1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "hw/sysbus.h" 34 #include "hw/arm/arm.h" 35 #include "hw/arm/primecell.h" 36 #include "hw/arm/virt.h" 37 #include "hw/devices.h" 38 #include "net/net.h" 39 #include "sysemu/block-backend.h" 40 #include "sysemu/device_tree.h" 41 #include "sysemu/numa.h" 42 #include "sysemu/sysemu.h" 43 #include "sysemu/kvm.h" 44 #include "hw/boards.h" 45 #include "hw/loader.h" 46 #include "exec/address-spaces.h" 47 #include "qemu/bitops.h" 48 #include "qemu/error-report.h" 49 #include "hw/pci-host/gpex.h" 50 #include "hw/arm/virt-acpi-build.h" 51 #include "hw/arm/sysbus-fdt.h" 52 #include "hw/platform-bus.h" 53 #include "hw/arm/fdt.h" 54 #include "hw/intc/arm_gic_common.h" 55 #include "kvm_arm.h" 56 #include "hw/smbios/smbios.h" 57 #include "qapi/visitor.h" 58 #include "standard-headers/linux/input.h" 59 60 /* Number of external interrupt lines to configure the GIC with */ 61 #define NUM_IRQS 256 62 63 #define PLATFORM_BUS_NUM_IRQS 64 64 65 static ARMPlatformBusSystemParams platform_bus_params; 66 67 typedef struct VirtBoardInfo { 68 struct arm_boot_info bootinfo; 69 const char *cpu_model; 70 const MemMapEntry *memmap; 71 const int *irqmap; 72 int smp_cpus; 73 void *fdt; 74 int fdt_size; 75 uint32_t clock_phandle; 76 uint32_t gic_phandle; 77 uint32_t v2m_phandle; 78 bool using_psci; 79 } VirtBoardInfo; 80 81 typedef struct { 82 MachineClass parent; 83 VirtBoardInfo *daughterboard; 84 } VirtMachineClass; 85 86 typedef struct { 87 MachineState parent; 88 bool secure; 89 bool highmem; 90 int32_t gic_version; 91 } VirtMachineState; 92 93 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 94 #define VIRT_MACHINE(obj) \ 95 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 96 #define VIRT_MACHINE_GET_CLASS(obj) \ 97 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 98 #define VIRT_MACHINE_CLASS(klass) \ 99 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 100 101 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 102 * RAM can go up to the 256GB mark, leaving 256GB of the physical 103 * address space unallocated and free for future use between 256G and 512G. 104 * If we need to provide more RAM to VMs in the future then we need to: 105 * * allocate a second bank of RAM starting at 2TB and working up 106 * * fix the DT and ACPI table generation code in QEMU to correctly 107 * report two split lumps of RAM to the guest 108 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 109 * (We don't want to fill all the way up to 512GB with RAM because 110 * we might want it for non-RAM purposes later. Conversely it seems 111 * reasonable to assume that anybody configuring a VM with a quarter 112 * of a terabyte of RAM will be doing it on a host with more than a 113 * terabyte of physical address space.) 114 */ 115 #define RAMLIMIT_GB 255 116 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 117 118 /* Addresses and sizes of our components. 119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 120 * 128MB..256MB is used for miscellaneous device I/O. 121 * 256MB..1GB is reserved for possible future PCI support (ie where the 122 * PCI memory window will go if we add a PCI host controller). 123 * 1GB and up is RAM (which may happily spill over into the 124 * high memory region beyond 4GB). 125 * This represents a compromise between how much RAM can be given to 126 * a 32 bit VM and leaving space for expansion and in particular for PCI. 127 * Note that devices should generally be placed at multiples of 0x10000, 128 * to accommodate guests using 64K pages. 129 */ 130 static const MemMapEntry a15memmap[] = { 131 /* Space up to 0x8000000 is reserved for a boot ROM */ 132 [VIRT_FLASH] = { 0, 0x08000000 }, 133 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 135 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 136 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 137 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 138 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 139 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 140 /* This redistributor space allows up to 2*64kB*123 CPUs */ 141 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 142 [VIRT_UART] = { 0x09000000, 0x00001000 }, 143 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 144 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 145 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 146 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 147 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 148 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 149 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 150 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 151 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 152 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 153 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 154 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 155 /* Second PCIe window, 512GB wide at the 512GB boundary */ 156 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 157 }; 158 159 static const int a15irqmap[] = { 160 [VIRT_UART] = 1, 161 [VIRT_RTC] = 2, 162 [VIRT_PCIE] = 3, /* ... to 6 */ 163 [VIRT_GPIO] = 7, 164 [VIRT_SECURE_UART] = 8, 165 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 166 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 167 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 168 }; 169 170 static VirtBoardInfo machines[] = { 171 { 172 .cpu_model = "cortex-a15", 173 .memmap = a15memmap, 174 .irqmap = a15irqmap, 175 }, 176 { 177 .cpu_model = "cortex-a53", 178 .memmap = a15memmap, 179 .irqmap = a15irqmap, 180 }, 181 { 182 .cpu_model = "cortex-a57", 183 .memmap = a15memmap, 184 .irqmap = a15irqmap, 185 }, 186 { 187 .cpu_model = "host", 188 .memmap = a15memmap, 189 .irqmap = a15irqmap, 190 }, 191 }; 192 193 static VirtBoardInfo *find_machine_info(const char *cpu) 194 { 195 int i; 196 197 for (i = 0; i < ARRAY_SIZE(machines); i++) { 198 if (strcmp(cpu, machines[i].cpu_model) == 0) { 199 return &machines[i]; 200 } 201 } 202 return NULL; 203 } 204 205 static void create_fdt(VirtBoardInfo *vbi) 206 { 207 void *fdt = create_device_tree(&vbi->fdt_size); 208 209 if (!fdt) { 210 error_report("create_device_tree() failed"); 211 exit(1); 212 } 213 214 vbi->fdt = fdt; 215 216 /* Header */ 217 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 218 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 219 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 220 221 /* 222 * /chosen and /memory nodes must exist for load_dtb 223 * to fill in necessary properties later 224 */ 225 qemu_fdt_add_subnode(fdt, "/chosen"); 226 qemu_fdt_add_subnode(fdt, "/memory"); 227 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 228 229 /* Clock node, for the benefit of the UART. The kernel device tree 230 * binding documentation claims the PL011 node clock properties are 231 * optional but in practice if you omit them the kernel refuses to 232 * probe for the device. 233 */ 234 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 235 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 236 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 237 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 238 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 239 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 240 "clk24mhz"); 241 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 242 243 } 244 245 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 246 { 247 uint32_t cpu_suspend_fn; 248 uint32_t cpu_off_fn; 249 uint32_t cpu_on_fn; 250 uint32_t migrate_fn; 251 void *fdt = vbi->fdt; 252 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 253 254 if (!vbi->using_psci) { 255 return; 256 } 257 258 qemu_fdt_add_subnode(fdt, "/psci"); 259 if (armcpu->psci_version == 2) { 260 const char comp[] = "arm,psci-0.2\0arm,psci"; 261 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 262 263 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 264 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 265 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 266 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 267 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 268 } else { 269 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 270 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 271 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 272 } 273 } else { 274 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 275 276 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 277 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 278 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 279 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 280 } 281 282 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 283 * to the instruction that should be used to invoke PSCI functions. 284 * However, the device tree binding uses 'method' instead, so that is 285 * what we should use here. 286 */ 287 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 288 289 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 290 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 291 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 292 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 293 } 294 295 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 296 { 297 /* Note that on A15 h/w these interrupts are level-triggered, 298 * but for the GIC implementation provided by both QEMU and KVM 299 * they are edge-triggered. 300 */ 301 ARMCPU *armcpu; 302 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 303 304 if (gictype == 2) { 305 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 306 GIC_FDT_IRQ_PPI_CPU_WIDTH, 307 (1 << vbi->smp_cpus) - 1); 308 } 309 310 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 311 312 armcpu = ARM_CPU(qemu_get_cpu(0)); 313 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 314 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 315 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 316 compat, sizeof(compat)); 317 } else { 318 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 319 "arm,armv7-timer"); 320 } 321 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0); 322 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 325 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 326 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 327 } 328 329 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 330 { 331 int cpu; 332 int addr_cells = 1; 333 unsigned int i; 334 335 /* 336 * From Documentation/devicetree/bindings/arm/cpus.txt 337 * On ARM v8 64-bit systems value should be set to 2, 338 * that corresponds to the MPIDR_EL1 register size. 339 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 340 * in the system, #address-cells can be set to 1, since 341 * MPIDR_EL1[63:32] bits are not used for CPUs 342 * identification. 343 * 344 * Here we actually don't know whether our system is 32- or 64-bit one. 345 * The simplest way to go is to examine affinity IDs of all our CPUs. If 346 * at least one of them has Aff3 populated, we set #address-cells to 2. 347 */ 348 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 349 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 350 351 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 352 addr_cells = 2; 353 break; 354 } 355 } 356 357 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 358 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 359 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 360 361 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 362 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 363 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 364 365 qemu_fdt_add_subnode(vbi->fdt, nodename); 366 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 367 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 368 armcpu->dtb_compatible); 369 370 if (vbi->using_psci && vbi->smp_cpus > 1) { 371 qemu_fdt_setprop_string(vbi->fdt, nodename, 372 "enable-method", "psci"); 373 } 374 375 if (addr_cells == 2) { 376 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 377 armcpu->mp_affinity); 378 } else { 379 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 380 armcpu->mp_affinity); 381 } 382 383 for (i = 0; i < nb_numa_nodes; i++) { 384 if (test_bit(cpu, numa_info[i].node_cpu)) { 385 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i); 386 } 387 } 388 389 g_free(nodename); 390 } 391 } 392 393 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 394 { 395 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 396 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 397 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 398 "arm,gic-v2m-frame"); 399 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 400 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 401 2, vbi->memmap[VIRT_GIC_V2M].base, 402 2, vbi->memmap[VIRT_GIC_V2M].size); 403 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 404 } 405 406 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 407 { 408 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 409 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 410 411 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 412 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 413 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 414 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 415 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 416 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 417 if (type == 3) { 418 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 419 "arm,gic-v3"); 420 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 421 2, vbi->memmap[VIRT_GIC_DIST].base, 422 2, vbi->memmap[VIRT_GIC_DIST].size, 423 2, vbi->memmap[VIRT_GIC_REDIST].base, 424 2, vbi->memmap[VIRT_GIC_REDIST].size); 425 } else { 426 /* 'cortex-a15-gic' means 'GIC v2' */ 427 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 428 "arm,cortex-a15-gic"); 429 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 430 2, vbi->memmap[VIRT_GIC_DIST].base, 431 2, vbi->memmap[VIRT_GIC_DIST].size, 432 2, vbi->memmap[VIRT_GIC_CPU].base, 433 2, vbi->memmap[VIRT_GIC_CPU].size); 434 } 435 436 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 437 } 438 439 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 440 { 441 int i; 442 int irq = vbi->irqmap[VIRT_GIC_V2M]; 443 DeviceState *dev; 444 445 dev = qdev_create(NULL, "arm-gicv2m"); 446 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 447 qdev_prop_set_uint32(dev, "base-spi", irq); 448 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 449 qdev_init_nofail(dev); 450 451 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 452 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 453 } 454 455 fdt_add_v2m_gic_node(vbi); 456 } 457 458 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 459 { 460 /* We create a standalone GIC */ 461 DeviceState *gicdev; 462 SysBusDevice *gicbusdev; 463 const char *gictype; 464 int i; 465 466 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 467 468 gicdev = qdev_create(NULL, gictype); 469 qdev_prop_set_uint32(gicdev, "revision", type); 470 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 471 /* Note that the num-irq property counts both internal and external 472 * interrupts; there are always 32 of the former (mandated by GIC spec). 473 */ 474 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 475 if (!kvm_irqchip_in_kernel()) { 476 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 477 } 478 qdev_init_nofail(gicdev); 479 gicbusdev = SYS_BUS_DEVICE(gicdev); 480 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 481 if (type == 3) { 482 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 483 } else { 484 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 485 } 486 487 /* Wire the outputs from each CPU's generic timer to the 488 * appropriate GIC PPI inputs, and the GIC's IRQ output to 489 * the CPU's IRQ input. 490 */ 491 for (i = 0; i < smp_cpus; i++) { 492 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 493 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 494 int irq; 495 /* Mapping from the output timer irq lines from the CPU to the 496 * GIC PPI inputs we use for the virt board. 497 */ 498 const int timer_irq[] = { 499 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 500 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 501 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 502 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 503 }; 504 505 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 506 qdev_connect_gpio_out(cpudev, irq, 507 qdev_get_gpio_in(gicdev, 508 ppibase + timer_irq[irq])); 509 } 510 511 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 512 sysbus_connect_irq(gicbusdev, i + smp_cpus, 513 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 514 } 515 516 for (i = 0; i < NUM_IRQS; i++) { 517 pic[i] = qdev_get_gpio_in(gicdev, i); 518 } 519 520 fdt_add_gic_node(vbi, type); 521 522 if (type == 2) { 523 create_v2m(vbi, pic); 524 } 525 } 526 527 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart, 528 MemoryRegion *mem) 529 { 530 char *nodename; 531 hwaddr base = vbi->memmap[uart].base; 532 hwaddr size = vbi->memmap[uart].size; 533 int irq = vbi->irqmap[uart]; 534 const char compat[] = "arm,pl011\0arm,primecell"; 535 const char clocknames[] = "uartclk\0apb_pclk"; 536 DeviceState *dev = qdev_create(NULL, "pl011"); 537 SysBusDevice *s = SYS_BUS_DEVICE(dev); 538 539 qdev_init_nofail(dev); 540 memory_region_add_subregion(mem, base, 541 sysbus_mmio_get_region(s, 0)); 542 sysbus_connect_irq(s, 0, pic[irq]); 543 544 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 545 qemu_fdt_add_subnode(vbi->fdt, nodename); 546 /* Note that we can't use setprop_string because of the embedded NUL */ 547 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 548 compat, sizeof(compat)); 549 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 550 2, base, 2, size); 551 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 552 GIC_FDT_IRQ_TYPE_SPI, irq, 553 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 554 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 555 vbi->clock_phandle, vbi->clock_phandle); 556 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 557 clocknames, sizeof(clocknames)); 558 559 if (uart == VIRT_UART) { 560 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 561 } else { 562 /* Mark as not usable by the normal world */ 563 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 564 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 565 } 566 567 g_free(nodename); 568 } 569 570 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 571 { 572 char *nodename; 573 hwaddr base = vbi->memmap[VIRT_RTC].base; 574 hwaddr size = vbi->memmap[VIRT_RTC].size; 575 int irq = vbi->irqmap[VIRT_RTC]; 576 const char compat[] = "arm,pl031\0arm,primecell"; 577 578 sysbus_create_simple("pl031", base, pic[irq]); 579 580 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 581 qemu_fdt_add_subnode(vbi->fdt, nodename); 582 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 583 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 584 2, base, 2, size); 585 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 586 GIC_FDT_IRQ_TYPE_SPI, irq, 587 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 588 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 589 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 590 g_free(nodename); 591 } 592 593 static DeviceState *gpio_key_dev; 594 static void virt_powerdown_req(Notifier *n, void *opaque) 595 { 596 /* use gpio Pin 3 for power button event */ 597 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 598 } 599 600 static Notifier virt_system_powerdown_notifier = { 601 .notify = virt_powerdown_req 602 }; 603 604 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 605 { 606 char *nodename; 607 DeviceState *pl061_dev; 608 hwaddr base = vbi->memmap[VIRT_GPIO].base; 609 hwaddr size = vbi->memmap[VIRT_GPIO].size; 610 int irq = vbi->irqmap[VIRT_GPIO]; 611 const char compat[] = "arm,pl061\0arm,primecell"; 612 613 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 614 615 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 616 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 617 qemu_fdt_add_subnode(vbi->fdt, nodename); 618 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 619 2, base, 2, size); 620 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 621 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 622 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 623 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 624 GIC_FDT_IRQ_TYPE_SPI, irq, 625 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 626 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 627 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 628 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 629 630 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 631 qdev_get_gpio_in(pl061_dev, 3)); 632 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 633 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 634 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 635 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 636 637 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 638 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 639 "label", "GPIO Key Poweroff"); 640 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 641 KEY_POWER); 642 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 643 "gpios", phandle, 3, 0); 644 645 /* connect powerdown request */ 646 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 647 648 g_free(nodename); 649 } 650 651 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 652 { 653 int i; 654 hwaddr size = vbi->memmap[VIRT_MMIO].size; 655 656 /* We create the transports in forwards order. Since qbus_realize() 657 * prepends (not appends) new child buses, the incrementing loop below will 658 * create a list of virtio-mmio buses with decreasing base addresses. 659 * 660 * When a -device option is processed from the command line, 661 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 662 * order. The upshot is that -device options in increasing command line 663 * order are mapped to virtio-mmio buses with decreasing base addresses. 664 * 665 * When this code was originally written, that arrangement ensured that the 666 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 667 * the first -device on the command line. (The end-to-end order is a 668 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 669 * guest kernel's name-to-address assignment strategy.) 670 * 671 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 672 * the message, if not necessarily the code, of commit 70161ff336. 673 * Therefore the loop now establishes the inverse of the original intent. 674 * 675 * Unfortunately, we can't counteract the kernel change by reversing the 676 * loop; it would break existing command lines. 677 * 678 * In any case, the kernel makes no guarantee about the stability of 679 * enumeration order of virtio devices (as demonstrated by it changing 680 * between kernel versions). For reliable and stable identification 681 * of disks users must use UUIDs or similar mechanisms. 682 */ 683 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 684 int irq = vbi->irqmap[VIRT_MMIO] + i; 685 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 686 687 sysbus_create_simple("virtio-mmio", base, pic[irq]); 688 } 689 690 /* We add dtb nodes in reverse order so that they appear in the finished 691 * device tree lowest address first. 692 * 693 * Note that this mapping is independent of the loop above. The previous 694 * loop influences virtio device to virtio transport assignment, whereas 695 * this loop controls how virtio transports are laid out in the dtb. 696 */ 697 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 698 char *nodename; 699 int irq = vbi->irqmap[VIRT_MMIO] + i; 700 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 701 702 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 703 qemu_fdt_add_subnode(vbi->fdt, nodename); 704 qemu_fdt_setprop_string(vbi->fdt, nodename, 705 "compatible", "virtio,mmio"); 706 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 707 2, base, 2, size); 708 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 709 GIC_FDT_IRQ_TYPE_SPI, irq, 710 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 711 g_free(nodename); 712 } 713 } 714 715 static void create_one_flash(const char *name, hwaddr flashbase, 716 hwaddr flashsize, const char *file, 717 MemoryRegion *sysmem) 718 { 719 /* Create and map a single flash device. We use the same 720 * parameters as the flash devices on the Versatile Express board. 721 */ 722 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 723 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 724 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 725 const uint64_t sectorlength = 256 * 1024; 726 727 if (dinfo) { 728 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 729 &error_abort); 730 } 731 732 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 733 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 734 qdev_prop_set_uint8(dev, "width", 4); 735 qdev_prop_set_uint8(dev, "device-width", 2); 736 qdev_prop_set_bit(dev, "big-endian", false); 737 qdev_prop_set_uint16(dev, "id0", 0x89); 738 qdev_prop_set_uint16(dev, "id1", 0x18); 739 qdev_prop_set_uint16(dev, "id2", 0x00); 740 qdev_prop_set_uint16(dev, "id3", 0x00); 741 qdev_prop_set_string(dev, "name", name); 742 qdev_init_nofail(dev); 743 744 memory_region_add_subregion(sysmem, flashbase, 745 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 746 747 if (file) { 748 char *fn; 749 int image_size; 750 751 if (drive_get(IF_PFLASH, 0, 0)) { 752 error_report("The contents of the first flash device may be " 753 "specified with -bios or with -drive if=pflash... " 754 "but you cannot use both options at once"); 755 exit(1); 756 } 757 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 758 if (!fn) { 759 error_report("Could not find ROM image '%s'", file); 760 exit(1); 761 } 762 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 763 g_free(fn); 764 if (image_size < 0) { 765 error_report("Could not load ROM image '%s'", file); 766 exit(1); 767 } 768 } 769 } 770 771 static void create_flash(const VirtBoardInfo *vbi, 772 MemoryRegion *sysmem, 773 MemoryRegion *secure_sysmem) 774 { 775 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 776 * Any file passed via -bios goes in the first of these. 777 * sysmem is the system memory space. secure_sysmem is the secure view 778 * of the system, and the first flash device should be made visible only 779 * there. The second flash device is visible to both secure and nonsecure. 780 * If sysmem == secure_sysmem this means there is no separate Secure 781 * address space and both flash devices are generally visible. 782 */ 783 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 784 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 785 char *nodename; 786 787 create_one_flash("virt.flash0", flashbase, flashsize, 788 bios_name, secure_sysmem); 789 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 790 NULL, sysmem); 791 792 if (sysmem == secure_sysmem) { 793 /* Report both flash devices as a single node in the DT */ 794 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 795 qemu_fdt_add_subnode(vbi->fdt, nodename); 796 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 797 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 798 2, flashbase, 2, flashsize, 799 2, flashbase + flashsize, 2, flashsize); 800 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 801 g_free(nodename); 802 } else { 803 /* Report the devices as separate nodes so we can mark one as 804 * only visible to the secure world. 805 */ 806 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 807 qemu_fdt_add_subnode(vbi->fdt, nodename); 808 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 809 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 810 2, flashbase, 2, flashsize); 811 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 812 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 813 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 814 g_free(nodename); 815 816 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 817 qemu_fdt_add_subnode(vbi->fdt, nodename); 818 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 819 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 820 2, flashbase + flashsize, 2, flashsize); 821 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 822 g_free(nodename); 823 } 824 } 825 826 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 827 { 828 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 829 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 830 char *nodename; 831 832 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 833 834 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 835 qemu_fdt_add_subnode(vbi->fdt, nodename); 836 qemu_fdt_setprop_string(vbi->fdt, nodename, 837 "compatible", "qemu,fw-cfg-mmio"); 838 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 839 2, base, 2, size); 840 g_free(nodename); 841 } 842 843 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 844 int first_irq, const char *nodename) 845 { 846 int devfn, pin; 847 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 848 uint32_t *irq_map = full_irq_map; 849 850 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 851 for (pin = 0; pin < 4; pin++) { 852 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 853 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 854 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 855 int i; 856 857 uint32_t map[] = { 858 devfn << 8, 0, 0, /* devfn */ 859 pin + 1, /* PCI pin */ 860 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 861 862 /* Convert map to big endian */ 863 for (i = 0; i < 10; i++) { 864 irq_map[i] = cpu_to_be32(map[i]); 865 } 866 irq_map += 10; 867 } 868 } 869 870 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 871 full_irq_map, sizeof(full_irq_map)); 872 873 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 874 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 875 0x7 /* PCI irq */); 876 } 877 878 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 879 bool use_highmem) 880 { 881 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 882 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 883 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 884 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 885 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 886 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 887 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 888 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 889 hwaddr base = base_mmio; 890 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 891 int irq = vbi->irqmap[VIRT_PCIE]; 892 MemoryRegion *mmio_alias; 893 MemoryRegion *mmio_reg; 894 MemoryRegion *ecam_alias; 895 MemoryRegion *ecam_reg; 896 DeviceState *dev; 897 char *nodename; 898 int i; 899 PCIHostState *pci; 900 901 dev = qdev_create(NULL, TYPE_GPEX_HOST); 902 qdev_init_nofail(dev); 903 904 /* Map only the first size_ecam bytes of ECAM space */ 905 ecam_alias = g_new0(MemoryRegion, 1); 906 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 907 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 908 ecam_reg, 0, size_ecam); 909 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 910 911 /* Map the MMIO window into system address space so as to expose 912 * the section of PCI MMIO space which starts at the same base address 913 * (ie 1:1 mapping for that part of PCI MMIO space visible through 914 * the window). 915 */ 916 mmio_alias = g_new0(MemoryRegion, 1); 917 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 918 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 919 mmio_reg, base_mmio, size_mmio); 920 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 921 922 if (use_highmem) { 923 /* Map high MMIO space */ 924 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 925 926 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 927 mmio_reg, base_mmio_high, size_mmio_high); 928 memory_region_add_subregion(get_system_memory(), base_mmio_high, 929 high_mmio_alias); 930 } 931 932 /* Map IO port space */ 933 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 934 935 for (i = 0; i < GPEX_NUM_IRQS; i++) { 936 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 937 } 938 939 pci = PCI_HOST_BRIDGE(dev); 940 if (pci->bus) { 941 for (i = 0; i < nb_nics; i++) { 942 NICInfo *nd = &nd_table[i]; 943 944 if (!nd->model) { 945 nd->model = g_strdup("virtio"); 946 } 947 948 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 949 } 950 } 951 952 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 953 qemu_fdt_add_subnode(vbi->fdt, nodename); 954 qemu_fdt_setprop_string(vbi->fdt, nodename, 955 "compatible", "pci-host-ecam-generic"); 956 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 957 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 958 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 959 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 960 nr_pcie_buses - 1); 961 962 if (vbi->v2m_phandle) { 963 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 964 vbi->v2m_phandle); 965 } 966 967 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 968 2, base_ecam, 2, size_ecam); 969 970 if (use_highmem) { 971 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 972 1, FDT_PCI_RANGE_IOPORT, 2, 0, 973 2, base_pio, 2, size_pio, 974 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 975 2, base_mmio, 2, size_mmio, 976 1, FDT_PCI_RANGE_MMIO_64BIT, 977 2, base_mmio_high, 978 2, base_mmio_high, 2, size_mmio_high); 979 } else { 980 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 981 1, FDT_PCI_RANGE_IOPORT, 2, 0, 982 2, base_pio, 2, size_pio, 983 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 984 2, base_mmio, 2, size_mmio); 985 } 986 987 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 988 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 989 990 g_free(nodename); 991 } 992 993 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 994 { 995 DeviceState *dev; 996 SysBusDevice *s; 997 int i; 998 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 999 MemoryRegion *sysmem = get_system_memory(); 1000 1001 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 1002 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 1003 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 1004 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 1005 1006 fdt_params->system_params = &platform_bus_params; 1007 fdt_params->binfo = &vbi->bootinfo; 1008 fdt_params->intc = "/intc"; 1009 /* 1010 * register a machine init done notifier that creates the device tree 1011 * nodes of the platform bus and its children dynamic sysbus devices 1012 */ 1013 arm_register_platform_bus_fdt_creator(fdt_params); 1014 1015 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1016 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1017 qdev_prop_set_uint32(dev, "num_irqs", 1018 platform_bus_params.platform_bus_num_irqs); 1019 qdev_prop_set_uint32(dev, "mmio_size", 1020 platform_bus_params.platform_bus_size); 1021 qdev_init_nofail(dev); 1022 s = SYS_BUS_DEVICE(dev); 1023 1024 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 1025 int irqn = platform_bus_params.platform_bus_first_irq + i; 1026 sysbus_connect_irq(s, i, pic[irqn]); 1027 } 1028 1029 memory_region_add_subregion(sysmem, 1030 platform_bus_params.platform_bus_base, 1031 sysbus_mmio_get_region(s, 0)); 1032 } 1033 1034 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem) 1035 { 1036 MemoryRegion *secram = g_new(MemoryRegion, 1); 1037 char *nodename; 1038 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base; 1039 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size; 1040 1041 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal); 1042 vmstate_register_ram_global(secram); 1043 memory_region_add_subregion(secure_sysmem, base, secram); 1044 1045 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1046 qemu_fdt_add_subnode(vbi->fdt, nodename); 1047 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory"); 1048 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size); 1049 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 1050 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 1051 1052 g_free(nodename); 1053 } 1054 1055 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1056 { 1057 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 1058 1059 *fdt_size = board->fdt_size; 1060 return board->fdt; 1061 } 1062 1063 static void virt_build_smbios(VirtGuestInfo *guest_info) 1064 { 1065 FWCfgState *fw_cfg = guest_info->fw_cfg; 1066 uint8_t *smbios_tables, *smbios_anchor; 1067 size_t smbios_tables_len, smbios_anchor_len; 1068 const char *product = "QEMU Virtual Machine"; 1069 1070 if (!fw_cfg) { 1071 return; 1072 } 1073 1074 if (kvm_enabled()) { 1075 product = "KVM Virtual Machine"; 1076 } 1077 1078 smbios_set_defaults("QEMU", product, 1079 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 1080 1081 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1082 &smbios_anchor, &smbios_anchor_len); 1083 1084 if (smbios_anchor) { 1085 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 1086 smbios_tables, smbios_tables_len); 1087 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 1088 smbios_anchor, smbios_anchor_len); 1089 } 1090 } 1091 1092 static 1093 void virt_guest_info_machine_done(Notifier *notifier, void *data) 1094 { 1095 VirtGuestInfoState *guest_info_state = container_of(notifier, 1096 VirtGuestInfoState, machine_done); 1097 virt_acpi_setup(&guest_info_state->info); 1098 virt_build_smbios(&guest_info_state->info); 1099 } 1100 1101 static void machvirt_init(MachineState *machine) 1102 { 1103 VirtMachineState *vms = VIRT_MACHINE(machine); 1104 qemu_irq pic[NUM_IRQS]; 1105 MemoryRegion *sysmem = get_system_memory(); 1106 MemoryRegion *secure_sysmem = NULL; 1107 int gic_version = vms->gic_version; 1108 int n, virt_max_cpus; 1109 MemoryRegion *ram = g_new(MemoryRegion, 1); 1110 const char *cpu_model = machine->cpu_model; 1111 VirtBoardInfo *vbi; 1112 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1113 VirtGuestInfo *guest_info = &guest_info_state->info; 1114 char **cpustr; 1115 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1116 1117 if (!cpu_model) { 1118 cpu_model = "cortex-a15"; 1119 } 1120 1121 /* We can probe only here because during property set 1122 * KVM is not available yet 1123 */ 1124 if (!gic_version) { 1125 gic_version = kvm_arm_vgic_probe(); 1126 if (!gic_version) { 1127 error_report("Unable to determine GIC version supported by host"); 1128 error_printf("KVM acceleration is probably not supported\n"); 1129 exit(1); 1130 } 1131 } 1132 1133 /* Separate the actual CPU model name from any appended features */ 1134 cpustr = g_strsplit(cpu_model, ",", 2); 1135 1136 vbi = find_machine_info(cpustr[0]); 1137 1138 if (!vbi) { 1139 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1140 exit(1); 1141 } 1142 1143 /* If we have an EL3 boot ROM then the assumption is that it will 1144 * implement PSCI itself, so disable QEMU's internal implementation 1145 * so it doesn't get in the way. Instead of starting secondary 1146 * CPUs in PSCI powerdown state we will start them all running and 1147 * let the boot ROM sort them out. 1148 * The usual case is that we do use QEMU's PSCI implementation. 1149 */ 1150 vbi->using_psci = !(vms->secure && firmware_loaded); 1151 1152 /* The maximum number of CPUs depends on the GIC version, or on how 1153 * many redistributors we can fit into the memory map. 1154 */ 1155 if (gic_version == 3) { 1156 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1157 } else { 1158 virt_max_cpus = GIC_NCPU; 1159 } 1160 1161 if (max_cpus > virt_max_cpus) { 1162 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1163 "supported by machine 'mach-virt' (%d)", 1164 max_cpus, virt_max_cpus); 1165 exit(1); 1166 } 1167 1168 vbi->smp_cpus = smp_cpus; 1169 1170 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1171 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1172 exit(1); 1173 } 1174 1175 if (vms->secure) { 1176 if (kvm_enabled()) { 1177 error_report("mach-virt: KVM does not support Security extensions"); 1178 exit(1); 1179 } 1180 1181 /* The Secure view of the world is the same as the NonSecure, 1182 * but with a few extra devices. Create it as a container region 1183 * containing the system memory at low priority; any secure-only 1184 * devices go in at higher priority and take precedence. 1185 */ 1186 secure_sysmem = g_new(MemoryRegion, 1); 1187 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1188 UINT64_MAX); 1189 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1190 } 1191 1192 create_fdt(vbi); 1193 1194 for (n = 0; n < smp_cpus; n++) { 1195 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1196 CPUClass *cc = CPU_CLASS(oc); 1197 Object *cpuobj; 1198 Error *err = NULL; 1199 char *cpuopts = g_strdup(cpustr[1]); 1200 1201 if (!oc) { 1202 error_report("Unable to find CPU definition"); 1203 exit(1); 1204 } 1205 cpuobj = object_new(object_class_get_name(oc)); 1206 1207 /* Handle any CPU options specified by the user */ 1208 cc->parse_features(CPU(cpuobj), cpuopts, &err); 1209 g_free(cpuopts); 1210 if (err) { 1211 error_report_err(err); 1212 exit(1); 1213 } 1214 1215 if (!vms->secure) { 1216 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1217 } 1218 1219 if (vbi->using_psci) { 1220 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, 1221 "psci-conduit", NULL); 1222 1223 /* Secondary CPUs start in PSCI powered-down state */ 1224 if (n > 0) { 1225 object_property_set_bool(cpuobj, true, 1226 "start-powered-off", NULL); 1227 } 1228 } 1229 1230 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1231 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1232 "reset-cbar", &error_abort); 1233 } 1234 1235 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1236 &error_abort); 1237 if (vms->secure) { 1238 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1239 "secure-memory", &error_abort); 1240 } 1241 1242 object_property_set_bool(cpuobj, true, "realized", NULL); 1243 } 1244 g_strfreev(cpustr); 1245 fdt_add_timer_nodes(vbi, gic_version); 1246 fdt_add_cpu_nodes(vbi); 1247 fdt_add_psci_node(vbi); 1248 1249 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1250 machine->ram_size); 1251 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1252 1253 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1254 1255 create_gic(vbi, pic, gic_version, vms->secure); 1256 1257 create_uart(vbi, pic, VIRT_UART, sysmem); 1258 1259 if (vms->secure) { 1260 create_secure_ram(vbi, secure_sysmem); 1261 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem); 1262 } 1263 1264 create_rtc(vbi, pic); 1265 1266 create_pcie(vbi, pic, vms->highmem); 1267 1268 create_gpio(vbi, pic); 1269 1270 /* Create mmio transports, so the user can create virtio backends 1271 * (which will be automatically plugged in to the transports). If 1272 * no backend is created the transport will just sit harmlessly idle. 1273 */ 1274 create_virtio_devices(vbi, pic); 1275 1276 create_fw_cfg(vbi, &address_space_memory); 1277 rom_set_fw(fw_cfg_find()); 1278 1279 guest_info->smp_cpus = smp_cpus; 1280 guest_info->fw_cfg = fw_cfg_find(); 1281 guest_info->memmap = vbi->memmap; 1282 guest_info->irqmap = vbi->irqmap; 1283 guest_info->use_highmem = vms->highmem; 1284 guest_info->gic_version = gic_version; 1285 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1286 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1287 1288 vbi->bootinfo.ram_size = machine->ram_size; 1289 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1290 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1291 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1292 vbi->bootinfo.nb_cpus = smp_cpus; 1293 vbi->bootinfo.board_id = -1; 1294 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1295 vbi->bootinfo.get_dtb = machvirt_dtb; 1296 vbi->bootinfo.firmware_loaded = firmware_loaded; 1297 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1298 1299 /* 1300 * arm_load_kernel machine init done notifier registration must 1301 * happen before the platform_bus_create call. In this latter, 1302 * another notifier is registered which adds platform bus nodes. 1303 * Notifiers are executed in registration reverse order. 1304 */ 1305 create_platform_bus(vbi, pic); 1306 } 1307 1308 static bool virt_get_secure(Object *obj, Error **errp) 1309 { 1310 VirtMachineState *vms = VIRT_MACHINE(obj); 1311 1312 return vms->secure; 1313 } 1314 1315 static void virt_set_secure(Object *obj, bool value, Error **errp) 1316 { 1317 VirtMachineState *vms = VIRT_MACHINE(obj); 1318 1319 vms->secure = value; 1320 } 1321 1322 static bool virt_get_highmem(Object *obj, Error **errp) 1323 { 1324 VirtMachineState *vms = VIRT_MACHINE(obj); 1325 1326 return vms->highmem; 1327 } 1328 1329 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1330 { 1331 VirtMachineState *vms = VIRT_MACHINE(obj); 1332 1333 vms->highmem = value; 1334 } 1335 1336 static char *virt_get_gic_version(Object *obj, Error **errp) 1337 { 1338 VirtMachineState *vms = VIRT_MACHINE(obj); 1339 const char *val = vms->gic_version == 3 ? "3" : "2"; 1340 1341 return g_strdup(val); 1342 } 1343 1344 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1345 { 1346 VirtMachineState *vms = VIRT_MACHINE(obj); 1347 1348 if (!strcmp(value, "3")) { 1349 vms->gic_version = 3; 1350 } else if (!strcmp(value, "2")) { 1351 vms->gic_version = 2; 1352 } else if (!strcmp(value, "host")) { 1353 vms->gic_version = 0; /* Will probe later */ 1354 } else { 1355 error_setg(errp, "Invalid gic-version value"); 1356 error_append_hint(errp, "Valid values are 3, 2, host.\n"); 1357 } 1358 } 1359 1360 static void virt_machine_class_init(ObjectClass *oc, void *data) 1361 { 1362 MachineClass *mc = MACHINE_CLASS(oc); 1363 1364 mc->init = machvirt_init; 1365 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1366 * it later in machvirt_init, where we have more information about the 1367 * configuration of the particular instance. 1368 */ 1369 mc->max_cpus = MAX_CPUMASK_BITS; 1370 mc->has_dynamic_sysbus = true; 1371 mc->block_default_type = IF_VIRTIO; 1372 mc->no_cdrom = 1; 1373 mc->pci_allow_0_address = true; 1374 } 1375 1376 static const TypeInfo virt_machine_info = { 1377 .name = TYPE_VIRT_MACHINE, 1378 .parent = TYPE_MACHINE, 1379 .abstract = true, 1380 .instance_size = sizeof(VirtMachineState), 1381 .class_size = sizeof(VirtMachineClass), 1382 .class_init = virt_machine_class_init, 1383 }; 1384 1385 static void virt_2_6_instance_init(Object *obj) 1386 { 1387 VirtMachineState *vms = VIRT_MACHINE(obj); 1388 1389 /* EL3 is disabled by default on virt: this makes us consistent 1390 * between KVM and TCG for this board, and it also allows us to 1391 * boot UEFI blobs which assume no TrustZone support. 1392 */ 1393 vms->secure = false; 1394 object_property_add_bool(obj, "secure", virt_get_secure, 1395 virt_set_secure, NULL); 1396 object_property_set_description(obj, "secure", 1397 "Set on/off to enable/disable the ARM " 1398 "Security Extensions (TrustZone)", 1399 NULL); 1400 1401 /* High memory is enabled by default */ 1402 vms->highmem = true; 1403 object_property_add_bool(obj, "highmem", virt_get_highmem, 1404 virt_set_highmem, NULL); 1405 object_property_set_description(obj, "highmem", 1406 "Set on/off to enable/disable using " 1407 "physical address space above 32 bits", 1408 NULL); 1409 /* Default GIC type is v2 */ 1410 vms->gic_version = 2; 1411 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1412 virt_set_gic_version, NULL); 1413 object_property_set_description(obj, "gic-version", 1414 "Set GIC version. " 1415 "Valid values are 2, 3 and host", NULL); 1416 } 1417 1418 static void virt_2_6_class_init(ObjectClass *oc, void *data) 1419 { 1420 MachineClass *mc = MACHINE_CLASS(oc); 1421 static GlobalProperty compat_props[] = { 1422 { /* end of list */ } 1423 }; 1424 1425 mc->desc = "QEMU 2.6 ARM Virtual Machine"; 1426 mc->alias = "virt"; 1427 mc->compat_props = compat_props; 1428 } 1429 1430 static const TypeInfo machvirt_info = { 1431 .name = MACHINE_TYPE_NAME("virt-2.6"), 1432 .parent = TYPE_VIRT_MACHINE, 1433 .instance_init = virt_2_6_instance_init, 1434 .class_init = virt_2_6_class_init, 1435 }; 1436 1437 static void machvirt_machine_init(void) 1438 { 1439 type_register_static(&virt_machine_info); 1440 type_register_static(&machvirt_info); 1441 } 1442 1443 type_init(machvirt_machine_init); 1444