xref: /openbmc/qemu/hw/arm/virt.c (revision 43709a0c)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/tpm.h"
51 #include "sysemu/kvm.h"
52 #include "sysemu/hvf.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/arm/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/irq.h"
67 #include "kvm_arm.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-iommu.h"
79 #include "hw/char/pl011.h"
80 #include "qemu/guest-random.h"
81 
82 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
83     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
84                                                     void *data) \
85     { \
86         MachineClass *mc = MACHINE_CLASS(oc); \
87         virt_machine_##major##_##minor##_options(mc); \
88         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
89         if (latest) { \
90             mc->alias = "virt"; \
91         } \
92     } \
93     static const TypeInfo machvirt_##major##_##minor##_info = { \
94         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
95         .parent = TYPE_VIRT_MACHINE, \
96         .class_init = virt_##major##_##minor##_class_init, \
97     }; \
98     static void machvirt_machine_##major##_##minor##_init(void) \
99     { \
100         type_register_static(&machvirt_##major##_##minor##_info); \
101     } \
102     type_init(machvirt_machine_##major##_##minor##_init);
103 
104 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
105     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
106 #define DEFINE_VIRT_MACHINE(major, minor) \
107     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
108 
109 
110 /* Number of external interrupt lines to configure the GIC with */
111 #define NUM_IRQS 256
112 
113 #define PLATFORM_BUS_NUM_IRQS 64
114 
115 /* Legacy RAM limit in GB (< version 4.0) */
116 #define LEGACY_RAMLIMIT_GB 255
117 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
118 
119 /* Addresses and sizes of our components.
120  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
121  * 128MB..256MB is used for miscellaneous device I/O.
122  * 256MB..1GB is reserved for possible future PCI support (ie where the
123  * PCI memory window will go if we add a PCI host controller).
124  * 1GB and up is RAM (which may happily spill over into the
125  * high memory region beyond 4GB).
126  * This represents a compromise between how much RAM can be given to
127  * a 32 bit VM and leaving space for expansion and in particular for PCI.
128  * Note that devices should generally be placed at multiples of 0x10000,
129  * to accommodate guests using 64K pages.
130  */
131 static const MemMapEntry base_memmap[] = {
132     /* Space up to 0x8000000 is reserved for a boot ROM */
133     [VIRT_FLASH] =              {          0, 0x08000000 },
134     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
135     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
136     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
137     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
138     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
139     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
140     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
141     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
142     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
143     /* This redistributor space allows up to 2*64kB*123 CPUs */
144     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
145     [VIRT_UART] =               { 0x09000000, 0x00001000 },
146     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
147     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
148     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
149     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
150     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
151     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
152     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
153     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
154     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
155     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
156     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
157     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
158     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
159     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
160     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
161     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
162     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
163     /* Actual RAM size depends on initial RAM and device memory settings */
164     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
165 };
166 
167 /*
168  * Highmem IO Regions: This memory map is floating, located after the RAM.
169  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
170  * top of the RAM, so that its base get the same alignment as the size,
171  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
172  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
173  * Note the extended_memmap is sized so that it eventually also includes the
174  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
175  * index of base_memmap).
176  */
177 static MemMapEntry extended_memmap[] = {
178     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
179     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
180     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
181     /* Second PCIe window */
182     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
183 };
184 
185 static const int a15irqmap[] = {
186     [VIRT_UART] = 1,
187     [VIRT_RTC] = 2,
188     [VIRT_PCIE] = 3, /* ... to 6 */
189     [VIRT_GPIO] = 7,
190     [VIRT_SECURE_UART] = 8,
191     [VIRT_ACPI_GED] = 9,
192     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
193     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
194     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
195     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
196 };
197 
198 static const char *valid_cpus[] = {
199     ARM_CPU_TYPE_NAME("cortex-a7"),
200     ARM_CPU_TYPE_NAME("cortex-a15"),
201     ARM_CPU_TYPE_NAME("cortex-a53"),
202     ARM_CPU_TYPE_NAME("cortex-a57"),
203     ARM_CPU_TYPE_NAME("cortex-a72"),
204     ARM_CPU_TYPE_NAME("a64fx"),
205     ARM_CPU_TYPE_NAME("host"),
206     ARM_CPU_TYPE_NAME("max"),
207 };
208 
209 static bool cpu_type_valid(const char *cpu)
210 {
211     int i;
212 
213     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
214         if (strcmp(cpu, valid_cpus[i]) == 0) {
215             return true;
216         }
217     }
218     return false;
219 }
220 
221 static void create_kaslr_seed(MachineState *ms, const char *node)
222 {
223     uint64_t seed;
224 
225     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
226         return;
227     }
228     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
229 }
230 
231 static void create_fdt(VirtMachineState *vms)
232 {
233     MachineState *ms = MACHINE(vms);
234     int nb_numa_nodes = ms->numa_state->num_nodes;
235     void *fdt = create_device_tree(&vms->fdt_size);
236 
237     if (!fdt) {
238         error_report("create_device_tree() failed");
239         exit(1);
240     }
241 
242     ms->fdt = fdt;
243 
244     /* Header */
245     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
246     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
247     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
248 
249     /* /chosen must exist for load_dtb to fill in necessary properties later */
250     qemu_fdt_add_subnode(fdt, "/chosen");
251     create_kaslr_seed(ms, "/chosen");
252 
253     if (vms->secure) {
254         qemu_fdt_add_subnode(fdt, "/secure-chosen");
255         create_kaslr_seed(ms, "/secure-chosen");
256     }
257 
258     /* Clock node, for the benefit of the UART. The kernel device tree
259      * binding documentation claims the PL011 node clock properties are
260      * optional but in practice if you omit them the kernel refuses to
261      * probe for the device.
262      */
263     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
264     qemu_fdt_add_subnode(fdt, "/apb-pclk");
265     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
266     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
267     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
268     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
269                                 "clk24mhz");
270     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
271 
272     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
273         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
274         uint32_t *matrix = g_malloc0(size);
275         int idx, i, j;
276 
277         for (i = 0; i < nb_numa_nodes; i++) {
278             for (j = 0; j < nb_numa_nodes; j++) {
279                 idx = (i * nb_numa_nodes + j) * 3;
280                 matrix[idx + 0] = cpu_to_be32(i);
281                 matrix[idx + 1] = cpu_to_be32(j);
282                 matrix[idx + 2] =
283                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
284             }
285         }
286 
287         qemu_fdt_add_subnode(fdt, "/distance-map");
288         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
289                                 "numa-distance-map-v1");
290         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
291                          matrix, size);
292         g_free(matrix);
293     }
294 }
295 
296 static void fdt_add_timer_nodes(const VirtMachineState *vms)
297 {
298     /* On real hardware these interrupts are level-triggered.
299      * On KVM they were edge-triggered before host kernel version 4.4,
300      * and level-triggered afterwards.
301      * On emulated QEMU they are level-triggered.
302      *
303      * Getting the DTB info about them wrong is awkward for some
304      * guest kernels:
305      *  pre-4.8 ignore the DT and leave the interrupt configured
306      *   with whatever the GIC reset value (or the bootloader) left it at
307      *  4.8 before rc6 honour the incorrect data by programming it back
308      *   into the GIC, causing problems
309      *  4.8rc6 and later ignore the DT and always write "level triggered"
310      *   into the GIC
311      *
312      * For backwards-compatibility, virt-2.8 and earlier will continue
313      * to say these are edge-triggered, but later machines will report
314      * the correct information.
315      */
316     ARMCPU *armcpu;
317     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
318     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
319     MachineState *ms = MACHINE(vms);
320 
321     if (vmc->claim_edge_triggered_timers) {
322         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
323     }
324 
325     if (vms->gic_version == VIRT_GIC_VERSION_2) {
326         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
327                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
328                              (1 << MACHINE(vms)->smp.cpus) - 1);
329     }
330 
331     qemu_fdt_add_subnode(ms->fdt, "/timer");
332 
333     armcpu = ARM_CPU(qemu_get_cpu(0));
334     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
335         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
336         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
337                          compat, sizeof(compat));
338     } else {
339         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
340                                 "arm,armv7-timer");
341     }
342     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
343     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
344                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
345                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
346                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
347                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
348 }
349 
350 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
351 {
352     int cpu;
353     int addr_cells = 1;
354     const MachineState *ms = MACHINE(vms);
355     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
356     int smp_cpus = ms->smp.cpus;
357 
358     /*
359      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
360      * On ARM v8 64-bit systems value should be set to 2,
361      * that corresponds to the MPIDR_EL1 register size.
362      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
363      * in the system, #address-cells can be set to 1, since
364      * MPIDR_EL1[63:32] bits are not used for CPUs
365      * identification.
366      *
367      * Here we actually don't know whether our system is 32- or 64-bit one.
368      * The simplest way to go is to examine affinity IDs of all our CPUs. If
369      * at least one of them has Aff3 populated, we set #address-cells to 2.
370      */
371     for (cpu = 0; cpu < smp_cpus; cpu++) {
372         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
373 
374         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
375             addr_cells = 2;
376             break;
377         }
378     }
379 
380     qemu_fdt_add_subnode(ms->fdt, "/cpus");
381     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
382     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
383 
384     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
385         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
386         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
387         CPUState *cs = CPU(armcpu);
388 
389         qemu_fdt_add_subnode(ms->fdt, nodename);
390         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
391         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
392                                     armcpu->dtb_compatible);
393 
394         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
395             qemu_fdt_setprop_string(ms->fdt, nodename,
396                                         "enable-method", "psci");
397         }
398 
399         if (addr_cells == 2) {
400             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
401                                  armcpu->mp_affinity);
402         } else {
403             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
404                                   armcpu->mp_affinity);
405         }
406 
407         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
408             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
409                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
410         }
411 
412         if (!vmc->no_cpu_topology) {
413             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
414                                   qemu_fdt_alloc_phandle(ms->fdt));
415         }
416 
417         g_free(nodename);
418     }
419 
420     if (!vmc->no_cpu_topology) {
421         /*
422          * Add vCPU topology description through fdt node cpu-map.
423          *
424          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
425          * In a SMP system, the hierarchy of CPUs can be defined through
426          * four entities that are used to describe the layout of CPUs in
427          * the system: socket/cluster/core/thread.
428          *
429          * A socket node represents the boundary of system physical package
430          * and its child nodes must be one or more cluster nodes. A system
431          * can contain several layers of clustering within a single physical
432          * package and cluster nodes can be contained in parent cluster nodes.
433          *
434          * Given that cluster is not yet supported in the vCPU topology,
435          * we currently generate one cluster node within each socket node
436          * by default.
437          */
438         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
439 
440         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
441             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
442             char *map_path;
443 
444             if (ms->smp.threads > 1) {
445                 map_path = g_strdup_printf(
446                     "/cpus/cpu-map/socket%d/cluster0/core%d/thread%d",
447                     cpu / (ms->smp.cores * ms->smp.threads),
448                     (cpu / ms->smp.threads) % ms->smp.cores,
449                     cpu % ms->smp.threads);
450             } else {
451                 map_path = g_strdup_printf(
452                     "/cpus/cpu-map/socket%d/cluster0/core%d",
453                     cpu / ms->smp.cores,
454                     cpu % ms->smp.cores);
455             }
456             qemu_fdt_add_path(ms->fdt, map_path);
457             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
458 
459             g_free(map_path);
460             g_free(cpu_path);
461         }
462     }
463 }
464 
465 static void fdt_add_its_gic_node(VirtMachineState *vms)
466 {
467     char *nodename;
468     MachineState *ms = MACHINE(vms);
469 
470     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
471     nodename = g_strdup_printf("/intc/its@%" PRIx64,
472                                vms->memmap[VIRT_GIC_ITS].base);
473     qemu_fdt_add_subnode(ms->fdt, nodename);
474     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
475                             "arm,gic-v3-its");
476     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
477     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
478                                  2, vms->memmap[VIRT_GIC_ITS].base,
479                                  2, vms->memmap[VIRT_GIC_ITS].size);
480     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
481     g_free(nodename);
482 }
483 
484 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
485 {
486     MachineState *ms = MACHINE(vms);
487     char *nodename;
488 
489     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
490                                vms->memmap[VIRT_GIC_V2M].base);
491     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
492     qemu_fdt_add_subnode(ms->fdt, nodename);
493     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
494                             "arm,gic-v2m-frame");
495     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
496     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
497                                  2, vms->memmap[VIRT_GIC_V2M].base,
498                                  2, vms->memmap[VIRT_GIC_V2M].size);
499     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
500     g_free(nodename);
501 }
502 
503 static void fdt_add_gic_node(VirtMachineState *vms)
504 {
505     MachineState *ms = MACHINE(vms);
506     char *nodename;
507 
508     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
509     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
510 
511     nodename = g_strdup_printf("/intc@%" PRIx64,
512                                vms->memmap[VIRT_GIC_DIST].base);
513     qemu_fdt_add_subnode(ms->fdt, nodename);
514     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
515     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
516     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
517     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
518     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
519     if (vms->gic_version == VIRT_GIC_VERSION_3) {
520         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
521 
522         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
523                                 "arm,gic-v3");
524 
525         qemu_fdt_setprop_cell(ms->fdt, nodename,
526                               "#redistributor-regions", nb_redist_regions);
527 
528         if (nb_redist_regions == 1) {
529             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
530                                          2, vms->memmap[VIRT_GIC_DIST].base,
531                                          2, vms->memmap[VIRT_GIC_DIST].size,
532                                          2, vms->memmap[VIRT_GIC_REDIST].base,
533                                          2, vms->memmap[VIRT_GIC_REDIST].size);
534         } else {
535             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
536                                  2, vms->memmap[VIRT_GIC_DIST].base,
537                                  2, vms->memmap[VIRT_GIC_DIST].size,
538                                  2, vms->memmap[VIRT_GIC_REDIST].base,
539                                  2, vms->memmap[VIRT_GIC_REDIST].size,
540                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
541                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
542         }
543 
544         if (vms->virt) {
545             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
546                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
547                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
548         }
549     } else {
550         /* 'cortex-a15-gic' means 'GIC v2' */
551         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
552                                 "arm,cortex-a15-gic");
553         if (!vms->virt) {
554             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
555                                          2, vms->memmap[VIRT_GIC_DIST].base,
556                                          2, vms->memmap[VIRT_GIC_DIST].size,
557                                          2, vms->memmap[VIRT_GIC_CPU].base,
558                                          2, vms->memmap[VIRT_GIC_CPU].size);
559         } else {
560             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
561                                          2, vms->memmap[VIRT_GIC_DIST].base,
562                                          2, vms->memmap[VIRT_GIC_DIST].size,
563                                          2, vms->memmap[VIRT_GIC_CPU].base,
564                                          2, vms->memmap[VIRT_GIC_CPU].size,
565                                          2, vms->memmap[VIRT_GIC_HYP].base,
566                                          2, vms->memmap[VIRT_GIC_HYP].size,
567                                          2, vms->memmap[VIRT_GIC_VCPU].base,
568                                          2, vms->memmap[VIRT_GIC_VCPU].size);
569             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
570                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
571                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
572         }
573     }
574 
575     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
576     g_free(nodename);
577 }
578 
579 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
580 {
581     ARMCPU *armcpu = ARM_CPU(first_cpu);
582     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
583     MachineState *ms = MACHINE(vms);
584 
585     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
586         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
587         return;
588     }
589 
590     if (vms->gic_version == VIRT_GIC_VERSION_2) {
591         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
592                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
593                              (1 << MACHINE(vms)->smp.cpus) - 1);
594     }
595 
596     qemu_fdt_add_subnode(ms->fdt, "/pmu");
597     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
598         const char compat[] = "arm,armv8-pmuv3";
599         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
600                          compat, sizeof(compat));
601         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
602                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
603     }
604 }
605 
606 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
607 {
608     DeviceState *dev;
609     MachineState *ms = MACHINE(vms);
610     int irq = vms->irqmap[VIRT_ACPI_GED];
611     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
612 
613     if (ms->ram_slots) {
614         event |= ACPI_GED_MEM_HOTPLUG_EVT;
615     }
616 
617     if (ms->nvdimms_state->is_enabled) {
618         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
619     }
620 
621     dev = qdev_new(TYPE_ACPI_GED);
622     qdev_prop_set_uint32(dev, "ged-event", event);
623 
624     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
625     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
626     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
627 
628     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
629 
630     return dev;
631 }
632 
633 static void create_its(VirtMachineState *vms)
634 {
635     const char *itsclass = its_class_name();
636     DeviceState *dev;
637 
638     if (!strcmp(itsclass, "arm-gicv3-its")) {
639         if (!vms->tcg_its) {
640             itsclass = NULL;
641         }
642     }
643 
644     if (!itsclass) {
645         /* Do nothing if not supported */
646         return;
647     }
648 
649     dev = qdev_new(itsclass);
650 
651     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
652                              &error_abort);
653     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
654     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
655 
656     fdt_add_its_gic_node(vms);
657     vms->msi_controller = VIRT_MSI_CTRL_ITS;
658 }
659 
660 static void create_v2m(VirtMachineState *vms)
661 {
662     int i;
663     int irq = vms->irqmap[VIRT_GIC_V2M];
664     DeviceState *dev;
665 
666     dev = qdev_new("arm-gicv2m");
667     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
668     qdev_prop_set_uint32(dev, "base-spi", irq);
669     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
670     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
671 
672     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
673         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
674                            qdev_get_gpio_in(vms->gic, irq + i));
675     }
676 
677     fdt_add_v2m_gic_node(vms);
678     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
679 }
680 
681 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
682 {
683     MachineState *ms = MACHINE(vms);
684     /* We create a standalone GIC */
685     SysBusDevice *gicbusdev;
686     const char *gictype;
687     int type = vms->gic_version, i;
688     unsigned int smp_cpus = ms->smp.cpus;
689     uint32_t nb_redist_regions = 0;
690 
691     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
692 
693     vms->gic = qdev_new(gictype);
694     qdev_prop_set_uint32(vms->gic, "revision", type);
695     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
696     /* Note that the num-irq property counts both internal and external
697      * interrupts; there are always 32 of the former (mandated by GIC spec).
698      */
699     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
700     if (!kvm_irqchip_in_kernel()) {
701         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
702     }
703 
704     if (type == 3) {
705         uint32_t redist0_capacity =
706                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
707         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
708 
709         nb_redist_regions = virt_gicv3_redist_region_count(vms);
710 
711         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
712                              nb_redist_regions);
713         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
714 
715         if (!kvm_irqchip_in_kernel()) {
716             if (vms->tcg_its) {
717                 object_property_set_link(OBJECT(vms->gic), "sysmem",
718                                          OBJECT(mem), &error_fatal);
719                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
720             }
721         }
722 
723         if (nb_redist_regions == 2) {
724             uint32_t redist1_capacity =
725                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
726 
727             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
728                 MIN(smp_cpus - redist0_count, redist1_capacity));
729         }
730     } else {
731         if (!kvm_irqchip_in_kernel()) {
732             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
733                               vms->virt);
734         }
735     }
736     gicbusdev = SYS_BUS_DEVICE(vms->gic);
737     sysbus_realize_and_unref(gicbusdev, &error_fatal);
738     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
739     if (type == 3) {
740         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
741         if (nb_redist_regions == 2) {
742             sysbus_mmio_map(gicbusdev, 2,
743                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
744         }
745     } else {
746         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
747         if (vms->virt) {
748             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
749             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
750         }
751     }
752 
753     /* Wire the outputs from each CPU's generic timer and the GICv3
754      * maintenance interrupt signal to the appropriate GIC PPI inputs,
755      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
756      */
757     for (i = 0; i < smp_cpus; i++) {
758         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
759         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
760         int irq;
761         /* Mapping from the output timer irq lines from the CPU to the
762          * GIC PPI inputs we use for the virt board.
763          */
764         const int timer_irq[] = {
765             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
766             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
767             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
768             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
769         };
770 
771         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
772             qdev_connect_gpio_out(cpudev, irq,
773                                   qdev_get_gpio_in(vms->gic,
774                                                    ppibase + timer_irq[irq]));
775         }
776 
777         if (type == 3) {
778             qemu_irq irq = qdev_get_gpio_in(vms->gic,
779                                             ppibase + ARCH_GIC_MAINT_IRQ);
780             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
781                                         0, irq);
782         } else if (vms->virt) {
783             qemu_irq irq = qdev_get_gpio_in(vms->gic,
784                                             ppibase + ARCH_GIC_MAINT_IRQ);
785             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
786         }
787 
788         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
789                                     qdev_get_gpio_in(vms->gic, ppibase
790                                                      + VIRTUAL_PMU_IRQ));
791 
792         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
793         sysbus_connect_irq(gicbusdev, i + smp_cpus,
794                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
795         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
796                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
797         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
798                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
799     }
800 
801     fdt_add_gic_node(vms);
802 
803     if (type == 3 && vms->its) {
804         create_its(vms);
805     } else if (type == 2) {
806         create_v2m(vms);
807     }
808 }
809 
810 static void create_uart(const VirtMachineState *vms, int uart,
811                         MemoryRegion *mem, Chardev *chr)
812 {
813     char *nodename;
814     hwaddr base = vms->memmap[uart].base;
815     hwaddr size = vms->memmap[uart].size;
816     int irq = vms->irqmap[uart];
817     const char compat[] = "arm,pl011\0arm,primecell";
818     const char clocknames[] = "uartclk\0apb_pclk";
819     DeviceState *dev = qdev_new(TYPE_PL011);
820     SysBusDevice *s = SYS_BUS_DEVICE(dev);
821     MachineState *ms = MACHINE(vms);
822 
823     qdev_prop_set_chr(dev, "chardev", chr);
824     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
825     memory_region_add_subregion(mem, base,
826                                 sysbus_mmio_get_region(s, 0));
827     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
828 
829     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
830     qemu_fdt_add_subnode(ms->fdt, nodename);
831     /* Note that we can't use setprop_string because of the embedded NUL */
832     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
833                          compat, sizeof(compat));
834     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
835                                      2, base, 2, size);
836     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
837                                GIC_FDT_IRQ_TYPE_SPI, irq,
838                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
839     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
840                                vms->clock_phandle, vms->clock_phandle);
841     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
842                          clocknames, sizeof(clocknames));
843 
844     if (uart == VIRT_UART) {
845         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
846     } else {
847         /* Mark as not usable by the normal world */
848         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
849         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
850 
851         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
852                                 nodename);
853     }
854 
855     g_free(nodename);
856 }
857 
858 static void create_rtc(const VirtMachineState *vms)
859 {
860     char *nodename;
861     hwaddr base = vms->memmap[VIRT_RTC].base;
862     hwaddr size = vms->memmap[VIRT_RTC].size;
863     int irq = vms->irqmap[VIRT_RTC];
864     const char compat[] = "arm,pl031\0arm,primecell";
865     MachineState *ms = MACHINE(vms);
866 
867     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
868 
869     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
870     qemu_fdt_add_subnode(ms->fdt, nodename);
871     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
872     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
873                                  2, base, 2, size);
874     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
875                            GIC_FDT_IRQ_TYPE_SPI, irq,
876                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
877     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
878     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
879     g_free(nodename);
880 }
881 
882 static DeviceState *gpio_key_dev;
883 static void virt_powerdown_req(Notifier *n, void *opaque)
884 {
885     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
886 
887     if (s->acpi_dev) {
888         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
889     } else {
890         /* use gpio Pin 3 for power button event */
891         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
892     }
893 }
894 
895 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
896                              uint32_t phandle)
897 {
898     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
899                                         qdev_get_gpio_in(pl061_dev, 3));
900 
901     qemu_fdt_add_subnode(fdt, "/gpio-keys");
902     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
903     qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
904     qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
905 
906     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
907     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
908                             "label", "GPIO Key Poweroff");
909     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
910                           KEY_POWER);
911     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
912                            "gpios", phandle, 3, 0);
913 }
914 
915 #define SECURE_GPIO_POWEROFF 0
916 #define SECURE_GPIO_RESET    1
917 
918 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
919                                    uint32_t phandle)
920 {
921     DeviceState *gpio_pwr_dev;
922 
923     /* gpio-pwr */
924     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
925 
926     /* connect secure pl061 to gpio-pwr */
927     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
928                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
929     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
930                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
931 
932     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
933     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
934                             "gpio-poweroff");
935     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
936                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
937     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
938     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
939                             "okay");
940 
941     qemu_fdt_add_subnode(fdt, "/gpio-restart");
942     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
943                             "gpio-restart");
944     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
945                            "gpios", phandle, SECURE_GPIO_RESET, 0);
946     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
947     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
948                             "okay");
949 }
950 
951 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
952                                 MemoryRegion *mem)
953 {
954     char *nodename;
955     DeviceState *pl061_dev;
956     hwaddr base = vms->memmap[gpio].base;
957     hwaddr size = vms->memmap[gpio].size;
958     int irq = vms->irqmap[gpio];
959     const char compat[] = "arm,pl061\0arm,primecell";
960     SysBusDevice *s;
961     MachineState *ms = MACHINE(vms);
962 
963     pl061_dev = qdev_new("pl061");
964     /* Pull lines down to 0 if not driven by the PL061 */
965     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
966     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
967     s = SYS_BUS_DEVICE(pl061_dev);
968     sysbus_realize_and_unref(s, &error_fatal);
969     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
970     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
971 
972     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
973     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
974     qemu_fdt_add_subnode(ms->fdt, nodename);
975     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
976                                  2, base, 2, size);
977     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
978     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
979     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
980     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
981                            GIC_FDT_IRQ_TYPE_SPI, irq,
982                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
983     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
984     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
985     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
986 
987     if (gpio != VIRT_GPIO) {
988         /* Mark as not usable by the normal world */
989         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
990         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
991     }
992     g_free(nodename);
993 
994     /* Child gpio devices */
995     if (gpio == VIRT_GPIO) {
996         create_gpio_keys(ms->fdt, pl061_dev, phandle);
997     } else {
998         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
999     }
1000 }
1001 
1002 static void create_virtio_devices(const VirtMachineState *vms)
1003 {
1004     int i;
1005     hwaddr size = vms->memmap[VIRT_MMIO].size;
1006     MachineState *ms = MACHINE(vms);
1007 
1008     /* We create the transports in forwards order. Since qbus_realize()
1009      * prepends (not appends) new child buses, the incrementing loop below will
1010      * create a list of virtio-mmio buses with decreasing base addresses.
1011      *
1012      * When a -device option is processed from the command line,
1013      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1014      * order. The upshot is that -device options in increasing command line
1015      * order are mapped to virtio-mmio buses with decreasing base addresses.
1016      *
1017      * When this code was originally written, that arrangement ensured that the
1018      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1019      * the first -device on the command line. (The end-to-end order is a
1020      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1021      * guest kernel's name-to-address assignment strategy.)
1022      *
1023      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1024      * the message, if not necessarily the code, of commit 70161ff336.
1025      * Therefore the loop now establishes the inverse of the original intent.
1026      *
1027      * Unfortunately, we can't counteract the kernel change by reversing the
1028      * loop; it would break existing command lines.
1029      *
1030      * In any case, the kernel makes no guarantee about the stability of
1031      * enumeration order of virtio devices (as demonstrated by it changing
1032      * between kernel versions). For reliable and stable identification
1033      * of disks users must use UUIDs or similar mechanisms.
1034      */
1035     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1036         int irq = vms->irqmap[VIRT_MMIO] + i;
1037         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1038 
1039         sysbus_create_simple("virtio-mmio", base,
1040                              qdev_get_gpio_in(vms->gic, irq));
1041     }
1042 
1043     /* We add dtb nodes in reverse order so that they appear in the finished
1044      * device tree lowest address first.
1045      *
1046      * Note that this mapping is independent of the loop above. The previous
1047      * loop influences virtio device to virtio transport assignment, whereas
1048      * this loop controls how virtio transports are laid out in the dtb.
1049      */
1050     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1051         char *nodename;
1052         int irq = vms->irqmap[VIRT_MMIO] + i;
1053         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1054 
1055         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1056         qemu_fdt_add_subnode(ms->fdt, nodename);
1057         qemu_fdt_setprop_string(ms->fdt, nodename,
1058                                 "compatible", "virtio,mmio");
1059         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1060                                      2, base, 2, size);
1061         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1062                                GIC_FDT_IRQ_TYPE_SPI, irq,
1063                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1064         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1065         g_free(nodename);
1066     }
1067 }
1068 
1069 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1070 
1071 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1072                                         const char *name,
1073                                         const char *alias_prop_name)
1074 {
1075     /*
1076      * Create a single flash device.  We use the same parameters as
1077      * the flash devices on the Versatile Express board.
1078      */
1079     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1080 
1081     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1082     qdev_prop_set_uint8(dev, "width", 4);
1083     qdev_prop_set_uint8(dev, "device-width", 2);
1084     qdev_prop_set_bit(dev, "big-endian", false);
1085     qdev_prop_set_uint16(dev, "id0", 0x89);
1086     qdev_prop_set_uint16(dev, "id1", 0x18);
1087     qdev_prop_set_uint16(dev, "id2", 0x00);
1088     qdev_prop_set_uint16(dev, "id3", 0x00);
1089     qdev_prop_set_string(dev, "name", name);
1090     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1091     object_property_add_alias(OBJECT(vms), alias_prop_name,
1092                               OBJECT(dev), "drive");
1093     return PFLASH_CFI01(dev);
1094 }
1095 
1096 static void virt_flash_create(VirtMachineState *vms)
1097 {
1098     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1099     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1100 }
1101 
1102 static void virt_flash_map1(PFlashCFI01 *flash,
1103                             hwaddr base, hwaddr size,
1104                             MemoryRegion *sysmem)
1105 {
1106     DeviceState *dev = DEVICE(flash);
1107 
1108     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1109     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1110     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1111     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1112 
1113     memory_region_add_subregion(sysmem, base,
1114                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1115                                                        0));
1116 }
1117 
1118 static void virt_flash_map(VirtMachineState *vms,
1119                            MemoryRegion *sysmem,
1120                            MemoryRegion *secure_sysmem)
1121 {
1122     /*
1123      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1124      * sysmem is the system memory space. secure_sysmem is the secure view
1125      * of the system, and the first flash device should be made visible only
1126      * there. The second flash device is visible to both secure and nonsecure.
1127      * If sysmem == secure_sysmem this means there is no separate Secure
1128      * address space and both flash devices are generally visible.
1129      */
1130     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1131     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1132 
1133     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1134                     secure_sysmem);
1135     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1136                     sysmem);
1137 }
1138 
1139 static void virt_flash_fdt(VirtMachineState *vms,
1140                            MemoryRegion *sysmem,
1141                            MemoryRegion *secure_sysmem)
1142 {
1143     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1144     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1145     MachineState *ms = MACHINE(vms);
1146     char *nodename;
1147 
1148     if (sysmem == secure_sysmem) {
1149         /* Report both flash devices as a single node in the DT */
1150         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1151         qemu_fdt_add_subnode(ms->fdt, nodename);
1152         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1153         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1154                                      2, flashbase, 2, flashsize,
1155                                      2, flashbase + flashsize, 2, flashsize);
1156         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1157         g_free(nodename);
1158     } else {
1159         /*
1160          * Report the devices as separate nodes so we can mark one as
1161          * only visible to the secure world.
1162          */
1163         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1164         qemu_fdt_add_subnode(ms->fdt, nodename);
1165         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1166         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1167                                      2, flashbase, 2, flashsize);
1168         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1169         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1170         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1171         g_free(nodename);
1172 
1173         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1174         qemu_fdt_add_subnode(ms->fdt, nodename);
1175         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1176         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1177                                      2, flashbase + flashsize, 2, flashsize);
1178         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1179         g_free(nodename);
1180     }
1181 }
1182 
1183 static bool virt_firmware_init(VirtMachineState *vms,
1184                                MemoryRegion *sysmem,
1185                                MemoryRegion *secure_sysmem)
1186 {
1187     int i;
1188     const char *bios_name;
1189     BlockBackend *pflash_blk0;
1190 
1191     /* Map legacy -drive if=pflash to machine properties */
1192     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1193         pflash_cfi01_legacy_drive(vms->flash[i],
1194                                   drive_get(IF_PFLASH, 0, i));
1195     }
1196 
1197     virt_flash_map(vms, sysmem, secure_sysmem);
1198 
1199     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1200 
1201     bios_name = MACHINE(vms)->firmware;
1202     if (bios_name) {
1203         char *fname;
1204         MemoryRegion *mr;
1205         int image_size;
1206 
1207         if (pflash_blk0) {
1208             error_report("The contents of the first flash device may be "
1209                          "specified with -bios or with -drive if=pflash... "
1210                          "but you cannot use both options at once");
1211             exit(1);
1212         }
1213 
1214         /* Fall back to -bios */
1215 
1216         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1217         if (!fname) {
1218             error_report("Could not find ROM image '%s'", bios_name);
1219             exit(1);
1220         }
1221         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1222         image_size = load_image_mr(fname, mr);
1223         g_free(fname);
1224         if (image_size < 0) {
1225             error_report("Could not load ROM image '%s'", bios_name);
1226             exit(1);
1227         }
1228     }
1229 
1230     return pflash_blk0 || bios_name;
1231 }
1232 
1233 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1234 {
1235     MachineState *ms = MACHINE(vms);
1236     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1237     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1238     FWCfgState *fw_cfg;
1239     char *nodename;
1240 
1241     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1242     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1243 
1244     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1245     qemu_fdt_add_subnode(ms->fdt, nodename);
1246     qemu_fdt_setprop_string(ms->fdt, nodename,
1247                             "compatible", "qemu,fw-cfg-mmio");
1248     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1249                                  2, base, 2, size);
1250     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1251     g_free(nodename);
1252     return fw_cfg;
1253 }
1254 
1255 static void create_pcie_irq_map(const MachineState *ms,
1256                                 uint32_t gic_phandle,
1257                                 int first_irq, const char *nodename)
1258 {
1259     int devfn, pin;
1260     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1261     uint32_t *irq_map = full_irq_map;
1262 
1263     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1264         for (pin = 0; pin < 4; pin++) {
1265             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1266             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1267             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1268             int i;
1269 
1270             uint32_t map[] = {
1271                 devfn << 8, 0, 0,                           /* devfn */
1272                 pin + 1,                                    /* PCI pin */
1273                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1274 
1275             /* Convert map to big endian */
1276             for (i = 0; i < 10; i++) {
1277                 irq_map[i] = cpu_to_be32(map[i]);
1278             }
1279             irq_map += 10;
1280         }
1281     }
1282 
1283     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1284                      full_irq_map, sizeof(full_irq_map));
1285 
1286     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1287                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1288                            0, 0,
1289                            0x7           /* PCI irq */);
1290 }
1291 
1292 static void create_smmu(const VirtMachineState *vms,
1293                         PCIBus *bus)
1294 {
1295     char *node;
1296     const char compat[] = "arm,smmu-v3";
1297     int irq =  vms->irqmap[VIRT_SMMU];
1298     int i;
1299     hwaddr base = vms->memmap[VIRT_SMMU].base;
1300     hwaddr size = vms->memmap[VIRT_SMMU].size;
1301     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1302     DeviceState *dev;
1303     MachineState *ms = MACHINE(vms);
1304 
1305     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1306         return;
1307     }
1308 
1309     dev = qdev_new("arm-smmuv3");
1310 
1311     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1312                              &error_abort);
1313     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1314     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1315     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1316         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1317                            qdev_get_gpio_in(vms->gic, irq + i));
1318     }
1319 
1320     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1321     qemu_fdt_add_subnode(ms->fdt, node);
1322     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1323     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1324 
1325     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1326             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1327             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1328             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1329             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1330 
1331     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1332                      sizeof(irq_names));
1333 
1334     qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1335     qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1336     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1337 
1338     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1339 
1340     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1341     g_free(node);
1342 }
1343 
1344 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1345 {
1346     const char compat[] = "virtio,pci-iommu";
1347     uint16_t bdf = vms->virtio_iommu_bdf;
1348     MachineState *ms = MACHINE(vms);
1349     char *node;
1350 
1351     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1352 
1353     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1354     qemu_fdt_add_subnode(ms->fdt, node);
1355     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1356     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1357                                  1, bdf << 8, 1, 0, 1, 0,
1358                                  1, 0, 1, 0);
1359 
1360     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1361     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1362     g_free(node);
1363 
1364     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1365                            0x0, vms->iommu_phandle, 0x0, bdf,
1366                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1367 }
1368 
1369 static void create_pcie(VirtMachineState *vms)
1370 {
1371     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1372     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1373     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1374     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1375     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1376     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1377     hwaddr base_ecam, size_ecam;
1378     hwaddr base = base_mmio;
1379     int nr_pcie_buses;
1380     int irq = vms->irqmap[VIRT_PCIE];
1381     MemoryRegion *mmio_alias;
1382     MemoryRegion *mmio_reg;
1383     MemoryRegion *ecam_alias;
1384     MemoryRegion *ecam_reg;
1385     DeviceState *dev;
1386     char *nodename;
1387     int i, ecam_id;
1388     PCIHostState *pci;
1389     MachineState *ms = MACHINE(vms);
1390 
1391     dev = qdev_new(TYPE_GPEX_HOST);
1392     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1393 
1394     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1395     base_ecam = vms->memmap[ecam_id].base;
1396     size_ecam = vms->memmap[ecam_id].size;
1397     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1398     /* Map only the first size_ecam bytes of ECAM space */
1399     ecam_alias = g_new0(MemoryRegion, 1);
1400     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1401     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1402                              ecam_reg, 0, size_ecam);
1403     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1404 
1405     /* Map the MMIO window into system address space so as to expose
1406      * the section of PCI MMIO space which starts at the same base address
1407      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1408      * the window).
1409      */
1410     mmio_alias = g_new0(MemoryRegion, 1);
1411     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1412     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1413                              mmio_reg, base_mmio, size_mmio);
1414     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1415 
1416     if (vms->highmem) {
1417         /* Map high MMIO space */
1418         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1419 
1420         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1421                                  mmio_reg, base_mmio_high, size_mmio_high);
1422         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1423                                     high_mmio_alias);
1424     }
1425 
1426     /* Map IO port space */
1427     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1428 
1429     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1430         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1431                            qdev_get_gpio_in(vms->gic, irq + i));
1432         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1433     }
1434 
1435     pci = PCI_HOST_BRIDGE(dev);
1436     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1437     vms->bus = pci->bus;
1438     if (vms->bus) {
1439         for (i = 0; i < nb_nics; i++) {
1440             NICInfo *nd = &nd_table[i];
1441 
1442             if (!nd->model) {
1443                 nd->model = g_strdup("virtio");
1444             }
1445 
1446             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1447         }
1448     }
1449 
1450     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1451     qemu_fdt_add_subnode(ms->fdt, nodename);
1452     qemu_fdt_setprop_string(ms->fdt, nodename,
1453                             "compatible", "pci-host-ecam-generic");
1454     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1455     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1456     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1457     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1458     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1459                            nr_pcie_buses - 1);
1460     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1461 
1462     if (vms->msi_phandle) {
1463         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1464                                vms->msi_phandle);
1465     }
1466 
1467     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1468                                  2, base_ecam, 2, size_ecam);
1469 
1470     if (vms->highmem) {
1471         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1472                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1473                                      2, base_pio, 2, size_pio,
1474                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1475                                      2, base_mmio, 2, size_mmio,
1476                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1477                                      2, base_mmio_high,
1478                                      2, base_mmio_high, 2, size_mmio_high);
1479     } else {
1480         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1481                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1482                                      2, base_pio, 2, size_pio,
1483                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1484                                      2, base_mmio, 2, size_mmio);
1485     }
1486 
1487     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1488     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1489 
1490     if (vms->iommu) {
1491         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1492 
1493         switch (vms->iommu) {
1494         case VIRT_IOMMU_SMMUV3:
1495             create_smmu(vms, vms->bus);
1496             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1497                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1498             break;
1499         default:
1500             g_assert_not_reached();
1501         }
1502     }
1503 }
1504 
1505 static void create_platform_bus(VirtMachineState *vms)
1506 {
1507     DeviceState *dev;
1508     SysBusDevice *s;
1509     int i;
1510     MemoryRegion *sysmem = get_system_memory();
1511 
1512     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1513     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1514     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1515     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1516     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1517     vms->platform_bus_dev = dev;
1518 
1519     s = SYS_BUS_DEVICE(dev);
1520     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1521         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1522         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1523     }
1524 
1525     memory_region_add_subregion(sysmem,
1526                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1527                                 sysbus_mmio_get_region(s, 0));
1528 }
1529 
1530 static void create_tag_ram(MemoryRegion *tag_sysmem,
1531                            hwaddr base, hwaddr size,
1532                            const char *name)
1533 {
1534     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1535 
1536     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1537     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1538 }
1539 
1540 static void create_secure_ram(VirtMachineState *vms,
1541                               MemoryRegion *secure_sysmem,
1542                               MemoryRegion *secure_tag_sysmem)
1543 {
1544     MemoryRegion *secram = g_new(MemoryRegion, 1);
1545     char *nodename;
1546     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1547     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1548     MachineState *ms = MACHINE(vms);
1549 
1550     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1551                            &error_fatal);
1552     memory_region_add_subregion(secure_sysmem, base, secram);
1553 
1554     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1555     qemu_fdt_add_subnode(ms->fdt, nodename);
1556     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1557     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1558     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1559     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1560 
1561     if (secure_tag_sysmem) {
1562         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1563     }
1564 
1565     g_free(nodename);
1566 }
1567 
1568 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1569 {
1570     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1571                                                  bootinfo);
1572     MachineState *ms = MACHINE(board);
1573 
1574 
1575     *fdt_size = board->fdt_size;
1576     return ms->fdt;
1577 }
1578 
1579 static void virt_build_smbios(VirtMachineState *vms)
1580 {
1581     MachineClass *mc = MACHINE_GET_CLASS(vms);
1582     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1583     uint8_t *smbios_tables, *smbios_anchor;
1584     size_t smbios_tables_len, smbios_anchor_len;
1585     const char *product = "QEMU Virtual Machine";
1586 
1587     if (kvm_enabled()) {
1588         product = "KVM Virtual Machine";
1589     }
1590 
1591     smbios_set_defaults("QEMU", product,
1592                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1593                         true, SMBIOS_ENTRY_POINT_30);
1594 
1595     smbios_get_tables(MACHINE(vms), NULL, 0,
1596                       &smbios_tables, &smbios_tables_len,
1597                       &smbios_anchor, &smbios_anchor_len,
1598                       &error_fatal);
1599 
1600     if (smbios_anchor) {
1601         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1602                         smbios_tables, smbios_tables_len);
1603         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1604                         smbios_anchor, smbios_anchor_len);
1605     }
1606 }
1607 
1608 static
1609 void virt_machine_done(Notifier *notifier, void *data)
1610 {
1611     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1612                                          machine_done);
1613     MachineState *ms = MACHINE(vms);
1614     ARMCPU *cpu = ARM_CPU(first_cpu);
1615     struct arm_boot_info *info = &vms->bootinfo;
1616     AddressSpace *as = arm_boot_address_space(cpu, info);
1617 
1618     /*
1619      * If the user provided a dtb, we assume the dynamic sysbus nodes
1620      * already are integrated there. This corresponds to a use case where
1621      * the dynamic sysbus nodes are complex and their generation is not yet
1622      * supported. In that case the user can take charge of the guest dt
1623      * while qemu takes charge of the qom stuff.
1624      */
1625     if (info->dtb_filename == NULL) {
1626         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1627                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1628                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1629                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1630     }
1631     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1632         exit(1);
1633     }
1634 
1635     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1636 
1637     virt_acpi_setup(vms);
1638     virt_build_smbios(vms);
1639 }
1640 
1641 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1642 {
1643     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1644     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1645 
1646     if (!vmc->disallow_affinity_adjustment) {
1647         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1648          * GIC's target-list limitations. 32-bit KVM hosts currently
1649          * always create clusters of 4 CPUs, but that is expected to
1650          * change when they gain support for gicv3. When KVM is enabled
1651          * it will override the changes we make here, therefore our
1652          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1653          * and to improve SGI efficiency.
1654          */
1655         if (vms->gic_version == VIRT_GIC_VERSION_3) {
1656             clustersz = GICV3_TARGETLIST_BITS;
1657         } else {
1658             clustersz = GIC_TARGETLIST_BITS;
1659         }
1660     }
1661     return arm_cpu_mp_affinity(idx, clustersz);
1662 }
1663 
1664 static void virt_set_memmap(VirtMachineState *vms)
1665 {
1666     MachineState *ms = MACHINE(vms);
1667     hwaddr base, device_memory_base, device_memory_size;
1668     int i;
1669 
1670     vms->memmap = extended_memmap;
1671 
1672     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1673         vms->memmap[i] = base_memmap[i];
1674     }
1675 
1676     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1677         error_report("unsupported number of memory slots: %"PRIu64,
1678                      ms->ram_slots);
1679         exit(EXIT_FAILURE);
1680     }
1681 
1682     /*
1683      * We compute the base of the high IO region depending on the
1684      * amount of initial and device memory. The device memory start/size
1685      * is aligned on 1GiB. We never put the high IO region below 256GiB
1686      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1687      * The device region size assumes 1GiB page max alignment per slot.
1688      */
1689     device_memory_base =
1690         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1691     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1692 
1693     /* Base address of the high IO region */
1694     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1695     if (base < device_memory_base) {
1696         error_report("maxmem/slots too huge");
1697         exit(EXIT_FAILURE);
1698     }
1699     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1700         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1701     }
1702 
1703     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1704         hwaddr size = extended_memmap[i].size;
1705 
1706         base = ROUND_UP(base, size);
1707         vms->memmap[i].base = base;
1708         vms->memmap[i].size = size;
1709         base += size;
1710     }
1711     vms->highest_gpa = base - 1;
1712     if (device_memory_size > 0) {
1713         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1714         ms->device_memory->base = device_memory_base;
1715         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1716                            "device-memory", device_memory_size);
1717     }
1718 }
1719 
1720 /*
1721  * finalize_gic_version - Determines the final gic_version
1722  * according to the gic-version property
1723  *
1724  * Default GIC type is v2
1725  */
1726 static void finalize_gic_version(VirtMachineState *vms)
1727 {
1728     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1729 
1730     if (kvm_enabled()) {
1731         int probe_bitmap;
1732 
1733         if (!kvm_irqchip_in_kernel()) {
1734             switch (vms->gic_version) {
1735             case VIRT_GIC_VERSION_HOST:
1736                 warn_report(
1737                     "gic-version=host not relevant with kernel-irqchip=off "
1738                      "as only userspace GICv2 is supported. Using v2 ...");
1739                 return;
1740             case VIRT_GIC_VERSION_MAX:
1741             case VIRT_GIC_VERSION_NOSEL:
1742                 vms->gic_version = VIRT_GIC_VERSION_2;
1743                 return;
1744             case VIRT_GIC_VERSION_2:
1745                 return;
1746             case VIRT_GIC_VERSION_3:
1747                 error_report(
1748                     "gic-version=3 is not supported with kernel-irqchip=off");
1749                 exit(1);
1750             }
1751         }
1752 
1753         probe_bitmap = kvm_arm_vgic_probe();
1754         if (!probe_bitmap) {
1755             error_report("Unable to determine GIC version supported by host");
1756             exit(1);
1757         }
1758 
1759         switch (vms->gic_version) {
1760         case VIRT_GIC_VERSION_HOST:
1761         case VIRT_GIC_VERSION_MAX:
1762             if (probe_bitmap & KVM_ARM_VGIC_V3) {
1763                 vms->gic_version = VIRT_GIC_VERSION_3;
1764             } else {
1765                 vms->gic_version = VIRT_GIC_VERSION_2;
1766             }
1767             return;
1768         case VIRT_GIC_VERSION_NOSEL:
1769             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1770                 vms->gic_version = VIRT_GIC_VERSION_2;
1771             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1772                 /*
1773                  * in case the host does not support v2 in-kernel emulation or
1774                  * the end-user requested more than 8 VCPUs we now default
1775                  * to v3. In any case defaulting to v2 would be broken.
1776                  */
1777                 vms->gic_version = VIRT_GIC_VERSION_3;
1778             } else if (max_cpus > GIC_NCPU) {
1779                 error_report("host only supports in-kernel GICv2 emulation "
1780                              "but more than 8 vcpus are requested");
1781                 exit(1);
1782             }
1783             break;
1784         case VIRT_GIC_VERSION_2:
1785         case VIRT_GIC_VERSION_3:
1786             break;
1787         }
1788 
1789         /* Check chosen version is effectively supported by the host */
1790         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1791             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1792             error_report("host does not support in-kernel GICv2 emulation");
1793             exit(1);
1794         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1795                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1796             error_report("host does not support in-kernel GICv3 emulation");
1797             exit(1);
1798         }
1799         return;
1800     }
1801 
1802     /* TCG mode */
1803     switch (vms->gic_version) {
1804     case VIRT_GIC_VERSION_NOSEL:
1805         vms->gic_version = VIRT_GIC_VERSION_2;
1806         break;
1807     case VIRT_GIC_VERSION_MAX:
1808         vms->gic_version = VIRT_GIC_VERSION_3;
1809         break;
1810     case VIRT_GIC_VERSION_HOST:
1811         error_report("gic-version=host requires KVM");
1812         exit(1);
1813     case VIRT_GIC_VERSION_2:
1814     case VIRT_GIC_VERSION_3:
1815         break;
1816     }
1817 }
1818 
1819 /*
1820  * virt_cpu_post_init() must be called after the CPUs have
1821  * been realized and the GIC has been created.
1822  */
1823 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1824 {
1825     int max_cpus = MACHINE(vms)->smp.max_cpus;
1826     bool aarch64, pmu, steal_time;
1827     CPUState *cpu;
1828 
1829     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1830     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1831     steal_time = object_property_get_bool(OBJECT(first_cpu),
1832                                           "kvm-steal-time", NULL);
1833 
1834     if (kvm_enabled()) {
1835         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1836         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1837 
1838         if (steal_time) {
1839             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1840             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1841 
1842             /* The memory region size must be a multiple of host page size. */
1843             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1844 
1845             if (pvtime_size > pvtime_reg_size) {
1846                 error_report("pvtime requires a %" HWADDR_PRId
1847                              " byte memory region for %d CPUs,"
1848                              " but only %" HWADDR_PRId " has been reserved",
1849                              pvtime_size, max_cpus, pvtime_reg_size);
1850                 exit(1);
1851             }
1852 
1853             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1854             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1855         }
1856 
1857         CPU_FOREACH(cpu) {
1858             if (pmu) {
1859                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1860                 if (kvm_irqchip_in_kernel()) {
1861                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1862                 }
1863                 kvm_arm_pmu_init(cpu);
1864             }
1865             if (steal_time) {
1866                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1867                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1868             }
1869         }
1870     } else {
1871         if (aarch64 && vms->highmem) {
1872             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1873             int pamax = arm_pamax(ARM_CPU(first_cpu));
1874 
1875             if (pamax < requested_pa_size) {
1876                 error_report("VCPU supports less PA bits (%d) than "
1877                              "requested by the memory map (%d)",
1878                              pamax, requested_pa_size);
1879                 exit(1);
1880             }
1881         }
1882     }
1883 }
1884 
1885 static void machvirt_init(MachineState *machine)
1886 {
1887     VirtMachineState *vms = VIRT_MACHINE(machine);
1888     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1889     MachineClass *mc = MACHINE_GET_CLASS(machine);
1890     const CPUArchIdList *possible_cpus;
1891     MemoryRegion *sysmem = get_system_memory();
1892     MemoryRegion *secure_sysmem = NULL;
1893     MemoryRegion *tag_sysmem = NULL;
1894     MemoryRegion *secure_tag_sysmem = NULL;
1895     int n, virt_max_cpus;
1896     bool firmware_loaded;
1897     bool aarch64 = true;
1898     bool has_ged = !vmc->no_ged;
1899     unsigned int smp_cpus = machine->smp.cpus;
1900     unsigned int max_cpus = machine->smp.max_cpus;
1901 
1902     /*
1903      * In accelerated mode, the memory map is computed earlier in kvm_type()
1904      * to create a VM with the right number of IPA bits.
1905      */
1906     if (!vms->memmap) {
1907         virt_set_memmap(vms);
1908     }
1909 
1910     /* We can probe only here because during property set
1911      * KVM is not available yet
1912      */
1913     finalize_gic_version(vms);
1914 
1915     if (!cpu_type_valid(machine->cpu_type)) {
1916         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1917         exit(1);
1918     }
1919 
1920     if (vms->secure) {
1921         /*
1922          * The Secure view of the world is the same as the NonSecure,
1923          * but with a few extra devices. Create it as a container region
1924          * containing the system memory at low priority; any secure-only
1925          * devices go in at higher priority and take precedence.
1926          */
1927         secure_sysmem = g_new(MemoryRegion, 1);
1928         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1929                            UINT64_MAX);
1930         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1931     }
1932 
1933     firmware_loaded = virt_firmware_init(vms, sysmem,
1934                                          secure_sysmem ?: sysmem);
1935 
1936     /* If we have an EL3 boot ROM then the assumption is that it will
1937      * implement PSCI itself, so disable QEMU's internal implementation
1938      * so it doesn't get in the way. Instead of starting secondary
1939      * CPUs in PSCI powerdown state we will start them all running and
1940      * let the boot ROM sort them out.
1941      * The usual case is that we do use QEMU's PSCI implementation;
1942      * if the guest has EL2 then we will use SMC as the conduit,
1943      * and otherwise we will use HVC (for backwards compatibility and
1944      * because if we're using KVM then we must use HVC).
1945      */
1946     if (vms->secure && firmware_loaded) {
1947         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1948     } else if (vms->virt) {
1949         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1950     } else {
1951         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1952     }
1953 
1954     /* The maximum number of CPUs depends on the GIC version, or on how
1955      * many redistributors we can fit into the memory map.
1956      */
1957     if (vms->gic_version == VIRT_GIC_VERSION_3) {
1958         virt_max_cpus =
1959             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1960         virt_max_cpus +=
1961             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1962     } else {
1963         virt_max_cpus = GIC_NCPU;
1964     }
1965 
1966     if (max_cpus > virt_max_cpus) {
1967         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1968                      "supported by machine 'mach-virt' (%d)",
1969                      max_cpus, virt_max_cpus);
1970         exit(1);
1971     }
1972 
1973     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
1974         error_report("mach-virt: %s does not support providing "
1975                      "Virtualization extensions to the guest CPU",
1976                      kvm_enabled() ? "KVM" : "HVF");
1977         exit(1);
1978     }
1979 
1980     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
1981         error_report("mach-virt: %s does not support providing "
1982                      "MTE to the guest CPU",
1983                      kvm_enabled() ? "KVM" : "HVF");
1984         exit(1);
1985     }
1986 
1987     create_fdt(vms);
1988 
1989     possible_cpus = mc->possible_cpu_arch_ids(machine);
1990     assert(possible_cpus->len == max_cpus);
1991     for (n = 0; n < possible_cpus->len; n++) {
1992         Object *cpuobj;
1993         CPUState *cs;
1994 
1995         if (n >= smp_cpus) {
1996             break;
1997         }
1998 
1999         cpuobj = object_new(possible_cpus->cpus[n].type);
2000         object_property_set_int(cpuobj, "mp-affinity",
2001                                 possible_cpus->cpus[n].arch_id, NULL);
2002 
2003         cs = CPU(cpuobj);
2004         cs->cpu_index = n;
2005 
2006         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2007                           &error_fatal);
2008 
2009         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2010 
2011         if (!vms->secure) {
2012             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2013         }
2014 
2015         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2016             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2017         }
2018 
2019         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
2020             object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
2021                                     NULL);
2022 
2023             /* Secondary CPUs start in PSCI powered-down state */
2024             if (n > 0) {
2025                 object_property_set_bool(cpuobj, "start-powered-off", true,
2026                                          NULL);
2027             }
2028         }
2029 
2030         if (vmc->kvm_no_adjvtime &&
2031             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2032             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2033         }
2034 
2035         if (vmc->no_kvm_steal_time &&
2036             object_property_find(cpuobj, "kvm-steal-time")) {
2037             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2038         }
2039 
2040         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2041             object_property_set_bool(cpuobj, "pmu", false, NULL);
2042         }
2043 
2044         if (object_property_find(cpuobj, "reset-cbar")) {
2045             object_property_set_int(cpuobj, "reset-cbar",
2046                                     vms->memmap[VIRT_CPUPERIPHS].base,
2047                                     &error_abort);
2048         }
2049 
2050         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2051                                  &error_abort);
2052         if (vms->secure) {
2053             object_property_set_link(cpuobj, "secure-memory",
2054                                      OBJECT(secure_sysmem), &error_abort);
2055         }
2056 
2057         if (vms->mte) {
2058             /* Create the memory region only once, but link to all cpus. */
2059             if (!tag_sysmem) {
2060                 /*
2061                  * The property exists only if MemTag is supported.
2062                  * If it is, we must allocate the ram to back that up.
2063                  */
2064                 if (!object_property_find(cpuobj, "tag-memory")) {
2065                     error_report("MTE requested, but not supported "
2066                                  "by the guest CPU");
2067                     exit(1);
2068                 }
2069 
2070                 tag_sysmem = g_new(MemoryRegion, 1);
2071                 memory_region_init(tag_sysmem, OBJECT(machine),
2072                                    "tag-memory", UINT64_MAX / 32);
2073 
2074                 if (vms->secure) {
2075                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2076                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2077                                        "secure-tag-memory", UINT64_MAX / 32);
2078 
2079                     /* As with ram, secure-tag takes precedence over tag.  */
2080                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2081                                                         tag_sysmem, -1);
2082                 }
2083             }
2084 
2085             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2086                                      &error_abort);
2087             if (vms->secure) {
2088                 object_property_set_link(cpuobj, "secure-tag-memory",
2089                                          OBJECT(secure_tag_sysmem),
2090                                          &error_abort);
2091             }
2092         }
2093 
2094         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2095         object_unref(cpuobj);
2096     }
2097     fdt_add_timer_nodes(vms);
2098     fdt_add_cpu_nodes(vms);
2099 
2100     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2101                                 machine->ram);
2102     if (machine->device_memory) {
2103         memory_region_add_subregion(sysmem, machine->device_memory->base,
2104                                     &machine->device_memory->mr);
2105     }
2106 
2107     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2108 
2109     create_gic(vms, sysmem);
2110 
2111     virt_cpu_post_init(vms, sysmem);
2112 
2113     fdt_add_pmu_nodes(vms);
2114 
2115     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2116 
2117     if (vms->secure) {
2118         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2119         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2120     }
2121 
2122     if (tag_sysmem) {
2123         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2124                        machine->ram_size, "mach-virt.tag");
2125     }
2126 
2127     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2128 
2129     create_rtc(vms);
2130 
2131     create_pcie(vms);
2132 
2133     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2134         vms->acpi_dev = create_acpi_ged(vms);
2135     } else {
2136         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2137     }
2138 
2139     if (vms->secure && !vmc->no_secure_gpio) {
2140         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2141     }
2142 
2143      /* connect powerdown request */
2144      vms->powerdown_notifier.notify = virt_powerdown_req;
2145      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2146 
2147     /* Create mmio transports, so the user can create virtio backends
2148      * (which will be automatically plugged in to the transports). If
2149      * no backend is created the transport will just sit harmlessly idle.
2150      */
2151     create_virtio_devices(vms);
2152 
2153     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2154     rom_set_fw(vms->fw_cfg);
2155 
2156     create_platform_bus(vms);
2157 
2158     if (machine->nvdimms_state->is_enabled) {
2159         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2160             .space_id = AML_AS_SYSTEM_MEMORY,
2161             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2162             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2163         };
2164 
2165         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2166                                arm_virt_nvdimm_acpi_dsmio,
2167                                vms->fw_cfg, OBJECT(vms));
2168     }
2169 
2170     vms->bootinfo.ram_size = machine->ram_size;
2171     vms->bootinfo.nb_cpus = smp_cpus;
2172     vms->bootinfo.board_id = -1;
2173     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2174     vms->bootinfo.get_dtb = machvirt_dtb;
2175     vms->bootinfo.skip_dtb_autoload = true;
2176     vms->bootinfo.firmware_loaded = firmware_loaded;
2177     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2178 
2179     vms->machine_done.notify = virt_machine_done;
2180     qemu_add_machine_init_done_notifier(&vms->machine_done);
2181 }
2182 
2183 static bool virt_get_secure(Object *obj, Error **errp)
2184 {
2185     VirtMachineState *vms = VIRT_MACHINE(obj);
2186 
2187     return vms->secure;
2188 }
2189 
2190 static void virt_set_secure(Object *obj, bool value, Error **errp)
2191 {
2192     VirtMachineState *vms = VIRT_MACHINE(obj);
2193 
2194     vms->secure = value;
2195 }
2196 
2197 static bool virt_get_virt(Object *obj, Error **errp)
2198 {
2199     VirtMachineState *vms = VIRT_MACHINE(obj);
2200 
2201     return vms->virt;
2202 }
2203 
2204 static void virt_set_virt(Object *obj, bool value, Error **errp)
2205 {
2206     VirtMachineState *vms = VIRT_MACHINE(obj);
2207 
2208     vms->virt = value;
2209 }
2210 
2211 static bool virt_get_highmem(Object *obj, Error **errp)
2212 {
2213     VirtMachineState *vms = VIRT_MACHINE(obj);
2214 
2215     return vms->highmem;
2216 }
2217 
2218 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2219 {
2220     VirtMachineState *vms = VIRT_MACHINE(obj);
2221 
2222     vms->highmem = value;
2223 }
2224 
2225 static bool virt_get_its(Object *obj, Error **errp)
2226 {
2227     VirtMachineState *vms = VIRT_MACHINE(obj);
2228 
2229     return vms->its;
2230 }
2231 
2232 static void virt_set_its(Object *obj, bool value, Error **errp)
2233 {
2234     VirtMachineState *vms = VIRT_MACHINE(obj);
2235 
2236     vms->its = value;
2237 }
2238 
2239 static char *virt_get_oem_id(Object *obj, Error **errp)
2240 {
2241     VirtMachineState *vms = VIRT_MACHINE(obj);
2242 
2243     return g_strdup(vms->oem_id);
2244 }
2245 
2246 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2247 {
2248     VirtMachineState *vms = VIRT_MACHINE(obj);
2249     size_t len = strlen(value);
2250 
2251     if (len > 6) {
2252         error_setg(errp,
2253                    "User specified oem-id value is bigger than 6 bytes in size");
2254         return;
2255     }
2256 
2257     strncpy(vms->oem_id, value, 6);
2258 }
2259 
2260 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2261 {
2262     VirtMachineState *vms = VIRT_MACHINE(obj);
2263 
2264     return g_strdup(vms->oem_table_id);
2265 }
2266 
2267 static void virt_set_oem_table_id(Object *obj, const char *value,
2268                                   Error **errp)
2269 {
2270     VirtMachineState *vms = VIRT_MACHINE(obj);
2271     size_t len = strlen(value);
2272 
2273     if (len > 8) {
2274         error_setg(errp,
2275                    "User specified oem-table-id value is bigger than 8 bytes in size");
2276         return;
2277     }
2278     strncpy(vms->oem_table_id, value, 8);
2279 }
2280 
2281 
2282 bool virt_is_acpi_enabled(VirtMachineState *vms)
2283 {
2284     if (vms->acpi == ON_OFF_AUTO_OFF) {
2285         return false;
2286     }
2287     return true;
2288 }
2289 
2290 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2291                           void *opaque, Error **errp)
2292 {
2293     VirtMachineState *vms = VIRT_MACHINE(obj);
2294     OnOffAuto acpi = vms->acpi;
2295 
2296     visit_type_OnOffAuto(v, name, &acpi, errp);
2297 }
2298 
2299 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2300                           void *opaque, Error **errp)
2301 {
2302     VirtMachineState *vms = VIRT_MACHINE(obj);
2303 
2304     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2305 }
2306 
2307 static bool virt_get_ras(Object *obj, Error **errp)
2308 {
2309     VirtMachineState *vms = VIRT_MACHINE(obj);
2310 
2311     return vms->ras;
2312 }
2313 
2314 static void virt_set_ras(Object *obj, bool value, Error **errp)
2315 {
2316     VirtMachineState *vms = VIRT_MACHINE(obj);
2317 
2318     vms->ras = value;
2319 }
2320 
2321 static bool virt_get_mte(Object *obj, Error **errp)
2322 {
2323     VirtMachineState *vms = VIRT_MACHINE(obj);
2324 
2325     return vms->mte;
2326 }
2327 
2328 static void virt_set_mte(Object *obj, bool value, Error **errp)
2329 {
2330     VirtMachineState *vms = VIRT_MACHINE(obj);
2331 
2332     vms->mte = value;
2333 }
2334 
2335 static char *virt_get_gic_version(Object *obj, Error **errp)
2336 {
2337     VirtMachineState *vms = VIRT_MACHINE(obj);
2338     const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2339 
2340     return g_strdup(val);
2341 }
2342 
2343 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2344 {
2345     VirtMachineState *vms = VIRT_MACHINE(obj);
2346 
2347     if (!strcmp(value, "3")) {
2348         vms->gic_version = VIRT_GIC_VERSION_3;
2349     } else if (!strcmp(value, "2")) {
2350         vms->gic_version = VIRT_GIC_VERSION_2;
2351     } else if (!strcmp(value, "host")) {
2352         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2353     } else if (!strcmp(value, "max")) {
2354         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2355     } else {
2356         error_setg(errp, "Invalid gic-version value");
2357         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2358     }
2359 }
2360 
2361 static char *virt_get_iommu(Object *obj, Error **errp)
2362 {
2363     VirtMachineState *vms = VIRT_MACHINE(obj);
2364 
2365     switch (vms->iommu) {
2366     case VIRT_IOMMU_NONE:
2367         return g_strdup("none");
2368     case VIRT_IOMMU_SMMUV3:
2369         return g_strdup("smmuv3");
2370     default:
2371         g_assert_not_reached();
2372     }
2373 }
2374 
2375 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2376 {
2377     VirtMachineState *vms = VIRT_MACHINE(obj);
2378 
2379     if (!strcmp(value, "smmuv3")) {
2380         vms->iommu = VIRT_IOMMU_SMMUV3;
2381     } else if (!strcmp(value, "none")) {
2382         vms->iommu = VIRT_IOMMU_NONE;
2383     } else {
2384         error_setg(errp, "Invalid iommu value");
2385         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2386     }
2387 }
2388 
2389 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2390 {
2391     VirtMachineState *vms = VIRT_MACHINE(obj);
2392 
2393     return vms->default_bus_bypass_iommu;
2394 }
2395 
2396 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2397                                               Error **errp)
2398 {
2399     VirtMachineState *vms = VIRT_MACHINE(obj);
2400 
2401     vms->default_bus_bypass_iommu = value;
2402 }
2403 
2404 static CpuInstanceProperties
2405 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2406 {
2407     MachineClass *mc = MACHINE_GET_CLASS(ms);
2408     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2409 
2410     assert(cpu_index < possible_cpus->len);
2411     return possible_cpus->cpus[cpu_index].props;
2412 }
2413 
2414 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2415 {
2416     return idx % ms->numa_state->num_nodes;
2417 }
2418 
2419 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2420 {
2421     int n;
2422     unsigned int max_cpus = ms->smp.max_cpus;
2423     VirtMachineState *vms = VIRT_MACHINE(ms);
2424 
2425     if (ms->possible_cpus) {
2426         assert(ms->possible_cpus->len == max_cpus);
2427         return ms->possible_cpus;
2428     }
2429 
2430     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2431                                   sizeof(CPUArchId) * max_cpus);
2432     ms->possible_cpus->len = max_cpus;
2433     for (n = 0; n < ms->possible_cpus->len; n++) {
2434         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2435         ms->possible_cpus->cpus[n].arch_id =
2436             virt_cpu_mp_affinity(vms, n);
2437         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2438         ms->possible_cpus->cpus[n].props.thread_id = n;
2439     }
2440     return ms->possible_cpus;
2441 }
2442 
2443 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2444                                  Error **errp)
2445 {
2446     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2447     const MachineState *ms = MACHINE(hotplug_dev);
2448     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2449 
2450     if (!vms->acpi_dev) {
2451         error_setg(errp,
2452                    "memory hotplug is not enabled: missing acpi-ged device");
2453         return;
2454     }
2455 
2456     if (vms->mte) {
2457         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2458         return;
2459     }
2460 
2461     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2462         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2463         return;
2464     }
2465 
2466     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2467 }
2468 
2469 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2470                              DeviceState *dev, Error **errp)
2471 {
2472     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2473     MachineState *ms = MACHINE(hotplug_dev);
2474     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2475 
2476     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2477 
2478     if (is_nvdimm) {
2479         nvdimm_plug(ms->nvdimms_state);
2480     }
2481 
2482     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2483                          dev, &error_abort);
2484 }
2485 
2486 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2487                                             DeviceState *dev, Error **errp)
2488 {
2489     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2490 
2491     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2492         virt_memory_pre_plug(hotplug_dev, dev, errp);
2493     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2494         hwaddr db_start = 0, db_end = 0;
2495         char *resv_prop_str;
2496 
2497         switch (vms->msi_controller) {
2498         case VIRT_MSI_CTRL_NONE:
2499             return;
2500         case VIRT_MSI_CTRL_ITS:
2501             /* GITS_TRANSLATER page */
2502             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2503             db_end = base_memmap[VIRT_GIC_ITS].base +
2504                      base_memmap[VIRT_GIC_ITS].size - 1;
2505             break;
2506         case VIRT_MSI_CTRL_GICV2M:
2507             /* MSI_SETSPI_NS page */
2508             db_start = base_memmap[VIRT_GIC_V2M].base;
2509             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2510             break;
2511         }
2512         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2513                                         db_start, db_end,
2514                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2515 
2516         qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2517         qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2518         g_free(resv_prop_str);
2519     }
2520 }
2521 
2522 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2523                                         DeviceState *dev, Error **errp)
2524 {
2525     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2526 
2527     if (vms->platform_bus_dev) {
2528         MachineClass *mc = MACHINE_GET_CLASS(vms);
2529 
2530         if (device_is_dynamic_sysbus(mc, dev)) {
2531             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2532                                      SYS_BUS_DEVICE(dev));
2533         }
2534     }
2535     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2536         virt_memory_plug(hotplug_dev, dev, errp);
2537     }
2538     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2539         PCIDevice *pdev = PCI_DEVICE(dev);
2540 
2541         vms->iommu = VIRT_IOMMU_VIRTIO;
2542         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2543         create_virtio_iommu_dt_bindings(vms);
2544     }
2545 }
2546 
2547 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2548                                      DeviceState *dev, Error **errp)
2549 {
2550     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2551     Error *local_err = NULL;
2552 
2553     if (!vms->acpi_dev) {
2554         error_setg(&local_err,
2555                    "memory hotplug is not enabled: missing acpi-ged device");
2556         goto out;
2557     }
2558 
2559     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2560         error_setg(&local_err,
2561                    "nvdimm device hot unplug is not supported yet.");
2562         goto out;
2563     }
2564 
2565     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2566                                    &local_err);
2567 out:
2568     error_propagate(errp, local_err);
2569 }
2570 
2571 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2572                              DeviceState *dev, Error **errp)
2573 {
2574     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2575     Error *local_err = NULL;
2576 
2577     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2578     if (local_err) {
2579         goto out;
2580     }
2581 
2582     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2583     qdev_unrealize(dev);
2584 
2585 out:
2586     error_propagate(errp, local_err);
2587 }
2588 
2589 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2590                                           DeviceState *dev, Error **errp)
2591 {
2592     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2593         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2594     } else {
2595         error_setg(errp, "device unplug request for unsupported device"
2596                    " type: %s", object_get_typename(OBJECT(dev)));
2597     }
2598 }
2599 
2600 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2601                                           DeviceState *dev, Error **errp)
2602 {
2603     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2604         virt_dimm_unplug(hotplug_dev, dev, errp);
2605     } else {
2606         error_setg(errp, "virt: device unplug for unsupported device"
2607                    " type: %s", object_get_typename(OBJECT(dev)));
2608     }
2609 }
2610 
2611 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2612                                                         DeviceState *dev)
2613 {
2614     MachineClass *mc = MACHINE_GET_CLASS(machine);
2615 
2616     if (device_is_dynamic_sysbus(mc, dev) ||
2617        (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2618         return HOTPLUG_HANDLER(machine);
2619     }
2620     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2621         VirtMachineState *vms = VIRT_MACHINE(machine);
2622 
2623         if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2624             return HOTPLUG_HANDLER(machine);
2625         }
2626     }
2627     return NULL;
2628 }
2629 
2630 /*
2631  * for arm64 kvm_type [7-0] encodes the requested number of bits
2632  * in the IPA address space
2633  */
2634 static int virt_kvm_type(MachineState *ms, const char *type_str)
2635 {
2636     VirtMachineState *vms = VIRT_MACHINE(ms);
2637     int max_vm_pa_size, requested_pa_size;
2638     bool fixed_ipa;
2639 
2640     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2641 
2642     /* we freeze the memory map to compute the highest gpa */
2643     virt_set_memmap(vms);
2644 
2645     requested_pa_size = 64 - clz64(vms->highest_gpa);
2646 
2647     /*
2648      * KVM requires the IPA size to be at least 32 bits.
2649      */
2650     if (requested_pa_size < 32) {
2651         requested_pa_size = 32;
2652     }
2653 
2654     if (requested_pa_size > max_vm_pa_size) {
2655         error_report("-m and ,maxmem option values "
2656                      "require an IPA range (%d bits) larger than "
2657                      "the one supported by the host (%d bits)",
2658                      requested_pa_size, max_vm_pa_size);
2659         exit(1);
2660     }
2661     /*
2662      * We return the requested PA log size, unless KVM only supports
2663      * the implicit legacy 40b IPA setting, in which case the kvm_type
2664      * must be 0.
2665      */
2666     return fixed_ipa ? 0 : requested_pa_size;
2667 }
2668 
2669 static void virt_machine_class_init(ObjectClass *oc, void *data)
2670 {
2671     MachineClass *mc = MACHINE_CLASS(oc);
2672     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2673 
2674     mc->init = machvirt_init;
2675     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2676      * The value may be reduced later when we have more information about the
2677      * configuration of the particular instance.
2678      */
2679     mc->max_cpus = 512;
2680     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2681     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2682     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2683     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2684 #ifdef CONFIG_TPM
2685     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2686 #endif
2687     mc->block_default_type = IF_VIRTIO;
2688     mc->no_cdrom = 1;
2689     mc->pci_allow_0_address = true;
2690     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2691     mc->minimum_page_bits = 12;
2692     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2693     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2694     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2695     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2696     mc->kvm_type = virt_kvm_type;
2697     assert(!mc->get_hotplug_handler);
2698     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2699     hc->pre_plug = virt_machine_device_pre_plug_cb;
2700     hc->plug = virt_machine_device_plug_cb;
2701     hc->unplug_request = virt_machine_device_unplug_request_cb;
2702     hc->unplug = virt_machine_device_unplug_cb;
2703     mc->nvdimm_supported = true;
2704     mc->auto_enable_numa_with_memhp = true;
2705     mc->auto_enable_numa_with_memdev = true;
2706     mc->default_ram_id = "mach-virt.ram";
2707 
2708     object_class_property_add(oc, "acpi", "OnOffAuto",
2709         virt_get_acpi, virt_set_acpi,
2710         NULL, NULL);
2711     object_class_property_set_description(oc, "acpi",
2712         "Enable ACPI");
2713     object_class_property_add_bool(oc, "secure", virt_get_secure,
2714                                    virt_set_secure);
2715     object_class_property_set_description(oc, "secure",
2716                                                 "Set on/off to enable/disable the ARM "
2717                                                 "Security Extensions (TrustZone)");
2718 
2719     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2720                                    virt_set_virt);
2721     object_class_property_set_description(oc, "virtualization",
2722                                           "Set on/off to enable/disable emulating a "
2723                                           "guest CPU which implements the ARM "
2724                                           "Virtualization Extensions");
2725 
2726     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2727                                    virt_set_highmem);
2728     object_class_property_set_description(oc, "highmem",
2729                                           "Set on/off to enable/disable using "
2730                                           "physical address space above 32 bits");
2731 
2732     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2733                                   virt_set_gic_version);
2734     object_class_property_set_description(oc, "gic-version",
2735                                           "Set GIC version. "
2736                                           "Valid values are 2, 3, host and max");
2737 
2738     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2739     object_class_property_set_description(oc, "iommu",
2740                                           "Set the IOMMU type. "
2741                                           "Valid values are none and smmuv3");
2742 
2743     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
2744                                    virt_get_default_bus_bypass_iommu,
2745                                    virt_set_default_bus_bypass_iommu);
2746     object_class_property_set_description(oc, "default-bus-bypass-iommu",
2747                                           "Set on/off to enable/disable "
2748                                           "bypass_iommu for default root bus");
2749 
2750     object_class_property_add_bool(oc, "ras", virt_get_ras,
2751                                    virt_set_ras);
2752     object_class_property_set_description(oc, "ras",
2753                                           "Set on/off to enable/disable reporting host memory errors "
2754                                           "to a KVM guest using ACPI and guest external abort exceptions");
2755 
2756     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2757     object_class_property_set_description(oc, "mte",
2758                                           "Set on/off to enable/disable emulating a "
2759                                           "guest CPU which implements the ARM "
2760                                           "Memory Tagging Extension");
2761 
2762     object_class_property_add_bool(oc, "its", virt_get_its,
2763                                    virt_set_its);
2764     object_class_property_set_description(oc, "its",
2765                                           "Set on/off to enable/disable "
2766                                           "ITS instantiation");
2767 
2768     object_class_property_add_str(oc, "x-oem-id",
2769                                   virt_get_oem_id,
2770                                   virt_set_oem_id);
2771     object_class_property_set_description(oc, "x-oem-id",
2772                                           "Override the default value of field OEMID "
2773                                           "in ACPI table header."
2774                                           "The string may be up to 6 bytes in size");
2775 
2776 
2777     object_class_property_add_str(oc, "x-oem-table-id",
2778                                   virt_get_oem_table_id,
2779                                   virt_set_oem_table_id);
2780     object_class_property_set_description(oc, "x-oem-table-id",
2781                                           "Override the default value of field OEM Table ID "
2782                                           "in ACPI table header."
2783                                           "The string may be up to 8 bytes in size");
2784 
2785 }
2786 
2787 static void virt_instance_init(Object *obj)
2788 {
2789     VirtMachineState *vms = VIRT_MACHINE(obj);
2790     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2791 
2792     /* EL3 is disabled by default on virt: this makes us consistent
2793      * between KVM and TCG for this board, and it also allows us to
2794      * boot UEFI blobs which assume no TrustZone support.
2795      */
2796     vms->secure = false;
2797 
2798     /* EL2 is also disabled by default, for similar reasons */
2799     vms->virt = false;
2800 
2801     /* High memory is enabled by default */
2802     vms->highmem = true;
2803     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2804 
2805     vms->highmem_ecam = !vmc->no_highmem_ecam;
2806 
2807     if (vmc->no_its) {
2808         vms->its = false;
2809     } else {
2810         /* Default allows ITS instantiation */
2811         vms->its = true;
2812 
2813         if (vmc->no_tcg_its) {
2814             vms->tcg_its = false;
2815         } else {
2816             vms->tcg_its = true;
2817         }
2818     }
2819 
2820     /* Default disallows iommu instantiation */
2821     vms->iommu = VIRT_IOMMU_NONE;
2822 
2823     /* The default root bus is attached to iommu by default */
2824     vms->default_bus_bypass_iommu = false;
2825 
2826     /* Default disallows RAS instantiation */
2827     vms->ras = false;
2828 
2829     /* MTE is disabled by default.  */
2830     vms->mte = false;
2831 
2832     vms->irqmap = a15irqmap;
2833 
2834     virt_flash_create(vms);
2835 
2836     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2837     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2838 }
2839 
2840 static const TypeInfo virt_machine_info = {
2841     .name          = TYPE_VIRT_MACHINE,
2842     .parent        = TYPE_MACHINE,
2843     .abstract      = true,
2844     .instance_size = sizeof(VirtMachineState),
2845     .class_size    = sizeof(VirtMachineClass),
2846     .class_init    = virt_machine_class_init,
2847     .instance_init = virt_instance_init,
2848     .interfaces = (InterfaceInfo[]) {
2849          { TYPE_HOTPLUG_HANDLER },
2850          { }
2851     },
2852 };
2853 
2854 static void machvirt_machine_init(void)
2855 {
2856     type_register_static(&virt_machine_info);
2857 }
2858 type_init(machvirt_machine_init);
2859 
2860 static void virt_machine_6_2_options(MachineClass *mc)
2861 {
2862 }
2863 DEFINE_VIRT_MACHINE_AS_LATEST(6, 2)
2864 
2865 static void virt_machine_6_1_options(MachineClass *mc)
2866 {
2867     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2868 
2869     virt_machine_6_2_options(mc);
2870     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
2871     mc->smp_props.prefer_sockets = true;
2872     vmc->no_cpu_topology = true;
2873 
2874     /* qemu ITS was introduced with 6.2 */
2875     vmc->no_tcg_its = true;
2876 }
2877 DEFINE_VIRT_MACHINE(6, 1)
2878 
2879 static void virt_machine_6_0_options(MachineClass *mc)
2880 {
2881     virt_machine_6_1_options(mc);
2882     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
2883 }
2884 DEFINE_VIRT_MACHINE(6, 0)
2885 
2886 static void virt_machine_5_2_options(MachineClass *mc)
2887 {
2888     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2889 
2890     virt_machine_6_0_options(mc);
2891     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2892     vmc->no_secure_gpio = true;
2893 }
2894 DEFINE_VIRT_MACHINE(5, 2)
2895 
2896 static void virt_machine_5_1_options(MachineClass *mc)
2897 {
2898     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2899 
2900     virt_machine_5_2_options(mc);
2901     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2902     vmc->no_kvm_steal_time = true;
2903 }
2904 DEFINE_VIRT_MACHINE(5, 1)
2905 
2906 static void virt_machine_5_0_options(MachineClass *mc)
2907 {
2908     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2909 
2910     virt_machine_5_1_options(mc);
2911     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2912     mc->numa_mem_supported = true;
2913     vmc->acpi_expose_flash = true;
2914     mc->auto_enable_numa_with_memdev = false;
2915 }
2916 DEFINE_VIRT_MACHINE(5, 0)
2917 
2918 static void virt_machine_4_2_options(MachineClass *mc)
2919 {
2920     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2921 
2922     virt_machine_5_0_options(mc);
2923     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2924     vmc->kvm_no_adjvtime = true;
2925 }
2926 DEFINE_VIRT_MACHINE(4, 2)
2927 
2928 static void virt_machine_4_1_options(MachineClass *mc)
2929 {
2930     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2931 
2932     virt_machine_4_2_options(mc);
2933     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2934     vmc->no_ged = true;
2935     mc->auto_enable_numa_with_memhp = false;
2936 }
2937 DEFINE_VIRT_MACHINE(4, 1)
2938 
2939 static void virt_machine_4_0_options(MachineClass *mc)
2940 {
2941     virt_machine_4_1_options(mc);
2942     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2943 }
2944 DEFINE_VIRT_MACHINE(4, 0)
2945 
2946 static void virt_machine_3_1_options(MachineClass *mc)
2947 {
2948     virt_machine_4_0_options(mc);
2949     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2950 }
2951 DEFINE_VIRT_MACHINE(3, 1)
2952 
2953 static void virt_machine_3_0_options(MachineClass *mc)
2954 {
2955     virt_machine_3_1_options(mc);
2956     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2957 }
2958 DEFINE_VIRT_MACHINE(3, 0)
2959 
2960 static void virt_machine_2_12_options(MachineClass *mc)
2961 {
2962     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2963 
2964     virt_machine_3_0_options(mc);
2965     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2966     vmc->no_highmem_ecam = true;
2967     mc->max_cpus = 255;
2968 }
2969 DEFINE_VIRT_MACHINE(2, 12)
2970 
2971 static void virt_machine_2_11_options(MachineClass *mc)
2972 {
2973     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2974 
2975     virt_machine_2_12_options(mc);
2976     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2977     vmc->smbios_old_sys_ver = true;
2978 }
2979 DEFINE_VIRT_MACHINE(2, 11)
2980 
2981 static void virt_machine_2_10_options(MachineClass *mc)
2982 {
2983     virt_machine_2_11_options(mc);
2984     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2985     /* before 2.11 we never faulted accesses to bad addresses */
2986     mc->ignore_memory_transaction_failures = true;
2987 }
2988 DEFINE_VIRT_MACHINE(2, 10)
2989 
2990 static void virt_machine_2_9_options(MachineClass *mc)
2991 {
2992     virt_machine_2_10_options(mc);
2993     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2994 }
2995 DEFINE_VIRT_MACHINE(2, 9)
2996 
2997 static void virt_machine_2_8_options(MachineClass *mc)
2998 {
2999     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3000 
3001     virt_machine_2_9_options(mc);
3002     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3003     /* For 2.8 and earlier we falsely claimed in the DT that
3004      * our timers were edge-triggered, not level-triggered.
3005      */
3006     vmc->claim_edge_triggered_timers = true;
3007 }
3008 DEFINE_VIRT_MACHINE(2, 8)
3009 
3010 static void virt_machine_2_7_options(MachineClass *mc)
3011 {
3012     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3013 
3014     virt_machine_2_8_options(mc);
3015     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3016     /* ITS was introduced with 2.8 */
3017     vmc->no_its = true;
3018     /* Stick with 1K pages for migration compatibility */
3019     mc->minimum_page_bits = 0;
3020 }
3021 DEFINE_VIRT_MACHINE(2, 7)
3022 
3023 static void virt_machine_2_6_options(MachineClass *mc)
3024 {
3025     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3026 
3027     virt_machine_2_7_options(mc);
3028     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3029     vmc->disallow_affinity_adjustment = true;
3030     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3031     vmc->no_pmu = true;
3032 }
3033 DEFINE_VIRT_MACHINE(2, 6)
3034