xref: /openbmc/qemu/hw/arm/virt.c (revision 39164c13)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
59 
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62                                                     void *data) \
63     { \
64         MachineClass *mc = MACHINE_CLASS(oc); \
65         virt_machine_##major##_##minor##_options(mc); \
66         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67         if (latest) { \
68             mc->alias = "virt"; \
69         } \
70     } \
71     static const TypeInfo machvirt_##major##_##minor##_info = { \
72         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73         .parent = TYPE_VIRT_MACHINE, \
74         .instance_init = virt_##major##_##minor##_instance_init, \
75         .class_init = virt_##major##_##minor##_class_init, \
76     }; \
77     static void machvirt_machine_##major##_##minor##_init(void) \
78     { \
79         type_register_static(&machvirt_##major##_##minor##_info); \
80     } \
81     type_init(machvirt_machine_##major##_##minor##_init);
82 
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
87 
88 
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
91 
92 #define PLATFORM_BUS_NUM_IRQS 64
93 
94 static ARMPlatformBusSystemParams platform_bus_params;
95 
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97  * RAM can go up to the 256GB mark, leaving 256GB of the physical
98  * address space unallocated and free for future use between 256G and 512G.
99  * If we need to provide more RAM to VMs in the future then we need to:
100  *  * allocate a second bank of RAM starting at 2TB and working up
101  *  * fix the DT and ACPI table generation code in QEMU to correctly
102  *    report two split lumps of RAM to the guest
103  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
104  * (We don't want to fill all the way up to 512GB with RAM because
105  * we might want it for non-RAM purposes later. Conversely it seems
106  * reasonable to assume that anybody configuring a VM with a quarter
107  * of a terabyte of RAM will be doing it on a host with more than a
108  * terabyte of physical address space.)
109  */
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112 
113 /* Addresses and sizes of our components.
114  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115  * 128MB..256MB is used for miscellaneous device I/O.
116  * 256MB..1GB is reserved for possible future PCI support (ie where the
117  * PCI memory window will go if we add a PCI host controller).
118  * 1GB and up is RAM (which may happily spill over into the
119  * high memory region beyond 4GB).
120  * This represents a compromise between how much RAM can be given to
121  * a 32 bit VM and leaving space for expansion and in particular for PCI.
122  * Note that devices should generally be placed at multiples of 0x10000,
123  * to accommodate guests using 64K pages.
124  */
125 static const MemMapEntry a15memmap[] = {
126     /* Space up to 0x8000000 is reserved for a boot ROM */
127     [VIRT_FLASH] =              {          0, 0x08000000 },
128     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
129     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
131     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
132     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
133     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
135     /* This redistributor space allows up to 2*64kB*123 CPUs */
136     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
137     [VIRT_UART] =               { 0x09000000, 0x00001000 },
138     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
139     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
140     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
141     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
142     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
143     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
145     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
146     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
147     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
148     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
149     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
150     /* Second PCIe window, 512GB wide at the 512GB boundary */
151     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
152 };
153 
154 static const int a15irqmap[] = {
155     [VIRT_UART] = 1,
156     [VIRT_RTC] = 2,
157     [VIRT_PCIE] = 3, /* ... to 6 */
158     [VIRT_GPIO] = 7,
159     [VIRT_SECURE_UART] = 8,
160     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
163 };
164 
165 static const char *valid_cpus[] = {
166     "cortex-a15",
167     "cortex-a53",
168     "cortex-a57",
169     "host",
170 };
171 
172 static bool cpuname_valid(const char *cpu)
173 {
174     int i;
175 
176     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177         if (strcmp(cpu, valid_cpus[i]) == 0) {
178             return true;
179         }
180     }
181     return false;
182 }
183 
184 static void create_fdt(VirtMachineState *vms)
185 {
186     void *fdt = create_device_tree(&vms->fdt_size);
187 
188     if (!fdt) {
189         error_report("create_device_tree() failed");
190         exit(1);
191     }
192 
193     vms->fdt = fdt;
194 
195     /* Header */
196     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
199 
200     /*
201      * /chosen and /memory nodes must exist for load_dtb
202      * to fill in necessary properties later
203      */
204     qemu_fdt_add_subnode(fdt, "/chosen");
205     qemu_fdt_add_subnode(fdt, "/memory");
206     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
207 
208     /* Clock node, for the benefit of the UART. The kernel device tree
209      * binding documentation claims the PL011 node clock properties are
210      * optional but in practice if you omit them the kernel refuses to
211      * probe for the device.
212      */
213     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214     qemu_fdt_add_subnode(fdt, "/apb-pclk");
215     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219                                 "clk24mhz");
220     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
221 
222 }
223 
224 static void fdt_add_psci_node(const VirtMachineState *vms)
225 {
226     uint32_t cpu_suspend_fn;
227     uint32_t cpu_off_fn;
228     uint32_t cpu_on_fn;
229     uint32_t migrate_fn;
230     void *fdt = vms->fdt;
231     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
232     const char *psci_method;
233 
234     switch (vms->psci_conduit) {
235     case QEMU_PSCI_CONDUIT_DISABLED:
236         return;
237     case QEMU_PSCI_CONDUIT_HVC:
238         psci_method = "hvc";
239         break;
240     case QEMU_PSCI_CONDUIT_SMC:
241         psci_method = "smc";
242         break;
243     default:
244         g_assert_not_reached();
245     }
246 
247     qemu_fdt_add_subnode(fdt, "/psci");
248     if (armcpu->psci_version == 2) {
249         const char comp[] = "arm,psci-0.2\0arm,psci";
250         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
251 
252         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
253         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
254             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
255             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
256             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
257         } else {
258             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
259             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
260             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
261         }
262     } else {
263         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
264 
265         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
266         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
267         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
268         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
269     }
270 
271     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
272      * to the instruction that should be used to invoke PSCI functions.
273      * However, the device tree binding uses 'method' instead, so that is
274      * what we should use here.
275      */
276     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
277 
278     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
279     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
280     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
281     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
282 }
283 
284 static void fdt_add_timer_nodes(const VirtMachineState *vms)
285 {
286     /* On real hardware these interrupts are level-triggered.
287      * On KVM they were edge-triggered before host kernel version 4.4,
288      * and level-triggered afterwards.
289      * On emulated QEMU they are level-triggered.
290      *
291      * Getting the DTB info about them wrong is awkward for some
292      * guest kernels:
293      *  pre-4.8 ignore the DT and leave the interrupt configured
294      *   with whatever the GIC reset value (or the bootloader) left it at
295      *  4.8 before rc6 honour the incorrect data by programming it back
296      *   into the GIC, causing problems
297      *  4.8rc6 and later ignore the DT and always write "level triggered"
298      *   into the GIC
299      *
300      * For backwards-compatibility, virt-2.8 and earlier will continue
301      * to say these are edge-triggered, but later machines will report
302      * the correct information.
303      */
304     ARMCPU *armcpu;
305     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
306     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
307 
308     if (vmc->claim_edge_triggered_timers) {
309         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
310     }
311 
312     if (vms->gic_version == 2) {
313         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
314                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
315                              (1 << vms->smp_cpus) - 1);
316     }
317 
318     qemu_fdt_add_subnode(vms->fdt, "/timer");
319 
320     armcpu = ARM_CPU(qemu_get_cpu(0));
321     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
322         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
323         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
324                          compat, sizeof(compat));
325     } else {
326         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
327                                 "arm,armv7-timer");
328     }
329     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
330     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
331                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
332                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
333                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
334                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
335 }
336 
337 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
338 {
339     int cpu;
340     int addr_cells = 1;
341     unsigned int i;
342 
343     /*
344      * From Documentation/devicetree/bindings/arm/cpus.txt
345      *  On ARM v8 64-bit systems value should be set to 2,
346      *  that corresponds to the MPIDR_EL1 register size.
347      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
348      *  in the system, #address-cells can be set to 1, since
349      *  MPIDR_EL1[63:32] bits are not used for CPUs
350      *  identification.
351      *
352      *  Here we actually don't know whether our system is 32- or 64-bit one.
353      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
354      *  at least one of them has Aff3 populated, we set #address-cells to 2.
355      */
356     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
357         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
358 
359         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
360             addr_cells = 2;
361             break;
362         }
363     }
364 
365     qemu_fdt_add_subnode(vms->fdt, "/cpus");
366     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
367     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
368 
369     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
370         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
371         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
372 
373         qemu_fdt_add_subnode(vms->fdt, nodename);
374         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
375         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
376                                     armcpu->dtb_compatible);
377 
378         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
379             && vms->smp_cpus > 1) {
380             qemu_fdt_setprop_string(vms->fdt, nodename,
381                                         "enable-method", "psci");
382         }
383 
384         if (addr_cells == 2) {
385             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
386                                  armcpu->mp_affinity);
387         } else {
388             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
389                                   armcpu->mp_affinity);
390         }
391 
392         i = numa_get_node_for_cpu(cpu);
393         if (i < nb_numa_nodes) {
394             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
395         }
396 
397         g_free(nodename);
398     }
399 }
400 
401 static void fdt_add_its_gic_node(VirtMachineState *vms)
402 {
403     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
404     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
405     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
406                             "arm,gic-v3-its");
407     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
408     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
409                                  2, vms->memmap[VIRT_GIC_ITS].base,
410                                  2, vms->memmap[VIRT_GIC_ITS].size);
411     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
412 }
413 
414 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
415 {
416     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
418     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
419                             "arm,gic-v2m-frame");
420     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
421     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
422                                  2, vms->memmap[VIRT_GIC_V2M].base,
423                                  2, vms->memmap[VIRT_GIC_V2M].size);
424     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
425 }
426 
427 static void fdt_add_gic_node(VirtMachineState *vms)
428 {
429     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
430     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
431 
432     qemu_fdt_add_subnode(vms->fdt, "/intc");
433     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
434     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
435     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
436     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
437     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
438     if (vms->gic_version == 3) {
439         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
440                                 "arm,gic-v3");
441         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
442                                      2, vms->memmap[VIRT_GIC_DIST].base,
443                                      2, vms->memmap[VIRT_GIC_DIST].size,
444                                      2, vms->memmap[VIRT_GIC_REDIST].base,
445                                      2, vms->memmap[VIRT_GIC_REDIST].size);
446         if (vms->virt) {
447             qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
448                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
449                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
450         }
451     } else {
452         /* 'cortex-a15-gic' means 'GIC v2' */
453         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
454                                 "arm,cortex-a15-gic");
455         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
456                                       2, vms->memmap[VIRT_GIC_DIST].base,
457                                       2, vms->memmap[VIRT_GIC_DIST].size,
458                                       2, vms->memmap[VIRT_GIC_CPU].base,
459                                       2, vms->memmap[VIRT_GIC_CPU].size);
460     }
461 
462     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
463 }
464 
465 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
466 {
467     CPUState *cpu;
468     ARMCPU *armcpu;
469     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
470 
471     CPU_FOREACH(cpu) {
472         armcpu = ARM_CPU(cpu);
473         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
474             (kvm_enabled() && !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ)))) {
475             return;
476         }
477     }
478 
479     if (vms->gic_version == 2) {
480         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
481                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
482                              (1 << vms->smp_cpus) - 1);
483     }
484 
485     armcpu = ARM_CPU(qemu_get_cpu(0));
486     qemu_fdt_add_subnode(vms->fdt, "/pmu");
487     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
488         const char compat[] = "arm,armv8-pmuv3";
489         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
490                          compat, sizeof(compat));
491         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
492                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
493     }
494 }
495 
496 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
497 {
498     const char *itsclass = its_class_name();
499     DeviceState *dev;
500 
501     if (!itsclass) {
502         /* Do nothing if not supported */
503         return;
504     }
505 
506     dev = qdev_create(NULL, itsclass);
507 
508     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
509                              &error_abort);
510     qdev_init_nofail(dev);
511     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
512 
513     fdt_add_its_gic_node(vms);
514 }
515 
516 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
517 {
518     int i;
519     int irq = vms->irqmap[VIRT_GIC_V2M];
520     DeviceState *dev;
521 
522     dev = qdev_create(NULL, "arm-gicv2m");
523     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
524     qdev_prop_set_uint32(dev, "base-spi", irq);
525     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
526     qdev_init_nofail(dev);
527 
528     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
529         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
530     }
531 
532     fdt_add_v2m_gic_node(vms);
533 }
534 
535 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
536 {
537     /* We create a standalone GIC */
538     DeviceState *gicdev;
539     SysBusDevice *gicbusdev;
540     const char *gictype;
541     int type = vms->gic_version, i;
542 
543     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
544 
545     gicdev = qdev_create(NULL, gictype);
546     qdev_prop_set_uint32(gicdev, "revision", type);
547     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
548     /* Note that the num-irq property counts both internal and external
549      * interrupts; there are always 32 of the former (mandated by GIC spec).
550      */
551     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
552     if (!kvm_irqchip_in_kernel()) {
553         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
554     }
555     qdev_init_nofail(gicdev);
556     gicbusdev = SYS_BUS_DEVICE(gicdev);
557     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
558     if (type == 3) {
559         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
560     } else {
561         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
562     }
563 
564     /* Wire the outputs from each CPU's generic timer and the GICv3
565      * maintenance interrupt signal to the appropriate GIC PPI inputs,
566      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
567      */
568     for (i = 0; i < smp_cpus; i++) {
569         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
570         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
571         int irq;
572         /* Mapping from the output timer irq lines from the CPU to the
573          * GIC PPI inputs we use for the virt board.
574          */
575         const int timer_irq[] = {
576             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
577             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
578             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
579             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
580         };
581 
582         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
583             qdev_connect_gpio_out(cpudev, irq,
584                                   qdev_get_gpio_in(gicdev,
585                                                    ppibase + timer_irq[irq]));
586         }
587 
588         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
589                                     qdev_get_gpio_in(gicdev, ppibase
590                                                      + ARCH_GICV3_MAINT_IRQ));
591 
592         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
593         sysbus_connect_irq(gicbusdev, i + smp_cpus,
594                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
595         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
596                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
597         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
598                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
599     }
600 
601     for (i = 0; i < NUM_IRQS; i++) {
602         pic[i] = qdev_get_gpio_in(gicdev, i);
603     }
604 
605     fdt_add_gic_node(vms);
606 
607     if (type == 3 && vms->its) {
608         create_its(vms, gicdev);
609     } else if (type == 2) {
610         create_v2m(vms, pic);
611     }
612 }
613 
614 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
615                         MemoryRegion *mem, Chardev *chr)
616 {
617     char *nodename;
618     hwaddr base = vms->memmap[uart].base;
619     hwaddr size = vms->memmap[uart].size;
620     int irq = vms->irqmap[uart];
621     const char compat[] = "arm,pl011\0arm,primecell";
622     const char clocknames[] = "uartclk\0apb_pclk";
623     DeviceState *dev = qdev_create(NULL, "pl011");
624     SysBusDevice *s = SYS_BUS_DEVICE(dev);
625 
626     qdev_prop_set_chr(dev, "chardev", chr);
627     qdev_init_nofail(dev);
628     memory_region_add_subregion(mem, base,
629                                 sysbus_mmio_get_region(s, 0));
630     sysbus_connect_irq(s, 0, pic[irq]);
631 
632     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
633     qemu_fdt_add_subnode(vms->fdt, nodename);
634     /* Note that we can't use setprop_string because of the embedded NUL */
635     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
636                          compat, sizeof(compat));
637     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
638                                      2, base, 2, size);
639     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
640                                GIC_FDT_IRQ_TYPE_SPI, irq,
641                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
642     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
643                                vms->clock_phandle, vms->clock_phandle);
644     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
645                          clocknames, sizeof(clocknames));
646 
647     if (uart == VIRT_UART) {
648         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
649     } else {
650         /* Mark as not usable by the normal world */
651         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
652         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
653     }
654 
655     g_free(nodename);
656 }
657 
658 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
659 {
660     char *nodename;
661     hwaddr base = vms->memmap[VIRT_RTC].base;
662     hwaddr size = vms->memmap[VIRT_RTC].size;
663     int irq = vms->irqmap[VIRT_RTC];
664     const char compat[] = "arm,pl031\0arm,primecell";
665 
666     sysbus_create_simple("pl031", base, pic[irq]);
667 
668     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
669     qemu_fdt_add_subnode(vms->fdt, nodename);
670     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
671     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
672                                  2, base, 2, size);
673     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
674                            GIC_FDT_IRQ_TYPE_SPI, irq,
675                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
676     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
677     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
678     g_free(nodename);
679 }
680 
681 static DeviceState *gpio_key_dev;
682 static void virt_powerdown_req(Notifier *n, void *opaque)
683 {
684     /* use gpio Pin 3 for power button event */
685     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
686 }
687 
688 static Notifier virt_system_powerdown_notifier = {
689     .notify = virt_powerdown_req
690 };
691 
692 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
693 {
694     char *nodename;
695     DeviceState *pl061_dev;
696     hwaddr base = vms->memmap[VIRT_GPIO].base;
697     hwaddr size = vms->memmap[VIRT_GPIO].size;
698     int irq = vms->irqmap[VIRT_GPIO];
699     const char compat[] = "arm,pl061\0arm,primecell";
700 
701     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
702 
703     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
704     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
705     qemu_fdt_add_subnode(vms->fdt, nodename);
706     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
707                                  2, base, 2, size);
708     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
709     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
710     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
711     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
712                            GIC_FDT_IRQ_TYPE_SPI, irq,
713                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
714     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
715     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
716     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
717 
718     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
719                                         qdev_get_gpio_in(pl061_dev, 3));
720     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
721     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
722     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
723     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
724 
725     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
726     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
727                             "label", "GPIO Key Poweroff");
728     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
729                           KEY_POWER);
730     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
731                            "gpios", phandle, 3, 0);
732 
733     /* connect powerdown request */
734     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
735 
736     g_free(nodename);
737 }
738 
739 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
740 {
741     int i;
742     hwaddr size = vms->memmap[VIRT_MMIO].size;
743 
744     /* We create the transports in forwards order. Since qbus_realize()
745      * prepends (not appends) new child buses, the incrementing loop below will
746      * create a list of virtio-mmio buses with decreasing base addresses.
747      *
748      * When a -device option is processed from the command line,
749      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
750      * order. The upshot is that -device options in increasing command line
751      * order are mapped to virtio-mmio buses with decreasing base addresses.
752      *
753      * When this code was originally written, that arrangement ensured that the
754      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
755      * the first -device on the command line. (The end-to-end order is a
756      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
757      * guest kernel's name-to-address assignment strategy.)
758      *
759      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
760      * the message, if not necessarily the code, of commit 70161ff336.
761      * Therefore the loop now establishes the inverse of the original intent.
762      *
763      * Unfortunately, we can't counteract the kernel change by reversing the
764      * loop; it would break existing command lines.
765      *
766      * In any case, the kernel makes no guarantee about the stability of
767      * enumeration order of virtio devices (as demonstrated by it changing
768      * between kernel versions). For reliable and stable identification
769      * of disks users must use UUIDs or similar mechanisms.
770      */
771     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
772         int irq = vms->irqmap[VIRT_MMIO] + i;
773         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
774 
775         sysbus_create_simple("virtio-mmio", base, pic[irq]);
776     }
777 
778     /* We add dtb nodes in reverse order so that they appear in the finished
779      * device tree lowest address first.
780      *
781      * Note that this mapping is independent of the loop above. The previous
782      * loop influences virtio device to virtio transport assignment, whereas
783      * this loop controls how virtio transports are laid out in the dtb.
784      */
785     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
786         char *nodename;
787         int irq = vms->irqmap[VIRT_MMIO] + i;
788         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
789 
790         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
791         qemu_fdt_add_subnode(vms->fdt, nodename);
792         qemu_fdt_setprop_string(vms->fdt, nodename,
793                                 "compatible", "virtio,mmio");
794         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
795                                      2, base, 2, size);
796         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
797                                GIC_FDT_IRQ_TYPE_SPI, irq,
798                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
799         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
800         g_free(nodename);
801     }
802 }
803 
804 static void create_one_flash(const char *name, hwaddr flashbase,
805                              hwaddr flashsize, const char *file,
806                              MemoryRegion *sysmem)
807 {
808     /* Create and map a single flash device. We use the same
809      * parameters as the flash devices on the Versatile Express board.
810      */
811     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
812     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
813     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
814     const uint64_t sectorlength = 256 * 1024;
815 
816     if (dinfo) {
817         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
818                             &error_abort);
819     }
820 
821     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
822     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
823     qdev_prop_set_uint8(dev, "width", 4);
824     qdev_prop_set_uint8(dev, "device-width", 2);
825     qdev_prop_set_bit(dev, "big-endian", false);
826     qdev_prop_set_uint16(dev, "id0", 0x89);
827     qdev_prop_set_uint16(dev, "id1", 0x18);
828     qdev_prop_set_uint16(dev, "id2", 0x00);
829     qdev_prop_set_uint16(dev, "id3", 0x00);
830     qdev_prop_set_string(dev, "name", name);
831     qdev_init_nofail(dev);
832 
833     memory_region_add_subregion(sysmem, flashbase,
834                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
835 
836     if (file) {
837         char *fn;
838         int image_size;
839 
840         if (drive_get(IF_PFLASH, 0, 0)) {
841             error_report("The contents of the first flash device may be "
842                          "specified with -bios or with -drive if=pflash... "
843                          "but you cannot use both options at once");
844             exit(1);
845         }
846         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
847         if (!fn) {
848             error_report("Could not find ROM image '%s'", file);
849             exit(1);
850         }
851         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
852         g_free(fn);
853         if (image_size < 0) {
854             error_report("Could not load ROM image '%s'", file);
855             exit(1);
856         }
857     }
858 }
859 
860 static void create_flash(const VirtMachineState *vms,
861                          MemoryRegion *sysmem,
862                          MemoryRegion *secure_sysmem)
863 {
864     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
865      * Any file passed via -bios goes in the first of these.
866      * sysmem is the system memory space. secure_sysmem is the secure view
867      * of the system, and the first flash device should be made visible only
868      * there. The second flash device is visible to both secure and nonsecure.
869      * If sysmem == secure_sysmem this means there is no separate Secure
870      * address space and both flash devices are generally visible.
871      */
872     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
873     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
874     char *nodename;
875 
876     create_one_flash("virt.flash0", flashbase, flashsize,
877                      bios_name, secure_sysmem);
878     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
879                      NULL, sysmem);
880 
881     if (sysmem == secure_sysmem) {
882         /* Report both flash devices as a single node in the DT */
883         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
884         qemu_fdt_add_subnode(vms->fdt, nodename);
885         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
886         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
887                                      2, flashbase, 2, flashsize,
888                                      2, flashbase + flashsize, 2, flashsize);
889         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
890         g_free(nodename);
891     } else {
892         /* Report the devices as separate nodes so we can mark one as
893          * only visible to the secure world.
894          */
895         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
896         qemu_fdt_add_subnode(vms->fdt, nodename);
897         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
898         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
899                                      2, flashbase, 2, flashsize);
900         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
901         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
902         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
903         g_free(nodename);
904 
905         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
906         qemu_fdt_add_subnode(vms->fdt, nodename);
907         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
908         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
909                                      2, flashbase + flashsize, 2, flashsize);
910         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
911         g_free(nodename);
912     }
913 }
914 
915 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
916 {
917     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
918     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
919     FWCfgState *fw_cfg;
920     char *nodename;
921 
922     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
923     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
924 
925     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
926     qemu_fdt_add_subnode(vms->fdt, nodename);
927     qemu_fdt_setprop_string(vms->fdt, nodename,
928                             "compatible", "qemu,fw-cfg-mmio");
929     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
930                                  2, base, 2, size);
931     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
932     g_free(nodename);
933     return fw_cfg;
934 }
935 
936 static void create_pcie_irq_map(const VirtMachineState *vms,
937                                 uint32_t gic_phandle,
938                                 int first_irq, const char *nodename)
939 {
940     int devfn, pin;
941     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
942     uint32_t *irq_map = full_irq_map;
943 
944     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
945         for (pin = 0; pin < 4; pin++) {
946             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
947             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
948             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
949             int i;
950 
951             uint32_t map[] = {
952                 devfn << 8, 0, 0,                           /* devfn */
953                 pin + 1,                                    /* PCI pin */
954                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
955 
956             /* Convert map to big endian */
957             for (i = 0; i < 10; i++) {
958                 irq_map[i] = cpu_to_be32(map[i]);
959             }
960             irq_map += 10;
961         }
962     }
963 
964     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
965                      full_irq_map, sizeof(full_irq_map));
966 
967     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
968                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
969                            0x7           /* PCI irq */);
970 }
971 
972 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
973 {
974     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
975     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
976     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
977     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
978     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
979     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
980     hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
981     hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
982     hwaddr base = base_mmio;
983     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
984     int irq = vms->irqmap[VIRT_PCIE];
985     MemoryRegion *mmio_alias;
986     MemoryRegion *mmio_reg;
987     MemoryRegion *ecam_alias;
988     MemoryRegion *ecam_reg;
989     DeviceState *dev;
990     char *nodename;
991     int i;
992     PCIHostState *pci;
993 
994     dev = qdev_create(NULL, TYPE_GPEX_HOST);
995     qdev_init_nofail(dev);
996 
997     /* Map only the first size_ecam bytes of ECAM space */
998     ecam_alias = g_new0(MemoryRegion, 1);
999     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1000     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1001                              ecam_reg, 0, size_ecam);
1002     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1003 
1004     /* Map the MMIO window into system address space so as to expose
1005      * the section of PCI MMIO space which starts at the same base address
1006      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1007      * the window).
1008      */
1009     mmio_alias = g_new0(MemoryRegion, 1);
1010     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1011     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1012                              mmio_reg, base_mmio, size_mmio);
1013     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1014 
1015     if (vms->highmem) {
1016         /* Map high MMIO space */
1017         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1018 
1019         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1020                                  mmio_reg, base_mmio_high, size_mmio_high);
1021         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1022                                     high_mmio_alias);
1023     }
1024 
1025     /* Map IO port space */
1026     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1027 
1028     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1029         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1030     }
1031 
1032     pci = PCI_HOST_BRIDGE(dev);
1033     if (pci->bus) {
1034         for (i = 0; i < nb_nics; i++) {
1035             NICInfo *nd = &nd_table[i];
1036 
1037             if (!nd->model) {
1038                 nd->model = g_strdup("virtio");
1039             }
1040 
1041             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1042         }
1043     }
1044 
1045     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1046     qemu_fdt_add_subnode(vms->fdt, nodename);
1047     qemu_fdt_setprop_string(vms->fdt, nodename,
1048                             "compatible", "pci-host-ecam-generic");
1049     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1050     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1051     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1052     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1053                            nr_pcie_buses - 1);
1054     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1055 
1056     if (vms->msi_phandle) {
1057         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1058                                vms->msi_phandle);
1059     }
1060 
1061     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1062                                  2, base_ecam, 2, size_ecam);
1063 
1064     if (vms->highmem) {
1065         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1066                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1067                                      2, base_pio, 2, size_pio,
1068                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1069                                      2, base_mmio, 2, size_mmio,
1070                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1071                                      2, base_mmio_high,
1072                                      2, base_mmio_high, 2, size_mmio_high);
1073     } else {
1074         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1075                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1076                                      2, base_pio, 2, size_pio,
1077                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1078                                      2, base_mmio, 2, size_mmio);
1079     }
1080 
1081     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1082     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1083 
1084     g_free(nodename);
1085 }
1086 
1087 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1088 {
1089     DeviceState *dev;
1090     SysBusDevice *s;
1091     int i;
1092     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1093     MemoryRegion *sysmem = get_system_memory();
1094 
1095     platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1096     platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1097     platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1098     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1099 
1100     fdt_params->system_params = &platform_bus_params;
1101     fdt_params->binfo = &vms->bootinfo;
1102     fdt_params->intc = "/intc";
1103     /*
1104      * register a machine init done notifier that creates the device tree
1105      * nodes of the platform bus and its children dynamic sysbus devices
1106      */
1107     arm_register_platform_bus_fdt_creator(fdt_params);
1108 
1109     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1110     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1111     qdev_prop_set_uint32(dev, "num_irqs",
1112         platform_bus_params.platform_bus_num_irqs);
1113     qdev_prop_set_uint32(dev, "mmio_size",
1114         platform_bus_params.platform_bus_size);
1115     qdev_init_nofail(dev);
1116     s = SYS_BUS_DEVICE(dev);
1117 
1118     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1119         int irqn = platform_bus_params.platform_bus_first_irq + i;
1120         sysbus_connect_irq(s, i, pic[irqn]);
1121     }
1122 
1123     memory_region_add_subregion(sysmem,
1124                                 platform_bus_params.platform_bus_base,
1125                                 sysbus_mmio_get_region(s, 0));
1126 }
1127 
1128 static void create_secure_ram(VirtMachineState *vms,
1129                               MemoryRegion *secure_sysmem)
1130 {
1131     MemoryRegion *secram = g_new(MemoryRegion, 1);
1132     char *nodename;
1133     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1134     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1135 
1136     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1137     vmstate_register_ram_global(secram);
1138     memory_region_add_subregion(secure_sysmem, base, secram);
1139 
1140     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1141     qemu_fdt_add_subnode(vms->fdt, nodename);
1142     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1143     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1144     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1145     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1146 
1147     g_free(nodename);
1148 }
1149 
1150 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1151 {
1152     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1153                                                  bootinfo);
1154 
1155     *fdt_size = board->fdt_size;
1156     return board->fdt;
1157 }
1158 
1159 static void virt_build_smbios(VirtMachineState *vms)
1160 {
1161     uint8_t *smbios_tables, *smbios_anchor;
1162     size_t smbios_tables_len, smbios_anchor_len;
1163     const char *product = "QEMU Virtual Machine";
1164 
1165     if (!vms->fw_cfg) {
1166         return;
1167     }
1168 
1169     if (kvm_enabled()) {
1170         product = "KVM Virtual Machine";
1171     }
1172 
1173     smbios_set_defaults("QEMU", product,
1174                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1175 
1176     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1177                       &smbios_anchor, &smbios_anchor_len);
1178 
1179     if (smbios_anchor) {
1180         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1181                         smbios_tables, smbios_tables_len);
1182         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1183                         smbios_anchor, smbios_anchor_len);
1184     }
1185 }
1186 
1187 static
1188 void virt_machine_done(Notifier *notifier, void *data)
1189 {
1190     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1191                                          machine_done);
1192 
1193     virt_acpi_setup(vms);
1194     virt_build_smbios(vms);
1195 }
1196 
1197 static void machvirt_init(MachineState *machine)
1198 {
1199     VirtMachineState *vms = VIRT_MACHINE(machine);
1200     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1201     qemu_irq pic[NUM_IRQS];
1202     MemoryRegion *sysmem = get_system_memory();
1203     MemoryRegion *secure_sysmem = NULL;
1204     int n, virt_max_cpus;
1205     MemoryRegion *ram = g_new(MemoryRegion, 1);
1206     const char *cpu_model = machine->cpu_model;
1207     char **cpustr;
1208     ObjectClass *oc;
1209     const char *typename;
1210     CPUClass *cc;
1211     Error *err = NULL;
1212     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1213     uint8_t clustersz;
1214 
1215     if (!cpu_model) {
1216         cpu_model = "cortex-a15";
1217     }
1218 
1219     /* We can probe only here because during property set
1220      * KVM is not available yet
1221      */
1222     if (!vms->gic_version) {
1223         if (!kvm_enabled()) {
1224             error_report("gic-version=host requires KVM");
1225             exit(1);
1226         }
1227 
1228         vms->gic_version = kvm_arm_vgic_probe();
1229         if (!vms->gic_version) {
1230             error_report("Unable to determine GIC version supported by host");
1231             exit(1);
1232         }
1233     }
1234 
1235     /* Separate the actual CPU model name from any appended features */
1236     cpustr = g_strsplit(cpu_model, ",", 2);
1237 
1238     if (!cpuname_valid(cpustr[0])) {
1239         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1240         exit(1);
1241     }
1242 
1243     /* If we have an EL3 boot ROM then the assumption is that it will
1244      * implement PSCI itself, so disable QEMU's internal implementation
1245      * so it doesn't get in the way. Instead of starting secondary
1246      * CPUs in PSCI powerdown state we will start them all running and
1247      * let the boot ROM sort them out.
1248      * The usual case is that we do use QEMU's PSCI implementation;
1249      * if the guest has EL2 then we will use SMC as the conduit,
1250      * and otherwise we will use HVC (for backwards compatibility and
1251      * because if we're using KVM then we must use HVC).
1252      */
1253     if (vms->secure && firmware_loaded) {
1254         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1255     } else if (vms->virt) {
1256         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1257     } else {
1258         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1259     }
1260 
1261     /* The maximum number of CPUs depends on the GIC version, or on how
1262      * many redistributors we can fit into the memory map.
1263      */
1264     if (vms->gic_version == 3) {
1265         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1266         clustersz = GICV3_TARGETLIST_BITS;
1267     } else {
1268         virt_max_cpus = GIC_NCPU;
1269         clustersz = GIC_TARGETLIST_BITS;
1270     }
1271 
1272     if (max_cpus > virt_max_cpus) {
1273         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1274                      "supported by machine 'mach-virt' (%d)",
1275                      max_cpus, virt_max_cpus);
1276         exit(1);
1277     }
1278 
1279     vms->smp_cpus = smp_cpus;
1280 
1281     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1282         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1283         exit(1);
1284     }
1285 
1286     if (vms->virt && kvm_enabled()) {
1287         error_report("mach-virt: KVM does not support providing "
1288                      "Virtualization extensions to the guest CPU");
1289         exit(1);
1290     }
1291 
1292     if (vms->secure) {
1293         if (kvm_enabled()) {
1294             error_report("mach-virt: KVM does not support Security extensions");
1295             exit(1);
1296         }
1297 
1298         /* The Secure view of the world is the same as the NonSecure,
1299          * but with a few extra devices. Create it as a container region
1300          * containing the system memory at low priority; any secure-only
1301          * devices go in at higher priority and take precedence.
1302          */
1303         secure_sysmem = g_new(MemoryRegion, 1);
1304         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1305                            UINT64_MAX);
1306         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1307     }
1308 
1309     create_fdt(vms);
1310 
1311     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1312     if (!oc) {
1313         error_report("Unable to find CPU definition");
1314         exit(1);
1315     }
1316     typename = object_class_get_name(oc);
1317 
1318     /* convert -smp CPU options specified by the user into global props */
1319     cc = CPU_CLASS(oc);
1320     cc->parse_features(typename, cpustr[1], &err);
1321     g_strfreev(cpustr);
1322     if (err) {
1323         error_report_err(err);
1324         exit(1);
1325     }
1326 
1327     for (n = 0; n < smp_cpus; n++) {
1328         Object *cpuobj = object_new(typename);
1329         if (!vmc->disallow_affinity_adjustment) {
1330             /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1331              * GIC's target-list limitations. 32-bit KVM hosts currently
1332              * always create clusters of 4 CPUs, but that is expected to
1333              * change when they gain support for gicv3. When KVM is enabled
1334              * it will override the changes we make here, therefore our
1335              * purposes are to make TCG consistent (with 64-bit KVM hosts)
1336              * and to improve SGI efficiency.
1337              */
1338             uint8_t aff1 = n / clustersz;
1339             uint8_t aff0 = n % clustersz;
1340             object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1341                                     "mp-affinity", NULL);
1342         }
1343 
1344         if (!vms->secure) {
1345             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1346         }
1347 
1348         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1349             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1350         }
1351 
1352         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1353             object_property_set_int(cpuobj, vms->psci_conduit,
1354                                     "psci-conduit", NULL);
1355 
1356             /* Secondary CPUs start in PSCI powered-down state */
1357             if (n > 0) {
1358                 object_property_set_bool(cpuobj, true,
1359                                          "start-powered-off", NULL);
1360             }
1361         }
1362 
1363         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1364             object_property_set_bool(cpuobj, false, "pmu", NULL);
1365         }
1366 
1367         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1368             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1369                                     "reset-cbar", &error_abort);
1370         }
1371 
1372         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1373                                  &error_abort);
1374         if (vms->secure) {
1375             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1376                                      "secure-memory", &error_abort);
1377         }
1378 
1379         object_property_set_bool(cpuobj, true, "realized", NULL);
1380         object_unref(cpuobj);
1381     }
1382     fdt_add_timer_nodes(vms);
1383     fdt_add_cpu_nodes(vms);
1384     fdt_add_psci_node(vms);
1385 
1386     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1387                                          machine->ram_size);
1388     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1389 
1390     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1391 
1392     create_gic(vms, pic);
1393 
1394     fdt_add_pmu_nodes(vms);
1395 
1396     create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1397 
1398     if (vms->secure) {
1399         create_secure_ram(vms, secure_sysmem);
1400         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1401     }
1402 
1403     create_rtc(vms, pic);
1404 
1405     create_pcie(vms, pic);
1406 
1407     create_gpio(vms, pic);
1408 
1409     /* Create mmio transports, so the user can create virtio backends
1410      * (which will be automatically plugged in to the transports). If
1411      * no backend is created the transport will just sit harmlessly idle.
1412      */
1413     create_virtio_devices(vms, pic);
1414 
1415     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1416     rom_set_fw(vms->fw_cfg);
1417 
1418     vms->machine_done.notify = virt_machine_done;
1419     qemu_add_machine_init_done_notifier(&vms->machine_done);
1420 
1421     vms->bootinfo.ram_size = machine->ram_size;
1422     vms->bootinfo.kernel_filename = machine->kernel_filename;
1423     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1424     vms->bootinfo.initrd_filename = machine->initrd_filename;
1425     vms->bootinfo.nb_cpus = smp_cpus;
1426     vms->bootinfo.board_id = -1;
1427     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1428     vms->bootinfo.get_dtb = machvirt_dtb;
1429     vms->bootinfo.firmware_loaded = firmware_loaded;
1430     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1431 
1432     /*
1433      * arm_load_kernel machine init done notifier registration must
1434      * happen before the platform_bus_create call. In this latter,
1435      * another notifier is registered which adds platform bus nodes.
1436      * Notifiers are executed in registration reverse order.
1437      */
1438     create_platform_bus(vms, pic);
1439 }
1440 
1441 static bool virt_get_secure(Object *obj, Error **errp)
1442 {
1443     VirtMachineState *vms = VIRT_MACHINE(obj);
1444 
1445     return vms->secure;
1446 }
1447 
1448 static void virt_set_secure(Object *obj, bool value, Error **errp)
1449 {
1450     VirtMachineState *vms = VIRT_MACHINE(obj);
1451 
1452     vms->secure = value;
1453 }
1454 
1455 static bool virt_get_virt(Object *obj, Error **errp)
1456 {
1457     VirtMachineState *vms = VIRT_MACHINE(obj);
1458 
1459     return vms->virt;
1460 }
1461 
1462 static void virt_set_virt(Object *obj, bool value, Error **errp)
1463 {
1464     VirtMachineState *vms = VIRT_MACHINE(obj);
1465 
1466     vms->virt = value;
1467 }
1468 
1469 static bool virt_get_highmem(Object *obj, Error **errp)
1470 {
1471     VirtMachineState *vms = VIRT_MACHINE(obj);
1472 
1473     return vms->highmem;
1474 }
1475 
1476 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1477 {
1478     VirtMachineState *vms = VIRT_MACHINE(obj);
1479 
1480     vms->highmem = value;
1481 }
1482 
1483 static bool virt_get_its(Object *obj, Error **errp)
1484 {
1485     VirtMachineState *vms = VIRT_MACHINE(obj);
1486 
1487     return vms->its;
1488 }
1489 
1490 static void virt_set_its(Object *obj, bool value, Error **errp)
1491 {
1492     VirtMachineState *vms = VIRT_MACHINE(obj);
1493 
1494     vms->its = value;
1495 }
1496 
1497 static char *virt_get_gic_version(Object *obj, Error **errp)
1498 {
1499     VirtMachineState *vms = VIRT_MACHINE(obj);
1500     const char *val = vms->gic_version == 3 ? "3" : "2";
1501 
1502     return g_strdup(val);
1503 }
1504 
1505 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1506 {
1507     VirtMachineState *vms = VIRT_MACHINE(obj);
1508 
1509     if (!strcmp(value, "3")) {
1510         vms->gic_version = 3;
1511     } else if (!strcmp(value, "2")) {
1512         vms->gic_version = 2;
1513     } else if (!strcmp(value, "host")) {
1514         vms->gic_version = 0; /* Will probe later */
1515     } else {
1516         error_setg(errp, "Invalid gic-version value");
1517         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1518     }
1519 }
1520 
1521 static void virt_machine_class_init(ObjectClass *oc, void *data)
1522 {
1523     MachineClass *mc = MACHINE_CLASS(oc);
1524 
1525     mc->init = machvirt_init;
1526     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1527      * it later in machvirt_init, where we have more information about the
1528      * configuration of the particular instance.
1529      */
1530     mc->max_cpus = 255;
1531     mc->has_dynamic_sysbus = true;
1532     mc->block_default_type = IF_VIRTIO;
1533     mc->no_cdrom = 1;
1534     mc->pci_allow_0_address = true;
1535     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1536     mc->minimum_page_bits = 12;
1537 }
1538 
1539 static const TypeInfo virt_machine_info = {
1540     .name          = TYPE_VIRT_MACHINE,
1541     .parent        = TYPE_MACHINE,
1542     .abstract      = true,
1543     .instance_size = sizeof(VirtMachineState),
1544     .class_size    = sizeof(VirtMachineClass),
1545     .class_init    = virt_machine_class_init,
1546 };
1547 
1548 static void machvirt_machine_init(void)
1549 {
1550     type_register_static(&virt_machine_info);
1551 }
1552 type_init(machvirt_machine_init);
1553 
1554 static void virt_2_9_instance_init(Object *obj)
1555 {
1556     VirtMachineState *vms = VIRT_MACHINE(obj);
1557     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1558 
1559     /* EL3 is disabled by default on virt: this makes us consistent
1560      * between KVM and TCG for this board, and it also allows us to
1561      * boot UEFI blobs which assume no TrustZone support.
1562      */
1563     vms->secure = false;
1564     object_property_add_bool(obj, "secure", virt_get_secure,
1565                              virt_set_secure, NULL);
1566     object_property_set_description(obj, "secure",
1567                                     "Set on/off to enable/disable the ARM "
1568                                     "Security Extensions (TrustZone)",
1569                                     NULL);
1570 
1571     /* EL2 is also disabled by default, for similar reasons */
1572     vms->virt = false;
1573     object_property_add_bool(obj, "virtualization", virt_get_virt,
1574                              virt_set_virt, NULL);
1575     object_property_set_description(obj, "virtualization",
1576                                     "Set on/off to enable/disable emulating a "
1577                                     "guest CPU which implements the ARM "
1578                                     "Virtualization Extensions",
1579                                     NULL);
1580 
1581     /* High memory is enabled by default */
1582     vms->highmem = true;
1583     object_property_add_bool(obj, "highmem", virt_get_highmem,
1584                              virt_set_highmem, NULL);
1585     object_property_set_description(obj, "highmem",
1586                                     "Set on/off to enable/disable using "
1587                                     "physical address space above 32 bits",
1588                                     NULL);
1589     /* Default GIC type is v2 */
1590     vms->gic_version = 2;
1591     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1592                         virt_set_gic_version, NULL);
1593     object_property_set_description(obj, "gic-version",
1594                                     "Set GIC version. "
1595                                     "Valid values are 2, 3 and host", NULL);
1596 
1597     if (vmc->no_its) {
1598         vms->its = false;
1599     } else {
1600         /* Default allows ITS instantiation */
1601         vms->its = true;
1602         object_property_add_bool(obj, "its", virt_get_its,
1603                                  virt_set_its, NULL);
1604         object_property_set_description(obj, "its",
1605                                         "Set on/off to enable/disable "
1606                                         "ITS instantiation",
1607                                         NULL);
1608     }
1609 
1610     vms->memmap = a15memmap;
1611     vms->irqmap = a15irqmap;
1612 }
1613 
1614 static void virt_machine_2_9_options(MachineClass *mc)
1615 {
1616 }
1617 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1618 
1619 #define VIRT_COMPAT_2_8 \
1620     HW_COMPAT_2_8
1621 
1622 static void virt_2_8_instance_init(Object *obj)
1623 {
1624     virt_2_9_instance_init(obj);
1625 }
1626 
1627 static void virt_machine_2_8_options(MachineClass *mc)
1628 {
1629     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1630 
1631     virt_machine_2_9_options(mc);
1632     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1633     /* For 2.8 and earlier we falsely claimed in the DT that
1634      * our timers were edge-triggered, not level-triggered.
1635      */
1636     vmc->claim_edge_triggered_timers = true;
1637 }
1638 DEFINE_VIRT_MACHINE(2, 8)
1639 
1640 #define VIRT_COMPAT_2_7 \
1641     HW_COMPAT_2_7
1642 
1643 static void virt_2_7_instance_init(Object *obj)
1644 {
1645     virt_2_8_instance_init(obj);
1646 }
1647 
1648 static void virt_machine_2_7_options(MachineClass *mc)
1649 {
1650     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1651 
1652     virt_machine_2_8_options(mc);
1653     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1654     /* ITS was introduced with 2.8 */
1655     vmc->no_its = true;
1656     /* Stick with 1K pages for migration compatibility */
1657     mc->minimum_page_bits = 0;
1658 }
1659 DEFINE_VIRT_MACHINE(2, 7)
1660 
1661 #define VIRT_COMPAT_2_6 \
1662     HW_COMPAT_2_6
1663 
1664 static void virt_2_6_instance_init(Object *obj)
1665 {
1666     virt_2_7_instance_init(obj);
1667 }
1668 
1669 static void virt_machine_2_6_options(MachineClass *mc)
1670 {
1671     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1672 
1673     virt_machine_2_7_options(mc);
1674     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1675     vmc->disallow_affinity_adjustment = true;
1676     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1677     vmc->no_pmu = true;
1678 }
1679 DEFINE_VIRT_MACHINE(2, 6)
1680