230 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 231 } else { 232 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 233 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 234 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 235 } 236 } else { 237 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 238 239 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 240 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 241 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 242 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 243 } 244 245 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 246 * to the instruction that should be used to invoke PSCI functions. 247 * However, the device tree binding uses 'method' instead, so that is 248 * what we should use here. 249 */ 250 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 251 252 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 253 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 254 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 255 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 256 } 257 258 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 259 { 260 /* Note that on A15 h/w these interrupts are level-triggered, 261 * but for the GIC implementation provided by both QEMU and KVM 262 * they are edge-triggered. 263 */ 264 ARMCPU *armcpu; 265 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 266 267 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 268 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 269 270 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 271 272 armcpu = ARM_CPU(qemu_get_cpu(0)); 273 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 274 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 275 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 276 compat, sizeof(compat)); 277 } else { 278 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 279 "arm,armv7-timer"); 280 } 281 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 282 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 283 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 284 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 285 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 286 } 287 288 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 289 { 290 int cpu; 291 int addr_cells = 1; 292 293 /* 294 * From Documentation/devicetree/bindings/arm/cpus.txt 295 * On ARM v8 64-bit systems value should be set to 2, 296 * that corresponds to the MPIDR_EL1 register size. 297 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 298 * in the system, #address-cells can be set to 1, since 299 * MPIDR_EL1[63:32] bits are not used for CPUs 300 * identification. 301 * 302 * Here we actually don't know whether our system is 32- or 64-bit one. 303 * The simplest way to go is to examine affinity IDs of all our CPUs. If 304 * at least one of them has Aff3 populated, we set #address-cells to 2. 305 */ 306 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 307 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 308 309 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 310 addr_cells = 2; 311 break; 312 } 313 } 314 315 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 316 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 317 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 318 319 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 320 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 321 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 322 323 qemu_fdt_add_subnode(vbi->fdt, nodename); 324 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 325 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 326 armcpu->dtb_compatible); 327 328 if (vbi->smp_cpus > 1) { 329 qemu_fdt_setprop_string(vbi->fdt, nodename, 330 "enable-method", "psci"); 331 } 332 333 if (addr_cells == 2) { 334 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 335 armcpu->mp_affinity); 336 } else { 337 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 338 armcpu->mp_affinity); 339 } 340 341 g_free(nodename); 342 } 343 } 344 345 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 346 { 347 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 348 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 349 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 350 "arm,gic-v2m-frame"); 351 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 352 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 353 2, vbi->memmap[VIRT_GIC_V2M].base, 354 2, vbi->memmap[VIRT_GIC_V2M].size); 355 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 356 } 357 358 static void fdt_add_gic_node(VirtBoardInfo *vbi) 359 { 360 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 361 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 362 363 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 364 /* 'cortex-a15-gic' means 'GIC v2' */ 365 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 366 "arm,cortex-a15-gic"); 367 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 368 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 369 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 370 2, vbi->memmap[VIRT_GIC_DIST].base, 371 2, vbi->memmap[VIRT_GIC_DIST].size, 372 2, vbi->memmap[VIRT_GIC_CPU].base, 373 2, vbi->memmap[VIRT_GIC_CPU].size); 374 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 375 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 376 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 377 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 378 } 379 380 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 381 { 382 int i; 383 int irq = vbi->irqmap[VIRT_GIC_V2M]; 384 DeviceState *dev; 385 386 dev = qdev_create(NULL, "arm-gicv2m"); 387 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 388 qdev_prop_set_uint32(dev, "base-spi", irq); 389 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 390 qdev_init_nofail(dev); 391 392 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 393 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 394 } 395 396 fdt_add_v2m_gic_node(vbi); 397 } 398 399 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic) 400 { 401 /* We create a standalone GIC v2 */ 402 DeviceState *gicdev; 403 SysBusDevice *gicbusdev; 404 const char *gictype; 405 int i; 406 407 gictype = gic_class_name(); 408 409 gicdev = qdev_create(NULL, gictype); 410 qdev_prop_set_uint32(gicdev, "revision", 2); 411 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 412 /* Note that the num-irq property counts both internal and external 413 * interrupts; there are always 32 of the former (mandated by GIC spec). 414 */ 415 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 416 qdev_init_nofail(gicdev); 417 gicbusdev = SYS_BUS_DEVICE(gicdev); 418 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 419 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 420 421 /* Wire the outputs from each CPU's generic timer to the 422 * appropriate GIC PPI inputs, and the GIC's IRQ output to 423 * the CPU's IRQ input. 424 */ 425 for (i = 0; i < smp_cpus; i++) { 426 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 427 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 428 int irq; 429 /* Mapping from the output timer irq lines from the CPU to the 430 * GIC PPI inputs we use for the virt board. 431 */ 432 const int timer_irq[] = { 433 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 434 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 435 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 436 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 437 }; 438 439 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 440 qdev_connect_gpio_out(cpudev, irq, 441 qdev_get_gpio_in(gicdev, 442 ppibase + timer_irq[irq])); 443 } 444 445 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 446 sysbus_connect_irq(gicbusdev, i + smp_cpus, 447 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 448 } 449 450 for (i = 0; i < NUM_IRQS; i++) { 451 pic[i] = qdev_get_gpio_in(gicdev, i); 452 } 453 454 fdt_add_gic_node(vbi); 455 456 create_v2m(vbi, pic); 457 } 458 459 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 460 { 461 char *nodename; 462 hwaddr base = vbi->memmap[VIRT_UART].base; 463 hwaddr size = vbi->memmap[VIRT_UART].size; 464 int irq = vbi->irqmap[VIRT_UART]; 465 const char compat[] = "arm,pl011\0arm,primecell"; 466 const char clocknames[] = "uartclk\0apb_pclk"; 467 468 sysbus_create_simple("pl011", base, pic[irq]); 469 470 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 471 qemu_fdt_add_subnode(vbi->fdt, nodename); 472 /* Note that we can't use setprop_string because of the embedded NUL */ 473 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 474 compat, sizeof(compat)); 475 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 476 2, base, 2, size); 477 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 478 GIC_FDT_IRQ_TYPE_SPI, irq, 479 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 480 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 481 vbi->clock_phandle, vbi->clock_phandle); 482 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 483 clocknames, sizeof(clocknames)); 484 485 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 486 g_free(nodename); 487 } 488 489 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 490 { 491 char *nodename; 492 hwaddr base = vbi->memmap[VIRT_RTC].base; 493 hwaddr size = vbi->memmap[VIRT_RTC].size; 494 int irq = vbi->irqmap[VIRT_RTC]; 495 const char compat[] = "arm,pl031\0arm,primecell"; 496 497 sysbus_create_simple("pl031", base, pic[irq]); 498 499 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 500 qemu_fdt_add_subnode(vbi->fdt, nodename); 501 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 502 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 503 2, base, 2, size); 504 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 505 GIC_FDT_IRQ_TYPE_SPI, irq, 506 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 507 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 508 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 509 g_free(nodename); 510 } 511 512 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 513 { 514 int i; 515 hwaddr size = vbi->memmap[VIRT_MMIO].size; 516 517 /* We create the transports in forwards order. Since qbus_realize() 518 * prepends (not appends) new child buses, the incrementing loop below will 519 * create a list of virtio-mmio buses with decreasing base addresses. 520 * 521 * When a -device option is processed from the command line, 522 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 523 * order. The upshot is that -device options in increasing command line 524 * order are mapped to virtio-mmio buses with decreasing base addresses. 525 * 526 * When this code was originally written, that arrangement ensured that the 527 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 528 * the first -device on the command line. (The end-to-end order is a 529 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 530 * guest kernel's name-to-address assignment strategy.) 531 * 532 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 533 * the message, if not necessarily the code, of commit 70161ff336. 534 * Therefore the loop now establishes the inverse of the original intent. 535 * 536 * Unfortunately, we can't counteract the kernel change by reversing the 537 * loop; it would break existing command lines. 538 * 539 * In any case, the kernel makes no guarantee about the stability of 540 * enumeration order of virtio devices (as demonstrated by it changing 541 * between kernel versions). For reliable and stable identification 542 * of disks users must use UUIDs or similar mechanisms. 543 */ 544 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 545 int irq = vbi->irqmap[VIRT_MMIO] + i; 546 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 547 548 sysbus_create_simple("virtio-mmio", base, pic[irq]); 549 } 550 551 /* We add dtb nodes in reverse order so that they appear in the finished 552 * device tree lowest address first. 553 * 554 * Note that this mapping is independent of the loop above. The previous 555 * loop influences virtio device to virtio transport assignment, whereas 556 * this loop controls how virtio transports are laid out in the dtb. 557 */ 558 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 559 char *nodename; 560 int irq = vbi->irqmap[VIRT_MMIO] + i; 561 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 562 563 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 564 qemu_fdt_add_subnode(vbi->fdt, nodename); 565 qemu_fdt_setprop_string(vbi->fdt, nodename, 566 "compatible", "virtio,mmio"); 567 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 568 2, base, 2, size); 569 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 570 GIC_FDT_IRQ_TYPE_SPI, irq, 571 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 572 g_free(nodename); 573 } 574 } 575 576 static void create_one_flash(const char *name, hwaddr flashbase, 577 hwaddr flashsize) 578 { 579 /* Create and map a single flash device. We use the same 580 * parameters as the flash devices on the Versatile Express board. 581 */ 582 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 583 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 584 const uint64_t sectorlength = 256 * 1024; 585 586 if (dinfo) { 587 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 588 &error_abort); 589 } 590 591 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 592 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 593 qdev_prop_set_uint8(dev, "width", 4); 594 qdev_prop_set_uint8(dev, "device-width", 2); 595 qdev_prop_set_bit(dev, "big-endian", false); 596 qdev_prop_set_uint16(dev, "id0", 0x89); 597 qdev_prop_set_uint16(dev, "id1", 0x18); 598 qdev_prop_set_uint16(dev, "id2", 0x00); 599 qdev_prop_set_uint16(dev, "id3", 0x00); 600 qdev_prop_set_string(dev, "name", name); 601 qdev_init_nofail(dev); 602 603 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 604 } 605 606 static void create_flash(const VirtBoardInfo *vbi) 607 { 608 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 609 * Any file passed via -bios goes in the first of these. 610 */ 611 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 612 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 613 char *nodename; 614 615 if (bios_name) { 616 char *fn; 617 int image_size; 618 619 if (drive_get(IF_PFLASH, 0, 0)) { 620 error_report("The contents of the first flash device may be " 621 "specified with -bios or with -drive if=pflash... " 622 "but you cannot use both options at once"); 623 exit(1); 624 } 625 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 626 if (!fn) { 627 error_report("Could not find ROM image '%s'", bios_name); 628 exit(1); 629 } 630 image_size = load_image_targphys(fn, flashbase, flashsize); 631 g_free(fn); 632 if (image_size < 0) { 633 error_report("Could not load ROM image '%s'", bios_name); 634 exit(1); 635 } 636 } 637 638 create_one_flash("virt.flash0", flashbase, flashsize); 639 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 640 641 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 642 qemu_fdt_add_subnode(vbi->fdt, nodename); 643 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 644 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 645 2, flashbase, 2, flashsize, 646 2, flashbase + flashsize, 2, flashsize); 647 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 648 g_free(nodename); 649 } 650 651 static void create_fw_cfg(const VirtBoardInfo *vbi) 652 { 653 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 654 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 655 char *nodename; 656 657 fw_cfg_init_mem_wide(base + 8, base, 8); 658 659 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 660 qemu_fdt_add_subnode(vbi->fdt, nodename); 661 qemu_fdt_setprop_string(vbi->fdt, nodename, 662 "compatible", "qemu,fw-cfg-mmio"); 663 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 664 2, base, 2, size); 665 g_free(nodename); 666 } 667 668 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 669 int first_irq, const char *nodename) 670 { 671 int devfn, pin; 672 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 673 uint32_t *irq_map = full_irq_map; 674 675 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 676 for (pin = 0; pin < 4; pin++) { 677 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 678 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 679 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 680 int i; 681 682 uint32_t map[] = { 683 devfn << 8, 0, 0, /* devfn */ 684 pin + 1, /* PCI pin */ 685 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 686 687 /* Convert map to big endian */ 688 for (i = 0; i < 10; i++) { 689 irq_map[i] = cpu_to_be32(map[i]); 690 } 691 irq_map += 10; 692 } 693 } 694 695 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 696 full_irq_map, sizeof(full_irq_map)); 697 698 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 699 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 700 0x7 /* PCI irq */); 701 } 702 703 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 704 bool use_highmem) 705 { 706 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 707 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 708 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 709 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 710 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 711 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 712 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 713 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 714 hwaddr base = base_mmio; 715 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 716 int irq = vbi->irqmap[VIRT_PCIE]; 717 MemoryRegion *mmio_alias; 718 MemoryRegion *mmio_reg; 719 MemoryRegion *ecam_alias; 720 MemoryRegion *ecam_reg; 721 DeviceState *dev; 722 char *nodename; 723 int i; 724 725 dev = qdev_create(NULL, TYPE_GPEX_HOST); 726 qdev_init_nofail(dev); 727 728 /* Map only the first size_ecam bytes of ECAM space */ 729 ecam_alias = g_new0(MemoryRegion, 1); 730 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 731 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 732 ecam_reg, 0, size_ecam); 733 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 734 735 /* Map the MMIO window into system address space so as to expose 736 * the section of PCI MMIO space which starts at the same base address 737 * (ie 1:1 mapping for that part of PCI MMIO space visible through 738 * the window). 739 */ 740 mmio_alias = g_new0(MemoryRegion, 1); 741 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 742 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 743 mmio_reg, base_mmio, size_mmio); 744 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 745 746 if (use_highmem) { 747 /* Map high MMIO space */ 748 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 749 750 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 751 mmio_reg, base_mmio_high, size_mmio_high); 752 memory_region_add_subregion(get_system_memory(), base_mmio_high, 753 high_mmio_alias); 754 } 755 756 /* Map IO port space */ 757 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 758 759 for (i = 0; i < GPEX_NUM_IRQS; i++) { 760 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 761 } 762 763 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 764 qemu_fdt_add_subnode(vbi->fdt, nodename); 765 qemu_fdt_setprop_string(vbi->fdt, nodename, 766 "compatible", "pci-host-ecam-generic"); 767 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 768 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 769 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 770 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 771 nr_pcie_buses - 1); 772 773 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle); 774 775 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 776 2, base_ecam, 2, size_ecam); 777 778 if (use_highmem) { 779 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 780 1, FDT_PCI_RANGE_IOPORT, 2, 0, 781 2, base_pio, 2, size_pio, 782 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 783 2, base_mmio, 2, size_mmio, 784 1, FDT_PCI_RANGE_MMIO_64BIT, 785 2, base_mmio_high, 786 2, base_mmio_high, 2, size_mmio_high); 787 } else { 788 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 789 1, FDT_PCI_RANGE_IOPORT, 2, 0, 790 2, base_pio, 2, size_pio, 791 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 792 2, base_mmio, 2, size_mmio); 793 } 794 795 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 796 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 797 798 g_free(nodename); 799 } 800 801 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 802 { 803 DeviceState *dev; 804 SysBusDevice *s; 805 int i; 806 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 807 MemoryRegion *sysmem = get_system_memory(); 808 809 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 810 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 811 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 812 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 813 814 fdt_params->system_params = &platform_bus_params; 815 fdt_params->binfo = &vbi->bootinfo; 816 fdt_params->intc = "/intc"; 817 /* 818 * register a machine init done notifier that creates the device tree 819 * nodes of the platform bus and its children dynamic sysbus devices 820 */ 821 arm_register_platform_bus_fdt_creator(fdt_params); 822 823 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 824 dev->id = TYPE_PLATFORM_BUS_DEVICE; 825 qdev_prop_set_uint32(dev, "num_irqs", 826 platform_bus_params.platform_bus_num_irqs); 827 qdev_prop_set_uint32(dev, "mmio_size", 828 platform_bus_params.platform_bus_size); 829 qdev_init_nofail(dev); 830 s = SYS_BUS_DEVICE(dev); 831 832 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 833 int irqn = platform_bus_params.platform_bus_first_irq + i; 834 sysbus_connect_irq(s, i, pic[irqn]); 835 } 836 837 memory_region_add_subregion(sysmem, 838 platform_bus_params.platform_bus_base, 839 sysbus_mmio_get_region(s, 0)); 840 } 841 842 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 843 { 844 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 845 846 *fdt_size = board->fdt_size; 847 return board->fdt; 848 } 849 850 static void virt_build_smbios(VirtGuestInfo *guest_info) 851 { 852 FWCfgState *fw_cfg = guest_info->fw_cfg; 853 uint8_t *smbios_tables, *smbios_anchor; 854 size_t smbios_tables_len, smbios_anchor_len; 855 856 if (!fw_cfg) { 857 return; 858 } 859 860 smbios_set_defaults("QEMU", "QEMU Virtual Machine", 861 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 862 863 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 864 &smbios_anchor, &smbios_anchor_len); 865 866 if (smbios_anchor) { 867 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 868 smbios_tables, smbios_tables_len); 869 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 870 smbios_anchor, smbios_anchor_len); 871 } 872 } 873 874 static 875 void virt_guest_info_machine_done(Notifier *notifier, void *data) 876 { 877 VirtGuestInfoState *guest_info_state = container_of(notifier, 878 VirtGuestInfoState, machine_done); 879 virt_acpi_setup(&guest_info_state->info); 880 virt_build_smbios(&guest_info_state->info); 881 } 882 883 static void machvirt_init(MachineState *machine) 884 { 885 VirtMachineState *vms = VIRT_MACHINE(machine); 886 qemu_irq pic[NUM_IRQS]; 887 MemoryRegion *sysmem = get_system_memory(); 888 int n; 889 MemoryRegion *ram = g_new(MemoryRegion, 1); 890 const char *cpu_model = machine->cpu_model; 891 VirtBoardInfo *vbi; 892 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 893 VirtGuestInfo *guest_info = &guest_info_state->info; 894 char **cpustr; 895 896 if (!cpu_model) { 897 cpu_model = "cortex-a15"; 898 } 899 900 /* Separate the actual CPU model name from any appended features */ 901 cpustr = g_strsplit(cpu_model, ",", 2); 902 903 vbi = find_machine_info(cpustr[0]); 904 905 if (!vbi) { 906 error_report("mach-virt: CPU %s not supported", cpustr[0]); 907 exit(1); 908 } 909 910 vbi->smp_cpus = smp_cpus; 911 912 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 913 error_report("mach-virt: cannot model more than 30GB RAM"); 914 exit(1); 915 } 916 917 create_fdt(vbi); 918 919 for (n = 0; n < smp_cpus; n++) { 920 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 921 CPUClass *cc = CPU_CLASS(oc); 922 Object *cpuobj; 923 Error *err = NULL; 924 char *cpuopts = g_strdup(cpustr[1]); 925 926 if (!oc) { 927 fprintf(stderr, "Unable to find CPU definition\n"); 928 exit(1); 929 } 930 cpuobj = object_new(object_class_get_name(oc)); 931 932 /* Handle any CPU options specified by the user */ 933 cc->parse_features(CPU(cpuobj), cpuopts, &err); 934 g_free(cpuopts); 935 if (err) { 936 error_report_err(err); 937 exit(1); 938 } 939 940 if (!vms->secure) { 941 object_property_set_bool(cpuobj, false, "has_el3", NULL); 942 } 943 944 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 945 NULL); 946 947 /* Secondary CPUs start in PSCI powered-down state */ 948 if (n > 0) { 949 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 950 } 951 952 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 953 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 954 "reset-cbar", &error_abort); 955 } 956 957 object_property_set_bool(cpuobj, true, "realized", NULL); 958 } 959 g_strfreev(cpustr); 960 fdt_add_timer_nodes(vbi); 961 fdt_add_cpu_nodes(vbi); 962 fdt_add_psci_node(vbi); 963 964 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 965 machine->ram_size); 966 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 967 968 create_flash(vbi); 969 970 create_gic(vbi, pic); 971 972 create_uart(vbi, pic); 973 974 create_rtc(vbi, pic); 975 976 create_pcie(vbi, pic, vms->highmem); 977 978 /* Create mmio transports, so the user can create virtio backends 979 * (which will be automatically plugged in to the transports). If 980 * no backend is created the transport will just sit harmlessly idle. 981 */ 982 create_virtio_devices(vbi, pic); 983 984 create_fw_cfg(vbi); 985 rom_set_fw(fw_cfg_find()); 986 987 guest_info->smp_cpus = smp_cpus; 988 guest_info->fw_cfg = fw_cfg_find(); 989 guest_info->memmap = vbi->memmap; 990 guest_info->irqmap = vbi->irqmap; 991 guest_info->use_highmem = vms->highmem; 992 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 993 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 994 995 vbi->bootinfo.ram_size = machine->ram_size; 996 vbi->bootinfo.kernel_filename = machine->kernel_filename; 997 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 998 vbi->bootinfo.initrd_filename = machine->initrd_filename; 999 vbi->bootinfo.nb_cpus = smp_cpus; 1000 vbi->bootinfo.board_id = -1; 1001 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1002 vbi->bootinfo.get_dtb = machvirt_dtb; 1003 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1004 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1005 1006 /* 1007 * arm_load_kernel machine init done notifier registration must 1008 * happen before the platform_bus_create call. In this latter, 1009 * another notifier is registered which adds platform bus nodes. 1010 * Notifiers are executed in registration reverse order. 1011 */ 1012 create_platform_bus(vbi, pic); 1013 } 1014 1015 static bool virt_get_secure(Object *obj, Error **errp) 1016 { 1017 VirtMachineState *vms = VIRT_MACHINE(obj); 1018 1019 return vms->secure; 1020 } 1021 1022 static void virt_set_secure(Object *obj, bool value, Error **errp) 1023 { 1024 VirtMachineState *vms = VIRT_MACHINE(obj); 1025 1026 vms->secure = value; 1027 } 1028 1029 static bool virt_get_highmem(Object *obj, Error **errp) 1030 { 1031 VirtMachineState *vms = VIRT_MACHINE(obj); 1032 1033 return vms->highmem; 1034 } 1035 1036 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1037 { 1038 VirtMachineState *vms = VIRT_MACHINE(obj); 1039 1040 vms->highmem = value; 1041 } 1042 1043 static void virt_instance_init(Object *obj) 1044 { 1045 VirtMachineState *vms = VIRT_MACHINE(obj); 1046 1047 /* EL3 is enabled by default on virt */ 1048 vms->secure = true; 1049 object_property_add_bool(obj, "secure", virt_get_secure, 1050 virt_set_secure, NULL); 1051 object_property_set_description(obj, "secure", 1052 "Set on/off to enable/disable the ARM " 1053 "Security Extensions (TrustZone)", 1054 NULL); 1055 1056 /* High memory is enabled by default */ 1057 vms->highmem = true; 1058 object_property_add_bool(obj, "highmem", virt_get_highmem, 1059 virt_set_highmem, NULL); 1060 object_property_set_description(obj, "highmem", 1061 "Set on/off to enable/disable using " 1062 "physical address space above 32 bits", 1063 NULL); 1064 } 1065 1066 static void virt_class_init(ObjectClass *oc, void *data) 1067 { 1068 MachineClass *mc = MACHINE_CLASS(oc); 1069 1070 mc->name = TYPE_VIRT_MACHINE; 1071 mc->desc = "ARM Virtual Machine", 1072 mc->init = machvirt_init; 1073 mc->max_cpus = 8; 1074 mc->has_dynamic_sysbus = true; 1075 mc->block_default_type = IF_VIRTIO; 1076 mc->no_cdrom = 1; 1077 } 1078 1079 static const TypeInfo machvirt_info = { 1080 .name = TYPE_VIRT_MACHINE, 1081 .parent = TYPE_MACHINE, 1082 .instance_size = sizeof(VirtMachineState), 1083 .instance_init = virt_instance_init, 1084 .class_size = sizeof(VirtMachineClass), 1085 .class_init = virt_class_init, 1086 }; 1087 1088 static void machvirt_machine_init(void) 1089 { 1090 type_register_static(&machvirt_info); 1091 } 1092 1093 machine_init(machvirt_machine_init); 1094