xref: /openbmc/qemu/hw/arm/virt.c (revision 464e447a)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/firmware/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
62 
63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
64     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65                                                     void *data) \
66     { \
67         MachineClass *mc = MACHINE_CLASS(oc); \
68         virt_machine_##major##_##minor##_options(mc); \
69         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
70         if (latest) { \
71             mc->alias = "virt"; \
72         } \
73     } \
74     static const TypeInfo machvirt_##major##_##minor##_info = { \
75         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76         .parent = TYPE_VIRT_MACHINE, \
77         .class_init = virt_##major##_##minor##_class_init, \
78     }; \
79     static void machvirt_machine_##major##_##minor##_init(void) \
80     { \
81         type_register_static(&machvirt_##major##_##minor##_info); \
82     } \
83     type_init(machvirt_machine_##major##_##minor##_init);
84 
85 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
86     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
87 #define DEFINE_VIRT_MACHINE(major, minor) \
88     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 
90 
91 /* Number of external interrupt lines to configure the GIC with */
92 #define NUM_IRQS 256
93 
94 #define PLATFORM_BUS_NUM_IRQS 64
95 
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97  * RAM can go up to the 256GB mark, leaving 256GB of the physical
98  * address space unallocated and free for future use between 256G and 512G.
99  * If we need to provide more RAM to VMs in the future then we need to:
100  *  * allocate a second bank of RAM starting at 2TB and working up
101  *  * fix the DT and ACPI table generation code in QEMU to correctly
102  *    report two split lumps of RAM to the guest
103  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
104  * (We don't want to fill all the way up to 512GB with RAM because
105  * we might want it for non-RAM purposes later. Conversely it seems
106  * reasonable to assume that anybody configuring a VM with a quarter
107  * of a terabyte of RAM will be doing it on a host with more than a
108  * terabyte of physical address space.)
109  */
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112 
113 /* Addresses and sizes of our components.
114  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115  * 128MB..256MB is used for miscellaneous device I/O.
116  * 256MB..1GB is reserved for possible future PCI support (ie where the
117  * PCI memory window will go if we add a PCI host controller).
118  * 1GB and up is RAM (which may happily spill over into the
119  * high memory region beyond 4GB).
120  * This represents a compromise between how much RAM can be given to
121  * a 32 bit VM and leaving space for expansion and in particular for PCI.
122  * Note that devices should generally be placed at multiples of 0x10000,
123  * to accommodate guests using 64K pages.
124  */
125 static const MemMapEntry a15memmap[] = {
126     /* Space up to 0x8000000 is reserved for a boot ROM */
127     [VIRT_FLASH] =              {          0, 0x08000000 },
128     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
129     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
131     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
132     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
133     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
134     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
135     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
137     /* This redistributor space allows up to 2*64kB*123 CPUs */
138     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
139     [VIRT_UART] =               { 0x09000000, 0x00001000 },
140     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
141     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
142     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
143     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
144     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
145     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
146     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
147     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
148     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
149     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
150     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
151     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
152     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
153     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
154     [VIRT_GIC_REDIST2] =        { 0x4000000000ULL, 0x4000000 },
155     [VIRT_PCIE_ECAM_HIGH] =     { 0x4010000000ULL, 0x10000000 },
156     /* Second PCIe window, 512GB wide at the 512GB boundary */
157     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
158 };
159 
160 static const int a15irqmap[] = {
161     [VIRT_UART] = 1,
162     [VIRT_RTC] = 2,
163     [VIRT_PCIE] = 3, /* ... to 6 */
164     [VIRT_GPIO] = 7,
165     [VIRT_SECURE_UART] = 8,
166     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
167     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
168     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
169     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
170 };
171 
172 static const char *valid_cpus[] = {
173     ARM_CPU_TYPE_NAME("cortex-a15"),
174     ARM_CPU_TYPE_NAME("cortex-a53"),
175     ARM_CPU_TYPE_NAME("cortex-a57"),
176     ARM_CPU_TYPE_NAME("cortex-a72"),
177     ARM_CPU_TYPE_NAME("host"),
178     ARM_CPU_TYPE_NAME("max"),
179 };
180 
181 static bool cpu_type_valid(const char *cpu)
182 {
183     int i;
184 
185     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
186         if (strcmp(cpu, valid_cpus[i]) == 0) {
187             return true;
188         }
189     }
190     return false;
191 }
192 
193 static void create_fdt(VirtMachineState *vms)
194 {
195     void *fdt = create_device_tree(&vms->fdt_size);
196 
197     if (!fdt) {
198         error_report("create_device_tree() failed");
199         exit(1);
200     }
201 
202     vms->fdt = fdt;
203 
204     /* Header */
205     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
206     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
207     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
208 
209     /* /chosen must exist for load_dtb to fill in necessary properties later */
210     qemu_fdt_add_subnode(fdt, "/chosen");
211 
212     /* Clock node, for the benefit of the UART. The kernel device tree
213      * binding documentation claims the PL011 node clock properties are
214      * optional but in practice if you omit them the kernel refuses to
215      * probe for the device.
216      */
217     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
218     qemu_fdt_add_subnode(fdt, "/apb-pclk");
219     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
220     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
221     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
222     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
223                                 "clk24mhz");
224     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
225 
226     if (have_numa_distance) {
227         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
228         uint32_t *matrix = g_malloc0(size);
229         int idx, i, j;
230 
231         for (i = 0; i < nb_numa_nodes; i++) {
232             for (j = 0; j < nb_numa_nodes; j++) {
233                 idx = (i * nb_numa_nodes + j) * 3;
234                 matrix[idx + 0] = cpu_to_be32(i);
235                 matrix[idx + 1] = cpu_to_be32(j);
236                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
237             }
238         }
239 
240         qemu_fdt_add_subnode(fdt, "/distance-map");
241         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
242                                 "numa-distance-map-v1");
243         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
244                          matrix, size);
245         g_free(matrix);
246     }
247 }
248 
249 static void fdt_add_timer_nodes(const VirtMachineState *vms)
250 {
251     /* On real hardware these interrupts are level-triggered.
252      * On KVM they were edge-triggered before host kernel version 4.4,
253      * and level-triggered afterwards.
254      * On emulated QEMU they are level-triggered.
255      *
256      * Getting the DTB info about them wrong is awkward for some
257      * guest kernels:
258      *  pre-4.8 ignore the DT and leave the interrupt configured
259      *   with whatever the GIC reset value (or the bootloader) left it at
260      *  4.8 before rc6 honour the incorrect data by programming it back
261      *   into the GIC, causing problems
262      *  4.8rc6 and later ignore the DT and always write "level triggered"
263      *   into the GIC
264      *
265      * For backwards-compatibility, virt-2.8 and earlier will continue
266      * to say these are edge-triggered, but later machines will report
267      * the correct information.
268      */
269     ARMCPU *armcpu;
270     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
271     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
272 
273     if (vmc->claim_edge_triggered_timers) {
274         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
275     }
276 
277     if (vms->gic_version == 2) {
278         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
279                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
280                              (1 << vms->smp_cpus) - 1);
281     }
282 
283     qemu_fdt_add_subnode(vms->fdt, "/timer");
284 
285     armcpu = ARM_CPU(qemu_get_cpu(0));
286     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
287         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
288         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
289                          compat, sizeof(compat));
290     } else {
291         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
292                                 "arm,armv7-timer");
293     }
294     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
295     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
296                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
297                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
298                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
299                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
300 }
301 
302 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
303 {
304     int cpu;
305     int addr_cells = 1;
306     const MachineState *ms = MACHINE(vms);
307 
308     /*
309      * From Documentation/devicetree/bindings/arm/cpus.txt
310      *  On ARM v8 64-bit systems value should be set to 2,
311      *  that corresponds to the MPIDR_EL1 register size.
312      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
313      *  in the system, #address-cells can be set to 1, since
314      *  MPIDR_EL1[63:32] bits are not used for CPUs
315      *  identification.
316      *
317      *  Here we actually don't know whether our system is 32- or 64-bit one.
318      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
319      *  at least one of them has Aff3 populated, we set #address-cells to 2.
320      */
321     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
322         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
323 
324         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
325             addr_cells = 2;
326             break;
327         }
328     }
329 
330     qemu_fdt_add_subnode(vms->fdt, "/cpus");
331     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
332     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
333 
334     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
335         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
336         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
337         CPUState *cs = CPU(armcpu);
338 
339         qemu_fdt_add_subnode(vms->fdt, nodename);
340         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
341         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
342                                     armcpu->dtb_compatible);
343 
344         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
345             && vms->smp_cpus > 1) {
346             qemu_fdt_setprop_string(vms->fdt, nodename,
347                                         "enable-method", "psci");
348         }
349 
350         if (addr_cells == 2) {
351             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
352                                  armcpu->mp_affinity);
353         } else {
354             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
355                                   armcpu->mp_affinity);
356         }
357 
358         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
359             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
360                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
361         }
362 
363         g_free(nodename);
364     }
365 }
366 
367 static void fdt_add_its_gic_node(VirtMachineState *vms)
368 {
369     char *nodename;
370 
371     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
372     nodename = g_strdup_printf("/intc/its@%" PRIx64,
373                                vms->memmap[VIRT_GIC_ITS].base);
374     qemu_fdt_add_subnode(vms->fdt, nodename);
375     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
376                             "arm,gic-v3-its");
377     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
378     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
379                                  2, vms->memmap[VIRT_GIC_ITS].base,
380                                  2, vms->memmap[VIRT_GIC_ITS].size);
381     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
382     g_free(nodename);
383 }
384 
385 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
386 {
387     char *nodename;
388 
389     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
390                                vms->memmap[VIRT_GIC_V2M].base);
391     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
392     qemu_fdt_add_subnode(vms->fdt, nodename);
393     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
394                             "arm,gic-v2m-frame");
395     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
396     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
397                                  2, vms->memmap[VIRT_GIC_V2M].base,
398                                  2, vms->memmap[VIRT_GIC_V2M].size);
399     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
400     g_free(nodename);
401 }
402 
403 static void fdt_add_gic_node(VirtMachineState *vms)
404 {
405     char *nodename;
406 
407     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
408     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
409 
410     nodename = g_strdup_printf("/intc@%" PRIx64,
411                                vms->memmap[VIRT_GIC_DIST].base);
412     qemu_fdt_add_subnode(vms->fdt, nodename);
413     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
414     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
415     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
416     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
417     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
418     if (vms->gic_version == 3) {
419         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
420 
421         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
422                                 "arm,gic-v3");
423 
424         qemu_fdt_setprop_cell(vms->fdt, nodename,
425                               "#redistributor-regions", nb_redist_regions);
426 
427         if (nb_redist_regions == 1) {
428             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
429                                          2, vms->memmap[VIRT_GIC_DIST].base,
430                                          2, vms->memmap[VIRT_GIC_DIST].size,
431                                          2, vms->memmap[VIRT_GIC_REDIST].base,
432                                          2, vms->memmap[VIRT_GIC_REDIST].size);
433         } else {
434             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
435                                          2, vms->memmap[VIRT_GIC_DIST].base,
436                                          2, vms->memmap[VIRT_GIC_DIST].size,
437                                          2, vms->memmap[VIRT_GIC_REDIST].base,
438                                          2, vms->memmap[VIRT_GIC_REDIST].size,
439                                          2, vms->memmap[VIRT_GIC_REDIST2].base,
440                                          2, vms->memmap[VIRT_GIC_REDIST2].size);
441         }
442 
443         if (vms->virt) {
444             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
445                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
446                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
447         }
448     } else {
449         /* 'cortex-a15-gic' means 'GIC v2' */
450         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
451                                 "arm,cortex-a15-gic");
452         if (!vms->virt) {
453             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
454                                          2, vms->memmap[VIRT_GIC_DIST].base,
455                                          2, vms->memmap[VIRT_GIC_DIST].size,
456                                          2, vms->memmap[VIRT_GIC_CPU].base,
457                                          2, vms->memmap[VIRT_GIC_CPU].size);
458         } else {
459             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
460                                          2, vms->memmap[VIRT_GIC_DIST].base,
461                                          2, vms->memmap[VIRT_GIC_DIST].size,
462                                          2, vms->memmap[VIRT_GIC_CPU].base,
463                                          2, vms->memmap[VIRT_GIC_CPU].size,
464                                          2, vms->memmap[VIRT_GIC_HYP].base,
465                                          2, vms->memmap[VIRT_GIC_HYP].size,
466                                          2, vms->memmap[VIRT_GIC_VCPU].base,
467                                          2, vms->memmap[VIRT_GIC_VCPU].size);
468             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
469                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
470                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
471         }
472     }
473 
474     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
475     g_free(nodename);
476 }
477 
478 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
479 {
480     CPUState *cpu;
481     ARMCPU *armcpu;
482     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
483 
484     CPU_FOREACH(cpu) {
485         armcpu = ARM_CPU(cpu);
486         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
487             return;
488         }
489         if (kvm_enabled()) {
490             if (kvm_irqchip_in_kernel()) {
491                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
492             }
493             kvm_arm_pmu_init(cpu);
494         }
495     }
496 
497     if (vms->gic_version == 2) {
498         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
499                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
500                              (1 << vms->smp_cpus) - 1);
501     }
502 
503     armcpu = ARM_CPU(qemu_get_cpu(0));
504     qemu_fdt_add_subnode(vms->fdt, "/pmu");
505     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
506         const char compat[] = "arm,armv8-pmuv3";
507         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
508                          compat, sizeof(compat));
509         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
510                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
511     }
512 }
513 
514 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
515 {
516     const char *itsclass = its_class_name();
517     DeviceState *dev;
518 
519     if (!itsclass) {
520         /* Do nothing if not supported */
521         return;
522     }
523 
524     dev = qdev_create(NULL, itsclass);
525 
526     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
527                              &error_abort);
528     qdev_init_nofail(dev);
529     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
530 
531     fdt_add_its_gic_node(vms);
532 }
533 
534 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
535 {
536     int i;
537     int irq = vms->irqmap[VIRT_GIC_V2M];
538     DeviceState *dev;
539 
540     dev = qdev_create(NULL, "arm-gicv2m");
541     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
542     qdev_prop_set_uint32(dev, "base-spi", irq);
543     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
544     qdev_init_nofail(dev);
545 
546     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
547         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
548     }
549 
550     fdt_add_v2m_gic_node(vms);
551 }
552 
553 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
554 {
555     /* We create a standalone GIC */
556     DeviceState *gicdev;
557     SysBusDevice *gicbusdev;
558     const char *gictype;
559     int type = vms->gic_version, i;
560     uint32_t nb_redist_regions = 0;
561 
562     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
563 
564     gicdev = qdev_create(NULL, gictype);
565     qdev_prop_set_uint32(gicdev, "revision", type);
566     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
567     /* Note that the num-irq property counts both internal and external
568      * interrupts; there are always 32 of the former (mandated by GIC spec).
569      */
570     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
571     if (!kvm_irqchip_in_kernel()) {
572         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
573     }
574 
575     if (type == 3) {
576         uint32_t redist0_capacity =
577                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
578         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
579 
580         nb_redist_regions = virt_gicv3_redist_region_count(vms);
581 
582         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
583                              nb_redist_regions);
584         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
585 
586         if (nb_redist_regions == 2) {
587             uint32_t redist1_capacity =
588                         vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
589 
590             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
591                 MIN(smp_cpus - redist0_count, redist1_capacity));
592         }
593     } else {
594         if (!kvm_irqchip_in_kernel()) {
595             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
596                               vms->virt);
597         }
598     }
599     qdev_init_nofail(gicdev);
600     gicbusdev = SYS_BUS_DEVICE(gicdev);
601     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
602     if (type == 3) {
603         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
604         if (nb_redist_regions == 2) {
605             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
606         }
607     } else {
608         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
609         if (vms->virt) {
610             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
611             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
612         }
613     }
614 
615     /* Wire the outputs from each CPU's generic timer and the GICv3
616      * maintenance interrupt signal to the appropriate GIC PPI inputs,
617      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
618      */
619     for (i = 0; i < smp_cpus; i++) {
620         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
621         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
622         int irq;
623         /* Mapping from the output timer irq lines from the CPU to the
624          * GIC PPI inputs we use for the virt board.
625          */
626         const int timer_irq[] = {
627             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
628             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
629             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
630             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
631         };
632 
633         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
634             qdev_connect_gpio_out(cpudev, irq,
635                                   qdev_get_gpio_in(gicdev,
636                                                    ppibase + timer_irq[irq]));
637         }
638 
639         if (type == 3) {
640             qemu_irq irq = qdev_get_gpio_in(gicdev,
641                                             ppibase + ARCH_GIC_MAINT_IRQ);
642             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
643                                         0, irq);
644         } else if (vms->virt) {
645             qemu_irq irq = qdev_get_gpio_in(gicdev,
646                                             ppibase + ARCH_GIC_MAINT_IRQ);
647             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
648         }
649 
650         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
651                                     qdev_get_gpio_in(gicdev, ppibase
652                                                      + VIRTUAL_PMU_IRQ));
653 
654         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
655         sysbus_connect_irq(gicbusdev, i + smp_cpus,
656                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
657         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
658                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
659         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
660                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
661     }
662 
663     for (i = 0; i < NUM_IRQS; i++) {
664         pic[i] = qdev_get_gpio_in(gicdev, i);
665     }
666 
667     fdt_add_gic_node(vms);
668 
669     if (type == 3 && vms->its) {
670         create_its(vms, gicdev);
671     } else if (type == 2) {
672         create_v2m(vms, pic);
673     }
674 }
675 
676 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
677                         MemoryRegion *mem, Chardev *chr)
678 {
679     char *nodename;
680     hwaddr base = vms->memmap[uart].base;
681     hwaddr size = vms->memmap[uart].size;
682     int irq = vms->irqmap[uart];
683     const char compat[] = "arm,pl011\0arm,primecell";
684     const char clocknames[] = "uartclk\0apb_pclk";
685     DeviceState *dev = qdev_create(NULL, "pl011");
686     SysBusDevice *s = SYS_BUS_DEVICE(dev);
687 
688     qdev_prop_set_chr(dev, "chardev", chr);
689     qdev_init_nofail(dev);
690     memory_region_add_subregion(mem, base,
691                                 sysbus_mmio_get_region(s, 0));
692     sysbus_connect_irq(s, 0, pic[irq]);
693 
694     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
695     qemu_fdt_add_subnode(vms->fdt, nodename);
696     /* Note that we can't use setprop_string because of the embedded NUL */
697     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
698                          compat, sizeof(compat));
699     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
700                                      2, base, 2, size);
701     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
702                                GIC_FDT_IRQ_TYPE_SPI, irq,
703                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
704     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
705                                vms->clock_phandle, vms->clock_phandle);
706     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
707                          clocknames, sizeof(clocknames));
708 
709     if (uart == VIRT_UART) {
710         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
711     } else {
712         /* Mark as not usable by the normal world */
713         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
714         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
715 
716         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
717         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
718                                 nodename);
719     }
720 
721     g_free(nodename);
722 }
723 
724 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
725 {
726     char *nodename;
727     hwaddr base = vms->memmap[VIRT_RTC].base;
728     hwaddr size = vms->memmap[VIRT_RTC].size;
729     int irq = vms->irqmap[VIRT_RTC];
730     const char compat[] = "arm,pl031\0arm,primecell";
731 
732     sysbus_create_simple("pl031", base, pic[irq]);
733 
734     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
735     qemu_fdt_add_subnode(vms->fdt, nodename);
736     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
737     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738                                  2, base, 2, size);
739     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
740                            GIC_FDT_IRQ_TYPE_SPI, irq,
741                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
742     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
743     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
744     g_free(nodename);
745 }
746 
747 static DeviceState *gpio_key_dev;
748 static void virt_powerdown_req(Notifier *n, void *opaque)
749 {
750     /* use gpio Pin 3 for power button event */
751     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
752 }
753 
754 static Notifier virt_system_powerdown_notifier = {
755     .notify = virt_powerdown_req
756 };
757 
758 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
759 {
760     char *nodename;
761     DeviceState *pl061_dev;
762     hwaddr base = vms->memmap[VIRT_GPIO].base;
763     hwaddr size = vms->memmap[VIRT_GPIO].size;
764     int irq = vms->irqmap[VIRT_GPIO];
765     const char compat[] = "arm,pl061\0arm,primecell";
766 
767     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
768 
769     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
770     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
771     qemu_fdt_add_subnode(vms->fdt, nodename);
772     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
773                                  2, base, 2, size);
774     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
775     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
776     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
777     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
778                            GIC_FDT_IRQ_TYPE_SPI, irq,
779                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
780     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
781     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
782     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
783 
784     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
785                                         qdev_get_gpio_in(pl061_dev, 3));
786     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
787     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
788     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
789     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
790 
791     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
792     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
793                             "label", "GPIO Key Poweroff");
794     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
795                           KEY_POWER);
796     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
797                            "gpios", phandle, 3, 0);
798 
799     /* connect powerdown request */
800     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
801 
802     g_free(nodename);
803 }
804 
805 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
806 {
807     int i;
808     hwaddr size = vms->memmap[VIRT_MMIO].size;
809 
810     /* We create the transports in forwards order. Since qbus_realize()
811      * prepends (not appends) new child buses, the incrementing loop below will
812      * create a list of virtio-mmio buses with decreasing base addresses.
813      *
814      * When a -device option is processed from the command line,
815      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
816      * order. The upshot is that -device options in increasing command line
817      * order are mapped to virtio-mmio buses with decreasing base addresses.
818      *
819      * When this code was originally written, that arrangement ensured that the
820      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
821      * the first -device on the command line. (The end-to-end order is a
822      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
823      * guest kernel's name-to-address assignment strategy.)
824      *
825      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
826      * the message, if not necessarily the code, of commit 70161ff336.
827      * Therefore the loop now establishes the inverse of the original intent.
828      *
829      * Unfortunately, we can't counteract the kernel change by reversing the
830      * loop; it would break existing command lines.
831      *
832      * In any case, the kernel makes no guarantee about the stability of
833      * enumeration order of virtio devices (as demonstrated by it changing
834      * between kernel versions). For reliable and stable identification
835      * of disks users must use UUIDs or similar mechanisms.
836      */
837     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
838         int irq = vms->irqmap[VIRT_MMIO] + i;
839         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
840 
841         sysbus_create_simple("virtio-mmio", base, pic[irq]);
842     }
843 
844     /* We add dtb nodes in reverse order so that they appear in the finished
845      * device tree lowest address first.
846      *
847      * Note that this mapping is independent of the loop above. The previous
848      * loop influences virtio device to virtio transport assignment, whereas
849      * this loop controls how virtio transports are laid out in the dtb.
850      */
851     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
852         char *nodename;
853         int irq = vms->irqmap[VIRT_MMIO] + i;
854         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
855 
856         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
857         qemu_fdt_add_subnode(vms->fdt, nodename);
858         qemu_fdt_setprop_string(vms->fdt, nodename,
859                                 "compatible", "virtio,mmio");
860         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
861                                      2, base, 2, size);
862         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
863                                GIC_FDT_IRQ_TYPE_SPI, irq,
864                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
865         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
866         g_free(nodename);
867     }
868 }
869 
870 static void create_one_flash(const char *name, hwaddr flashbase,
871                              hwaddr flashsize, const char *file,
872                              MemoryRegion *sysmem)
873 {
874     /* Create and map a single flash device. We use the same
875      * parameters as the flash devices on the Versatile Express board.
876      */
877     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
878     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
879     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
880     const uint64_t sectorlength = 256 * 1024;
881 
882     if (dinfo) {
883         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
884                             &error_abort);
885     }
886 
887     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
888     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
889     qdev_prop_set_uint8(dev, "width", 4);
890     qdev_prop_set_uint8(dev, "device-width", 2);
891     qdev_prop_set_bit(dev, "big-endian", false);
892     qdev_prop_set_uint16(dev, "id0", 0x89);
893     qdev_prop_set_uint16(dev, "id1", 0x18);
894     qdev_prop_set_uint16(dev, "id2", 0x00);
895     qdev_prop_set_uint16(dev, "id3", 0x00);
896     qdev_prop_set_string(dev, "name", name);
897     qdev_init_nofail(dev);
898 
899     memory_region_add_subregion(sysmem, flashbase,
900                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
901 
902     if (file) {
903         char *fn;
904         int image_size;
905 
906         if (drive_get(IF_PFLASH, 0, 0)) {
907             error_report("The contents of the first flash device may be "
908                          "specified with -bios or with -drive if=pflash... "
909                          "but you cannot use both options at once");
910             exit(1);
911         }
912         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
913         if (!fn) {
914             error_report("Could not find ROM image '%s'", file);
915             exit(1);
916         }
917         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
918         g_free(fn);
919         if (image_size < 0) {
920             error_report("Could not load ROM image '%s'", file);
921             exit(1);
922         }
923     }
924 }
925 
926 static void create_flash(const VirtMachineState *vms,
927                          MemoryRegion *sysmem,
928                          MemoryRegion *secure_sysmem)
929 {
930     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
931      * Any file passed via -bios goes in the first of these.
932      * sysmem is the system memory space. secure_sysmem is the secure view
933      * of the system, and the first flash device should be made visible only
934      * there. The second flash device is visible to both secure and nonsecure.
935      * If sysmem == secure_sysmem this means there is no separate Secure
936      * address space and both flash devices are generally visible.
937      */
938     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
939     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
940     char *nodename;
941 
942     create_one_flash("virt.flash0", flashbase, flashsize,
943                      bios_name, secure_sysmem);
944     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
945                      NULL, sysmem);
946 
947     if (sysmem == secure_sysmem) {
948         /* Report both flash devices as a single node in the DT */
949         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
950         qemu_fdt_add_subnode(vms->fdt, nodename);
951         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
952         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
953                                      2, flashbase, 2, flashsize,
954                                      2, flashbase + flashsize, 2, flashsize);
955         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
956         g_free(nodename);
957     } else {
958         /* Report the devices as separate nodes so we can mark one as
959          * only visible to the secure world.
960          */
961         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
962         qemu_fdt_add_subnode(vms->fdt, nodename);
963         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
964         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
965                                      2, flashbase, 2, flashsize);
966         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
967         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
968         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
969         g_free(nodename);
970 
971         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
972         qemu_fdt_add_subnode(vms->fdt, nodename);
973         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
974         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
975                                      2, flashbase + flashsize, 2, flashsize);
976         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
977         g_free(nodename);
978     }
979 }
980 
981 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
982 {
983     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
984     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
985     FWCfgState *fw_cfg;
986     char *nodename;
987 
988     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
989     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
990 
991     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
992     qemu_fdt_add_subnode(vms->fdt, nodename);
993     qemu_fdt_setprop_string(vms->fdt, nodename,
994                             "compatible", "qemu,fw-cfg-mmio");
995     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
996                                  2, base, 2, size);
997     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
998     g_free(nodename);
999     return fw_cfg;
1000 }
1001 
1002 static void create_pcie_irq_map(const VirtMachineState *vms,
1003                                 uint32_t gic_phandle,
1004                                 int first_irq, const char *nodename)
1005 {
1006     int devfn, pin;
1007     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1008     uint32_t *irq_map = full_irq_map;
1009 
1010     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1011         for (pin = 0; pin < 4; pin++) {
1012             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1013             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1014             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1015             int i;
1016 
1017             uint32_t map[] = {
1018                 devfn << 8, 0, 0,                           /* devfn */
1019                 pin + 1,                                    /* PCI pin */
1020                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1021 
1022             /* Convert map to big endian */
1023             for (i = 0; i < 10; i++) {
1024                 irq_map[i] = cpu_to_be32(map[i]);
1025             }
1026             irq_map += 10;
1027         }
1028     }
1029 
1030     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1031                      full_irq_map, sizeof(full_irq_map));
1032 
1033     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1034                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1035                            0x7           /* PCI irq */);
1036 }
1037 
1038 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1039                         PCIBus *bus)
1040 {
1041     char *node;
1042     const char compat[] = "arm,smmu-v3";
1043     int irq =  vms->irqmap[VIRT_SMMU];
1044     int i;
1045     hwaddr base = vms->memmap[VIRT_SMMU].base;
1046     hwaddr size = vms->memmap[VIRT_SMMU].size;
1047     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1048     DeviceState *dev;
1049 
1050     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1051         return;
1052     }
1053 
1054     dev = qdev_create(NULL, "arm-smmuv3");
1055 
1056     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1057                              &error_abort);
1058     qdev_init_nofail(dev);
1059     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1060     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1061         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1062     }
1063 
1064     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1065     qemu_fdt_add_subnode(vms->fdt, node);
1066     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1067     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1068 
1069     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1070             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1071             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1072             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1073             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1074 
1075     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1076                      sizeof(irq_names));
1077 
1078     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1079     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1080     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1081 
1082     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1083 
1084     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1085     g_free(node);
1086 }
1087 
1088 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1089 {
1090     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1091     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1092     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1093     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1094     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1095     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1096     hwaddr base_ecam, size_ecam;
1097     hwaddr base = base_mmio;
1098     int nr_pcie_buses;
1099     int irq = vms->irqmap[VIRT_PCIE];
1100     MemoryRegion *mmio_alias;
1101     MemoryRegion *mmio_reg;
1102     MemoryRegion *ecam_alias;
1103     MemoryRegion *ecam_reg;
1104     DeviceState *dev;
1105     char *nodename;
1106     int i, ecam_id;
1107     PCIHostState *pci;
1108 
1109     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1110     qdev_init_nofail(dev);
1111 
1112     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1113     base_ecam = vms->memmap[ecam_id].base;
1114     size_ecam = vms->memmap[ecam_id].size;
1115     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1116     /* Map only the first size_ecam bytes of ECAM space */
1117     ecam_alias = g_new0(MemoryRegion, 1);
1118     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1119     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1120                              ecam_reg, 0, size_ecam);
1121     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1122 
1123     /* Map the MMIO window into system address space so as to expose
1124      * the section of PCI MMIO space which starts at the same base address
1125      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1126      * the window).
1127      */
1128     mmio_alias = g_new0(MemoryRegion, 1);
1129     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1130     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1131                              mmio_reg, base_mmio, size_mmio);
1132     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1133 
1134     if (vms->highmem) {
1135         /* Map high MMIO space */
1136         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1137 
1138         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1139                                  mmio_reg, base_mmio_high, size_mmio_high);
1140         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1141                                     high_mmio_alias);
1142     }
1143 
1144     /* Map IO port space */
1145     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1146 
1147     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1148         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1149         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1150     }
1151 
1152     pci = PCI_HOST_BRIDGE(dev);
1153     if (pci->bus) {
1154         for (i = 0; i < nb_nics; i++) {
1155             NICInfo *nd = &nd_table[i];
1156 
1157             if (!nd->model) {
1158                 nd->model = g_strdup("virtio");
1159             }
1160 
1161             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1162         }
1163     }
1164 
1165     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1166     qemu_fdt_add_subnode(vms->fdt, nodename);
1167     qemu_fdt_setprop_string(vms->fdt, nodename,
1168                             "compatible", "pci-host-ecam-generic");
1169     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1170     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1171     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1172     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1173     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1174                            nr_pcie_buses - 1);
1175     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1176 
1177     if (vms->msi_phandle) {
1178         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1179                                vms->msi_phandle);
1180     }
1181 
1182     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1183                                  2, base_ecam, 2, size_ecam);
1184 
1185     if (vms->highmem) {
1186         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1187                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1188                                      2, base_pio, 2, size_pio,
1189                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1190                                      2, base_mmio, 2, size_mmio,
1191                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1192                                      2, base_mmio_high,
1193                                      2, base_mmio_high, 2, size_mmio_high);
1194     } else {
1195         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1196                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1197                                      2, base_pio, 2, size_pio,
1198                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1199                                      2, base_mmio, 2, size_mmio);
1200     }
1201 
1202     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1203     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1204 
1205     if (vms->iommu) {
1206         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1207 
1208         create_smmu(vms, pic, pci->bus);
1209 
1210         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1211                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1212     }
1213 
1214     g_free(nodename);
1215 }
1216 
1217 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1218 {
1219     DeviceState *dev;
1220     SysBusDevice *s;
1221     int i;
1222     MemoryRegion *sysmem = get_system_memory();
1223 
1224     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1225     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1226     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1227     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1228     qdev_init_nofail(dev);
1229     vms->platform_bus_dev = dev;
1230 
1231     s = SYS_BUS_DEVICE(dev);
1232     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1233         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1234         sysbus_connect_irq(s, i, pic[irqn]);
1235     }
1236 
1237     memory_region_add_subregion(sysmem,
1238                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1239                                 sysbus_mmio_get_region(s, 0));
1240 }
1241 
1242 static void create_secure_ram(VirtMachineState *vms,
1243                               MemoryRegion *secure_sysmem)
1244 {
1245     MemoryRegion *secram = g_new(MemoryRegion, 1);
1246     char *nodename;
1247     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1248     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1249 
1250     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1251                            &error_fatal);
1252     memory_region_add_subregion(secure_sysmem, base, secram);
1253 
1254     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1255     qemu_fdt_add_subnode(vms->fdt, nodename);
1256     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1257     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1258     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1259     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1260 
1261     g_free(nodename);
1262 }
1263 
1264 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1265 {
1266     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1267                                                  bootinfo);
1268 
1269     *fdt_size = board->fdt_size;
1270     return board->fdt;
1271 }
1272 
1273 static void virt_build_smbios(VirtMachineState *vms)
1274 {
1275     MachineClass *mc = MACHINE_GET_CLASS(vms);
1276     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1277     uint8_t *smbios_tables, *smbios_anchor;
1278     size_t smbios_tables_len, smbios_anchor_len;
1279     const char *product = "QEMU Virtual Machine";
1280 
1281     if (!vms->fw_cfg) {
1282         return;
1283     }
1284 
1285     if (kvm_enabled()) {
1286         product = "KVM Virtual Machine";
1287     }
1288 
1289     smbios_set_defaults("QEMU", product,
1290                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1291                         true, SMBIOS_ENTRY_POINT_30);
1292 
1293     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1294                       &smbios_anchor, &smbios_anchor_len);
1295 
1296     if (smbios_anchor) {
1297         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1298                         smbios_tables, smbios_tables_len);
1299         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1300                         smbios_anchor, smbios_anchor_len);
1301     }
1302 }
1303 
1304 static
1305 void virt_machine_done(Notifier *notifier, void *data)
1306 {
1307     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1308                                          machine_done);
1309     ARMCPU *cpu = ARM_CPU(first_cpu);
1310     struct arm_boot_info *info = &vms->bootinfo;
1311     AddressSpace *as = arm_boot_address_space(cpu, info);
1312 
1313     /*
1314      * If the user provided a dtb, we assume the dynamic sysbus nodes
1315      * already are integrated there. This corresponds to a use case where
1316      * the dynamic sysbus nodes are complex and their generation is not yet
1317      * supported. In that case the user can take charge of the guest dt
1318      * while qemu takes charge of the qom stuff.
1319      */
1320     if (info->dtb_filename == NULL) {
1321         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1322                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1323                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1324                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1325     }
1326     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1327         exit(1);
1328     }
1329 
1330     virt_acpi_setup(vms);
1331     virt_build_smbios(vms);
1332 }
1333 
1334 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1335 {
1336     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1337     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1338 
1339     if (!vmc->disallow_affinity_adjustment) {
1340         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1341          * GIC's target-list limitations. 32-bit KVM hosts currently
1342          * always create clusters of 4 CPUs, but that is expected to
1343          * change when they gain support for gicv3. When KVM is enabled
1344          * it will override the changes we make here, therefore our
1345          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1346          * and to improve SGI efficiency.
1347          */
1348         if (vms->gic_version == 3) {
1349             clustersz = GICV3_TARGETLIST_BITS;
1350         } else {
1351             clustersz = GIC_TARGETLIST_BITS;
1352         }
1353     }
1354     return arm_cpu_mp_affinity(idx, clustersz);
1355 }
1356 
1357 static void machvirt_init(MachineState *machine)
1358 {
1359     VirtMachineState *vms = VIRT_MACHINE(machine);
1360     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1361     MachineClass *mc = MACHINE_GET_CLASS(machine);
1362     const CPUArchIdList *possible_cpus;
1363     qemu_irq pic[NUM_IRQS];
1364     MemoryRegion *sysmem = get_system_memory();
1365     MemoryRegion *secure_sysmem = NULL;
1366     int n, virt_max_cpus;
1367     MemoryRegion *ram = g_new(MemoryRegion, 1);
1368     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1369     bool aarch64 = true;
1370 
1371     /* We can probe only here because during property set
1372      * KVM is not available yet
1373      */
1374     if (vms->gic_version <= 0) {
1375         /* "host" or "max" */
1376         if (!kvm_enabled()) {
1377             if (vms->gic_version == 0) {
1378                 error_report("gic-version=host requires KVM");
1379                 exit(1);
1380             } else {
1381                 /* "max": currently means 3 for TCG */
1382                 vms->gic_version = 3;
1383             }
1384         } else {
1385             vms->gic_version = kvm_arm_vgic_probe();
1386             if (!vms->gic_version) {
1387                 error_report(
1388                     "Unable to determine GIC version supported by host");
1389                 exit(1);
1390             }
1391         }
1392     }
1393 
1394     if (!cpu_type_valid(machine->cpu_type)) {
1395         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1396         exit(1);
1397     }
1398 
1399     /* If we have an EL3 boot ROM then the assumption is that it will
1400      * implement PSCI itself, so disable QEMU's internal implementation
1401      * so it doesn't get in the way. Instead of starting secondary
1402      * CPUs in PSCI powerdown state we will start them all running and
1403      * let the boot ROM sort them out.
1404      * The usual case is that we do use QEMU's PSCI implementation;
1405      * if the guest has EL2 then we will use SMC as the conduit,
1406      * and otherwise we will use HVC (for backwards compatibility and
1407      * because if we're using KVM then we must use HVC).
1408      */
1409     if (vms->secure && firmware_loaded) {
1410         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1411     } else if (vms->virt) {
1412         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1413     } else {
1414         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1415     }
1416 
1417     /* The maximum number of CPUs depends on the GIC version, or on how
1418      * many redistributors we can fit into the memory map.
1419      */
1420     if (vms->gic_version == 3) {
1421         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1422         virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1423     } else {
1424         virt_max_cpus = GIC_NCPU;
1425     }
1426 
1427     if (max_cpus > virt_max_cpus) {
1428         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1429                      "supported by machine 'mach-virt' (%d)",
1430                      max_cpus, virt_max_cpus);
1431         exit(1);
1432     }
1433 
1434     vms->smp_cpus = smp_cpus;
1435 
1436     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1437         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1438         exit(1);
1439     }
1440 
1441     if (vms->virt && kvm_enabled()) {
1442         error_report("mach-virt: KVM does not support providing "
1443                      "Virtualization extensions to the guest CPU");
1444         exit(1);
1445     }
1446 
1447     if (vms->secure) {
1448         if (kvm_enabled()) {
1449             error_report("mach-virt: KVM does not support Security extensions");
1450             exit(1);
1451         }
1452 
1453         /* The Secure view of the world is the same as the NonSecure,
1454          * but with a few extra devices. Create it as a container region
1455          * containing the system memory at low priority; any secure-only
1456          * devices go in at higher priority and take precedence.
1457          */
1458         secure_sysmem = g_new(MemoryRegion, 1);
1459         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1460                            UINT64_MAX);
1461         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1462     }
1463 
1464     create_fdt(vms);
1465 
1466     possible_cpus = mc->possible_cpu_arch_ids(machine);
1467     for (n = 0; n < possible_cpus->len; n++) {
1468         Object *cpuobj;
1469         CPUState *cs;
1470 
1471         if (n >= smp_cpus) {
1472             break;
1473         }
1474 
1475         cpuobj = object_new(possible_cpus->cpus[n].type);
1476         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1477                                 "mp-affinity", NULL);
1478 
1479         cs = CPU(cpuobj);
1480         cs->cpu_index = n;
1481 
1482         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1483                           &error_fatal);
1484 
1485         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1486 
1487         if (!vms->secure) {
1488             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1489         }
1490 
1491         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1492             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1493         }
1494 
1495         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1496             object_property_set_int(cpuobj, vms->psci_conduit,
1497                                     "psci-conduit", NULL);
1498 
1499             /* Secondary CPUs start in PSCI powered-down state */
1500             if (n > 0) {
1501                 object_property_set_bool(cpuobj, true,
1502                                          "start-powered-off", NULL);
1503             }
1504         }
1505 
1506         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1507             object_property_set_bool(cpuobj, false, "pmu", NULL);
1508         }
1509 
1510         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1511             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1512                                     "reset-cbar", &error_abort);
1513         }
1514 
1515         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1516                                  &error_abort);
1517         if (vms->secure) {
1518             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1519                                      "secure-memory", &error_abort);
1520         }
1521 
1522         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1523         object_unref(cpuobj);
1524     }
1525     fdt_add_timer_nodes(vms);
1526     fdt_add_cpu_nodes(vms);
1527 
1528     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1529                                          machine->ram_size);
1530     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1531 
1532     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1533 
1534     create_gic(vms, pic);
1535 
1536     fdt_add_pmu_nodes(vms);
1537 
1538     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1539 
1540     if (vms->secure) {
1541         create_secure_ram(vms, secure_sysmem);
1542         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1543     }
1544 
1545     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1546 
1547     create_rtc(vms, pic);
1548 
1549     create_pcie(vms, pic);
1550 
1551     create_gpio(vms, pic);
1552 
1553     /* Create mmio transports, so the user can create virtio backends
1554      * (which will be automatically plugged in to the transports). If
1555      * no backend is created the transport will just sit harmlessly idle.
1556      */
1557     create_virtio_devices(vms, pic);
1558 
1559     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1560     rom_set_fw(vms->fw_cfg);
1561 
1562     create_platform_bus(vms, pic);
1563 
1564     vms->bootinfo.ram_size = machine->ram_size;
1565     vms->bootinfo.kernel_filename = machine->kernel_filename;
1566     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1567     vms->bootinfo.initrd_filename = machine->initrd_filename;
1568     vms->bootinfo.nb_cpus = smp_cpus;
1569     vms->bootinfo.board_id = -1;
1570     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1571     vms->bootinfo.get_dtb = machvirt_dtb;
1572     vms->bootinfo.skip_dtb_autoload = true;
1573     vms->bootinfo.firmware_loaded = firmware_loaded;
1574     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1575 
1576     vms->machine_done.notify = virt_machine_done;
1577     qemu_add_machine_init_done_notifier(&vms->machine_done);
1578 }
1579 
1580 static bool virt_get_secure(Object *obj, Error **errp)
1581 {
1582     VirtMachineState *vms = VIRT_MACHINE(obj);
1583 
1584     return vms->secure;
1585 }
1586 
1587 static void virt_set_secure(Object *obj, bool value, Error **errp)
1588 {
1589     VirtMachineState *vms = VIRT_MACHINE(obj);
1590 
1591     vms->secure = value;
1592 }
1593 
1594 static bool virt_get_virt(Object *obj, Error **errp)
1595 {
1596     VirtMachineState *vms = VIRT_MACHINE(obj);
1597 
1598     return vms->virt;
1599 }
1600 
1601 static void virt_set_virt(Object *obj, bool value, Error **errp)
1602 {
1603     VirtMachineState *vms = VIRT_MACHINE(obj);
1604 
1605     vms->virt = value;
1606 }
1607 
1608 static bool virt_get_highmem(Object *obj, Error **errp)
1609 {
1610     VirtMachineState *vms = VIRT_MACHINE(obj);
1611 
1612     return vms->highmem;
1613 }
1614 
1615 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1616 {
1617     VirtMachineState *vms = VIRT_MACHINE(obj);
1618 
1619     vms->highmem = value;
1620 }
1621 
1622 static bool virt_get_its(Object *obj, Error **errp)
1623 {
1624     VirtMachineState *vms = VIRT_MACHINE(obj);
1625 
1626     return vms->its;
1627 }
1628 
1629 static void virt_set_its(Object *obj, bool value, Error **errp)
1630 {
1631     VirtMachineState *vms = VIRT_MACHINE(obj);
1632 
1633     vms->its = value;
1634 }
1635 
1636 static char *virt_get_gic_version(Object *obj, Error **errp)
1637 {
1638     VirtMachineState *vms = VIRT_MACHINE(obj);
1639     const char *val = vms->gic_version == 3 ? "3" : "2";
1640 
1641     return g_strdup(val);
1642 }
1643 
1644 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1645 {
1646     VirtMachineState *vms = VIRT_MACHINE(obj);
1647 
1648     if (!strcmp(value, "3")) {
1649         vms->gic_version = 3;
1650     } else if (!strcmp(value, "2")) {
1651         vms->gic_version = 2;
1652     } else if (!strcmp(value, "host")) {
1653         vms->gic_version = 0; /* Will probe later */
1654     } else if (!strcmp(value, "max")) {
1655         vms->gic_version = -1; /* Will probe later */
1656     } else {
1657         error_setg(errp, "Invalid gic-version value");
1658         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1659     }
1660 }
1661 
1662 static char *virt_get_iommu(Object *obj, Error **errp)
1663 {
1664     VirtMachineState *vms = VIRT_MACHINE(obj);
1665 
1666     switch (vms->iommu) {
1667     case VIRT_IOMMU_NONE:
1668         return g_strdup("none");
1669     case VIRT_IOMMU_SMMUV3:
1670         return g_strdup("smmuv3");
1671     default:
1672         g_assert_not_reached();
1673     }
1674 }
1675 
1676 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1677 {
1678     VirtMachineState *vms = VIRT_MACHINE(obj);
1679 
1680     if (!strcmp(value, "smmuv3")) {
1681         vms->iommu = VIRT_IOMMU_SMMUV3;
1682     } else if (!strcmp(value, "none")) {
1683         vms->iommu = VIRT_IOMMU_NONE;
1684     } else {
1685         error_setg(errp, "Invalid iommu value");
1686         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1687     }
1688 }
1689 
1690 static CpuInstanceProperties
1691 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1692 {
1693     MachineClass *mc = MACHINE_GET_CLASS(ms);
1694     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1695 
1696     assert(cpu_index < possible_cpus->len);
1697     return possible_cpus->cpus[cpu_index].props;
1698 }
1699 
1700 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1701 {
1702     return idx % nb_numa_nodes;
1703 }
1704 
1705 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1706 {
1707     int n;
1708     VirtMachineState *vms = VIRT_MACHINE(ms);
1709 
1710     if (ms->possible_cpus) {
1711         assert(ms->possible_cpus->len == max_cpus);
1712         return ms->possible_cpus;
1713     }
1714 
1715     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1716                                   sizeof(CPUArchId) * max_cpus);
1717     ms->possible_cpus->len = max_cpus;
1718     for (n = 0; n < ms->possible_cpus->len; n++) {
1719         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1720         ms->possible_cpus->cpus[n].arch_id =
1721             virt_cpu_mp_affinity(vms, n);
1722         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1723         ms->possible_cpus->cpus[n].props.thread_id = n;
1724     }
1725     return ms->possible_cpus;
1726 }
1727 
1728 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1729                                         DeviceState *dev, Error **errp)
1730 {
1731     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1732 
1733     if (vms->platform_bus_dev) {
1734         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1735             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1736                                      SYS_BUS_DEVICE(dev));
1737         }
1738     }
1739 }
1740 
1741 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1742                                                         DeviceState *dev)
1743 {
1744     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1745         return HOTPLUG_HANDLER(machine);
1746     }
1747 
1748     return NULL;
1749 }
1750 
1751 static void virt_machine_class_init(ObjectClass *oc, void *data)
1752 {
1753     MachineClass *mc = MACHINE_CLASS(oc);
1754     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1755 
1756     mc->init = machvirt_init;
1757     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1758      * The value may be reduced later when we have more information about the
1759      * configuration of the particular instance.
1760      */
1761     mc->max_cpus = 512;
1762     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1763     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1764     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1765     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1766     mc->block_default_type = IF_VIRTIO;
1767     mc->no_cdrom = 1;
1768     mc->pci_allow_0_address = true;
1769     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1770     mc->minimum_page_bits = 12;
1771     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1772     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1773     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1774     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1775     assert(!mc->get_hotplug_handler);
1776     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1777     hc->plug = virt_machine_device_plug_cb;
1778 }
1779 
1780 static void virt_instance_init(Object *obj)
1781 {
1782     VirtMachineState *vms = VIRT_MACHINE(obj);
1783     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1784 
1785     /* EL3 is disabled by default on virt: this makes us consistent
1786      * between KVM and TCG for this board, and it also allows us to
1787      * boot UEFI blobs which assume no TrustZone support.
1788      */
1789     vms->secure = false;
1790     object_property_add_bool(obj, "secure", virt_get_secure,
1791                              virt_set_secure, NULL);
1792     object_property_set_description(obj, "secure",
1793                                     "Set on/off to enable/disable the ARM "
1794                                     "Security Extensions (TrustZone)",
1795                                     NULL);
1796 
1797     /* EL2 is also disabled by default, for similar reasons */
1798     vms->virt = false;
1799     object_property_add_bool(obj, "virtualization", virt_get_virt,
1800                              virt_set_virt, NULL);
1801     object_property_set_description(obj, "virtualization",
1802                                     "Set on/off to enable/disable emulating a "
1803                                     "guest CPU which implements the ARM "
1804                                     "Virtualization Extensions",
1805                                     NULL);
1806 
1807     /* High memory is enabled by default */
1808     vms->highmem = true;
1809     object_property_add_bool(obj, "highmem", virt_get_highmem,
1810                              virt_set_highmem, NULL);
1811     object_property_set_description(obj, "highmem",
1812                                     "Set on/off to enable/disable using "
1813                                     "physical address space above 32 bits",
1814                                     NULL);
1815     /* Default GIC type is v2 */
1816     vms->gic_version = 2;
1817     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1818                         virt_set_gic_version, NULL);
1819     object_property_set_description(obj, "gic-version",
1820                                     "Set GIC version. "
1821                                     "Valid values are 2, 3 and host", NULL);
1822 
1823     vms->highmem_ecam = !vmc->no_highmem_ecam;
1824 
1825     if (vmc->no_its) {
1826         vms->its = false;
1827     } else {
1828         /* Default allows ITS instantiation */
1829         vms->its = true;
1830         object_property_add_bool(obj, "its", virt_get_its,
1831                                  virt_set_its, NULL);
1832         object_property_set_description(obj, "its",
1833                                         "Set on/off to enable/disable "
1834                                         "ITS instantiation",
1835                                         NULL);
1836     }
1837 
1838     /* Default disallows iommu instantiation */
1839     vms->iommu = VIRT_IOMMU_NONE;
1840     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1841     object_property_set_description(obj, "iommu",
1842                                     "Set the IOMMU type. "
1843                                     "Valid values are none and smmuv3",
1844                                     NULL);
1845 
1846     vms->memmap = a15memmap;
1847     vms->irqmap = a15irqmap;
1848 }
1849 
1850 static const TypeInfo virt_machine_info = {
1851     .name          = TYPE_VIRT_MACHINE,
1852     .parent        = TYPE_MACHINE,
1853     .abstract      = true,
1854     .instance_size = sizeof(VirtMachineState),
1855     .class_size    = sizeof(VirtMachineClass),
1856     .class_init    = virt_machine_class_init,
1857     .instance_init = virt_instance_init,
1858     .interfaces = (InterfaceInfo[]) {
1859          { TYPE_HOTPLUG_HANDLER },
1860          { }
1861     },
1862 };
1863 
1864 static void machvirt_machine_init(void)
1865 {
1866     type_register_static(&virt_machine_info);
1867 }
1868 type_init(machvirt_machine_init);
1869 
1870 static void virt_machine_4_0_options(MachineClass *mc)
1871 {
1872 }
1873 DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
1874 
1875 #define VIRT_COMPAT_3_1 \
1876     HW_COMPAT_3_1
1877 
1878 static void virt_machine_3_1_options(MachineClass *mc)
1879 {
1880     virt_machine_4_0_options(mc);
1881     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_3_1);
1882 }
1883 DEFINE_VIRT_MACHINE(3, 1)
1884 
1885 #define VIRT_COMPAT_3_0 \
1886     HW_COMPAT_3_0
1887 
1888 static void virt_machine_3_0_options(MachineClass *mc)
1889 {
1890     virt_machine_3_1_options(mc);
1891     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_3_0);
1892 }
1893 DEFINE_VIRT_MACHINE(3, 0)
1894 
1895 #define VIRT_COMPAT_2_12 \
1896     HW_COMPAT_2_12
1897 
1898 static void virt_machine_2_12_options(MachineClass *mc)
1899 {
1900     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1901 
1902     virt_machine_3_0_options(mc);
1903     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
1904     vmc->no_highmem_ecam = true;
1905     mc->max_cpus = 255;
1906 }
1907 DEFINE_VIRT_MACHINE(2, 12)
1908 
1909 #define VIRT_COMPAT_2_11 \
1910     HW_COMPAT_2_11
1911 
1912 static void virt_machine_2_11_options(MachineClass *mc)
1913 {
1914     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1915 
1916     virt_machine_2_12_options(mc);
1917     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1918     vmc->smbios_old_sys_ver = true;
1919 }
1920 DEFINE_VIRT_MACHINE(2, 11)
1921 
1922 #define VIRT_COMPAT_2_10 \
1923     HW_COMPAT_2_10
1924 
1925 static void virt_machine_2_10_options(MachineClass *mc)
1926 {
1927     virt_machine_2_11_options(mc);
1928     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1929     /* before 2.11 we never faulted accesses to bad addresses */
1930     mc->ignore_memory_transaction_failures = true;
1931 }
1932 DEFINE_VIRT_MACHINE(2, 10)
1933 
1934 #define VIRT_COMPAT_2_9 \
1935     HW_COMPAT_2_9
1936 
1937 static void virt_machine_2_9_options(MachineClass *mc)
1938 {
1939     virt_machine_2_10_options(mc);
1940     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1941 }
1942 DEFINE_VIRT_MACHINE(2, 9)
1943 
1944 #define VIRT_COMPAT_2_8 \
1945     HW_COMPAT_2_8
1946 
1947 static void virt_machine_2_8_options(MachineClass *mc)
1948 {
1949     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1950 
1951     virt_machine_2_9_options(mc);
1952     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1953     /* For 2.8 and earlier we falsely claimed in the DT that
1954      * our timers were edge-triggered, not level-triggered.
1955      */
1956     vmc->claim_edge_triggered_timers = true;
1957 }
1958 DEFINE_VIRT_MACHINE(2, 8)
1959 
1960 #define VIRT_COMPAT_2_7 \
1961     HW_COMPAT_2_7
1962 
1963 static void virt_machine_2_7_options(MachineClass *mc)
1964 {
1965     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1966 
1967     virt_machine_2_8_options(mc);
1968     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1969     /* ITS was introduced with 2.8 */
1970     vmc->no_its = true;
1971     /* Stick with 1K pages for migration compatibility */
1972     mc->minimum_page_bits = 0;
1973 }
1974 DEFINE_VIRT_MACHINE(2, 7)
1975 
1976 #define VIRT_COMPAT_2_6 \
1977     HW_COMPAT_2_6
1978 
1979 static void virt_machine_2_6_options(MachineClass *mc)
1980 {
1981     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1982 
1983     virt_machine_2_7_options(mc);
1984     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1985     vmc->disallow_affinity_adjustment = true;
1986     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1987     vmc->no_pmu = true;
1988 }
1989 DEFINE_VIRT_MACHINE(2, 6)
1990