1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "hw/sysbus.h" 33 #include "hw/arm/arm.h" 34 #include "hw/arm/primecell.h" 35 #include "hw/arm/virt.h" 36 #include "hw/devices.h" 37 #include "net/net.h" 38 #include "sysemu/block-backend.h" 39 #include "sysemu/device_tree.h" 40 #include "sysemu/sysemu.h" 41 #include "sysemu/kvm.h" 42 #include "hw/boards.h" 43 #include "hw/loader.h" 44 #include "exec/address-spaces.h" 45 #include "qemu/bitops.h" 46 #include "qemu/error-report.h" 47 #include "hw/pci-host/gpex.h" 48 #include "hw/arm/virt-acpi-build.h" 49 #include "hw/arm/sysbus-fdt.h" 50 #include "hw/platform-bus.h" 51 #include "hw/arm/fdt.h" 52 #include "hw/intc/arm_gic_common.h" 53 #include "kvm_arm.h" 54 #include "hw/smbios/smbios.h" 55 #include "qapi/visitor.h" 56 #include "standard-headers/linux/input.h" 57 58 /* Number of external interrupt lines to configure the GIC with */ 59 #define NUM_IRQS 256 60 61 #define PLATFORM_BUS_NUM_IRQS 64 62 63 static ARMPlatformBusSystemParams platform_bus_params; 64 65 typedef struct VirtBoardInfo { 66 struct arm_boot_info bootinfo; 67 const char *cpu_model; 68 const MemMapEntry *memmap; 69 const int *irqmap; 70 int smp_cpus; 71 void *fdt; 72 int fdt_size; 73 uint32_t clock_phandle; 74 uint32_t gic_phandle; 75 uint32_t v2m_phandle; 76 } VirtBoardInfo; 77 78 typedef struct { 79 MachineClass parent; 80 VirtBoardInfo *daughterboard; 81 } VirtMachineClass; 82 83 typedef struct { 84 MachineState parent; 85 bool secure; 86 bool highmem; 87 int32_t gic_version; 88 } VirtMachineState; 89 90 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 91 #define VIRT_MACHINE(obj) \ 92 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 93 #define VIRT_MACHINE_GET_CLASS(obj) \ 94 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 95 #define VIRT_MACHINE_CLASS(klass) \ 96 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 97 98 /* Addresses and sizes of our components. 99 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 100 * 128MB..256MB is used for miscellaneous device I/O. 101 * 256MB..1GB is reserved for possible future PCI support (ie where the 102 * PCI memory window will go if we add a PCI host controller). 103 * 1GB and up is RAM (which may happily spill over into the 104 * high memory region beyond 4GB). 105 * This represents a compromise between how much RAM can be given to 106 * a 32 bit VM and leaving space for expansion and in particular for PCI. 107 * Note that devices should generally be placed at multiples of 0x10000, 108 * to accommodate guests using 64K pages. 109 */ 110 static const MemMapEntry a15memmap[] = { 111 /* Space up to 0x8000000 is reserved for a boot ROM */ 112 [VIRT_FLASH] = { 0, 0x08000000 }, 113 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 114 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 115 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 116 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 117 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 118 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 119 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 120 /* This redistributor space allows up to 2*64kB*123 CPUs */ 121 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 122 [VIRT_UART] = { 0x09000000, 0x00001000 }, 123 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 124 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 125 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 126 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 127 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 128 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 129 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 130 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 131 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 132 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 133 /* Second PCIe window, 512GB wide at the 512GB boundary */ 134 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 135 }; 136 137 static const int a15irqmap[] = { 138 [VIRT_UART] = 1, 139 [VIRT_RTC] = 2, 140 [VIRT_PCIE] = 3, /* ... to 6 */ 141 [VIRT_GPIO] = 7, 142 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 143 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 144 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 145 }; 146 147 static VirtBoardInfo machines[] = { 148 { 149 .cpu_model = "cortex-a15", 150 .memmap = a15memmap, 151 .irqmap = a15irqmap, 152 }, 153 { 154 .cpu_model = "cortex-a53", 155 .memmap = a15memmap, 156 .irqmap = a15irqmap, 157 }, 158 { 159 .cpu_model = "cortex-a57", 160 .memmap = a15memmap, 161 .irqmap = a15irqmap, 162 }, 163 { 164 .cpu_model = "host", 165 .memmap = a15memmap, 166 .irqmap = a15irqmap, 167 }, 168 }; 169 170 static VirtBoardInfo *find_machine_info(const char *cpu) 171 { 172 int i; 173 174 for (i = 0; i < ARRAY_SIZE(machines); i++) { 175 if (strcmp(cpu, machines[i].cpu_model) == 0) { 176 return &machines[i]; 177 } 178 } 179 return NULL; 180 } 181 182 static void create_fdt(VirtBoardInfo *vbi) 183 { 184 void *fdt = create_device_tree(&vbi->fdt_size); 185 186 if (!fdt) { 187 error_report("create_device_tree() failed"); 188 exit(1); 189 } 190 191 vbi->fdt = fdt; 192 193 /* Header */ 194 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 195 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 196 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 197 198 /* 199 * /chosen and /memory nodes must exist for load_dtb 200 * to fill in necessary properties later 201 */ 202 qemu_fdt_add_subnode(fdt, "/chosen"); 203 qemu_fdt_add_subnode(fdt, "/memory"); 204 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 205 206 /* Clock node, for the benefit of the UART. The kernel device tree 207 * binding documentation claims the PL011 node clock properties are 208 * optional but in practice if you omit them the kernel refuses to 209 * probe for the device. 210 */ 211 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 212 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 213 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 214 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 215 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 216 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 217 "clk24mhz"); 218 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 219 220 } 221 222 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 223 { 224 uint32_t cpu_suspend_fn; 225 uint32_t cpu_off_fn; 226 uint32_t cpu_on_fn; 227 uint32_t migrate_fn; 228 void *fdt = vbi->fdt; 229 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 230 231 qemu_fdt_add_subnode(fdt, "/psci"); 232 if (armcpu->psci_version == 2) { 233 const char comp[] = "arm,psci-0.2\0arm,psci"; 234 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 235 236 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 237 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 238 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 239 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 240 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 241 } else { 242 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 243 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 244 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 245 } 246 } else { 247 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 248 249 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 250 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 251 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 252 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 253 } 254 255 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 256 * to the instruction that should be used to invoke PSCI functions. 257 * However, the device tree binding uses 'method' instead, so that is 258 * what we should use here. 259 */ 260 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 261 262 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 263 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 264 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 265 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 266 } 267 268 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 269 { 270 /* Note that on A15 h/w these interrupts are level-triggered, 271 * but for the GIC implementation provided by both QEMU and KVM 272 * they are edge-triggered. 273 */ 274 ARMCPU *armcpu; 275 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 276 277 if (gictype == 2) { 278 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 279 GIC_FDT_IRQ_PPI_CPU_WIDTH, 280 (1 << vbi->smp_cpus) - 1); 281 } 282 283 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 284 285 armcpu = ARM_CPU(qemu_get_cpu(0)); 286 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 287 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 288 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 289 compat, sizeof(compat)); 290 } else { 291 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 292 "arm,armv7-timer"); 293 } 294 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 295 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 299 } 300 301 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 302 { 303 int cpu; 304 int addr_cells = 1; 305 306 /* 307 * From Documentation/devicetree/bindings/arm/cpus.txt 308 * On ARM v8 64-bit systems value should be set to 2, 309 * that corresponds to the MPIDR_EL1 register size. 310 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 311 * in the system, #address-cells can be set to 1, since 312 * MPIDR_EL1[63:32] bits are not used for CPUs 313 * identification. 314 * 315 * Here we actually don't know whether our system is 32- or 64-bit one. 316 * The simplest way to go is to examine affinity IDs of all our CPUs. If 317 * at least one of them has Aff3 populated, we set #address-cells to 2. 318 */ 319 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 320 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 321 322 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 323 addr_cells = 2; 324 break; 325 } 326 } 327 328 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 329 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 330 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 331 332 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 333 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 334 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 335 336 qemu_fdt_add_subnode(vbi->fdt, nodename); 337 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 338 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 339 armcpu->dtb_compatible); 340 341 if (vbi->smp_cpus > 1) { 342 qemu_fdt_setprop_string(vbi->fdt, nodename, 343 "enable-method", "psci"); 344 } 345 346 if (addr_cells == 2) { 347 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 348 armcpu->mp_affinity); 349 } else { 350 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 351 armcpu->mp_affinity); 352 } 353 354 g_free(nodename); 355 } 356 } 357 358 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 359 { 360 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 361 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 362 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 363 "arm,gic-v2m-frame"); 364 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 365 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 366 2, vbi->memmap[VIRT_GIC_V2M].base, 367 2, vbi->memmap[VIRT_GIC_V2M].size); 368 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 369 } 370 371 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 372 { 373 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 374 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 375 376 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 377 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 378 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 379 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 380 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 381 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 382 if (type == 3) { 383 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 384 "arm,gic-v3"); 385 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 386 2, vbi->memmap[VIRT_GIC_DIST].base, 387 2, vbi->memmap[VIRT_GIC_DIST].size, 388 2, vbi->memmap[VIRT_GIC_REDIST].base, 389 2, vbi->memmap[VIRT_GIC_REDIST].size); 390 } else { 391 /* 'cortex-a15-gic' means 'GIC v2' */ 392 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 393 "arm,cortex-a15-gic"); 394 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 395 2, vbi->memmap[VIRT_GIC_DIST].base, 396 2, vbi->memmap[VIRT_GIC_DIST].size, 397 2, vbi->memmap[VIRT_GIC_CPU].base, 398 2, vbi->memmap[VIRT_GIC_CPU].size); 399 } 400 401 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 402 } 403 404 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 405 { 406 int i; 407 int irq = vbi->irqmap[VIRT_GIC_V2M]; 408 DeviceState *dev; 409 410 dev = qdev_create(NULL, "arm-gicv2m"); 411 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 412 qdev_prop_set_uint32(dev, "base-spi", irq); 413 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 414 qdev_init_nofail(dev); 415 416 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 417 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 418 } 419 420 fdt_add_v2m_gic_node(vbi); 421 } 422 423 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 424 { 425 /* We create a standalone GIC */ 426 DeviceState *gicdev; 427 SysBusDevice *gicbusdev; 428 const char *gictype; 429 int i; 430 431 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 432 433 gicdev = qdev_create(NULL, gictype); 434 qdev_prop_set_uint32(gicdev, "revision", type); 435 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 436 /* Note that the num-irq property counts both internal and external 437 * interrupts; there are always 32 of the former (mandated by GIC spec). 438 */ 439 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 440 if (!kvm_irqchip_in_kernel()) { 441 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 442 } 443 qdev_init_nofail(gicdev); 444 gicbusdev = SYS_BUS_DEVICE(gicdev); 445 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 446 if (type == 3) { 447 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 448 } else { 449 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 450 } 451 452 /* Wire the outputs from each CPU's generic timer to the 453 * appropriate GIC PPI inputs, and the GIC's IRQ output to 454 * the CPU's IRQ input. 455 */ 456 for (i = 0; i < smp_cpus; i++) { 457 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 458 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 459 int irq; 460 /* Mapping from the output timer irq lines from the CPU to the 461 * GIC PPI inputs we use for the virt board. 462 */ 463 const int timer_irq[] = { 464 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 465 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 466 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 467 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 468 }; 469 470 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 471 qdev_connect_gpio_out(cpudev, irq, 472 qdev_get_gpio_in(gicdev, 473 ppibase + timer_irq[irq])); 474 } 475 476 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 477 sysbus_connect_irq(gicbusdev, i + smp_cpus, 478 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 479 } 480 481 for (i = 0; i < NUM_IRQS; i++) { 482 pic[i] = qdev_get_gpio_in(gicdev, i); 483 } 484 485 fdt_add_gic_node(vbi, type); 486 487 if (type == 2) { 488 create_v2m(vbi, pic); 489 } 490 } 491 492 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 493 { 494 char *nodename; 495 hwaddr base = vbi->memmap[VIRT_UART].base; 496 hwaddr size = vbi->memmap[VIRT_UART].size; 497 int irq = vbi->irqmap[VIRT_UART]; 498 const char compat[] = "arm,pl011\0arm,primecell"; 499 const char clocknames[] = "uartclk\0apb_pclk"; 500 501 sysbus_create_simple("pl011", base, pic[irq]); 502 503 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 504 qemu_fdt_add_subnode(vbi->fdt, nodename); 505 /* Note that we can't use setprop_string because of the embedded NUL */ 506 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 507 compat, sizeof(compat)); 508 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 509 2, base, 2, size); 510 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 511 GIC_FDT_IRQ_TYPE_SPI, irq, 512 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 513 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 514 vbi->clock_phandle, vbi->clock_phandle); 515 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 516 clocknames, sizeof(clocknames)); 517 518 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 519 g_free(nodename); 520 } 521 522 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 523 { 524 char *nodename; 525 hwaddr base = vbi->memmap[VIRT_RTC].base; 526 hwaddr size = vbi->memmap[VIRT_RTC].size; 527 int irq = vbi->irqmap[VIRT_RTC]; 528 const char compat[] = "arm,pl031\0arm,primecell"; 529 530 sysbus_create_simple("pl031", base, pic[irq]); 531 532 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 533 qemu_fdt_add_subnode(vbi->fdt, nodename); 534 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 535 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 536 2, base, 2, size); 537 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 538 GIC_FDT_IRQ_TYPE_SPI, irq, 539 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 540 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 541 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 542 g_free(nodename); 543 } 544 545 static DeviceState *pl061_dev; 546 static void virt_powerdown_req(Notifier *n, void *opaque) 547 { 548 /* use gpio Pin 3 for power button event */ 549 qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1); 550 } 551 552 static Notifier virt_system_powerdown_notifier = { 553 .notify = virt_powerdown_req 554 }; 555 556 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 557 { 558 char *nodename; 559 hwaddr base = vbi->memmap[VIRT_GPIO].base; 560 hwaddr size = vbi->memmap[VIRT_GPIO].size; 561 int irq = vbi->irqmap[VIRT_GPIO]; 562 const char compat[] = "arm,pl061\0arm,primecell"; 563 564 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 565 566 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 567 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 568 qemu_fdt_add_subnode(vbi->fdt, nodename); 569 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 570 2, base, 2, size); 571 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 572 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 573 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 574 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 575 GIC_FDT_IRQ_TYPE_SPI, irq, 576 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 577 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 578 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 579 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 580 581 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 582 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 583 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 584 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 585 586 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 587 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 588 "label", "GPIO Key Poweroff"); 589 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 590 KEY_POWER); 591 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 592 "gpios", phandle, 3, 0); 593 594 /* connect powerdown request */ 595 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 596 597 g_free(nodename); 598 } 599 600 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 601 { 602 int i; 603 hwaddr size = vbi->memmap[VIRT_MMIO].size; 604 605 /* We create the transports in forwards order. Since qbus_realize() 606 * prepends (not appends) new child buses, the incrementing loop below will 607 * create a list of virtio-mmio buses with decreasing base addresses. 608 * 609 * When a -device option is processed from the command line, 610 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 611 * order. The upshot is that -device options in increasing command line 612 * order are mapped to virtio-mmio buses with decreasing base addresses. 613 * 614 * When this code was originally written, that arrangement ensured that the 615 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 616 * the first -device on the command line. (The end-to-end order is a 617 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 618 * guest kernel's name-to-address assignment strategy.) 619 * 620 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 621 * the message, if not necessarily the code, of commit 70161ff336. 622 * Therefore the loop now establishes the inverse of the original intent. 623 * 624 * Unfortunately, we can't counteract the kernel change by reversing the 625 * loop; it would break existing command lines. 626 * 627 * In any case, the kernel makes no guarantee about the stability of 628 * enumeration order of virtio devices (as demonstrated by it changing 629 * between kernel versions). For reliable and stable identification 630 * of disks users must use UUIDs or similar mechanisms. 631 */ 632 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 633 int irq = vbi->irqmap[VIRT_MMIO] + i; 634 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 635 636 sysbus_create_simple("virtio-mmio", base, pic[irq]); 637 } 638 639 /* We add dtb nodes in reverse order so that they appear in the finished 640 * device tree lowest address first. 641 * 642 * Note that this mapping is independent of the loop above. The previous 643 * loop influences virtio device to virtio transport assignment, whereas 644 * this loop controls how virtio transports are laid out in the dtb. 645 */ 646 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 647 char *nodename; 648 int irq = vbi->irqmap[VIRT_MMIO] + i; 649 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 650 651 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 652 qemu_fdt_add_subnode(vbi->fdt, nodename); 653 qemu_fdt_setprop_string(vbi->fdt, nodename, 654 "compatible", "virtio,mmio"); 655 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 656 2, base, 2, size); 657 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 658 GIC_FDT_IRQ_TYPE_SPI, irq, 659 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 660 g_free(nodename); 661 } 662 } 663 664 static void create_one_flash(const char *name, hwaddr flashbase, 665 hwaddr flashsize) 666 { 667 /* Create and map a single flash device. We use the same 668 * parameters as the flash devices on the Versatile Express board. 669 */ 670 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 671 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 672 const uint64_t sectorlength = 256 * 1024; 673 674 if (dinfo) { 675 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 676 &error_abort); 677 } 678 679 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 680 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 681 qdev_prop_set_uint8(dev, "width", 4); 682 qdev_prop_set_uint8(dev, "device-width", 2); 683 qdev_prop_set_bit(dev, "big-endian", false); 684 qdev_prop_set_uint16(dev, "id0", 0x89); 685 qdev_prop_set_uint16(dev, "id1", 0x18); 686 qdev_prop_set_uint16(dev, "id2", 0x00); 687 qdev_prop_set_uint16(dev, "id3", 0x00); 688 qdev_prop_set_string(dev, "name", name); 689 qdev_init_nofail(dev); 690 691 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 692 } 693 694 static void create_flash(const VirtBoardInfo *vbi) 695 { 696 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 697 * Any file passed via -bios goes in the first of these. 698 */ 699 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 700 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 701 char *nodename; 702 703 if (bios_name) { 704 char *fn; 705 int image_size; 706 707 if (drive_get(IF_PFLASH, 0, 0)) { 708 error_report("The contents of the first flash device may be " 709 "specified with -bios or with -drive if=pflash... " 710 "but you cannot use both options at once"); 711 exit(1); 712 } 713 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 714 if (!fn) { 715 error_report("Could not find ROM image '%s'", bios_name); 716 exit(1); 717 } 718 image_size = load_image_targphys(fn, flashbase, flashsize); 719 g_free(fn); 720 if (image_size < 0) { 721 error_report("Could not load ROM image '%s'", bios_name); 722 exit(1); 723 } 724 } 725 726 create_one_flash("virt.flash0", flashbase, flashsize); 727 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 728 729 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 730 qemu_fdt_add_subnode(vbi->fdt, nodename); 731 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 732 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 733 2, flashbase, 2, flashsize, 734 2, flashbase + flashsize, 2, flashsize); 735 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 736 g_free(nodename); 737 } 738 739 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 740 { 741 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 742 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 743 char *nodename; 744 745 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 746 747 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 748 qemu_fdt_add_subnode(vbi->fdt, nodename); 749 qemu_fdt_setprop_string(vbi->fdt, nodename, 750 "compatible", "qemu,fw-cfg-mmio"); 751 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 752 2, base, 2, size); 753 g_free(nodename); 754 } 755 756 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 757 int first_irq, const char *nodename) 758 { 759 int devfn, pin; 760 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 761 uint32_t *irq_map = full_irq_map; 762 763 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 764 for (pin = 0; pin < 4; pin++) { 765 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 766 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 767 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 768 int i; 769 770 uint32_t map[] = { 771 devfn << 8, 0, 0, /* devfn */ 772 pin + 1, /* PCI pin */ 773 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 774 775 /* Convert map to big endian */ 776 for (i = 0; i < 10; i++) { 777 irq_map[i] = cpu_to_be32(map[i]); 778 } 779 irq_map += 10; 780 } 781 } 782 783 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 784 full_irq_map, sizeof(full_irq_map)); 785 786 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 787 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 788 0x7 /* PCI irq */); 789 } 790 791 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 792 bool use_highmem) 793 { 794 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 795 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 796 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 797 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 798 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 799 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 800 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 801 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 802 hwaddr base = base_mmio; 803 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 804 int irq = vbi->irqmap[VIRT_PCIE]; 805 MemoryRegion *mmio_alias; 806 MemoryRegion *mmio_reg; 807 MemoryRegion *ecam_alias; 808 MemoryRegion *ecam_reg; 809 DeviceState *dev; 810 char *nodename; 811 int i; 812 PCIHostState *pci; 813 814 dev = qdev_create(NULL, TYPE_GPEX_HOST); 815 qdev_init_nofail(dev); 816 817 /* Map only the first size_ecam bytes of ECAM space */ 818 ecam_alias = g_new0(MemoryRegion, 1); 819 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 820 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 821 ecam_reg, 0, size_ecam); 822 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 823 824 /* Map the MMIO window into system address space so as to expose 825 * the section of PCI MMIO space which starts at the same base address 826 * (ie 1:1 mapping for that part of PCI MMIO space visible through 827 * the window). 828 */ 829 mmio_alias = g_new0(MemoryRegion, 1); 830 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 831 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 832 mmio_reg, base_mmio, size_mmio); 833 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 834 835 if (use_highmem) { 836 /* Map high MMIO space */ 837 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 838 839 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 840 mmio_reg, base_mmio_high, size_mmio_high); 841 memory_region_add_subregion(get_system_memory(), base_mmio_high, 842 high_mmio_alias); 843 } 844 845 /* Map IO port space */ 846 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 847 848 for (i = 0; i < GPEX_NUM_IRQS; i++) { 849 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 850 } 851 852 pci = PCI_HOST_BRIDGE(dev); 853 if (pci->bus) { 854 for (i = 0; i < nb_nics; i++) { 855 NICInfo *nd = &nd_table[i]; 856 857 if (!nd->model) { 858 nd->model = g_strdup("virtio"); 859 } 860 861 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 862 } 863 } 864 865 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 866 qemu_fdt_add_subnode(vbi->fdt, nodename); 867 qemu_fdt_setprop_string(vbi->fdt, nodename, 868 "compatible", "pci-host-ecam-generic"); 869 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 870 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 871 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 872 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 873 nr_pcie_buses - 1); 874 875 if (vbi->v2m_phandle) { 876 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 877 vbi->v2m_phandle); 878 } 879 880 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 881 2, base_ecam, 2, size_ecam); 882 883 if (use_highmem) { 884 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 885 1, FDT_PCI_RANGE_IOPORT, 2, 0, 886 2, base_pio, 2, size_pio, 887 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 888 2, base_mmio, 2, size_mmio, 889 1, FDT_PCI_RANGE_MMIO_64BIT, 890 2, base_mmio_high, 891 2, base_mmio_high, 2, size_mmio_high); 892 } else { 893 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 894 1, FDT_PCI_RANGE_IOPORT, 2, 0, 895 2, base_pio, 2, size_pio, 896 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 897 2, base_mmio, 2, size_mmio); 898 } 899 900 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 901 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 902 903 g_free(nodename); 904 } 905 906 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 907 { 908 DeviceState *dev; 909 SysBusDevice *s; 910 int i; 911 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 912 MemoryRegion *sysmem = get_system_memory(); 913 914 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 915 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 916 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 917 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 918 919 fdt_params->system_params = &platform_bus_params; 920 fdt_params->binfo = &vbi->bootinfo; 921 fdt_params->intc = "/intc"; 922 /* 923 * register a machine init done notifier that creates the device tree 924 * nodes of the platform bus and its children dynamic sysbus devices 925 */ 926 arm_register_platform_bus_fdt_creator(fdt_params); 927 928 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 929 dev->id = TYPE_PLATFORM_BUS_DEVICE; 930 qdev_prop_set_uint32(dev, "num_irqs", 931 platform_bus_params.platform_bus_num_irqs); 932 qdev_prop_set_uint32(dev, "mmio_size", 933 platform_bus_params.platform_bus_size); 934 qdev_init_nofail(dev); 935 s = SYS_BUS_DEVICE(dev); 936 937 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 938 int irqn = platform_bus_params.platform_bus_first_irq + i; 939 sysbus_connect_irq(s, i, pic[irqn]); 940 } 941 942 memory_region_add_subregion(sysmem, 943 platform_bus_params.platform_bus_base, 944 sysbus_mmio_get_region(s, 0)); 945 } 946 947 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 948 { 949 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 950 951 *fdt_size = board->fdt_size; 952 return board->fdt; 953 } 954 955 static void virt_build_smbios(VirtGuestInfo *guest_info) 956 { 957 FWCfgState *fw_cfg = guest_info->fw_cfg; 958 uint8_t *smbios_tables, *smbios_anchor; 959 size_t smbios_tables_len, smbios_anchor_len; 960 const char *product = "QEMU Virtual Machine"; 961 962 if (!fw_cfg) { 963 return; 964 } 965 966 if (kvm_enabled()) { 967 product = "KVM Virtual Machine"; 968 } 969 970 smbios_set_defaults("QEMU", product, 971 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 972 973 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 974 &smbios_anchor, &smbios_anchor_len); 975 976 if (smbios_anchor) { 977 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 978 smbios_tables, smbios_tables_len); 979 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 980 smbios_anchor, smbios_anchor_len); 981 } 982 } 983 984 static 985 void virt_guest_info_machine_done(Notifier *notifier, void *data) 986 { 987 VirtGuestInfoState *guest_info_state = container_of(notifier, 988 VirtGuestInfoState, machine_done); 989 virt_acpi_setup(&guest_info_state->info); 990 virt_build_smbios(&guest_info_state->info); 991 } 992 993 static void machvirt_init(MachineState *machine) 994 { 995 VirtMachineState *vms = VIRT_MACHINE(machine); 996 qemu_irq pic[NUM_IRQS]; 997 MemoryRegion *sysmem = get_system_memory(); 998 int gic_version = vms->gic_version; 999 int n, max_cpus; 1000 MemoryRegion *ram = g_new(MemoryRegion, 1); 1001 const char *cpu_model = machine->cpu_model; 1002 VirtBoardInfo *vbi; 1003 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1004 VirtGuestInfo *guest_info = &guest_info_state->info; 1005 char **cpustr; 1006 1007 if (!cpu_model) { 1008 cpu_model = "cortex-a15"; 1009 } 1010 1011 /* We can probe only here because during property set 1012 * KVM is not available yet 1013 */ 1014 if (!gic_version) { 1015 gic_version = kvm_arm_vgic_probe(); 1016 if (!gic_version) { 1017 error_report("Unable to determine GIC version supported by host"); 1018 error_printf("KVM acceleration is probably not supported\n"); 1019 exit(1); 1020 } 1021 } 1022 1023 /* Separate the actual CPU model name from any appended features */ 1024 cpustr = g_strsplit(cpu_model, ",", 2); 1025 1026 vbi = find_machine_info(cpustr[0]); 1027 1028 if (!vbi) { 1029 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1030 exit(1); 1031 } 1032 1033 /* The maximum number of CPUs depends on the GIC version, or on how 1034 * many redistributors we can fit into the memory map. 1035 */ 1036 if (gic_version == 3) { 1037 max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1038 } else { 1039 max_cpus = GIC_NCPU; 1040 } 1041 1042 if (smp_cpus > max_cpus) { 1043 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1044 "supported by machine 'mach-virt' (%d)", 1045 smp_cpus, max_cpus); 1046 exit(1); 1047 } 1048 1049 vbi->smp_cpus = smp_cpus; 1050 1051 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1052 error_report("mach-virt: cannot model more than 30GB RAM"); 1053 exit(1); 1054 } 1055 1056 create_fdt(vbi); 1057 1058 for (n = 0; n < smp_cpus; n++) { 1059 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1060 CPUClass *cc = CPU_CLASS(oc); 1061 Object *cpuobj; 1062 Error *err = NULL; 1063 char *cpuopts = g_strdup(cpustr[1]); 1064 1065 if (!oc) { 1066 error_report("Unable to find CPU definition"); 1067 exit(1); 1068 } 1069 cpuobj = object_new(object_class_get_name(oc)); 1070 1071 /* Handle any CPU options specified by the user */ 1072 cc->parse_features(CPU(cpuobj), cpuopts, &err); 1073 g_free(cpuopts); 1074 if (err) { 1075 error_report_err(err); 1076 exit(1); 1077 } 1078 1079 if (!vms->secure) { 1080 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1081 } 1082 1083 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 1084 NULL); 1085 1086 /* Secondary CPUs start in PSCI powered-down state */ 1087 if (n > 0) { 1088 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 1089 } 1090 1091 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1092 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1093 "reset-cbar", &error_abort); 1094 } 1095 1096 object_property_set_bool(cpuobj, true, "realized", NULL); 1097 } 1098 g_strfreev(cpustr); 1099 fdt_add_timer_nodes(vbi, gic_version); 1100 fdt_add_cpu_nodes(vbi); 1101 fdt_add_psci_node(vbi); 1102 1103 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1104 machine->ram_size); 1105 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1106 1107 create_flash(vbi); 1108 1109 create_gic(vbi, pic, gic_version, vms->secure); 1110 1111 create_uart(vbi, pic); 1112 1113 create_rtc(vbi, pic); 1114 1115 create_pcie(vbi, pic, vms->highmem); 1116 1117 create_gpio(vbi, pic); 1118 1119 /* Create mmio transports, so the user can create virtio backends 1120 * (which will be automatically plugged in to the transports). If 1121 * no backend is created the transport will just sit harmlessly idle. 1122 */ 1123 create_virtio_devices(vbi, pic); 1124 1125 create_fw_cfg(vbi, &address_space_memory); 1126 rom_set_fw(fw_cfg_find()); 1127 1128 guest_info->smp_cpus = smp_cpus; 1129 guest_info->fw_cfg = fw_cfg_find(); 1130 guest_info->memmap = vbi->memmap; 1131 guest_info->irqmap = vbi->irqmap; 1132 guest_info->use_highmem = vms->highmem; 1133 guest_info->gic_version = gic_version; 1134 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1135 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1136 1137 vbi->bootinfo.ram_size = machine->ram_size; 1138 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1139 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1140 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1141 vbi->bootinfo.nb_cpus = smp_cpus; 1142 vbi->bootinfo.board_id = -1; 1143 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1144 vbi->bootinfo.get_dtb = machvirt_dtb; 1145 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1146 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1147 1148 /* 1149 * arm_load_kernel machine init done notifier registration must 1150 * happen before the platform_bus_create call. In this latter, 1151 * another notifier is registered which adds platform bus nodes. 1152 * Notifiers are executed in registration reverse order. 1153 */ 1154 create_platform_bus(vbi, pic); 1155 } 1156 1157 static bool virt_get_secure(Object *obj, Error **errp) 1158 { 1159 VirtMachineState *vms = VIRT_MACHINE(obj); 1160 1161 return vms->secure; 1162 } 1163 1164 static void virt_set_secure(Object *obj, bool value, Error **errp) 1165 { 1166 VirtMachineState *vms = VIRT_MACHINE(obj); 1167 1168 vms->secure = value; 1169 } 1170 1171 static bool virt_get_highmem(Object *obj, Error **errp) 1172 { 1173 VirtMachineState *vms = VIRT_MACHINE(obj); 1174 1175 return vms->highmem; 1176 } 1177 1178 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1179 { 1180 VirtMachineState *vms = VIRT_MACHINE(obj); 1181 1182 vms->highmem = value; 1183 } 1184 1185 static char *virt_get_gic_version(Object *obj, Error **errp) 1186 { 1187 VirtMachineState *vms = VIRT_MACHINE(obj); 1188 const char *val = vms->gic_version == 3 ? "3" : "2"; 1189 1190 return g_strdup(val); 1191 } 1192 1193 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1194 { 1195 VirtMachineState *vms = VIRT_MACHINE(obj); 1196 1197 if (!strcmp(value, "3")) { 1198 vms->gic_version = 3; 1199 } else if (!strcmp(value, "2")) { 1200 vms->gic_version = 2; 1201 } else if (!strcmp(value, "host")) { 1202 vms->gic_version = 0; /* Will probe later */ 1203 } else { 1204 error_setg(errp, "Invalid gic-version value"); 1205 error_append_hint(errp, "Valid values are 3, 2, host.\n"); 1206 } 1207 } 1208 1209 static void virt_instance_init(Object *obj) 1210 { 1211 VirtMachineState *vms = VIRT_MACHINE(obj); 1212 1213 /* EL3 is disabled by default on virt: this makes us consistent 1214 * between KVM and TCG for this board, and it also allows us to 1215 * boot UEFI blobs which assume no TrustZone support. 1216 */ 1217 vms->secure = false; 1218 object_property_add_bool(obj, "secure", virt_get_secure, 1219 virt_set_secure, NULL); 1220 object_property_set_description(obj, "secure", 1221 "Set on/off to enable/disable the ARM " 1222 "Security Extensions (TrustZone)", 1223 NULL); 1224 1225 /* High memory is enabled by default */ 1226 vms->highmem = true; 1227 object_property_add_bool(obj, "highmem", virt_get_highmem, 1228 virt_set_highmem, NULL); 1229 object_property_set_description(obj, "highmem", 1230 "Set on/off to enable/disable using " 1231 "physical address space above 32 bits", 1232 NULL); 1233 /* Default GIC type is v2 */ 1234 vms->gic_version = 2; 1235 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1236 virt_set_gic_version, NULL); 1237 object_property_set_description(obj, "gic-version", 1238 "Set GIC version. " 1239 "Valid values are 2, 3 and host", NULL); 1240 } 1241 1242 static void virt_class_init(ObjectClass *oc, void *data) 1243 { 1244 MachineClass *mc = MACHINE_CLASS(oc); 1245 1246 mc->desc = "ARM Virtual Machine", 1247 mc->init = machvirt_init; 1248 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1249 * it later in machvirt_init, where we have more information about the 1250 * configuration of the particular instance. 1251 */ 1252 mc->max_cpus = MAX_CPUMASK_BITS; 1253 mc->has_dynamic_sysbus = true; 1254 mc->block_default_type = IF_VIRTIO; 1255 mc->no_cdrom = 1; 1256 mc->pci_allow_0_address = true; 1257 } 1258 1259 static const TypeInfo machvirt_info = { 1260 .name = TYPE_VIRT_MACHINE, 1261 .parent = TYPE_MACHINE, 1262 .instance_size = sizeof(VirtMachineState), 1263 .instance_init = virt_instance_init, 1264 .class_size = sizeof(VirtMachineClass), 1265 .class_init = virt_class_init, 1266 }; 1267 1268 static void machvirt_machine_init(void) 1269 { 1270 type_register_static(&machvirt_info); 1271 } 1272 1273 machine_init(machvirt_machine_init); 1274