xref: /openbmc/qemu/hw/arm/virt.c (revision 36f96c4b)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "hw/sysbus.h"
33 #include "hw/arm/arm.h"
34 #include "hw/arm/primecell.h"
35 #include "hw/arm/virt.h"
36 #include "hw/devices.h"
37 #include "net/net.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/kvm.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/bitops.h"
46 #include "qemu/error-report.h"
47 #include "hw/pci-host/gpex.h"
48 #include "hw/arm/virt-acpi-build.h"
49 #include "hw/arm/sysbus-fdt.h"
50 #include "hw/platform-bus.h"
51 #include "hw/arm/fdt.h"
52 #include "hw/intc/arm_gic_common.h"
53 #include "kvm_arm.h"
54 #include "hw/smbios/smbios.h"
55 #include "qapi/visitor.h"
56 #include "standard-headers/linux/input.h"
57 
58 /* Number of external interrupt lines to configure the GIC with */
59 #define NUM_IRQS 256
60 
61 #define PLATFORM_BUS_NUM_IRQS 64
62 
63 static ARMPlatformBusSystemParams platform_bus_params;
64 
65 typedef struct VirtBoardInfo {
66     struct arm_boot_info bootinfo;
67     const char *cpu_model;
68     const MemMapEntry *memmap;
69     const int *irqmap;
70     int smp_cpus;
71     void *fdt;
72     int fdt_size;
73     uint32_t clock_phandle;
74     uint32_t gic_phandle;
75     uint32_t v2m_phandle;
76 } VirtBoardInfo;
77 
78 typedef struct {
79     MachineClass parent;
80     VirtBoardInfo *daughterboard;
81 } VirtMachineClass;
82 
83 typedef struct {
84     MachineState parent;
85     bool secure;
86     bool highmem;
87     int32_t gic_version;
88 } VirtMachineState;
89 
90 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
91 #define VIRT_MACHINE(obj) \
92     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
93 #define VIRT_MACHINE_GET_CLASS(obj) \
94     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
95 #define VIRT_MACHINE_CLASS(klass) \
96     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
97 
98 /* Addresses and sizes of our components.
99  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
100  * 128MB..256MB is used for miscellaneous device I/O.
101  * 256MB..1GB is reserved for possible future PCI support (ie where the
102  * PCI memory window will go if we add a PCI host controller).
103  * 1GB and up is RAM (which may happily spill over into the
104  * high memory region beyond 4GB).
105  * This represents a compromise between how much RAM can be given to
106  * a 32 bit VM and leaving space for expansion and in particular for PCI.
107  * Note that devices should generally be placed at multiples of 0x10000,
108  * to accommodate guests using 64K pages.
109  */
110 static const MemMapEntry a15memmap[] = {
111     /* Space up to 0x8000000 is reserved for a boot ROM */
112     [VIRT_FLASH] =              {          0, 0x08000000 },
113     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
114     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
115     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
116     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
117     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
118     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
119     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
120     /* This redistributor space allows up to 2*64kB*123 CPUs */
121     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
122     [VIRT_UART] =               { 0x09000000, 0x00001000 },
123     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
124     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
125     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
126     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
127     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
128     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
129     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
130     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
131     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
132     [VIRT_MEM] =                { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
133     /* Second PCIe window, 512GB wide at the 512GB boundary */
134     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
135 };
136 
137 static const int a15irqmap[] = {
138     [VIRT_UART] = 1,
139     [VIRT_RTC] = 2,
140     [VIRT_PCIE] = 3, /* ... to 6 */
141     [VIRT_GPIO] = 7,
142     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
143     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
144     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
145 };
146 
147 static VirtBoardInfo machines[] = {
148     {
149         .cpu_model = "cortex-a15",
150         .memmap = a15memmap,
151         .irqmap = a15irqmap,
152     },
153     {
154         .cpu_model = "cortex-a53",
155         .memmap = a15memmap,
156         .irqmap = a15irqmap,
157     },
158     {
159         .cpu_model = "cortex-a57",
160         .memmap = a15memmap,
161         .irqmap = a15irqmap,
162     },
163     {
164         .cpu_model = "host",
165         .memmap = a15memmap,
166         .irqmap = a15irqmap,
167     },
168 };
169 
170 static VirtBoardInfo *find_machine_info(const char *cpu)
171 {
172     int i;
173 
174     for (i = 0; i < ARRAY_SIZE(machines); i++) {
175         if (strcmp(cpu, machines[i].cpu_model) == 0) {
176             return &machines[i];
177         }
178     }
179     return NULL;
180 }
181 
182 static void create_fdt(VirtBoardInfo *vbi)
183 {
184     void *fdt = create_device_tree(&vbi->fdt_size);
185 
186     if (!fdt) {
187         error_report("create_device_tree() failed");
188         exit(1);
189     }
190 
191     vbi->fdt = fdt;
192 
193     /* Header */
194     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
195     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
196     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
197 
198     /*
199      * /chosen and /memory nodes must exist for load_dtb
200      * to fill in necessary properties later
201      */
202     qemu_fdt_add_subnode(fdt, "/chosen");
203     qemu_fdt_add_subnode(fdt, "/memory");
204     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
205 
206     /* Clock node, for the benefit of the UART. The kernel device tree
207      * binding documentation claims the PL011 node clock properties are
208      * optional but in practice if you omit them the kernel refuses to
209      * probe for the device.
210      */
211     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
212     qemu_fdt_add_subnode(fdt, "/apb-pclk");
213     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
214     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
215     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
216     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
217                                 "clk24mhz");
218     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
219 
220 }
221 
222 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
223 {
224     uint32_t cpu_suspend_fn;
225     uint32_t cpu_off_fn;
226     uint32_t cpu_on_fn;
227     uint32_t migrate_fn;
228     void *fdt = vbi->fdt;
229     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
230 
231     qemu_fdt_add_subnode(fdt, "/psci");
232     if (armcpu->psci_version == 2) {
233         const char comp[] = "arm,psci-0.2\0arm,psci";
234         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
235 
236         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
237         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
238             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
239             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
240             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
241         } else {
242             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
243             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
244             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
245         }
246     } else {
247         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
248 
249         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
250         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
251         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
252         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
253     }
254 
255     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
256      * to the instruction that should be used to invoke PSCI functions.
257      * However, the device tree binding uses 'method' instead, so that is
258      * what we should use here.
259      */
260     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
261 
262     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
263     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
264     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
265     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
266 }
267 
268 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
269 {
270     /* Note that on A15 h/w these interrupts are level-triggered,
271      * but for the GIC implementation provided by both QEMU and KVM
272      * they are edge-triggered.
273      */
274     ARMCPU *armcpu;
275     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
276 
277     if (gictype == 2) {
278         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
279                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
280                              (1 << vbi->smp_cpus) - 1);
281     }
282 
283     qemu_fdt_add_subnode(vbi->fdt, "/timer");
284 
285     armcpu = ARM_CPU(qemu_get_cpu(0));
286     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
287         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
288         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
289                          compat, sizeof(compat));
290     } else {
291         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
292                                 "arm,armv7-timer");
293     }
294     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
295                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
296                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
297                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
298                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
299 }
300 
301 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
302 {
303     int cpu;
304     int addr_cells = 1;
305 
306     /*
307      * From Documentation/devicetree/bindings/arm/cpus.txt
308      *  On ARM v8 64-bit systems value should be set to 2,
309      *  that corresponds to the MPIDR_EL1 register size.
310      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
311      *  in the system, #address-cells can be set to 1, since
312      *  MPIDR_EL1[63:32] bits are not used for CPUs
313      *  identification.
314      *
315      *  Here we actually don't know whether our system is 32- or 64-bit one.
316      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
317      *  at least one of them has Aff3 populated, we set #address-cells to 2.
318      */
319     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
320         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
321 
322         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
323             addr_cells = 2;
324             break;
325         }
326     }
327 
328     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
329     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
330     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
331 
332     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
333         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
334         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
335 
336         qemu_fdt_add_subnode(vbi->fdt, nodename);
337         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
338         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
339                                     armcpu->dtb_compatible);
340 
341         if (vbi->smp_cpus > 1) {
342             qemu_fdt_setprop_string(vbi->fdt, nodename,
343                                         "enable-method", "psci");
344         }
345 
346         if (addr_cells == 2) {
347             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
348                                  armcpu->mp_affinity);
349         } else {
350             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
351                                   armcpu->mp_affinity);
352         }
353 
354         g_free(nodename);
355     }
356 }
357 
358 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
359 {
360     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
361     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
362     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
363                             "arm,gic-v2m-frame");
364     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
365     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
366                                  2, vbi->memmap[VIRT_GIC_V2M].base,
367                                  2, vbi->memmap[VIRT_GIC_V2M].size);
368     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
369 }
370 
371 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
372 {
373     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
374     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
375 
376     qemu_fdt_add_subnode(vbi->fdt, "/intc");
377     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
378     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
379     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
380     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
381     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
382     if (type == 3) {
383         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
384                                 "arm,gic-v3");
385         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
386                                      2, vbi->memmap[VIRT_GIC_DIST].base,
387                                      2, vbi->memmap[VIRT_GIC_DIST].size,
388                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
389                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
390     } else {
391         /* 'cortex-a15-gic' means 'GIC v2' */
392         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
393                                 "arm,cortex-a15-gic");
394         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
395                                       2, vbi->memmap[VIRT_GIC_DIST].base,
396                                       2, vbi->memmap[VIRT_GIC_DIST].size,
397                                       2, vbi->memmap[VIRT_GIC_CPU].base,
398                                       2, vbi->memmap[VIRT_GIC_CPU].size);
399     }
400 
401     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
402 }
403 
404 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
405 {
406     int i;
407     int irq = vbi->irqmap[VIRT_GIC_V2M];
408     DeviceState *dev;
409 
410     dev = qdev_create(NULL, "arm-gicv2m");
411     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
412     qdev_prop_set_uint32(dev, "base-spi", irq);
413     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
414     qdev_init_nofail(dev);
415 
416     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
417         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
418     }
419 
420     fdt_add_v2m_gic_node(vbi);
421 }
422 
423 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
424 {
425     /* We create a standalone GIC */
426     DeviceState *gicdev;
427     SysBusDevice *gicbusdev;
428     const char *gictype;
429     int i;
430 
431     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
432 
433     gicdev = qdev_create(NULL, gictype);
434     qdev_prop_set_uint32(gicdev, "revision", type);
435     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
436     /* Note that the num-irq property counts both internal and external
437      * interrupts; there are always 32 of the former (mandated by GIC spec).
438      */
439     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
440     if (!kvm_irqchip_in_kernel()) {
441         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
442     }
443     qdev_init_nofail(gicdev);
444     gicbusdev = SYS_BUS_DEVICE(gicdev);
445     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
446     if (type == 3) {
447         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
448     } else {
449         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
450     }
451 
452     /* Wire the outputs from each CPU's generic timer to the
453      * appropriate GIC PPI inputs, and the GIC's IRQ output to
454      * the CPU's IRQ input.
455      */
456     for (i = 0; i < smp_cpus; i++) {
457         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
458         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
459         int irq;
460         /* Mapping from the output timer irq lines from the CPU to the
461          * GIC PPI inputs we use for the virt board.
462          */
463         const int timer_irq[] = {
464             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
465             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
466             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
467             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
468         };
469 
470         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
471             qdev_connect_gpio_out(cpudev, irq,
472                                   qdev_get_gpio_in(gicdev,
473                                                    ppibase + timer_irq[irq]));
474         }
475 
476         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
477         sysbus_connect_irq(gicbusdev, i + smp_cpus,
478                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
479     }
480 
481     for (i = 0; i < NUM_IRQS; i++) {
482         pic[i] = qdev_get_gpio_in(gicdev, i);
483     }
484 
485     fdt_add_gic_node(vbi, type);
486 
487     if (type == 2) {
488         create_v2m(vbi, pic);
489     }
490 }
491 
492 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
493 {
494     char *nodename;
495     hwaddr base = vbi->memmap[VIRT_UART].base;
496     hwaddr size = vbi->memmap[VIRT_UART].size;
497     int irq = vbi->irqmap[VIRT_UART];
498     const char compat[] = "arm,pl011\0arm,primecell";
499     const char clocknames[] = "uartclk\0apb_pclk";
500 
501     sysbus_create_simple("pl011", base, pic[irq]);
502 
503     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
504     qemu_fdt_add_subnode(vbi->fdt, nodename);
505     /* Note that we can't use setprop_string because of the embedded NUL */
506     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
507                          compat, sizeof(compat));
508     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
509                                      2, base, 2, size);
510     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
511                                GIC_FDT_IRQ_TYPE_SPI, irq,
512                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
513     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
514                                vbi->clock_phandle, vbi->clock_phandle);
515     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
516                          clocknames, sizeof(clocknames));
517 
518     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
519     g_free(nodename);
520 }
521 
522 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
523 {
524     char *nodename;
525     hwaddr base = vbi->memmap[VIRT_RTC].base;
526     hwaddr size = vbi->memmap[VIRT_RTC].size;
527     int irq = vbi->irqmap[VIRT_RTC];
528     const char compat[] = "arm,pl031\0arm,primecell";
529 
530     sysbus_create_simple("pl031", base, pic[irq]);
531 
532     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
533     qemu_fdt_add_subnode(vbi->fdt, nodename);
534     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
535     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
536                                  2, base, 2, size);
537     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
538                            GIC_FDT_IRQ_TYPE_SPI, irq,
539                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
540     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
541     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
542     g_free(nodename);
543 }
544 
545 static DeviceState *pl061_dev;
546 static void virt_powerdown_req(Notifier *n, void *opaque)
547 {
548     /* use gpio Pin 3 for power button event */
549     qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1);
550 }
551 
552 static Notifier virt_system_powerdown_notifier = {
553     .notify = virt_powerdown_req
554 };
555 
556 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
557 {
558     char *nodename;
559     hwaddr base = vbi->memmap[VIRT_GPIO].base;
560     hwaddr size = vbi->memmap[VIRT_GPIO].size;
561     int irq = vbi->irqmap[VIRT_GPIO];
562     const char compat[] = "arm,pl061\0arm,primecell";
563 
564     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
565 
566     uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
567     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
568     qemu_fdt_add_subnode(vbi->fdt, nodename);
569     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
570                                  2, base, 2, size);
571     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
572     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
573     qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
574     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
575                            GIC_FDT_IRQ_TYPE_SPI, irq,
576                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
577     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
578     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
579     qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
580 
581     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
582     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
583     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
584     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
585 
586     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
587     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
588                             "label", "GPIO Key Poweroff");
589     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
590                           KEY_POWER);
591     qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
592                            "gpios", phandle, 3, 0);
593 
594     /* connect powerdown request */
595     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
596 
597     g_free(nodename);
598 }
599 
600 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
601 {
602     int i;
603     hwaddr size = vbi->memmap[VIRT_MMIO].size;
604 
605     /* We create the transports in forwards order. Since qbus_realize()
606      * prepends (not appends) new child buses, the incrementing loop below will
607      * create a list of virtio-mmio buses with decreasing base addresses.
608      *
609      * When a -device option is processed from the command line,
610      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
611      * order. The upshot is that -device options in increasing command line
612      * order are mapped to virtio-mmio buses with decreasing base addresses.
613      *
614      * When this code was originally written, that arrangement ensured that the
615      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
616      * the first -device on the command line. (The end-to-end order is a
617      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
618      * guest kernel's name-to-address assignment strategy.)
619      *
620      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
621      * the message, if not necessarily the code, of commit 70161ff336.
622      * Therefore the loop now establishes the inverse of the original intent.
623      *
624      * Unfortunately, we can't counteract the kernel change by reversing the
625      * loop; it would break existing command lines.
626      *
627      * In any case, the kernel makes no guarantee about the stability of
628      * enumeration order of virtio devices (as demonstrated by it changing
629      * between kernel versions). For reliable and stable identification
630      * of disks users must use UUIDs or similar mechanisms.
631      */
632     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
633         int irq = vbi->irqmap[VIRT_MMIO] + i;
634         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
635 
636         sysbus_create_simple("virtio-mmio", base, pic[irq]);
637     }
638 
639     /* We add dtb nodes in reverse order so that they appear in the finished
640      * device tree lowest address first.
641      *
642      * Note that this mapping is independent of the loop above. The previous
643      * loop influences virtio device to virtio transport assignment, whereas
644      * this loop controls how virtio transports are laid out in the dtb.
645      */
646     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
647         char *nodename;
648         int irq = vbi->irqmap[VIRT_MMIO] + i;
649         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
650 
651         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
652         qemu_fdt_add_subnode(vbi->fdt, nodename);
653         qemu_fdt_setprop_string(vbi->fdt, nodename,
654                                 "compatible", "virtio,mmio");
655         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
656                                      2, base, 2, size);
657         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
658                                GIC_FDT_IRQ_TYPE_SPI, irq,
659                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
660         g_free(nodename);
661     }
662 }
663 
664 static void create_one_flash(const char *name, hwaddr flashbase,
665                              hwaddr flashsize)
666 {
667     /* Create and map a single flash device. We use the same
668      * parameters as the flash devices on the Versatile Express board.
669      */
670     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
671     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
672     const uint64_t sectorlength = 256 * 1024;
673 
674     if (dinfo) {
675         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
676                             &error_abort);
677     }
678 
679     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
680     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
681     qdev_prop_set_uint8(dev, "width", 4);
682     qdev_prop_set_uint8(dev, "device-width", 2);
683     qdev_prop_set_bit(dev, "big-endian", false);
684     qdev_prop_set_uint16(dev, "id0", 0x89);
685     qdev_prop_set_uint16(dev, "id1", 0x18);
686     qdev_prop_set_uint16(dev, "id2", 0x00);
687     qdev_prop_set_uint16(dev, "id3", 0x00);
688     qdev_prop_set_string(dev, "name", name);
689     qdev_init_nofail(dev);
690 
691     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
692 }
693 
694 static void create_flash(const VirtBoardInfo *vbi)
695 {
696     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
697      * Any file passed via -bios goes in the first of these.
698      */
699     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
700     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
701     char *nodename;
702 
703     if (bios_name) {
704         char *fn;
705         int image_size;
706 
707         if (drive_get(IF_PFLASH, 0, 0)) {
708             error_report("The contents of the first flash device may be "
709                          "specified with -bios or with -drive if=pflash... "
710                          "but you cannot use both options at once");
711             exit(1);
712         }
713         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
714         if (!fn) {
715             error_report("Could not find ROM image '%s'", bios_name);
716             exit(1);
717         }
718         image_size = load_image_targphys(fn, flashbase, flashsize);
719         g_free(fn);
720         if (image_size < 0) {
721             error_report("Could not load ROM image '%s'", bios_name);
722             exit(1);
723         }
724     }
725 
726     create_one_flash("virt.flash0", flashbase, flashsize);
727     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
728 
729     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
730     qemu_fdt_add_subnode(vbi->fdt, nodename);
731     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
732     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
733                                  2, flashbase, 2, flashsize,
734                                  2, flashbase + flashsize, 2, flashsize);
735     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
736     g_free(nodename);
737 }
738 
739 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
740 {
741     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
742     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
743     char *nodename;
744 
745     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
746 
747     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
748     qemu_fdt_add_subnode(vbi->fdt, nodename);
749     qemu_fdt_setprop_string(vbi->fdt, nodename,
750                             "compatible", "qemu,fw-cfg-mmio");
751     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
752                                  2, base, 2, size);
753     g_free(nodename);
754 }
755 
756 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
757                                 int first_irq, const char *nodename)
758 {
759     int devfn, pin;
760     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
761     uint32_t *irq_map = full_irq_map;
762 
763     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
764         for (pin = 0; pin < 4; pin++) {
765             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
766             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
767             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
768             int i;
769 
770             uint32_t map[] = {
771                 devfn << 8, 0, 0,                           /* devfn */
772                 pin + 1,                                    /* PCI pin */
773                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
774 
775             /* Convert map to big endian */
776             for (i = 0; i < 10; i++) {
777                 irq_map[i] = cpu_to_be32(map[i]);
778             }
779             irq_map += 10;
780         }
781     }
782 
783     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
784                      full_irq_map, sizeof(full_irq_map));
785 
786     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
787                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
788                            0x7           /* PCI irq */);
789 }
790 
791 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
792                         bool use_highmem)
793 {
794     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
795     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
796     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
797     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
798     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
799     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
800     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
801     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
802     hwaddr base = base_mmio;
803     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
804     int irq = vbi->irqmap[VIRT_PCIE];
805     MemoryRegion *mmio_alias;
806     MemoryRegion *mmio_reg;
807     MemoryRegion *ecam_alias;
808     MemoryRegion *ecam_reg;
809     DeviceState *dev;
810     char *nodename;
811     int i;
812     PCIHostState *pci;
813 
814     dev = qdev_create(NULL, TYPE_GPEX_HOST);
815     qdev_init_nofail(dev);
816 
817     /* Map only the first size_ecam bytes of ECAM space */
818     ecam_alias = g_new0(MemoryRegion, 1);
819     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
820     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
821                              ecam_reg, 0, size_ecam);
822     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
823 
824     /* Map the MMIO window into system address space so as to expose
825      * the section of PCI MMIO space which starts at the same base address
826      * (ie 1:1 mapping for that part of PCI MMIO space visible through
827      * the window).
828      */
829     mmio_alias = g_new0(MemoryRegion, 1);
830     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
831     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
832                              mmio_reg, base_mmio, size_mmio);
833     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
834 
835     if (use_highmem) {
836         /* Map high MMIO space */
837         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
838 
839         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
840                                  mmio_reg, base_mmio_high, size_mmio_high);
841         memory_region_add_subregion(get_system_memory(), base_mmio_high,
842                                     high_mmio_alias);
843     }
844 
845     /* Map IO port space */
846     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
847 
848     for (i = 0; i < GPEX_NUM_IRQS; i++) {
849         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
850     }
851 
852     pci = PCI_HOST_BRIDGE(dev);
853     if (pci->bus) {
854         for (i = 0; i < nb_nics; i++) {
855             NICInfo *nd = &nd_table[i];
856 
857             if (!nd->model) {
858                 nd->model = g_strdup("virtio");
859             }
860 
861             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
862         }
863     }
864 
865     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
866     qemu_fdt_add_subnode(vbi->fdt, nodename);
867     qemu_fdt_setprop_string(vbi->fdt, nodename,
868                             "compatible", "pci-host-ecam-generic");
869     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
870     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
871     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
872     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
873                            nr_pcie_buses - 1);
874 
875     if (vbi->v2m_phandle) {
876         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
877                                vbi->v2m_phandle);
878     }
879 
880     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
881                                  2, base_ecam, 2, size_ecam);
882 
883     if (use_highmem) {
884         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
885                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
886                                      2, base_pio, 2, size_pio,
887                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
888                                      2, base_mmio, 2, size_mmio,
889                                      1, FDT_PCI_RANGE_MMIO_64BIT,
890                                      2, base_mmio_high,
891                                      2, base_mmio_high, 2, size_mmio_high);
892     } else {
893         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
894                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
895                                      2, base_pio, 2, size_pio,
896                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
897                                      2, base_mmio, 2, size_mmio);
898     }
899 
900     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
901     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
902 
903     g_free(nodename);
904 }
905 
906 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
907 {
908     DeviceState *dev;
909     SysBusDevice *s;
910     int i;
911     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
912     MemoryRegion *sysmem = get_system_memory();
913 
914     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
915     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
916     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
917     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
918 
919     fdt_params->system_params = &platform_bus_params;
920     fdt_params->binfo = &vbi->bootinfo;
921     fdt_params->intc = "/intc";
922     /*
923      * register a machine init done notifier that creates the device tree
924      * nodes of the platform bus and its children dynamic sysbus devices
925      */
926     arm_register_platform_bus_fdt_creator(fdt_params);
927 
928     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
929     dev->id = TYPE_PLATFORM_BUS_DEVICE;
930     qdev_prop_set_uint32(dev, "num_irqs",
931         platform_bus_params.platform_bus_num_irqs);
932     qdev_prop_set_uint32(dev, "mmio_size",
933         platform_bus_params.platform_bus_size);
934     qdev_init_nofail(dev);
935     s = SYS_BUS_DEVICE(dev);
936 
937     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
938         int irqn = platform_bus_params.platform_bus_first_irq + i;
939         sysbus_connect_irq(s, i, pic[irqn]);
940     }
941 
942     memory_region_add_subregion(sysmem,
943                                 platform_bus_params.platform_bus_base,
944                                 sysbus_mmio_get_region(s, 0));
945 }
946 
947 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
948 {
949     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
950 
951     *fdt_size = board->fdt_size;
952     return board->fdt;
953 }
954 
955 static void virt_build_smbios(VirtGuestInfo *guest_info)
956 {
957     FWCfgState *fw_cfg = guest_info->fw_cfg;
958     uint8_t *smbios_tables, *smbios_anchor;
959     size_t smbios_tables_len, smbios_anchor_len;
960     const char *product = "QEMU Virtual Machine";
961 
962     if (!fw_cfg) {
963         return;
964     }
965 
966     if (kvm_enabled()) {
967         product = "KVM Virtual Machine";
968     }
969 
970     smbios_set_defaults("QEMU", product,
971                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
972 
973     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
974                       &smbios_anchor, &smbios_anchor_len);
975 
976     if (smbios_anchor) {
977         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
978                         smbios_tables, smbios_tables_len);
979         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
980                         smbios_anchor, smbios_anchor_len);
981     }
982 }
983 
984 static
985 void virt_guest_info_machine_done(Notifier *notifier, void *data)
986 {
987     VirtGuestInfoState *guest_info_state = container_of(notifier,
988                                               VirtGuestInfoState, machine_done);
989     virt_acpi_setup(&guest_info_state->info);
990     virt_build_smbios(&guest_info_state->info);
991 }
992 
993 static void machvirt_init(MachineState *machine)
994 {
995     VirtMachineState *vms = VIRT_MACHINE(machine);
996     qemu_irq pic[NUM_IRQS];
997     MemoryRegion *sysmem = get_system_memory();
998     int gic_version = vms->gic_version;
999     int n, max_cpus;
1000     MemoryRegion *ram = g_new(MemoryRegion, 1);
1001     const char *cpu_model = machine->cpu_model;
1002     VirtBoardInfo *vbi;
1003     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1004     VirtGuestInfo *guest_info = &guest_info_state->info;
1005     char **cpustr;
1006 
1007     if (!cpu_model) {
1008         cpu_model = "cortex-a15";
1009     }
1010 
1011     /* We can probe only here because during property set
1012      * KVM is not available yet
1013      */
1014     if (!gic_version) {
1015         gic_version = kvm_arm_vgic_probe();
1016         if (!gic_version) {
1017             error_report("Unable to determine GIC version supported by host");
1018             error_printf("KVM acceleration is probably not supported\n");
1019             exit(1);
1020         }
1021     }
1022 
1023     /* Separate the actual CPU model name from any appended features */
1024     cpustr = g_strsplit(cpu_model, ",", 2);
1025 
1026     vbi = find_machine_info(cpustr[0]);
1027 
1028     if (!vbi) {
1029         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1030         exit(1);
1031     }
1032 
1033     /* The maximum number of CPUs depends on the GIC version, or on how
1034      * many redistributors we can fit into the memory map.
1035      */
1036     if (gic_version == 3) {
1037         max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1038     } else {
1039         max_cpus = GIC_NCPU;
1040     }
1041 
1042     if (smp_cpus > max_cpus) {
1043         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1044                      "supported by machine 'mach-virt' (%d)",
1045                      smp_cpus, max_cpus);
1046         exit(1);
1047     }
1048 
1049     vbi->smp_cpus = smp_cpus;
1050 
1051     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1052         error_report("mach-virt: cannot model more than 30GB RAM");
1053         exit(1);
1054     }
1055 
1056     create_fdt(vbi);
1057 
1058     for (n = 0; n < smp_cpus; n++) {
1059         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1060         CPUClass *cc = CPU_CLASS(oc);
1061         Object *cpuobj;
1062         Error *err = NULL;
1063         char *cpuopts = g_strdup(cpustr[1]);
1064 
1065         if (!oc) {
1066             error_report("Unable to find CPU definition");
1067             exit(1);
1068         }
1069         cpuobj = object_new(object_class_get_name(oc));
1070 
1071         /* Handle any CPU options specified by the user */
1072         cc->parse_features(CPU(cpuobj), cpuopts, &err);
1073         g_free(cpuopts);
1074         if (err) {
1075             error_report_err(err);
1076             exit(1);
1077         }
1078 
1079         if (!vms->secure) {
1080             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1081         }
1082 
1083         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
1084                                 NULL);
1085 
1086         /* Secondary CPUs start in PSCI powered-down state */
1087         if (n > 0) {
1088             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
1089         }
1090 
1091         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1092             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1093                                     "reset-cbar", &error_abort);
1094         }
1095 
1096         object_property_set_bool(cpuobj, true, "realized", NULL);
1097     }
1098     g_strfreev(cpustr);
1099     fdt_add_timer_nodes(vbi, gic_version);
1100     fdt_add_cpu_nodes(vbi);
1101     fdt_add_psci_node(vbi);
1102 
1103     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1104                                          machine->ram_size);
1105     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1106 
1107     create_flash(vbi);
1108 
1109     create_gic(vbi, pic, gic_version, vms->secure);
1110 
1111     create_uart(vbi, pic);
1112 
1113     create_rtc(vbi, pic);
1114 
1115     create_pcie(vbi, pic, vms->highmem);
1116 
1117     create_gpio(vbi, pic);
1118 
1119     /* Create mmio transports, so the user can create virtio backends
1120      * (which will be automatically plugged in to the transports). If
1121      * no backend is created the transport will just sit harmlessly idle.
1122      */
1123     create_virtio_devices(vbi, pic);
1124 
1125     create_fw_cfg(vbi, &address_space_memory);
1126     rom_set_fw(fw_cfg_find());
1127 
1128     guest_info->smp_cpus = smp_cpus;
1129     guest_info->fw_cfg = fw_cfg_find();
1130     guest_info->memmap = vbi->memmap;
1131     guest_info->irqmap = vbi->irqmap;
1132     guest_info->use_highmem = vms->highmem;
1133     guest_info->gic_version = gic_version;
1134     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1135     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1136 
1137     vbi->bootinfo.ram_size = machine->ram_size;
1138     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1139     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1140     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1141     vbi->bootinfo.nb_cpus = smp_cpus;
1142     vbi->bootinfo.board_id = -1;
1143     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1144     vbi->bootinfo.get_dtb = machvirt_dtb;
1145     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1146     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1147 
1148     /*
1149      * arm_load_kernel machine init done notifier registration must
1150      * happen before the platform_bus_create call. In this latter,
1151      * another notifier is registered which adds platform bus nodes.
1152      * Notifiers are executed in registration reverse order.
1153      */
1154     create_platform_bus(vbi, pic);
1155 }
1156 
1157 static bool virt_get_secure(Object *obj, Error **errp)
1158 {
1159     VirtMachineState *vms = VIRT_MACHINE(obj);
1160 
1161     return vms->secure;
1162 }
1163 
1164 static void virt_set_secure(Object *obj, bool value, Error **errp)
1165 {
1166     VirtMachineState *vms = VIRT_MACHINE(obj);
1167 
1168     vms->secure = value;
1169 }
1170 
1171 static bool virt_get_highmem(Object *obj, Error **errp)
1172 {
1173     VirtMachineState *vms = VIRT_MACHINE(obj);
1174 
1175     return vms->highmem;
1176 }
1177 
1178 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1179 {
1180     VirtMachineState *vms = VIRT_MACHINE(obj);
1181 
1182     vms->highmem = value;
1183 }
1184 
1185 static char *virt_get_gic_version(Object *obj, Error **errp)
1186 {
1187     VirtMachineState *vms = VIRT_MACHINE(obj);
1188     const char *val = vms->gic_version == 3 ? "3" : "2";
1189 
1190     return g_strdup(val);
1191 }
1192 
1193 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1194 {
1195     VirtMachineState *vms = VIRT_MACHINE(obj);
1196 
1197     if (!strcmp(value, "3")) {
1198         vms->gic_version = 3;
1199     } else if (!strcmp(value, "2")) {
1200         vms->gic_version = 2;
1201     } else if (!strcmp(value, "host")) {
1202         vms->gic_version = 0; /* Will probe later */
1203     } else {
1204         error_setg(errp, "Invalid gic-version value");
1205         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1206     }
1207 }
1208 
1209 static void virt_instance_init(Object *obj)
1210 {
1211     VirtMachineState *vms = VIRT_MACHINE(obj);
1212 
1213     /* EL3 is disabled by default on virt: this makes us consistent
1214      * between KVM and TCG for this board, and it also allows us to
1215      * boot UEFI blobs which assume no TrustZone support.
1216      */
1217     vms->secure = false;
1218     object_property_add_bool(obj, "secure", virt_get_secure,
1219                              virt_set_secure, NULL);
1220     object_property_set_description(obj, "secure",
1221                                     "Set on/off to enable/disable the ARM "
1222                                     "Security Extensions (TrustZone)",
1223                                     NULL);
1224 
1225     /* High memory is enabled by default */
1226     vms->highmem = true;
1227     object_property_add_bool(obj, "highmem", virt_get_highmem,
1228                              virt_set_highmem, NULL);
1229     object_property_set_description(obj, "highmem",
1230                                     "Set on/off to enable/disable using "
1231                                     "physical address space above 32 bits",
1232                                     NULL);
1233     /* Default GIC type is v2 */
1234     vms->gic_version = 2;
1235     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1236                         virt_set_gic_version, NULL);
1237     object_property_set_description(obj, "gic-version",
1238                                     "Set GIC version. "
1239                                     "Valid values are 2, 3 and host", NULL);
1240 }
1241 
1242 static void virt_class_init(ObjectClass *oc, void *data)
1243 {
1244     MachineClass *mc = MACHINE_CLASS(oc);
1245 
1246     mc->desc = "ARM Virtual Machine",
1247     mc->init = machvirt_init;
1248     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1249      * it later in machvirt_init, where we have more information about the
1250      * configuration of the particular instance.
1251      */
1252     mc->max_cpus = MAX_CPUMASK_BITS;
1253     mc->has_dynamic_sysbus = true;
1254     mc->block_default_type = IF_VIRTIO;
1255     mc->no_cdrom = 1;
1256     mc->pci_allow_0_address = true;
1257 }
1258 
1259 static const TypeInfo machvirt_info = {
1260     .name = TYPE_VIRT_MACHINE,
1261     .parent = TYPE_MACHINE,
1262     .instance_size = sizeof(VirtMachineState),
1263     .instance_init = virt_instance_init,
1264     .class_size = sizeof(VirtMachineClass),
1265     .class_init = virt_class_init,
1266 };
1267 
1268 static void machvirt_machine_init(void)
1269 {
1270     type_register_static(&machvirt_info);
1271 }
1272 
1273 machine_init(machvirt_machine_init);
1274