xref: /openbmc/qemu/hw/arm/virt.c (revision 4b318d6ca66545e59eafbf595f66e31bf1625d9a)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/kvm.h"
40 #include "hw/boards.h"
41 #include "hw/loader.h"
42 #include "exec/address-spaces.h"
43 #include "qemu/bitops.h"
44 #include "qemu/error-report.h"
45 
46 #define NUM_VIRTIO_TRANSPORTS 32
47 
48 /* Number of external interrupt lines to configure the GIC with */
49 #define NUM_IRQS 128
50 
51 #define GIC_FDT_IRQ_TYPE_SPI 0
52 #define GIC_FDT_IRQ_TYPE_PPI 1
53 
54 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
56 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
58 
59 #define GIC_FDT_IRQ_PPI_CPU_START 8
60 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
61 
62 enum {
63     VIRT_FLASH,
64     VIRT_MEM,
65     VIRT_CPUPERIPHS,
66     VIRT_GIC_DIST,
67     VIRT_GIC_CPU,
68     VIRT_UART,
69     VIRT_MMIO,
70     VIRT_RTC,
71 };
72 
73 typedef struct MemMapEntry {
74     hwaddr base;
75     hwaddr size;
76 } MemMapEntry;
77 
78 typedef struct VirtBoardInfo {
79     struct arm_boot_info bootinfo;
80     const char *cpu_model;
81     const MemMapEntry *memmap;
82     const int *irqmap;
83     int smp_cpus;
84     void *fdt;
85     int fdt_size;
86     uint32_t clock_phandle;
87 } VirtBoardInfo;
88 
89 /* Addresses and sizes of our components.
90  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
91  * 128MB..256MB is used for miscellaneous device I/O.
92  * 256MB..1GB is reserved for possible future PCI support (ie where the
93  * PCI memory window will go if we add a PCI host controller).
94  * 1GB and up is RAM (which may happily spill over into the
95  * high memory region beyond 4GB).
96  * This represents a compromise between how much RAM can be given to
97  * a 32 bit VM and leaving space for expansion and in particular for PCI.
98  * Note that devices should generally be placed at multiples of 0x10000,
99  * to accommodate guests using 64K pages.
100  */
101 static const MemMapEntry a15memmap[] = {
102     /* Space up to 0x8000000 is reserved for a boot ROM */
103     [VIRT_FLASH] =      {          0, 0x08000000 },
104     [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
105     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
106     [VIRT_GIC_DIST] =   { 0x08000000, 0x00010000 },
107     [VIRT_GIC_CPU] =    { 0x08010000, 0x00010000 },
108     [VIRT_UART] =       { 0x09000000, 0x00001000 },
109     [VIRT_RTC] =        { 0x09010000, 0x00001000 },
110     [VIRT_MMIO] =       { 0x0a000000, 0x00000200 },
111     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
112     /* 0x10000000 .. 0x40000000 reserved for PCI */
113     [VIRT_MEM] =        { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
114 };
115 
116 static const int a15irqmap[] = {
117     [VIRT_UART] = 1,
118     [VIRT_RTC] = 2,
119     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
120 };
121 
122 static VirtBoardInfo machines[] = {
123     {
124         .cpu_model = "cortex-a15",
125         .memmap = a15memmap,
126         .irqmap = a15irqmap,
127     },
128     {
129         .cpu_model = "cortex-a57",
130         .memmap = a15memmap,
131         .irqmap = a15irqmap,
132     },
133     {
134         .cpu_model = "host",
135         .memmap = a15memmap,
136         .irqmap = a15irqmap,
137     },
138 };
139 
140 static VirtBoardInfo *find_machine_info(const char *cpu)
141 {
142     int i;
143 
144     for (i = 0; i < ARRAY_SIZE(machines); i++) {
145         if (strcmp(cpu, machines[i].cpu_model) == 0) {
146             return &machines[i];
147         }
148     }
149     return NULL;
150 }
151 
152 static void create_fdt(VirtBoardInfo *vbi)
153 {
154     void *fdt = create_device_tree(&vbi->fdt_size);
155 
156     if (!fdt) {
157         error_report("create_device_tree() failed");
158         exit(1);
159     }
160 
161     vbi->fdt = fdt;
162 
163     /* Header */
164     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
165     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
166     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
167 
168     /*
169      * /chosen and /memory nodes must exist for load_dtb
170      * to fill in necessary properties later
171      */
172     qemu_fdt_add_subnode(fdt, "/chosen");
173     qemu_fdt_add_subnode(fdt, "/memory");
174     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
175 
176     /* Clock node, for the benefit of the UART. The kernel device tree
177      * binding documentation claims the PL011 node clock properties are
178      * optional but in practice if you omit them the kernel refuses to
179      * probe for the device.
180      */
181     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
182     qemu_fdt_add_subnode(fdt, "/apb-pclk");
183     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
184     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
185     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
186     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
187                                 "clk24mhz");
188     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
189 
190 }
191 
192 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
193 {
194     void *fdt = vbi->fdt;
195     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
196 
197     /* No PSCI for TCG yet */
198     if (kvm_enabled()) {
199         uint32_t cpu_suspend_fn;
200         uint32_t cpu_off_fn;
201         uint32_t cpu_on_fn;
202         uint32_t migrate_fn;
203 
204         qemu_fdt_add_subnode(fdt, "/psci");
205         if (armcpu->psci_version == 2) {
206             const char comp[] = "arm,psci-0.2\0arm,psci";
207             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
208 
209             cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
210             if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
211                 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
212                 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
213                 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
214             } else {
215                 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
216                 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
217                 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
218             }
219         } else {
220             qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
221 
222             cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
223             cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
224             cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
225             migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
226         }
227 
228         qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
229 
230         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
231         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
232         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
233         qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
234     }
235 }
236 
237 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
238 {
239     /* Note that on A15 h/w these interrupts are level-triggered,
240      * but for the GIC implementation provided by both QEMU and KVM
241      * they are edge-triggered.
242      */
243     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
244 
245     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
246                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
247 
248     qemu_fdt_add_subnode(vbi->fdt, "/timer");
249     qemu_fdt_setprop_string(vbi->fdt, "/timer",
250                                 "compatible", "arm,armv7-timer");
251     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
252                                GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
253                                GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
254                                GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
255                                GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
256 }
257 
258 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
259 {
260     int cpu;
261 
262     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
263     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
264     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
265 
266     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
267         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
268         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
269 
270         qemu_fdt_add_subnode(vbi->fdt, nodename);
271         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
272         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
273                                     armcpu->dtb_compatible);
274 
275         if (vbi->smp_cpus > 1) {
276             qemu_fdt_setprop_string(vbi->fdt, nodename,
277                                         "enable-method", "psci");
278         }
279 
280         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
281         g_free(nodename);
282     }
283 }
284 
285 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
286 {
287     uint32_t gic_phandle;
288 
289     gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
290     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
291 
292     qemu_fdt_add_subnode(vbi->fdt, "/intc");
293     /* 'cortex-a15-gic' means 'GIC v2' */
294     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
295                             "arm,cortex-a15-gic");
296     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
297     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
298     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
299                                      2, vbi->memmap[VIRT_GIC_DIST].base,
300                                      2, vbi->memmap[VIRT_GIC_DIST].size,
301                                      2, vbi->memmap[VIRT_GIC_CPU].base,
302                                      2, vbi->memmap[VIRT_GIC_CPU].size);
303     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
304 }
305 
306 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
307 {
308     /* We create a standalone GIC v2 */
309     DeviceState *gicdev;
310     SysBusDevice *gicbusdev;
311     const char *gictype = "arm_gic";
312     int i;
313 
314     if (kvm_irqchip_in_kernel()) {
315         gictype = "kvm-arm-gic";
316     }
317 
318     gicdev = qdev_create(NULL, gictype);
319     qdev_prop_set_uint32(gicdev, "revision", 2);
320     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
321     /* Note that the num-irq property counts both internal and external
322      * interrupts; there are always 32 of the former (mandated by GIC spec).
323      */
324     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
325     qdev_init_nofail(gicdev);
326     gicbusdev = SYS_BUS_DEVICE(gicdev);
327     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
328     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
329 
330     /* Wire the outputs from each CPU's generic timer to the
331      * appropriate GIC PPI inputs, and the GIC's IRQ output to
332      * the CPU's IRQ input.
333      */
334     for (i = 0; i < smp_cpus; i++) {
335         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
336         int ppibase = NUM_IRQS + i * 32;
337         /* physical timer; we wire it up to the non-secure timer's ID,
338          * since a real A15 always has TrustZone but QEMU doesn't.
339          */
340         qdev_connect_gpio_out(cpudev, 0,
341                               qdev_get_gpio_in(gicdev, ppibase + 30));
342         /* virtual timer */
343         qdev_connect_gpio_out(cpudev, 1,
344                               qdev_get_gpio_in(gicdev, ppibase + 27));
345 
346         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
347     }
348 
349     for (i = 0; i < NUM_IRQS; i++) {
350         pic[i] = qdev_get_gpio_in(gicdev, i);
351     }
352 
353     fdt_add_gic_node(vbi);
354 }
355 
356 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
357 {
358     char *nodename;
359     hwaddr base = vbi->memmap[VIRT_UART].base;
360     hwaddr size = vbi->memmap[VIRT_UART].size;
361     int irq = vbi->irqmap[VIRT_UART];
362     const char compat[] = "arm,pl011\0arm,primecell";
363     const char clocknames[] = "uartclk\0apb_pclk";
364 
365     sysbus_create_simple("pl011", base, pic[irq]);
366 
367     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
368     qemu_fdt_add_subnode(vbi->fdt, nodename);
369     /* Note that we can't use setprop_string because of the embedded NUL */
370     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
371                          compat, sizeof(compat));
372     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
373                                      2, base, 2, size);
374     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
375                                GIC_FDT_IRQ_TYPE_SPI, irq,
376                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
377     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
378                                vbi->clock_phandle, vbi->clock_phandle);
379     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
380                          clocknames, sizeof(clocknames));
381 
382     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "linux,stdout-path", nodename);
383     g_free(nodename);
384 }
385 
386 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
387 {
388     char *nodename;
389     hwaddr base = vbi->memmap[VIRT_RTC].base;
390     hwaddr size = vbi->memmap[VIRT_RTC].size;
391     int irq = vbi->irqmap[VIRT_RTC];
392     const char compat[] = "arm,pl031\0arm,primecell";
393 
394     sysbus_create_simple("pl031", base, pic[irq]);
395 
396     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
397     qemu_fdt_add_subnode(vbi->fdt, nodename);
398     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
399     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
400                                  2, base, 2, size);
401     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
402                            GIC_FDT_IRQ_TYPE_SPI, irq,
403                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
404     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
405     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
406     g_free(nodename);
407 }
408 
409 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
410 {
411     int i;
412     hwaddr size = vbi->memmap[VIRT_MMIO].size;
413 
414     /* Note that we have to create the transports in forwards order
415      * so that command line devices are inserted lowest address first,
416      * and then add dtb nodes in reverse order so that they appear in
417      * the finished device tree lowest address first.
418      */
419     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
420         int irq = vbi->irqmap[VIRT_MMIO] + i;
421         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
422 
423         sysbus_create_simple("virtio-mmio", base, pic[irq]);
424     }
425 
426     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
427         char *nodename;
428         int irq = vbi->irqmap[VIRT_MMIO] + i;
429         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
430 
431         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
432         qemu_fdt_add_subnode(vbi->fdt, nodename);
433         qemu_fdt_setprop_string(vbi->fdt, nodename,
434                                 "compatible", "virtio,mmio");
435         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
436                                      2, base, 2, size);
437         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
438                                GIC_FDT_IRQ_TYPE_SPI, irq,
439                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
440         g_free(nodename);
441     }
442 }
443 
444 static void create_one_flash(const char *name, hwaddr flashbase,
445                              hwaddr flashsize)
446 {
447     /* Create and map a single flash device. We use the same
448      * parameters as the flash devices on the Versatile Express board.
449      */
450     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
451     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
452     const uint64_t sectorlength = 256 * 1024;
453 
454     if (dinfo && qdev_prop_set_drive(dev, "drive",
455                                      blk_by_legacy_dinfo(dinfo))) {
456         abort();
457     }
458 
459     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
460     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
461     qdev_prop_set_uint8(dev, "width", 4);
462     qdev_prop_set_uint8(dev, "device-width", 2);
463     qdev_prop_set_uint8(dev, "big-endian", 0);
464     qdev_prop_set_uint16(dev, "id0", 0x89);
465     qdev_prop_set_uint16(dev, "id1", 0x18);
466     qdev_prop_set_uint16(dev, "id2", 0x00);
467     qdev_prop_set_uint16(dev, "id3", 0x00);
468     qdev_prop_set_string(dev, "name", name);
469     qdev_init_nofail(dev);
470 
471     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
472 }
473 
474 static void create_flash(const VirtBoardInfo *vbi)
475 {
476     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
477      * Any file passed via -bios goes in the first of these.
478      */
479     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
480     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
481     char *nodename;
482 
483     if (bios_name) {
484         const char *fn;
485 
486         if (drive_get(IF_PFLASH, 0, 0)) {
487             error_report("The contents of the first flash device may be "
488                          "specified with -bios or with -drive if=pflash... "
489                          "but you cannot use both options at once");
490             exit(1);
491         }
492         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
493         if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) {
494             error_report("Could not load ROM image '%s'", bios_name);
495             exit(1);
496         }
497     }
498 
499     create_one_flash("virt.flash0", flashbase, flashsize);
500     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
501 
502     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
503     qemu_fdt_add_subnode(vbi->fdt, nodename);
504     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
505     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
506                                  2, flashbase, 2, flashsize,
507                                  2, flashbase + flashsize, 2, flashsize);
508     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
509     g_free(nodename);
510 }
511 
512 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
513 {
514     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
515 
516     *fdt_size = board->fdt_size;
517     return board->fdt;
518 }
519 
520 static void machvirt_init(MachineState *machine)
521 {
522     qemu_irq pic[NUM_IRQS];
523     MemoryRegion *sysmem = get_system_memory();
524     int n;
525     MemoryRegion *ram = g_new(MemoryRegion, 1);
526     const char *cpu_model = machine->cpu_model;
527     VirtBoardInfo *vbi;
528 
529     if (!cpu_model) {
530         cpu_model = "cortex-a15";
531     }
532 
533     vbi = find_machine_info(cpu_model);
534 
535     if (!vbi) {
536         error_report("mach-virt: CPU %s not supported", cpu_model);
537         exit(1);
538     }
539 
540     vbi->smp_cpus = smp_cpus;
541 
542     /*
543      * Only supported method of starting secondary CPUs is PSCI and
544      * PSCI is not yet supported with TCG, so limit smp_cpus to 1
545      * if we're not using KVM.
546      */
547     if (!kvm_enabled() && smp_cpus > 1) {
548         error_report("mach-virt: must enable KVM to use multiple CPUs");
549         exit(1);
550     }
551 
552     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
553         error_report("mach-virt: cannot model more than 30GB RAM");
554         exit(1);
555     }
556 
557     create_fdt(vbi);
558     fdt_add_timer_nodes(vbi);
559 
560     for (n = 0; n < smp_cpus; n++) {
561         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
562         Object *cpuobj;
563 
564         if (!oc) {
565             fprintf(stderr, "Unable to find CPU definition\n");
566             exit(1);
567         }
568         cpuobj = object_new(object_class_get_name(oc));
569 
570         /* Secondary CPUs start in PSCI powered-down state */
571         if (n > 0) {
572             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
573         }
574 
575         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
576             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
577                                     "reset-cbar", &error_abort);
578         }
579 
580         object_property_set_bool(cpuobj, true, "realized", NULL);
581     }
582     fdt_add_cpu_nodes(vbi);
583     fdt_add_psci_node(vbi);
584 
585     memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size,
586                            &error_abort);
587     vmstate_register_ram_global(ram);
588     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
589 
590     create_flash(vbi);
591 
592     create_gic(vbi, pic);
593 
594     create_uart(vbi, pic);
595 
596     create_rtc(vbi, pic);
597 
598     /* Create mmio transports, so the user can create virtio backends
599      * (which will be automatically plugged in to the transports). If
600      * no backend is created the transport will just sit harmlessly idle.
601      */
602     create_virtio_devices(vbi, pic);
603 
604     vbi->bootinfo.ram_size = machine->ram_size;
605     vbi->bootinfo.kernel_filename = machine->kernel_filename;
606     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
607     vbi->bootinfo.initrd_filename = machine->initrd_filename;
608     vbi->bootinfo.nb_cpus = smp_cpus;
609     vbi->bootinfo.board_id = -1;
610     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
611     vbi->bootinfo.get_dtb = machvirt_dtb;
612     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
613 }
614 
615 static QEMUMachine machvirt_a15_machine = {
616     .name = "virt",
617     .desc = "ARM Virtual Machine",
618     .init = machvirt_init,
619     .max_cpus = 8,
620 };
621 
622 static void machvirt_machine_init(void)
623 {
624     qemu_register_machine(&machvirt_a15_machine);
625 }
626 
627 machine_init(machvirt_machine_init);
628