1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/datadir.h" 34 #include "qemu/units.h" 35 #include "qemu/option.h" 36 #include "monitor/qdev.h" 37 #include "qapi/error.h" 38 #include "hw/sysbus.h" 39 #include "hw/boards.h" 40 #include "hw/arm/boot.h" 41 #include "hw/arm/primecell.h" 42 #include "hw/arm/virt.h" 43 #include "hw/block/flash.h" 44 #include "hw/vfio/vfio-calxeda-xgmac.h" 45 #include "hw/vfio/vfio-amd-xgbe.h" 46 #include "hw/display/ramfb.h" 47 #include "net/net.h" 48 #include "sysemu/device_tree.h" 49 #include "sysemu/numa.h" 50 #include "sysemu/runstate.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/tpm.h" 53 #include "sysemu/kvm.h" 54 #include "hw/loader.h" 55 #include "exec/address-spaces.h" 56 #include "qemu/bitops.h" 57 #include "qemu/error-report.h" 58 #include "qemu/module.h" 59 #include "hw/pci-host/gpex.h" 60 #include "hw/virtio/virtio-pci.h" 61 #include "hw/arm/sysbus-fdt.h" 62 #include "hw/platform-bus.h" 63 #include "hw/qdev-properties.h" 64 #include "hw/arm/fdt.h" 65 #include "hw/intc/arm_gic.h" 66 #include "hw/intc/arm_gicv3_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "standard-headers/linux/input.h" 73 #include "hw/arm/smmuv3.h" 74 #include "hw/acpi/acpi.h" 75 #include "target/arm/internals.h" 76 #include "hw/mem/pc-dimm.h" 77 #include "hw/mem/nvdimm.h" 78 #include "hw/acpi/generic_event_device.h" 79 #include "hw/virtio/virtio-iommu.h" 80 #include "hw/char/pl011.h" 81 #include "qemu/guest-random.h" 82 83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 85 void *data) \ 86 { \ 87 MachineClass *mc = MACHINE_CLASS(oc); \ 88 virt_machine_##major##_##minor##_options(mc); \ 89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 90 if (latest) { \ 91 mc->alias = "virt"; \ 92 } \ 93 } \ 94 static const TypeInfo machvirt_##major##_##minor##_info = { \ 95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 96 .parent = TYPE_VIRT_MACHINE, \ 97 .class_init = virt_##major##_##minor##_class_init, \ 98 }; \ 99 static void machvirt_machine_##major##_##minor##_init(void) \ 100 { \ 101 type_register_static(&machvirt_##major##_##minor##_info); \ 102 } \ 103 type_init(machvirt_machine_##major##_##minor##_init); 104 105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 107 #define DEFINE_VIRT_MACHINE(major, minor) \ 108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 109 110 111 /* Number of external interrupt lines to configure the GIC with */ 112 #define NUM_IRQS 256 113 114 #define PLATFORM_BUS_NUM_IRQS 64 115 116 /* Legacy RAM limit in GB (< version 4.0) */ 117 #define LEGACY_RAMLIMIT_GB 255 118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 119 120 /* Addresses and sizes of our components. 121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 122 * 128MB..256MB is used for miscellaneous device I/O. 123 * 256MB..1GB is reserved for possible future PCI support (ie where the 124 * PCI memory window will go if we add a PCI host controller). 125 * 1GB and up is RAM (which may happily spill over into the 126 * high memory region beyond 4GB). 127 * This represents a compromise between how much RAM can be given to 128 * a 32 bit VM and leaving space for expansion and in particular for PCI. 129 * Note that devices should generally be placed at multiples of 0x10000, 130 * to accommodate guests using 64K pages. 131 */ 132 static const MemMapEntry base_memmap[] = { 133 /* Space up to 0x8000000 is reserved for a boot ROM */ 134 [VIRT_FLASH] = { 0, 0x08000000 }, 135 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 137 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 138 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 139 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 140 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 141 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 143 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 144 /* This redistributor space allows up to 2*64kB*123 CPUs */ 145 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 146 [VIRT_UART] = { 0x09000000, 0x00001000 }, 147 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 148 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 149 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 150 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 151 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 152 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 153 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 154 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 155 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 156 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 157 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 158 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 159 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 160 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 161 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 162 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 163 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 164 /* Actual RAM size depends on initial RAM and device memory settings */ 165 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 166 }; 167 168 /* 169 * Highmem IO Regions: This memory map is floating, located after the RAM. 170 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 171 * top of the RAM, so that its base get the same alignment as the size, 172 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 173 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 174 * Note the extended_memmap is sized so that it eventually also includes the 175 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 176 * index of base_memmap). 177 */ 178 static MemMapEntry extended_memmap[] = { 179 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 180 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 181 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 182 /* Second PCIe window */ 183 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 184 }; 185 186 static const int a15irqmap[] = { 187 [VIRT_UART] = 1, 188 [VIRT_RTC] = 2, 189 [VIRT_PCIE] = 3, /* ... to 6 */ 190 [VIRT_GPIO] = 7, 191 [VIRT_SECURE_UART] = 8, 192 [VIRT_ACPI_GED] = 9, 193 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 194 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 195 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 196 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 197 }; 198 199 static const char *valid_cpus[] = { 200 ARM_CPU_TYPE_NAME("cortex-a7"), 201 ARM_CPU_TYPE_NAME("cortex-a15"), 202 ARM_CPU_TYPE_NAME("cortex-a53"), 203 ARM_CPU_TYPE_NAME("cortex-a57"), 204 ARM_CPU_TYPE_NAME("cortex-a72"), 205 ARM_CPU_TYPE_NAME("host"), 206 ARM_CPU_TYPE_NAME("max"), 207 }; 208 209 static bool cpu_type_valid(const char *cpu) 210 { 211 int i; 212 213 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 214 if (strcmp(cpu, valid_cpus[i]) == 0) { 215 return true; 216 } 217 } 218 return false; 219 } 220 221 static void create_kaslr_seed(VirtMachineState *vms, const char *node) 222 { 223 uint64_t seed; 224 225 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 226 return; 227 } 228 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed); 229 } 230 231 static void create_fdt(VirtMachineState *vms) 232 { 233 MachineState *ms = MACHINE(vms); 234 int nb_numa_nodes = ms->numa_state->num_nodes; 235 void *fdt = create_device_tree(&vms->fdt_size); 236 237 if (!fdt) { 238 error_report("create_device_tree() failed"); 239 exit(1); 240 } 241 242 vms->fdt = fdt; 243 244 /* Header */ 245 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 246 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 247 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 248 249 /* /chosen must exist for load_dtb to fill in necessary properties later */ 250 qemu_fdt_add_subnode(fdt, "/chosen"); 251 create_kaslr_seed(vms, "/chosen"); 252 253 if (vms->secure) { 254 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 255 create_kaslr_seed(vms, "/secure-chosen"); 256 } 257 258 /* Clock node, for the benefit of the UART. The kernel device tree 259 * binding documentation claims the PL011 node clock properties are 260 * optional but in practice if you omit them the kernel refuses to 261 * probe for the device. 262 */ 263 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 264 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 265 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 267 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 268 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 269 "clk24mhz"); 270 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 271 272 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 273 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 274 uint32_t *matrix = g_malloc0(size); 275 int idx, i, j; 276 277 for (i = 0; i < nb_numa_nodes; i++) { 278 for (j = 0; j < nb_numa_nodes; j++) { 279 idx = (i * nb_numa_nodes + j) * 3; 280 matrix[idx + 0] = cpu_to_be32(i); 281 matrix[idx + 1] = cpu_to_be32(j); 282 matrix[idx + 2] = 283 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 284 } 285 } 286 287 qemu_fdt_add_subnode(fdt, "/distance-map"); 288 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 289 "numa-distance-map-v1"); 290 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 291 matrix, size); 292 g_free(matrix); 293 } 294 } 295 296 static void fdt_add_timer_nodes(const VirtMachineState *vms) 297 { 298 /* On real hardware these interrupts are level-triggered. 299 * On KVM they were edge-triggered before host kernel version 4.4, 300 * and level-triggered afterwards. 301 * On emulated QEMU they are level-triggered. 302 * 303 * Getting the DTB info about them wrong is awkward for some 304 * guest kernels: 305 * pre-4.8 ignore the DT and leave the interrupt configured 306 * with whatever the GIC reset value (or the bootloader) left it at 307 * 4.8 before rc6 honour the incorrect data by programming it back 308 * into the GIC, causing problems 309 * 4.8rc6 and later ignore the DT and always write "level triggered" 310 * into the GIC 311 * 312 * For backwards-compatibility, virt-2.8 and earlier will continue 313 * to say these are edge-triggered, but later machines will report 314 * the correct information. 315 */ 316 ARMCPU *armcpu; 317 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 318 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 319 320 if (vmc->claim_edge_triggered_timers) { 321 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 322 } 323 324 if (vms->gic_version == VIRT_GIC_VERSION_2) { 325 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 326 GIC_FDT_IRQ_PPI_CPU_WIDTH, 327 (1 << MACHINE(vms)->smp.cpus) - 1); 328 } 329 330 qemu_fdt_add_subnode(vms->fdt, "/timer"); 331 332 armcpu = ARM_CPU(qemu_get_cpu(0)); 333 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 334 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 335 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 336 compat, sizeof(compat)); 337 } else { 338 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 339 "arm,armv7-timer"); 340 } 341 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 342 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 347 } 348 349 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 350 { 351 int cpu; 352 int addr_cells = 1; 353 const MachineState *ms = MACHINE(vms); 354 int smp_cpus = ms->smp.cpus; 355 356 /* 357 * From Documentation/devicetree/bindings/arm/cpus.txt 358 * On ARM v8 64-bit systems value should be set to 2, 359 * that corresponds to the MPIDR_EL1 register size. 360 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 361 * in the system, #address-cells can be set to 1, since 362 * MPIDR_EL1[63:32] bits are not used for CPUs 363 * identification. 364 * 365 * Here we actually don't know whether our system is 32- or 64-bit one. 366 * The simplest way to go is to examine affinity IDs of all our CPUs. If 367 * at least one of them has Aff3 populated, we set #address-cells to 2. 368 */ 369 for (cpu = 0; cpu < smp_cpus; cpu++) { 370 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 371 372 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 373 addr_cells = 2; 374 break; 375 } 376 } 377 378 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 379 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 380 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 381 382 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 383 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 384 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 385 CPUState *cs = CPU(armcpu); 386 387 qemu_fdt_add_subnode(vms->fdt, nodename); 388 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 389 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 390 armcpu->dtb_compatible); 391 392 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 393 qemu_fdt_setprop_string(vms->fdt, nodename, 394 "enable-method", "psci"); 395 } 396 397 if (addr_cells == 2) { 398 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 399 armcpu->mp_affinity); 400 } else { 401 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 402 armcpu->mp_affinity); 403 } 404 405 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 406 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 407 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 408 } 409 410 g_free(nodename); 411 } 412 } 413 414 static void fdt_add_its_gic_node(VirtMachineState *vms) 415 { 416 char *nodename; 417 418 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 419 nodename = g_strdup_printf("/intc/its@%" PRIx64, 420 vms->memmap[VIRT_GIC_ITS].base); 421 qemu_fdt_add_subnode(vms->fdt, nodename); 422 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 423 "arm,gic-v3-its"); 424 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 425 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 426 2, vms->memmap[VIRT_GIC_ITS].base, 427 2, vms->memmap[VIRT_GIC_ITS].size); 428 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 429 g_free(nodename); 430 } 431 432 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 433 { 434 char *nodename; 435 436 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 437 vms->memmap[VIRT_GIC_V2M].base); 438 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 439 qemu_fdt_add_subnode(vms->fdt, nodename); 440 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 441 "arm,gic-v2m-frame"); 442 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 443 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 444 2, vms->memmap[VIRT_GIC_V2M].base, 445 2, vms->memmap[VIRT_GIC_V2M].size); 446 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 447 g_free(nodename); 448 } 449 450 static void fdt_add_gic_node(VirtMachineState *vms) 451 { 452 char *nodename; 453 454 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 455 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 456 457 nodename = g_strdup_printf("/intc@%" PRIx64, 458 vms->memmap[VIRT_GIC_DIST].base); 459 qemu_fdt_add_subnode(vms->fdt, nodename); 460 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 461 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 462 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 463 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 464 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 465 if (vms->gic_version == VIRT_GIC_VERSION_3) { 466 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 467 468 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 469 "arm,gic-v3"); 470 471 qemu_fdt_setprop_cell(vms->fdt, nodename, 472 "#redistributor-regions", nb_redist_regions); 473 474 if (nb_redist_regions == 1) { 475 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 476 2, vms->memmap[VIRT_GIC_DIST].base, 477 2, vms->memmap[VIRT_GIC_DIST].size, 478 2, vms->memmap[VIRT_GIC_REDIST].base, 479 2, vms->memmap[VIRT_GIC_REDIST].size); 480 } else { 481 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 482 2, vms->memmap[VIRT_GIC_DIST].base, 483 2, vms->memmap[VIRT_GIC_DIST].size, 484 2, vms->memmap[VIRT_GIC_REDIST].base, 485 2, vms->memmap[VIRT_GIC_REDIST].size, 486 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 487 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 488 } 489 490 if (vms->virt) { 491 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 492 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 493 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 494 } 495 } else { 496 /* 'cortex-a15-gic' means 'GIC v2' */ 497 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 498 "arm,cortex-a15-gic"); 499 if (!vms->virt) { 500 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 501 2, vms->memmap[VIRT_GIC_DIST].base, 502 2, vms->memmap[VIRT_GIC_DIST].size, 503 2, vms->memmap[VIRT_GIC_CPU].base, 504 2, vms->memmap[VIRT_GIC_CPU].size); 505 } else { 506 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 507 2, vms->memmap[VIRT_GIC_DIST].base, 508 2, vms->memmap[VIRT_GIC_DIST].size, 509 2, vms->memmap[VIRT_GIC_CPU].base, 510 2, vms->memmap[VIRT_GIC_CPU].size, 511 2, vms->memmap[VIRT_GIC_HYP].base, 512 2, vms->memmap[VIRT_GIC_HYP].size, 513 2, vms->memmap[VIRT_GIC_VCPU].base, 514 2, vms->memmap[VIRT_GIC_VCPU].size); 515 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 516 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 517 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 518 } 519 } 520 521 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 522 g_free(nodename); 523 } 524 525 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 526 { 527 ARMCPU *armcpu = ARM_CPU(first_cpu); 528 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 529 530 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 531 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 532 return; 533 } 534 535 if (vms->gic_version == VIRT_GIC_VERSION_2) { 536 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 537 GIC_FDT_IRQ_PPI_CPU_WIDTH, 538 (1 << MACHINE(vms)->smp.cpus) - 1); 539 } 540 541 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 542 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 543 const char compat[] = "arm,armv8-pmuv3"; 544 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 545 compat, sizeof(compat)); 546 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 547 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 548 } 549 } 550 551 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 552 { 553 DeviceState *dev; 554 MachineState *ms = MACHINE(vms); 555 int irq = vms->irqmap[VIRT_ACPI_GED]; 556 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 557 558 if (ms->ram_slots) { 559 event |= ACPI_GED_MEM_HOTPLUG_EVT; 560 } 561 562 if (ms->nvdimms_state->is_enabled) { 563 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 564 } 565 566 dev = qdev_new(TYPE_ACPI_GED); 567 qdev_prop_set_uint32(dev, "ged-event", event); 568 569 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 570 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 571 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 572 573 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 574 575 return dev; 576 } 577 578 static void create_its(VirtMachineState *vms) 579 { 580 const char *itsclass = its_class_name(); 581 DeviceState *dev; 582 583 if (!itsclass) { 584 /* Do nothing if not supported */ 585 return; 586 } 587 588 dev = qdev_new(itsclass); 589 590 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 591 &error_abort); 592 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 593 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 594 595 fdt_add_its_gic_node(vms); 596 vms->msi_controller = VIRT_MSI_CTRL_ITS; 597 } 598 599 static void create_v2m(VirtMachineState *vms) 600 { 601 int i; 602 int irq = vms->irqmap[VIRT_GIC_V2M]; 603 DeviceState *dev; 604 605 dev = qdev_new("arm-gicv2m"); 606 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 607 qdev_prop_set_uint32(dev, "base-spi", irq); 608 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 609 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 610 611 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 612 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 613 qdev_get_gpio_in(vms->gic, irq + i)); 614 } 615 616 fdt_add_v2m_gic_node(vms); 617 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 618 } 619 620 static void create_gic(VirtMachineState *vms) 621 { 622 MachineState *ms = MACHINE(vms); 623 /* We create a standalone GIC */ 624 SysBusDevice *gicbusdev; 625 const char *gictype; 626 int type = vms->gic_version, i; 627 unsigned int smp_cpus = ms->smp.cpus; 628 uint32_t nb_redist_regions = 0; 629 630 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 631 632 vms->gic = qdev_new(gictype); 633 qdev_prop_set_uint32(vms->gic, "revision", type); 634 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 635 /* Note that the num-irq property counts both internal and external 636 * interrupts; there are always 32 of the former (mandated by GIC spec). 637 */ 638 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 639 if (!kvm_irqchip_in_kernel()) { 640 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 641 } 642 643 if (type == 3) { 644 uint32_t redist0_capacity = 645 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 646 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 647 648 nb_redist_regions = virt_gicv3_redist_region_count(vms); 649 650 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 651 nb_redist_regions); 652 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 653 654 if (nb_redist_regions == 2) { 655 uint32_t redist1_capacity = 656 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 657 658 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 659 MIN(smp_cpus - redist0_count, redist1_capacity)); 660 } 661 } else { 662 if (!kvm_irqchip_in_kernel()) { 663 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 664 vms->virt); 665 } 666 } 667 gicbusdev = SYS_BUS_DEVICE(vms->gic); 668 sysbus_realize_and_unref(gicbusdev, &error_fatal); 669 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 670 if (type == 3) { 671 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 672 if (nb_redist_regions == 2) { 673 sysbus_mmio_map(gicbusdev, 2, 674 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 675 } 676 } else { 677 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 678 if (vms->virt) { 679 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 680 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 681 } 682 } 683 684 /* Wire the outputs from each CPU's generic timer and the GICv3 685 * maintenance interrupt signal to the appropriate GIC PPI inputs, 686 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 687 */ 688 for (i = 0; i < smp_cpus; i++) { 689 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 690 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 691 int irq; 692 /* Mapping from the output timer irq lines from the CPU to the 693 * GIC PPI inputs we use for the virt board. 694 */ 695 const int timer_irq[] = { 696 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 697 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 698 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 699 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 700 }; 701 702 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 703 qdev_connect_gpio_out(cpudev, irq, 704 qdev_get_gpio_in(vms->gic, 705 ppibase + timer_irq[irq])); 706 } 707 708 if (type == 3) { 709 qemu_irq irq = qdev_get_gpio_in(vms->gic, 710 ppibase + ARCH_GIC_MAINT_IRQ); 711 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 712 0, irq); 713 } else if (vms->virt) { 714 qemu_irq irq = qdev_get_gpio_in(vms->gic, 715 ppibase + ARCH_GIC_MAINT_IRQ); 716 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 717 } 718 719 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 720 qdev_get_gpio_in(vms->gic, ppibase 721 + VIRTUAL_PMU_IRQ)); 722 723 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 724 sysbus_connect_irq(gicbusdev, i + smp_cpus, 725 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 726 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 727 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 728 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 729 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 730 } 731 732 fdt_add_gic_node(vms); 733 734 if (type == 3 && vms->its) { 735 create_its(vms); 736 } else if (type == 2) { 737 create_v2m(vms); 738 } 739 } 740 741 static void create_uart(const VirtMachineState *vms, int uart, 742 MemoryRegion *mem, Chardev *chr) 743 { 744 char *nodename; 745 hwaddr base = vms->memmap[uart].base; 746 hwaddr size = vms->memmap[uart].size; 747 int irq = vms->irqmap[uart]; 748 const char compat[] = "arm,pl011\0arm,primecell"; 749 const char clocknames[] = "uartclk\0apb_pclk"; 750 DeviceState *dev = qdev_new(TYPE_PL011); 751 SysBusDevice *s = SYS_BUS_DEVICE(dev); 752 753 qdev_prop_set_chr(dev, "chardev", chr); 754 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 755 memory_region_add_subregion(mem, base, 756 sysbus_mmio_get_region(s, 0)); 757 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 758 759 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 760 qemu_fdt_add_subnode(vms->fdt, nodename); 761 /* Note that we can't use setprop_string because of the embedded NUL */ 762 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 763 compat, sizeof(compat)); 764 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 765 2, base, 2, size); 766 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 767 GIC_FDT_IRQ_TYPE_SPI, irq, 768 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 769 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 770 vms->clock_phandle, vms->clock_phandle); 771 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 772 clocknames, sizeof(clocknames)); 773 774 if (uart == VIRT_UART) { 775 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 776 } else { 777 /* Mark as not usable by the normal world */ 778 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 779 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 780 781 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 782 nodename); 783 } 784 785 g_free(nodename); 786 } 787 788 static void create_rtc(const VirtMachineState *vms) 789 { 790 char *nodename; 791 hwaddr base = vms->memmap[VIRT_RTC].base; 792 hwaddr size = vms->memmap[VIRT_RTC].size; 793 int irq = vms->irqmap[VIRT_RTC]; 794 const char compat[] = "arm,pl031\0arm,primecell"; 795 796 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 797 798 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 799 qemu_fdt_add_subnode(vms->fdt, nodename); 800 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 801 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 802 2, base, 2, size); 803 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 804 GIC_FDT_IRQ_TYPE_SPI, irq, 805 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 806 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 807 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 808 g_free(nodename); 809 } 810 811 static DeviceState *gpio_key_dev; 812 static void virt_powerdown_req(Notifier *n, void *opaque) 813 { 814 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 815 816 if (s->acpi_dev) { 817 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 818 } else { 819 /* use gpio Pin 3 for power button event */ 820 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 821 } 822 } 823 824 static void create_gpio_keys(const VirtMachineState *vms, 825 DeviceState *pl061_dev, 826 uint32_t phandle) 827 { 828 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 829 qdev_get_gpio_in(pl061_dev, 3)); 830 831 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 832 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 833 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 834 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 835 836 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 837 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 838 "label", "GPIO Key Poweroff"); 839 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 840 KEY_POWER); 841 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 842 "gpios", phandle, 3, 0); 843 } 844 845 #define SECURE_GPIO_POWEROFF 0 846 #define SECURE_GPIO_RESET 1 847 848 static void create_secure_gpio_pwr(const VirtMachineState *vms, 849 DeviceState *pl061_dev, 850 uint32_t phandle) 851 { 852 DeviceState *gpio_pwr_dev; 853 854 /* gpio-pwr */ 855 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 856 857 /* connect secure pl061 to gpio-pwr */ 858 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 859 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 860 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 861 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 862 863 qemu_fdt_add_subnode(vms->fdt, "/gpio-poweroff"); 864 qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "compatible", 865 "gpio-poweroff"); 866 qemu_fdt_setprop_cells(vms->fdt, "/gpio-poweroff", 867 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 868 qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "status", "disabled"); 869 qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "secure-status", 870 "okay"); 871 872 qemu_fdt_add_subnode(vms->fdt, "/gpio-restart"); 873 qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "compatible", 874 "gpio-restart"); 875 qemu_fdt_setprop_cells(vms->fdt, "/gpio-restart", 876 "gpios", phandle, SECURE_GPIO_RESET, 0); 877 qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "status", "disabled"); 878 qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "secure-status", 879 "okay"); 880 } 881 882 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 883 MemoryRegion *mem) 884 { 885 char *nodename; 886 DeviceState *pl061_dev; 887 hwaddr base = vms->memmap[gpio].base; 888 hwaddr size = vms->memmap[gpio].size; 889 int irq = vms->irqmap[gpio]; 890 const char compat[] = "arm,pl061\0arm,primecell"; 891 SysBusDevice *s; 892 893 pl061_dev = qdev_new("pl061"); 894 s = SYS_BUS_DEVICE(pl061_dev); 895 sysbus_realize_and_unref(s, &error_fatal); 896 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 897 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 898 899 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 900 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 901 qemu_fdt_add_subnode(vms->fdt, nodename); 902 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 903 2, base, 2, size); 904 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 905 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 906 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 907 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 908 GIC_FDT_IRQ_TYPE_SPI, irq, 909 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 910 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 911 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 912 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 913 914 if (gpio != VIRT_GPIO) { 915 /* Mark as not usable by the normal world */ 916 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 917 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 918 } 919 g_free(nodename); 920 921 /* Child gpio devices */ 922 if (gpio == VIRT_GPIO) { 923 create_gpio_keys(vms, pl061_dev, phandle); 924 } else { 925 create_secure_gpio_pwr(vms, pl061_dev, phandle); 926 } 927 } 928 929 static void create_virtio_devices(const VirtMachineState *vms) 930 { 931 int i; 932 hwaddr size = vms->memmap[VIRT_MMIO].size; 933 934 /* We create the transports in forwards order. Since qbus_realize() 935 * prepends (not appends) new child buses, the incrementing loop below will 936 * create a list of virtio-mmio buses with decreasing base addresses. 937 * 938 * When a -device option is processed from the command line, 939 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 940 * order. The upshot is that -device options in increasing command line 941 * order are mapped to virtio-mmio buses with decreasing base addresses. 942 * 943 * When this code was originally written, that arrangement ensured that the 944 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 945 * the first -device on the command line. (The end-to-end order is a 946 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 947 * guest kernel's name-to-address assignment strategy.) 948 * 949 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 950 * the message, if not necessarily the code, of commit 70161ff336. 951 * Therefore the loop now establishes the inverse of the original intent. 952 * 953 * Unfortunately, we can't counteract the kernel change by reversing the 954 * loop; it would break existing command lines. 955 * 956 * In any case, the kernel makes no guarantee about the stability of 957 * enumeration order of virtio devices (as demonstrated by it changing 958 * between kernel versions). For reliable and stable identification 959 * of disks users must use UUIDs or similar mechanisms. 960 */ 961 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 962 int irq = vms->irqmap[VIRT_MMIO] + i; 963 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 964 965 sysbus_create_simple("virtio-mmio", base, 966 qdev_get_gpio_in(vms->gic, irq)); 967 } 968 969 /* We add dtb nodes in reverse order so that they appear in the finished 970 * device tree lowest address first. 971 * 972 * Note that this mapping is independent of the loop above. The previous 973 * loop influences virtio device to virtio transport assignment, whereas 974 * this loop controls how virtio transports are laid out in the dtb. 975 */ 976 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 977 char *nodename; 978 int irq = vms->irqmap[VIRT_MMIO] + i; 979 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 980 981 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 982 qemu_fdt_add_subnode(vms->fdt, nodename); 983 qemu_fdt_setprop_string(vms->fdt, nodename, 984 "compatible", "virtio,mmio"); 985 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 986 2, base, 2, size); 987 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 988 GIC_FDT_IRQ_TYPE_SPI, irq, 989 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 990 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 991 g_free(nodename); 992 } 993 } 994 995 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 996 997 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 998 const char *name, 999 const char *alias_prop_name) 1000 { 1001 /* 1002 * Create a single flash device. We use the same parameters as 1003 * the flash devices on the Versatile Express board. 1004 */ 1005 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1006 1007 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1008 qdev_prop_set_uint8(dev, "width", 4); 1009 qdev_prop_set_uint8(dev, "device-width", 2); 1010 qdev_prop_set_bit(dev, "big-endian", false); 1011 qdev_prop_set_uint16(dev, "id0", 0x89); 1012 qdev_prop_set_uint16(dev, "id1", 0x18); 1013 qdev_prop_set_uint16(dev, "id2", 0x00); 1014 qdev_prop_set_uint16(dev, "id3", 0x00); 1015 qdev_prop_set_string(dev, "name", name); 1016 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1017 object_property_add_alias(OBJECT(vms), alias_prop_name, 1018 OBJECT(dev), "drive"); 1019 return PFLASH_CFI01(dev); 1020 } 1021 1022 static void virt_flash_create(VirtMachineState *vms) 1023 { 1024 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1025 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1026 } 1027 1028 static void virt_flash_map1(PFlashCFI01 *flash, 1029 hwaddr base, hwaddr size, 1030 MemoryRegion *sysmem) 1031 { 1032 DeviceState *dev = DEVICE(flash); 1033 1034 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1035 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1036 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1037 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1038 1039 memory_region_add_subregion(sysmem, base, 1040 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1041 0)); 1042 } 1043 1044 static void virt_flash_map(VirtMachineState *vms, 1045 MemoryRegion *sysmem, 1046 MemoryRegion *secure_sysmem) 1047 { 1048 /* 1049 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1050 * sysmem is the system memory space. secure_sysmem is the secure view 1051 * of the system, and the first flash device should be made visible only 1052 * there. The second flash device is visible to both secure and nonsecure. 1053 * If sysmem == secure_sysmem this means there is no separate Secure 1054 * address space and both flash devices are generally visible. 1055 */ 1056 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1057 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1058 1059 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1060 secure_sysmem); 1061 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1062 sysmem); 1063 } 1064 1065 static void virt_flash_fdt(VirtMachineState *vms, 1066 MemoryRegion *sysmem, 1067 MemoryRegion *secure_sysmem) 1068 { 1069 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1070 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1071 char *nodename; 1072 1073 if (sysmem == secure_sysmem) { 1074 /* Report both flash devices as a single node in the DT */ 1075 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1076 qemu_fdt_add_subnode(vms->fdt, nodename); 1077 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1078 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1079 2, flashbase, 2, flashsize, 1080 2, flashbase + flashsize, 2, flashsize); 1081 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1082 g_free(nodename); 1083 } else { 1084 /* 1085 * Report the devices as separate nodes so we can mark one as 1086 * only visible to the secure world. 1087 */ 1088 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1089 qemu_fdt_add_subnode(vms->fdt, nodename); 1090 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1091 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1092 2, flashbase, 2, flashsize); 1093 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1094 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1095 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1096 g_free(nodename); 1097 1098 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1099 qemu_fdt_add_subnode(vms->fdt, nodename); 1100 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1101 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1102 2, flashbase + flashsize, 2, flashsize); 1103 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1104 g_free(nodename); 1105 } 1106 } 1107 1108 static bool virt_firmware_init(VirtMachineState *vms, 1109 MemoryRegion *sysmem, 1110 MemoryRegion *secure_sysmem) 1111 { 1112 int i; 1113 const char *bios_name; 1114 BlockBackend *pflash_blk0; 1115 1116 /* Map legacy -drive if=pflash to machine properties */ 1117 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1118 pflash_cfi01_legacy_drive(vms->flash[i], 1119 drive_get(IF_PFLASH, 0, i)); 1120 } 1121 1122 virt_flash_map(vms, sysmem, secure_sysmem); 1123 1124 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1125 1126 bios_name = MACHINE(vms)->firmware; 1127 if (bios_name) { 1128 char *fname; 1129 MemoryRegion *mr; 1130 int image_size; 1131 1132 if (pflash_blk0) { 1133 error_report("The contents of the first flash device may be " 1134 "specified with -bios or with -drive if=pflash... " 1135 "but you cannot use both options at once"); 1136 exit(1); 1137 } 1138 1139 /* Fall back to -bios */ 1140 1141 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1142 if (!fname) { 1143 error_report("Could not find ROM image '%s'", bios_name); 1144 exit(1); 1145 } 1146 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1147 image_size = load_image_mr(fname, mr); 1148 g_free(fname); 1149 if (image_size < 0) { 1150 error_report("Could not load ROM image '%s'", bios_name); 1151 exit(1); 1152 } 1153 } 1154 1155 return pflash_blk0 || bios_name; 1156 } 1157 1158 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1159 { 1160 MachineState *ms = MACHINE(vms); 1161 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1162 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1163 FWCfgState *fw_cfg; 1164 char *nodename; 1165 1166 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1167 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1168 1169 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1170 qemu_fdt_add_subnode(vms->fdt, nodename); 1171 qemu_fdt_setprop_string(vms->fdt, nodename, 1172 "compatible", "qemu,fw-cfg-mmio"); 1173 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1174 2, base, 2, size); 1175 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1176 g_free(nodename); 1177 return fw_cfg; 1178 } 1179 1180 static void create_pcie_irq_map(const VirtMachineState *vms, 1181 uint32_t gic_phandle, 1182 int first_irq, const char *nodename) 1183 { 1184 int devfn, pin; 1185 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1186 uint32_t *irq_map = full_irq_map; 1187 1188 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1189 for (pin = 0; pin < 4; pin++) { 1190 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1191 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1192 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1193 int i; 1194 1195 uint32_t map[] = { 1196 devfn << 8, 0, 0, /* devfn */ 1197 pin + 1, /* PCI pin */ 1198 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1199 1200 /* Convert map to big endian */ 1201 for (i = 0; i < 10; i++) { 1202 irq_map[i] = cpu_to_be32(map[i]); 1203 } 1204 irq_map += 10; 1205 } 1206 } 1207 1208 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1209 full_irq_map, sizeof(full_irq_map)); 1210 1211 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1212 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1213 0, 0, 1214 0x7 /* PCI irq */); 1215 } 1216 1217 static void create_smmu(const VirtMachineState *vms, 1218 PCIBus *bus) 1219 { 1220 char *node; 1221 const char compat[] = "arm,smmu-v3"; 1222 int irq = vms->irqmap[VIRT_SMMU]; 1223 int i; 1224 hwaddr base = vms->memmap[VIRT_SMMU].base; 1225 hwaddr size = vms->memmap[VIRT_SMMU].size; 1226 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1227 DeviceState *dev; 1228 1229 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1230 return; 1231 } 1232 1233 dev = qdev_new("arm-smmuv3"); 1234 1235 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1236 &error_abort); 1237 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1238 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1239 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1240 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1241 qdev_get_gpio_in(vms->gic, irq + i)); 1242 } 1243 1244 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1245 qemu_fdt_add_subnode(vms->fdt, node); 1246 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1247 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1248 1249 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1250 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1251 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1252 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1253 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1254 1255 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1256 sizeof(irq_names)); 1257 1258 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1259 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1260 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1261 1262 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1263 1264 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1265 g_free(node); 1266 } 1267 1268 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1269 { 1270 const char compat[] = "virtio,pci-iommu"; 1271 uint16_t bdf = vms->virtio_iommu_bdf; 1272 char *node; 1273 1274 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1275 1276 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1277 qemu_fdt_add_subnode(vms->fdt, node); 1278 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1279 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 1280 1, bdf << 8, 1, 0, 1, 0, 1281 1, 0, 1, 0); 1282 1283 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1284 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1285 g_free(node); 1286 1287 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map", 1288 0x0, vms->iommu_phandle, 0x0, bdf, 1289 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1290 } 1291 1292 static void create_pcie(VirtMachineState *vms) 1293 { 1294 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1295 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1296 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1297 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1298 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1299 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1300 hwaddr base_ecam, size_ecam; 1301 hwaddr base = base_mmio; 1302 int nr_pcie_buses; 1303 int irq = vms->irqmap[VIRT_PCIE]; 1304 MemoryRegion *mmio_alias; 1305 MemoryRegion *mmio_reg; 1306 MemoryRegion *ecam_alias; 1307 MemoryRegion *ecam_reg; 1308 DeviceState *dev; 1309 char *nodename; 1310 int i, ecam_id; 1311 PCIHostState *pci; 1312 1313 dev = qdev_new(TYPE_GPEX_HOST); 1314 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1315 1316 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1317 base_ecam = vms->memmap[ecam_id].base; 1318 size_ecam = vms->memmap[ecam_id].size; 1319 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1320 /* Map only the first size_ecam bytes of ECAM space */ 1321 ecam_alias = g_new0(MemoryRegion, 1); 1322 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1323 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1324 ecam_reg, 0, size_ecam); 1325 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1326 1327 /* Map the MMIO window into system address space so as to expose 1328 * the section of PCI MMIO space which starts at the same base address 1329 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1330 * the window). 1331 */ 1332 mmio_alias = g_new0(MemoryRegion, 1); 1333 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1334 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1335 mmio_reg, base_mmio, size_mmio); 1336 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1337 1338 if (vms->highmem) { 1339 /* Map high MMIO space */ 1340 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1341 1342 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1343 mmio_reg, base_mmio_high, size_mmio_high); 1344 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1345 high_mmio_alias); 1346 } 1347 1348 /* Map IO port space */ 1349 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1350 1351 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1352 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1353 qdev_get_gpio_in(vms->gic, irq + i)); 1354 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1355 } 1356 1357 pci = PCI_HOST_BRIDGE(dev); 1358 vms->bus = pci->bus; 1359 if (vms->bus) { 1360 for (i = 0; i < nb_nics; i++) { 1361 NICInfo *nd = &nd_table[i]; 1362 1363 if (!nd->model) { 1364 nd->model = g_strdup("virtio"); 1365 } 1366 1367 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1368 } 1369 } 1370 1371 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1372 qemu_fdt_add_subnode(vms->fdt, nodename); 1373 qemu_fdt_setprop_string(vms->fdt, nodename, 1374 "compatible", "pci-host-ecam-generic"); 1375 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1376 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1377 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1378 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1379 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1380 nr_pcie_buses - 1); 1381 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1382 1383 if (vms->msi_phandle) { 1384 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1385 vms->msi_phandle); 1386 } 1387 1388 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1389 2, base_ecam, 2, size_ecam); 1390 1391 if (vms->highmem) { 1392 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1393 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1394 2, base_pio, 2, size_pio, 1395 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1396 2, base_mmio, 2, size_mmio, 1397 1, FDT_PCI_RANGE_MMIO_64BIT, 1398 2, base_mmio_high, 1399 2, base_mmio_high, 2, size_mmio_high); 1400 } else { 1401 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1402 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1403 2, base_pio, 2, size_pio, 1404 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1405 2, base_mmio, 2, size_mmio); 1406 } 1407 1408 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1409 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1410 1411 if (vms->iommu) { 1412 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1413 1414 switch (vms->iommu) { 1415 case VIRT_IOMMU_SMMUV3: 1416 create_smmu(vms, vms->bus); 1417 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1418 0x0, vms->iommu_phandle, 0x0, 0x10000); 1419 break; 1420 default: 1421 g_assert_not_reached(); 1422 } 1423 } 1424 } 1425 1426 static void create_platform_bus(VirtMachineState *vms) 1427 { 1428 DeviceState *dev; 1429 SysBusDevice *s; 1430 int i; 1431 MemoryRegion *sysmem = get_system_memory(); 1432 1433 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1434 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1435 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1436 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1437 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1438 vms->platform_bus_dev = dev; 1439 1440 s = SYS_BUS_DEVICE(dev); 1441 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1442 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1443 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1444 } 1445 1446 memory_region_add_subregion(sysmem, 1447 vms->memmap[VIRT_PLATFORM_BUS].base, 1448 sysbus_mmio_get_region(s, 0)); 1449 } 1450 1451 static void create_tag_ram(MemoryRegion *tag_sysmem, 1452 hwaddr base, hwaddr size, 1453 const char *name) 1454 { 1455 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1456 1457 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1458 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1459 } 1460 1461 static void create_secure_ram(VirtMachineState *vms, 1462 MemoryRegion *secure_sysmem, 1463 MemoryRegion *secure_tag_sysmem) 1464 { 1465 MemoryRegion *secram = g_new(MemoryRegion, 1); 1466 char *nodename; 1467 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1468 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1469 1470 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1471 &error_fatal); 1472 memory_region_add_subregion(secure_sysmem, base, secram); 1473 1474 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1475 qemu_fdt_add_subnode(vms->fdt, nodename); 1476 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1477 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1478 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1479 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1480 1481 if (secure_tag_sysmem) { 1482 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1483 } 1484 1485 g_free(nodename); 1486 } 1487 1488 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1489 { 1490 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1491 bootinfo); 1492 1493 *fdt_size = board->fdt_size; 1494 return board->fdt; 1495 } 1496 1497 static void virt_build_smbios(VirtMachineState *vms) 1498 { 1499 MachineClass *mc = MACHINE_GET_CLASS(vms); 1500 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1501 uint8_t *smbios_tables, *smbios_anchor; 1502 size_t smbios_tables_len, smbios_anchor_len; 1503 const char *product = "QEMU Virtual Machine"; 1504 1505 if (kvm_enabled()) { 1506 product = "KVM Virtual Machine"; 1507 } 1508 1509 smbios_set_defaults("QEMU", product, 1510 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1511 true, SMBIOS_ENTRY_POINT_30); 1512 1513 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1514 &smbios_anchor, &smbios_anchor_len); 1515 1516 if (smbios_anchor) { 1517 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1518 smbios_tables, smbios_tables_len); 1519 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1520 smbios_anchor, smbios_anchor_len); 1521 } 1522 } 1523 1524 static 1525 void virt_machine_done(Notifier *notifier, void *data) 1526 { 1527 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1528 machine_done); 1529 MachineState *ms = MACHINE(vms); 1530 ARMCPU *cpu = ARM_CPU(first_cpu); 1531 struct arm_boot_info *info = &vms->bootinfo; 1532 AddressSpace *as = arm_boot_address_space(cpu, info); 1533 1534 /* 1535 * If the user provided a dtb, we assume the dynamic sysbus nodes 1536 * already are integrated there. This corresponds to a use case where 1537 * the dynamic sysbus nodes are complex and their generation is not yet 1538 * supported. In that case the user can take charge of the guest dt 1539 * while qemu takes charge of the qom stuff. 1540 */ 1541 if (info->dtb_filename == NULL) { 1542 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1543 vms->memmap[VIRT_PLATFORM_BUS].base, 1544 vms->memmap[VIRT_PLATFORM_BUS].size, 1545 vms->irqmap[VIRT_PLATFORM_BUS]); 1546 } 1547 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1548 exit(1); 1549 } 1550 1551 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1552 1553 virt_acpi_setup(vms); 1554 virt_build_smbios(vms); 1555 } 1556 1557 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1558 { 1559 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1560 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1561 1562 if (!vmc->disallow_affinity_adjustment) { 1563 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1564 * GIC's target-list limitations. 32-bit KVM hosts currently 1565 * always create clusters of 4 CPUs, but that is expected to 1566 * change when they gain support for gicv3. When KVM is enabled 1567 * it will override the changes we make here, therefore our 1568 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1569 * and to improve SGI efficiency. 1570 */ 1571 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1572 clustersz = GICV3_TARGETLIST_BITS; 1573 } else { 1574 clustersz = GIC_TARGETLIST_BITS; 1575 } 1576 } 1577 return arm_cpu_mp_affinity(idx, clustersz); 1578 } 1579 1580 static void virt_set_memmap(VirtMachineState *vms) 1581 { 1582 MachineState *ms = MACHINE(vms); 1583 hwaddr base, device_memory_base, device_memory_size; 1584 int i; 1585 1586 vms->memmap = extended_memmap; 1587 1588 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1589 vms->memmap[i] = base_memmap[i]; 1590 } 1591 1592 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1593 error_report("unsupported number of memory slots: %"PRIu64, 1594 ms->ram_slots); 1595 exit(EXIT_FAILURE); 1596 } 1597 1598 /* 1599 * We compute the base of the high IO region depending on the 1600 * amount of initial and device memory. The device memory start/size 1601 * is aligned on 1GiB. We never put the high IO region below 256GiB 1602 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1603 * The device region size assumes 1GiB page max alignment per slot. 1604 */ 1605 device_memory_base = 1606 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1607 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1608 1609 /* Base address of the high IO region */ 1610 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1611 if (base < device_memory_base) { 1612 error_report("maxmem/slots too huge"); 1613 exit(EXIT_FAILURE); 1614 } 1615 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1616 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1617 } 1618 1619 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1620 hwaddr size = extended_memmap[i].size; 1621 1622 base = ROUND_UP(base, size); 1623 vms->memmap[i].base = base; 1624 vms->memmap[i].size = size; 1625 base += size; 1626 } 1627 vms->highest_gpa = base - 1; 1628 if (device_memory_size > 0) { 1629 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1630 ms->device_memory->base = device_memory_base; 1631 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1632 "device-memory", device_memory_size); 1633 } 1634 } 1635 1636 /* 1637 * finalize_gic_version - Determines the final gic_version 1638 * according to the gic-version property 1639 * 1640 * Default GIC type is v2 1641 */ 1642 static void finalize_gic_version(VirtMachineState *vms) 1643 { 1644 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1645 1646 if (kvm_enabled()) { 1647 int probe_bitmap; 1648 1649 if (!kvm_irqchip_in_kernel()) { 1650 switch (vms->gic_version) { 1651 case VIRT_GIC_VERSION_HOST: 1652 warn_report( 1653 "gic-version=host not relevant with kernel-irqchip=off " 1654 "as only userspace GICv2 is supported. Using v2 ..."); 1655 return; 1656 case VIRT_GIC_VERSION_MAX: 1657 case VIRT_GIC_VERSION_NOSEL: 1658 vms->gic_version = VIRT_GIC_VERSION_2; 1659 return; 1660 case VIRT_GIC_VERSION_2: 1661 return; 1662 case VIRT_GIC_VERSION_3: 1663 error_report( 1664 "gic-version=3 is not supported with kernel-irqchip=off"); 1665 exit(1); 1666 } 1667 } 1668 1669 probe_bitmap = kvm_arm_vgic_probe(); 1670 if (!probe_bitmap) { 1671 error_report("Unable to determine GIC version supported by host"); 1672 exit(1); 1673 } 1674 1675 switch (vms->gic_version) { 1676 case VIRT_GIC_VERSION_HOST: 1677 case VIRT_GIC_VERSION_MAX: 1678 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1679 vms->gic_version = VIRT_GIC_VERSION_3; 1680 } else { 1681 vms->gic_version = VIRT_GIC_VERSION_2; 1682 } 1683 return; 1684 case VIRT_GIC_VERSION_NOSEL: 1685 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1686 vms->gic_version = VIRT_GIC_VERSION_2; 1687 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1688 /* 1689 * in case the host does not support v2 in-kernel emulation or 1690 * the end-user requested more than 8 VCPUs we now default 1691 * to v3. In any case defaulting to v2 would be broken. 1692 */ 1693 vms->gic_version = VIRT_GIC_VERSION_3; 1694 } else if (max_cpus > GIC_NCPU) { 1695 error_report("host only supports in-kernel GICv2 emulation " 1696 "but more than 8 vcpus are requested"); 1697 exit(1); 1698 } 1699 break; 1700 case VIRT_GIC_VERSION_2: 1701 case VIRT_GIC_VERSION_3: 1702 break; 1703 } 1704 1705 /* Check chosen version is effectively supported by the host */ 1706 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1707 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1708 error_report("host does not support in-kernel GICv2 emulation"); 1709 exit(1); 1710 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1711 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1712 error_report("host does not support in-kernel GICv3 emulation"); 1713 exit(1); 1714 } 1715 return; 1716 } 1717 1718 /* TCG mode */ 1719 switch (vms->gic_version) { 1720 case VIRT_GIC_VERSION_NOSEL: 1721 vms->gic_version = VIRT_GIC_VERSION_2; 1722 break; 1723 case VIRT_GIC_VERSION_MAX: 1724 vms->gic_version = VIRT_GIC_VERSION_3; 1725 break; 1726 case VIRT_GIC_VERSION_HOST: 1727 error_report("gic-version=host requires KVM"); 1728 exit(1); 1729 case VIRT_GIC_VERSION_2: 1730 case VIRT_GIC_VERSION_3: 1731 break; 1732 } 1733 } 1734 1735 /* 1736 * virt_cpu_post_init() must be called after the CPUs have 1737 * been realized and the GIC has been created. 1738 */ 1739 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1740 { 1741 int max_cpus = MACHINE(vms)->smp.max_cpus; 1742 bool aarch64, pmu, steal_time; 1743 CPUState *cpu; 1744 1745 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1746 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1747 steal_time = object_property_get_bool(OBJECT(first_cpu), 1748 "kvm-steal-time", NULL); 1749 1750 if (kvm_enabled()) { 1751 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1752 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1753 1754 if (steal_time) { 1755 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1756 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1757 1758 /* The memory region size must be a multiple of host page size. */ 1759 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1760 1761 if (pvtime_size > pvtime_reg_size) { 1762 error_report("pvtime requires a %" HWADDR_PRId 1763 " byte memory region for %d CPUs," 1764 " but only %" HWADDR_PRId " has been reserved", 1765 pvtime_size, max_cpus, pvtime_reg_size); 1766 exit(1); 1767 } 1768 1769 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1770 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1771 } 1772 1773 CPU_FOREACH(cpu) { 1774 if (pmu) { 1775 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1776 if (kvm_irqchip_in_kernel()) { 1777 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 1778 } 1779 kvm_arm_pmu_init(cpu); 1780 } 1781 if (steal_time) { 1782 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 1783 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 1784 } 1785 } 1786 } else { 1787 if (aarch64 && vms->highmem) { 1788 int requested_pa_size = 64 - clz64(vms->highest_gpa); 1789 int pamax = arm_pamax(ARM_CPU(first_cpu)); 1790 1791 if (pamax < requested_pa_size) { 1792 error_report("VCPU supports less PA bits (%d) than " 1793 "requested by the memory map (%d)", 1794 pamax, requested_pa_size); 1795 exit(1); 1796 } 1797 } 1798 } 1799 } 1800 1801 static void machvirt_init(MachineState *machine) 1802 { 1803 VirtMachineState *vms = VIRT_MACHINE(machine); 1804 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1805 MachineClass *mc = MACHINE_GET_CLASS(machine); 1806 const CPUArchIdList *possible_cpus; 1807 MemoryRegion *sysmem = get_system_memory(); 1808 MemoryRegion *secure_sysmem = NULL; 1809 MemoryRegion *tag_sysmem = NULL; 1810 MemoryRegion *secure_tag_sysmem = NULL; 1811 int n, virt_max_cpus; 1812 bool firmware_loaded; 1813 bool aarch64 = true; 1814 bool has_ged = !vmc->no_ged; 1815 unsigned int smp_cpus = machine->smp.cpus; 1816 unsigned int max_cpus = machine->smp.max_cpus; 1817 1818 /* 1819 * In accelerated mode, the memory map is computed earlier in kvm_type() 1820 * to create a VM with the right number of IPA bits. 1821 */ 1822 if (!vms->memmap) { 1823 virt_set_memmap(vms); 1824 } 1825 1826 /* We can probe only here because during property set 1827 * KVM is not available yet 1828 */ 1829 finalize_gic_version(vms); 1830 1831 if (!cpu_type_valid(machine->cpu_type)) { 1832 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1833 exit(1); 1834 } 1835 1836 if (vms->secure) { 1837 if (kvm_enabled()) { 1838 error_report("mach-virt: KVM does not support Security extensions"); 1839 exit(1); 1840 } 1841 1842 /* 1843 * The Secure view of the world is the same as the NonSecure, 1844 * but with a few extra devices. Create it as a container region 1845 * containing the system memory at low priority; any secure-only 1846 * devices go in at higher priority and take precedence. 1847 */ 1848 secure_sysmem = g_new(MemoryRegion, 1); 1849 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1850 UINT64_MAX); 1851 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1852 } 1853 1854 firmware_loaded = virt_firmware_init(vms, sysmem, 1855 secure_sysmem ?: sysmem); 1856 1857 /* If we have an EL3 boot ROM then the assumption is that it will 1858 * implement PSCI itself, so disable QEMU's internal implementation 1859 * so it doesn't get in the way. Instead of starting secondary 1860 * CPUs in PSCI powerdown state we will start them all running and 1861 * let the boot ROM sort them out. 1862 * The usual case is that we do use QEMU's PSCI implementation; 1863 * if the guest has EL2 then we will use SMC as the conduit, 1864 * and otherwise we will use HVC (for backwards compatibility and 1865 * because if we're using KVM then we must use HVC). 1866 */ 1867 if (vms->secure && firmware_loaded) { 1868 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1869 } else if (vms->virt) { 1870 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1871 } else { 1872 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1873 } 1874 1875 /* The maximum number of CPUs depends on the GIC version, or on how 1876 * many redistributors we can fit into the memory map. 1877 */ 1878 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1879 virt_max_cpus = 1880 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1881 virt_max_cpus += 1882 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1883 } else { 1884 virt_max_cpus = GIC_NCPU; 1885 } 1886 1887 if (max_cpus > virt_max_cpus) { 1888 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1889 "supported by machine 'mach-virt' (%d)", 1890 max_cpus, virt_max_cpus); 1891 exit(1); 1892 } 1893 1894 if (vms->virt && kvm_enabled()) { 1895 error_report("mach-virt: KVM does not support providing " 1896 "Virtualization extensions to the guest CPU"); 1897 exit(1); 1898 } 1899 1900 if (vms->mte && kvm_enabled()) { 1901 error_report("mach-virt: KVM does not support providing " 1902 "MTE to the guest CPU"); 1903 exit(1); 1904 } 1905 1906 create_fdt(vms); 1907 1908 possible_cpus = mc->possible_cpu_arch_ids(machine); 1909 assert(possible_cpus->len == max_cpus); 1910 for (n = 0; n < possible_cpus->len; n++) { 1911 Object *cpuobj; 1912 CPUState *cs; 1913 1914 if (n >= smp_cpus) { 1915 break; 1916 } 1917 1918 cpuobj = object_new(possible_cpus->cpus[n].type); 1919 object_property_set_int(cpuobj, "mp-affinity", 1920 possible_cpus->cpus[n].arch_id, NULL); 1921 1922 cs = CPU(cpuobj); 1923 cs->cpu_index = n; 1924 1925 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1926 &error_fatal); 1927 1928 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1929 1930 if (!vms->secure) { 1931 object_property_set_bool(cpuobj, "has_el3", false, NULL); 1932 } 1933 1934 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 1935 object_property_set_bool(cpuobj, "has_el2", false, NULL); 1936 } 1937 1938 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1939 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, 1940 NULL); 1941 1942 /* Secondary CPUs start in PSCI powered-down state */ 1943 if (n > 0) { 1944 object_property_set_bool(cpuobj, "start-powered-off", true, 1945 NULL); 1946 } 1947 } 1948 1949 if (vmc->kvm_no_adjvtime && 1950 object_property_find(cpuobj, "kvm-no-adjvtime")) { 1951 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 1952 } 1953 1954 if (vmc->no_kvm_steal_time && 1955 object_property_find(cpuobj, "kvm-steal-time")) { 1956 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 1957 } 1958 1959 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 1960 object_property_set_bool(cpuobj, "pmu", false, NULL); 1961 } 1962 1963 if (object_property_find(cpuobj, "reset-cbar")) { 1964 object_property_set_int(cpuobj, "reset-cbar", 1965 vms->memmap[VIRT_CPUPERIPHS].base, 1966 &error_abort); 1967 } 1968 1969 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 1970 &error_abort); 1971 if (vms->secure) { 1972 object_property_set_link(cpuobj, "secure-memory", 1973 OBJECT(secure_sysmem), &error_abort); 1974 } 1975 1976 if (vms->mte) { 1977 /* Create the memory region only once, but link to all cpus. */ 1978 if (!tag_sysmem) { 1979 /* 1980 * The property exists only if MemTag is supported. 1981 * If it is, we must allocate the ram to back that up. 1982 */ 1983 if (!object_property_find(cpuobj, "tag-memory")) { 1984 error_report("MTE requested, but not supported " 1985 "by the guest CPU"); 1986 exit(1); 1987 } 1988 1989 tag_sysmem = g_new(MemoryRegion, 1); 1990 memory_region_init(tag_sysmem, OBJECT(machine), 1991 "tag-memory", UINT64_MAX / 32); 1992 1993 if (vms->secure) { 1994 secure_tag_sysmem = g_new(MemoryRegion, 1); 1995 memory_region_init(secure_tag_sysmem, OBJECT(machine), 1996 "secure-tag-memory", UINT64_MAX / 32); 1997 1998 /* As with ram, secure-tag takes precedence over tag. */ 1999 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2000 tag_sysmem, -1); 2001 } 2002 } 2003 2004 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2005 &error_abort); 2006 if (vms->secure) { 2007 object_property_set_link(cpuobj, "secure-tag-memory", 2008 OBJECT(secure_tag_sysmem), 2009 &error_abort); 2010 } 2011 } 2012 2013 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2014 object_unref(cpuobj); 2015 } 2016 fdt_add_timer_nodes(vms); 2017 fdt_add_cpu_nodes(vms); 2018 2019 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2020 machine->ram); 2021 if (machine->device_memory) { 2022 memory_region_add_subregion(sysmem, machine->device_memory->base, 2023 &machine->device_memory->mr); 2024 } 2025 2026 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2027 2028 create_gic(vms); 2029 2030 virt_cpu_post_init(vms, sysmem); 2031 2032 fdt_add_pmu_nodes(vms); 2033 2034 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2035 2036 if (vms->secure) { 2037 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2038 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2039 } 2040 2041 if (tag_sysmem) { 2042 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2043 machine->ram_size, "mach-virt.tag"); 2044 } 2045 2046 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 2047 2048 create_rtc(vms); 2049 2050 create_pcie(vms); 2051 2052 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2053 vms->acpi_dev = create_acpi_ged(vms); 2054 } else { 2055 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2056 } 2057 2058 if (vms->secure && !vmc->no_secure_gpio) { 2059 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2060 } 2061 2062 /* connect powerdown request */ 2063 vms->powerdown_notifier.notify = virt_powerdown_req; 2064 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2065 2066 /* Create mmio transports, so the user can create virtio backends 2067 * (which will be automatically plugged in to the transports). If 2068 * no backend is created the transport will just sit harmlessly idle. 2069 */ 2070 create_virtio_devices(vms); 2071 2072 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2073 rom_set_fw(vms->fw_cfg); 2074 2075 create_platform_bus(vms); 2076 2077 if (machine->nvdimms_state->is_enabled) { 2078 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2079 .space_id = AML_AS_SYSTEM_MEMORY, 2080 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2081 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2082 }; 2083 2084 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2085 arm_virt_nvdimm_acpi_dsmio, 2086 vms->fw_cfg, OBJECT(vms)); 2087 } 2088 2089 vms->bootinfo.ram_size = machine->ram_size; 2090 vms->bootinfo.nb_cpus = smp_cpus; 2091 vms->bootinfo.board_id = -1; 2092 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2093 vms->bootinfo.get_dtb = machvirt_dtb; 2094 vms->bootinfo.skip_dtb_autoload = true; 2095 vms->bootinfo.firmware_loaded = firmware_loaded; 2096 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2097 2098 vms->machine_done.notify = virt_machine_done; 2099 qemu_add_machine_init_done_notifier(&vms->machine_done); 2100 } 2101 2102 static bool virt_get_secure(Object *obj, Error **errp) 2103 { 2104 VirtMachineState *vms = VIRT_MACHINE(obj); 2105 2106 return vms->secure; 2107 } 2108 2109 static void virt_set_secure(Object *obj, bool value, Error **errp) 2110 { 2111 VirtMachineState *vms = VIRT_MACHINE(obj); 2112 2113 vms->secure = value; 2114 } 2115 2116 static bool virt_get_virt(Object *obj, Error **errp) 2117 { 2118 VirtMachineState *vms = VIRT_MACHINE(obj); 2119 2120 return vms->virt; 2121 } 2122 2123 static void virt_set_virt(Object *obj, bool value, Error **errp) 2124 { 2125 VirtMachineState *vms = VIRT_MACHINE(obj); 2126 2127 vms->virt = value; 2128 } 2129 2130 static bool virt_get_highmem(Object *obj, Error **errp) 2131 { 2132 VirtMachineState *vms = VIRT_MACHINE(obj); 2133 2134 return vms->highmem; 2135 } 2136 2137 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2138 { 2139 VirtMachineState *vms = VIRT_MACHINE(obj); 2140 2141 vms->highmem = value; 2142 } 2143 2144 static bool virt_get_its(Object *obj, Error **errp) 2145 { 2146 VirtMachineState *vms = VIRT_MACHINE(obj); 2147 2148 return vms->its; 2149 } 2150 2151 static void virt_set_its(Object *obj, bool value, Error **errp) 2152 { 2153 VirtMachineState *vms = VIRT_MACHINE(obj); 2154 2155 vms->its = value; 2156 } 2157 2158 static char *virt_get_oem_id(Object *obj, Error **errp) 2159 { 2160 VirtMachineState *vms = VIRT_MACHINE(obj); 2161 2162 return g_strdup(vms->oem_id); 2163 } 2164 2165 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2166 { 2167 VirtMachineState *vms = VIRT_MACHINE(obj); 2168 size_t len = strlen(value); 2169 2170 if (len > 6) { 2171 error_setg(errp, 2172 "User specified oem-id value is bigger than 6 bytes in size"); 2173 return; 2174 } 2175 2176 strncpy(vms->oem_id, value, 6); 2177 } 2178 2179 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2180 { 2181 VirtMachineState *vms = VIRT_MACHINE(obj); 2182 2183 return g_strdup(vms->oem_table_id); 2184 } 2185 2186 static void virt_set_oem_table_id(Object *obj, const char *value, 2187 Error **errp) 2188 { 2189 VirtMachineState *vms = VIRT_MACHINE(obj); 2190 size_t len = strlen(value); 2191 2192 if (len > 8) { 2193 error_setg(errp, 2194 "User specified oem-table-id value is bigger than 8 bytes in size"); 2195 return; 2196 } 2197 strncpy(vms->oem_table_id, value, 8); 2198 } 2199 2200 2201 bool virt_is_acpi_enabled(VirtMachineState *vms) 2202 { 2203 if (vms->acpi == ON_OFF_AUTO_OFF) { 2204 return false; 2205 } 2206 return true; 2207 } 2208 2209 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2210 void *opaque, Error **errp) 2211 { 2212 VirtMachineState *vms = VIRT_MACHINE(obj); 2213 OnOffAuto acpi = vms->acpi; 2214 2215 visit_type_OnOffAuto(v, name, &acpi, errp); 2216 } 2217 2218 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2219 void *opaque, Error **errp) 2220 { 2221 VirtMachineState *vms = VIRT_MACHINE(obj); 2222 2223 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2224 } 2225 2226 static bool virt_get_ras(Object *obj, Error **errp) 2227 { 2228 VirtMachineState *vms = VIRT_MACHINE(obj); 2229 2230 return vms->ras; 2231 } 2232 2233 static void virt_set_ras(Object *obj, bool value, Error **errp) 2234 { 2235 VirtMachineState *vms = VIRT_MACHINE(obj); 2236 2237 vms->ras = value; 2238 } 2239 2240 static bool virt_get_mte(Object *obj, Error **errp) 2241 { 2242 VirtMachineState *vms = VIRT_MACHINE(obj); 2243 2244 return vms->mte; 2245 } 2246 2247 static void virt_set_mte(Object *obj, bool value, Error **errp) 2248 { 2249 VirtMachineState *vms = VIRT_MACHINE(obj); 2250 2251 vms->mte = value; 2252 } 2253 2254 static char *virt_get_gic_version(Object *obj, Error **errp) 2255 { 2256 VirtMachineState *vms = VIRT_MACHINE(obj); 2257 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2258 2259 return g_strdup(val); 2260 } 2261 2262 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2263 { 2264 VirtMachineState *vms = VIRT_MACHINE(obj); 2265 2266 if (!strcmp(value, "3")) { 2267 vms->gic_version = VIRT_GIC_VERSION_3; 2268 } else if (!strcmp(value, "2")) { 2269 vms->gic_version = VIRT_GIC_VERSION_2; 2270 } else if (!strcmp(value, "host")) { 2271 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2272 } else if (!strcmp(value, "max")) { 2273 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2274 } else { 2275 error_setg(errp, "Invalid gic-version value"); 2276 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2277 } 2278 } 2279 2280 static char *virt_get_iommu(Object *obj, Error **errp) 2281 { 2282 VirtMachineState *vms = VIRT_MACHINE(obj); 2283 2284 switch (vms->iommu) { 2285 case VIRT_IOMMU_NONE: 2286 return g_strdup("none"); 2287 case VIRT_IOMMU_SMMUV3: 2288 return g_strdup("smmuv3"); 2289 default: 2290 g_assert_not_reached(); 2291 } 2292 } 2293 2294 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2295 { 2296 VirtMachineState *vms = VIRT_MACHINE(obj); 2297 2298 if (!strcmp(value, "smmuv3")) { 2299 vms->iommu = VIRT_IOMMU_SMMUV3; 2300 } else if (!strcmp(value, "none")) { 2301 vms->iommu = VIRT_IOMMU_NONE; 2302 } else { 2303 error_setg(errp, "Invalid iommu value"); 2304 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2305 } 2306 } 2307 2308 static CpuInstanceProperties 2309 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2310 { 2311 MachineClass *mc = MACHINE_GET_CLASS(ms); 2312 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2313 2314 assert(cpu_index < possible_cpus->len); 2315 return possible_cpus->cpus[cpu_index].props; 2316 } 2317 2318 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2319 { 2320 return idx % ms->numa_state->num_nodes; 2321 } 2322 2323 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2324 { 2325 int n; 2326 unsigned int max_cpus = ms->smp.max_cpus; 2327 VirtMachineState *vms = VIRT_MACHINE(ms); 2328 2329 if (ms->possible_cpus) { 2330 assert(ms->possible_cpus->len == max_cpus); 2331 return ms->possible_cpus; 2332 } 2333 2334 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2335 sizeof(CPUArchId) * max_cpus); 2336 ms->possible_cpus->len = max_cpus; 2337 for (n = 0; n < ms->possible_cpus->len; n++) { 2338 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2339 ms->possible_cpus->cpus[n].arch_id = 2340 virt_cpu_mp_affinity(vms, n); 2341 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2342 ms->possible_cpus->cpus[n].props.thread_id = n; 2343 } 2344 return ms->possible_cpus; 2345 } 2346 2347 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2348 Error **errp) 2349 { 2350 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2351 const MachineState *ms = MACHINE(hotplug_dev); 2352 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2353 2354 if (!vms->acpi_dev) { 2355 error_setg(errp, 2356 "memory hotplug is not enabled: missing acpi-ged device"); 2357 return; 2358 } 2359 2360 if (vms->mte) { 2361 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2362 return; 2363 } 2364 2365 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2366 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2367 return; 2368 } 2369 2370 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2371 } 2372 2373 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2374 DeviceState *dev, Error **errp) 2375 { 2376 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2377 MachineState *ms = MACHINE(hotplug_dev); 2378 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2379 2380 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2381 2382 if (is_nvdimm) { 2383 nvdimm_plug(ms->nvdimms_state); 2384 } 2385 2386 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2387 dev, &error_abort); 2388 } 2389 2390 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2391 DeviceState *dev, Error **errp) 2392 { 2393 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2394 2395 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2396 virt_memory_pre_plug(hotplug_dev, dev, errp); 2397 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2398 hwaddr db_start = 0, db_end = 0; 2399 char *resv_prop_str; 2400 2401 switch (vms->msi_controller) { 2402 case VIRT_MSI_CTRL_NONE: 2403 return; 2404 case VIRT_MSI_CTRL_ITS: 2405 /* GITS_TRANSLATER page */ 2406 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2407 db_end = base_memmap[VIRT_GIC_ITS].base + 2408 base_memmap[VIRT_GIC_ITS].size - 1; 2409 break; 2410 case VIRT_MSI_CTRL_GICV2M: 2411 /* MSI_SETSPI_NS page */ 2412 db_start = base_memmap[VIRT_GIC_V2M].base; 2413 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2414 break; 2415 } 2416 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2417 db_start, db_end, 2418 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2419 2420 qdev_prop_set_uint32(dev, "len-reserved-regions", 1); 2421 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); 2422 g_free(resv_prop_str); 2423 } 2424 } 2425 2426 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2427 DeviceState *dev, Error **errp) 2428 { 2429 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2430 2431 if (vms->platform_bus_dev) { 2432 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 2433 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2434 SYS_BUS_DEVICE(dev)); 2435 } 2436 } 2437 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2438 virt_memory_plug(hotplug_dev, dev, errp); 2439 } 2440 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2441 PCIDevice *pdev = PCI_DEVICE(dev); 2442 2443 vms->iommu = VIRT_IOMMU_VIRTIO; 2444 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2445 create_virtio_iommu_dt_bindings(vms); 2446 } 2447 } 2448 2449 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2450 DeviceState *dev, Error **errp) 2451 { 2452 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2453 Error *local_err = NULL; 2454 2455 if (!vms->acpi_dev) { 2456 error_setg(&local_err, 2457 "memory hotplug is not enabled: missing acpi-ged device"); 2458 goto out; 2459 } 2460 2461 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2462 error_setg(&local_err, 2463 "nvdimm device hot unplug is not supported yet."); 2464 goto out; 2465 } 2466 2467 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2468 &local_err); 2469 out: 2470 error_propagate(errp, local_err); 2471 } 2472 2473 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2474 DeviceState *dev, Error **errp) 2475 { 2476 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2477 Error *local_err = NULL; 2478 2479 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2480 if (local_err) { 2481 goto out; 2482 } 2483 2484 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2485 qdev_unrealize(dev); 2486 2487 out: 2488 error_propagate(errp, local_err); 2489 } 2490 2491 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2492 DeviceState *dev, Error **errp) 2493 { 2494 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2495 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2496 } else { 2497 error_setg(errp, "device unplug request for unsupported device" 2498 " type: %s", object_get_typename(OBJECT(dev))); 2499 } 2500 } 2501 2502 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2503 DeviceState *dev, Error **errp) 2504 { 2505 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2506 virt_dimm_unplug(hotplug_dev, dev, errp); 2507 } else { 2508 error_setg(errp, "virt: device unplug for unsupported device" 2509 " type: %s", object_get_typename(OBJECT(dev))); 2510 } 2511 } 2512 2513 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2514 DeviceState *dev) 2515 { 2516 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) || 2517 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2518 return HOTPLUG_HANDLER(machine); 2519 } 2520 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2521 VirtMachineState *vms = VIRT_MACHINE(machine); 2522 2523 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2524 return HOTPLUG_HANDLER(machine); 2525 } 2526 } 2527 return NULL; 2528 } 2529 2530 /* 2531 * for arm64 kvm_type [7-0] encodes the requested number of bits 2532 * in the IPA address space 2533 */ 2534 static int virt_kvm_type(MachineState *ms, const char *type_str) 2535 { 2536 VirtMachineState *vms = VIRT_MACHINE(ms); 2537 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 2538 int requested_pa_size; 2539 2540 /* we freeze the memory map to compute the highest gpa */ 2541 virt_set_memmap(vms); 2542 2543 requested_pa_size = 64 - clz64(vms->highest_gpa); 2544 2545 if (requested_pa_size > max_vm_pa_size) { 2546 error_report("-m and ,maxmem option values " 2547 "require an IPA range (%d bits) larger than " 2548 "the one supported by the host (%d bits)", 2549 requested_pa_size, max_vm_pa_size); 2550 exit(1); 2551 } 2552 /* 2553 * By default we return 0 which corresponds to an implicit legacy 2554 * 40b IPA setting. Otherwise we return the actual requested PA 2555 * logsize 2556 */ 2557 return requested_pa_size > 40 ? requested_pa_size : 0; 2558 } 2559 2560 static void virt_machine_class_init(ObjectClass *oc, void *data) 2561 { 2562 MachineClass *mc = MACHINE_CLASS(oc); 2563 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2564 2565 mc->init = machvirt_init; 2566 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2567 * The value may be reduced later when we have more information about the 2568 * configuration of the particular instance. 2569 */ 2570 mc->max_cpus = 512; 2571 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2572 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2573 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2574 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2575 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2576 mc->block_default_type = IF_VIRTIO; 2577 mc->no_cdrom = 1; 2578 mc->pci_allow_0_address = true; 2579 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2580 mc->minimum_page_bits = 12; 2581 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2582 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2583 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2584 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2585 mc->kvm_type = virt_kvm_type; 2586 assert(!mc->get_hotplug_handler); 2587 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2588 hc->pre_plug = virt_machine_device_pre_plug_cb; 2589 hc->plug = virt_machine_device_plug_cb; 2590 hc->unplug_request = virt_machine_device_unplug_request_cb; 2591 hc->unplug = virt_machine_device_unplug_cb; 2592 mc->nvdimm_supported = true; 2593 mc->auto_enable_numa_with_memhp = true; 2594 mc->auto_enable_numa_with_memdev = true; 2595 mc->default_ram_id = "mach-virt.ram"; 2596 2597 object_class_property_add(oc, "acpi", "OnOffAuto", 2598 virt_get_acpi, virt_set_acpi, 2599 NULL, NULL); 2600 object_class_property_set_description(oc, "acpi", 2601 "Enable ACPI"); 2602 object_class_property_add_bool(oc, "secure", virt_get_secure, 2603 virt_set_secure); 2604 object_class_property_set_description(oc, "secure", 2605 "Set on/off to enable/disable the ARM " 2606 "Security Extensions (TrustZone)"); 2607 2608 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2609 virt_set_virt); 2610 object_class_property_set_description(oc, "virtualization", 2611 "Set on/off to enable/disable emulating a " 2612 "guest CPU which implements the ARM " 2613 "Virtualization Extensions"); 2614 2615 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2616 virt_set_highmem); 2617 object_class_property_set_description(oc, "highmem", 2618 "Set on/off to enable/disable using " 2619 "physical address space above 32 bits"); 2620 2621 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 2622 virt_set_gic_version); 2623 object_class_property_set_description(oc, "gic-version", 2624 "Set GIC version. " 2625 "Valid values are 2, 3, host and max"); 2626 2627 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 2628 object_class_property_set_description(oc, "iommu", 2629 "Set the IOMMU type. " 2630 "Valid values are none and smmuv3"); 2631 2632 object_class_property_add_bool(oc, "ras", virt_get_ras, 2633 virt_set_ras); 2634 object_class_property_set_description(oc, "ras", 2635 "Set on/off to enable/disable reporting host memory errors " 2636 "to a KVM guest using ACPI and guest external abort exceptions"); 2637 2638 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 2639 object_class_property_set_description(oc, "mte", 2640 "Set on/off to enable/disable emulating a " 2641 "guest CPU which implements the ARM " 2642 "Memory Tagging Extension"); 2643 2644 object_class_property_add_bool(oc, "its", virt_get_its, 2645 virt_set_its); 2646 object_class_property_set_description(oc, "its", 2647 "Set on/off to enable/disable " 2648 "ITS instantiation"); 2649 2650 object_class_property_add_str(oc, "oem-id", 2651 virt_get_oem_id, 2652 virt_set_oem_id); 2653 object_class_property_set_description(oc, "oem-id", 2654 "Override the default value of field OEMID " 2655 "in ACPI table header." 2656 "The string may be up to 6 bytes in size"); 2657 2658 2659 object_class_property_add_str(oc, "oem-table-id", 2660 virt_get_oem_table_id, 2661 virt_set_oem_table_id); 2662 object_class_property_set_description(oc, "oem-table-id", 2663 "Override the default value of field OEM Table ID " 2664 "in ACPI table header." 2665 "The string may be up to 8 bytes in size"); 2666 2667 } 2668 2669 static void virt_instance_init(Object *obj) 2670 { 2671 VirtMachineState *vms = VIRT_MACHINE(obj); 2672 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2673 2674 /* EL3 is disabled by default on virt: this makes us consistent 2675 * between KVM and TCG for this board, and it also allows us to 2676 * boot UEFI blobs which assume no TrustZone support. 2677 */ 2678 vms->secure = false; 2679 2680 /* EL2 is also disabled by default, for similar reasons */ 2681 vms->virt = false; 2682 2683 /* High memory is enabled by default */ 2684 vms->highmem = true; 2685 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2686 2687 vms->highmem_ecam = !vmc->no_highmem_ecam; 2688 2689 if (vmc->no_its) { 2690 vms->its = false; 2691 } else { 2692 /* Default allows ITS instantiation */ 2693 vms->its = true; 2694 } 2695 2696 /* Default disallows iommu instantiation */ 2697 vms->iommu = VIRT_IOMMU_NONE; 2698 2699 /* Default disallows RAS instantiation */ 2700 vms->ras = false; 2701 2702 /* MTE is disabled by default. */ 2703 vms->mte = false; 2704 2705 vms->irqmap = a15irqmap; 2706 2707 virt_flash_create(vms); 2708 2709 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 2710 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 2711 } 2712 2713 static const TypeInfo virt_machine_info = { 2714 .name = TYPE_VIRT_MACHINE, 2715 .parent = TYPE_MACHINE, 2716 .abstract = true, 2717 .instance_size = sizeof(VirtMachineState), 2718 .class_size = sizeof(VirtMachineClass), 2719 .class_init = virt_machine_class_init, 2720 .instance_init = virt_instance_init, 2721 .interfaces = (InterfaceInfo[]) { 2722 { TYPE_HOTPLUG_HANDLER }, 2723 { } 2724 }, 2725 }; 2726 2727 static void machvirt_machine_init(void) 2728 { 2729 type_register_static(&virt_machine_info); 2730 } 2731 type_init(machvirt_machine_init); 2732 2733 static void virt_machine_6_0_options(MachineClass *mc) 2734 { 2735 } 2736 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0) 2737 2738 static void virt_machine_5_2_options(MachineClass *mc) 2739 { 2740 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2741 2742 virt_machine_6_0_options(mc); 2743 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 2744 vmc->no_secure_gpio = true; 2745 } 2746 DEFINE_VIRT_MACHINE(5, 2) 2747 2748 static void virt_machine_5_1_options(MachineClass *mc) 2749 { 2750 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2751 2752 virt_machine_5_2_options(mc); 2753 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 2754 vmc->no_kvm_steal_time = true; 2755 } 2756 DEFINE_VIRT_MACHINE(5, 1) 2757 2758 static void virt_machine_5_0_options(MachineClass *mc) 2759 { 2760 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2761 2762 virt_machine_5_1_options(mc); 2763 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 2764 mc->numa_mem_supported = true; 2765 vmc->acpi_expose_flash = true; 2766 mc->auto_enable_numa_with_memdev = false; 2767 } 2768 DEFINE_VIRT_MACHINE(5, 0) 2769 2770 static void virt_machine_4_2_options(MachineClass *mc) 2771 { 2772 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2773 2774 virt_machine_5_0_options(mc); 2775 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2776 vmc->kvm_no_adjvtime = true; 2777 } 2778 DEFINE_VIRT_MACHINE(4, 2) 2779 2780 static void virt_machine_4_1_options(MachineClass *mc) 2781 { 2782 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2783 2784 virt_machine_4_2_options(mc); 2785 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2786 vmc->no_ged = true; 2787 mc->auto_enable_numa_with_memhp = false; 2788 } 2789 DEFINE_VIRT_MACHINE(4, 1) 2790 2791 static void virt_machine_4_0_options(MachineClass *mc) 2792 { 2793 virt_machine_4_1_options(mc); 2794 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2795 } 2796 DEFINE_VIRT_MACHINE(4, 0) 2797 2798 static void virt_machine_3_1_options(MachineClass *mc) 2799 { 2800 virt_machine_4_0_options(mc); 2801 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2802 } 2803 DEFINE_VIRT_MACHINE(3, 1) 2804 2805 static void virt_machine_3_0_options(MachineClass *mc) 2806 { 2807 virt_machine_3_1_options(mc); 2808 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2809 } 2810 DEFINE_VIRT_MACHINE(3, 0) 2811 2812 static void virt_machine_2_12_options(MachineClass *mc) 2813 { 2814 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2815 2816 virt_machine_3_0_options(mc); 2817 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2818 vmc->no_highmem_ecam = true; 2819 mc->max_cpus = 255; 2820 } 2821 DEFINE_VIRT_MACHINE(2, 12) 2822 2823 static void virt_machine_2_11_options(MachineClass *mc) 2824 { 2825 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2826 2827 virt_machine_2_12_options(mc); 2828 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2829 vmc->smbios_old_sys_ver = true; 2830 } 2831 DEFINE_VIRT_MACHINE(2, 11) 2832 2833 static void virt_machine_2_10_options(MachineClass *mc) 2834 { 2835 virt_machine_2_11_options(mc); 2836 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2837 /* before 2.11 we never faulted accesses to bad addresses */ 2838 mc->ignore_memory_transaction_failures = true; 2839 } 2840 DEFINE_VIRT_MACHINE(2, 10) 2841 2842 static void virt_machine_2_9_options(MachineClass *mc) 2843 { 2844 virt_machine_2_10_options(mc); 2845 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2846 } 2847 DEFINE_VIRT_MACHINE(2, 9) 2848 2849 static void virt_machine_2_8_options(MachineClass *mc) 2850 { 2851 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2852 2853 virt_machine_2_9_options(mc); 2854 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2855 /* For 2.8 and earlier we falsely claimed in the DT that 2856 * our timers were edge-triggered, not level-triggered. 2857 */ 2858 vmc->claim_edge_triggered_timers = true; 2859 } 2860 DEFINE_VIRT_MACHINE(2, 8) 2861 2862 static void virt_machine_2_7_options(MachineClass *mc) 2863 { 2864 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2865 2866 virt_machine_2_8_options(mc); 2867 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2868 /* ITS was introduced with 2.8 */ 2869 vmc->no_its = true; 2870 /* Stick with 1K pages for migration compatibility */ 2871 mc->minimum_page_bits = 0; 2872 } 2873 DEFINE_VIRT_MACHINE(2, 7) 2874 2875 static void virt_machine_2_6_options(MachineClass *mc) 2876 { 2877 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2878 2879 virt_machine_2_7_options(mc); 2880 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2881 vmc->disallow_affinity_adjustment = true; 2882 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2883 vmc->no_pmu = true; 2884 } 2885 DEFINE_VIRT_MACHINE(2, 6) 2886