1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/runstate.h" 48 #include "sysemu/tpm.h" 49 #include "sysemu/tcg.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hvf.h" 52 #include "sysemu/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/core/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/intc/arm_gicv3_its_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hvf_arm.h" 70 #include "hw/firmware/smbios.h" 71 #include "qapi/visitor.h" 72 #include "qapi/qapi-visit-common.h" 73 #include "qapi/qmp/qlist.h" 74 #include "standard-headers/linux/input.h" 75 #include "hw/arm/smmuv3.h" 76 #include "hw/acpi/acpi.h" 77 #include "target/arm/cpu-qom.h" 78 #include "target/arm/internals.h" 79 #include "target/arm/multiprocessing.h" 80 #include "target/arm/gtimer.h" 81 #include "hw/mem/pc-dimm.h" 82 #include "hw/mem/nvdimm.h" 83 #include "hw/acpi/generic_event_device.h" 84 #include "hw/virtio/virtio-md-pci.h" 85 #include "hw/virtio/virtio-iommu.h" 86 #include "hw/char/pl011.h" 87 #include "qemu/guest-random.h" 88 89 static GlobalProperty arm_virt_compat[] = { 90 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, 91 }; 92 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); 93 94 /* 95 * This cannot be called from the virt_machine_class_init() because 96 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() 97 * only is called on virt non abstract class init. 98 */ 99 static void arm_virt_compat_set(MachineClass *mc) 100 { 101 compat_props_add(mc->compat_props, arm_virt_compat, 102 arm_virt_compat_len); 103 } 104 105 #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \ 106 static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \ 107 ObjectClass *oc, \ 108 void *data) \ 109 { \ 110 MachineClass *mc = MACHINE_CLASS(oc); \ 111 arm_virt_compat_set(mc); \ 112 MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \ 113 mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \ 114 MACHINE_VER_DEPRECATION(__VA_ARGS__); \ 115 if (latest) { \ 116 mc->alias = "virt"; \ 117 } \ 118 } \ 119 static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \ 120 { \ 121 .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \ 122 .parent = TYPE_VIRT_MACHINE, \ 123 .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \ 124 }; \ 125 static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \ 126 { \ 127 MACHINE_VER_DELETION(__VA_ARGS__); \ 128 type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \ 129 } \ 130 type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__)); 131 132 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 133 DEFINE_VIRT_MACHINE_IMPL(true, major, minor) 134 #define DEFINE_VIRT_MACHINE(major, minor) \ 135 DEFINE_VIRT_MACHINE_IMPL(false, major, minor) 136 137 138 /* Number of external interrupt lines to configure the GIC with */ 139 #define NUM_IRQS 256 140 141 #define PLATFORM_BUS_NUM_IRQS 64 142 143 /* Legacy RAM limit in GB (< version 4.0) */ 144 #define LEGACY_RAMLIMIT_GB 255 145 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 146 147 /* Addresses and sizes of our components. 148 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 149 * 128MB..256MB is used for miscellaneous device I/O. 150 * 256MB..1GB is reserved for possible future PCI support (ie where the 151 * PCI memory window will go if we add a PCI host controller). 152 * 1GB and up is RAM (which may happily spill over into the 153 * high memory region beyond 4GB). 154 * This represents a compromise between how much RAM can be given to 155 * a 32 bit VM and leaving space for expansion and in particular for PCI. 156 * Note that devices should generally be placed at multiples of 0x10000, 157 * to accommodate guests using 64K pages. 158 */ 159 static const MemMapEntry base_memmap[] = { 160 /* Space up to 0x8000000 is reserved for a boot ROM */ 161 [VIRT_FLASH] = { 0, 0x08000000 }, 162 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 163 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 164 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 165 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 166 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 167 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 168 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 169 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 170 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 171 /* This redistributor space allows up to 2*64kB*123 CPUs */ 172 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 173 [VIRT_UART0] = { 0x09000000, 0x00001000 }, 174 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 175 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 176 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 177 [VIRT_UART1] = { 0x09040000, 0x00001000 }, 178 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 179 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 180 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 181 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 182 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 183 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 184 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 185 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 186 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 187 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 188 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 189 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 190 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 191 /* Actual RAM size depends on initial RAM and device memory settings */ 192 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 193 }; 194 195 /* 196 * Highmem IO Regions: This memory map is floating, located after the RAM. 197 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 198 * top of the RAM, so that its base get the same alignment as the size, 199 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 200 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 201 * Note the extended_memmap is sized so that it eventually also includes the 202 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 203 * index of base_memmap). 204 * 205 * The memory map for these Highmem IO Regions can be in legacy or compact 206 * layout, depending on 'compact-highmem' property. With legacy layout, the 207 * PA space for one specific region is always reserved, even if the region 208 * has been disabled or doesn't fit into the PA space. However, the PA space 209 * for the region won't be reserved in these circumstances with compact layout. 210 */ 211 static MemMapEntry extended_memmap[] = { 212 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 213 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 214 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 215 /* Second PCIe window */ 216 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 217 }; 218 219 static const int a15irqmap[] = { 220 [VIRT_UART0] = 1, 221 [VIRT_RTC] = 2, 222 [VIRT_PCIE] = 3, /* ... to 6 */ 223 [VIRT_GPIO] = 7, 224 [VIRT_UART1] = 8, 225 [VIRT_ACPI_GED] = 9, 226 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 227 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 228 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 229 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 230 }; 231 232 static void create_randomness(MachineState *ms, const char *node) 233 { 234 struct { 235 uint64_t kaslr; 236 uint8_t rng[32]; 237 } seed; 238 239 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 240 return; 241 } 242 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 243 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 244 } 245 246 /* 247 * The CPU object always exposes the NS EL2 virt timer IRQ line, 248 * but we don't want to advertise it to the guest in the dtb or ACPI 249 * table unless it's really going to do something. 250 */ 251 static bool ns_el2_virt_timer_present(void) 252 { 253 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 254 CPUARMState *env = &cpu->env; 255 256 return arm_feature(env, ARM_FEATURE_AARCH64) && 257 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); 258 } 259 260 static void create_fdt(VirtMachineState *vms) 261 { 262 MachineState *ms = MACHINE(vms); 263 int nb_numa_nodes = ms->numa_state->num_nodes; 264 void *fdt = create_device_tree(&vms->fdt_size); 265 266 if (!fdt) { 267 error_report("create_device_tree() failed"); 268 exit(1); 269 } 270 271 ms->fdt = fdt; 272 273 /* Header */ 274 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 275 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 276 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 277 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 278 279 /* 280 * For QEMU, all DMA is coherent. Advertising this in the root node 281 * has two benefits: 282 * 283 * - It avoids potential bugs where we forget to mark a DMA 284 * capable device as being dma-coherent 285 * - It avoids spurious warnings from the Linux kernel about 286 * devices which can't do DMA at all 287 */ 288 qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); 289 290 /* /chosen must exist for load_dtb to fill in necessary properties later */ 291 qemu_fdt_add_subnode(fdt, "/chosen"); 292 if (vms->dtb_randomness) { 293 create_randomness(ms, "/chosen"); 294 } 295 296 if (vms->secure) { 297 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 298 if (vms->dtb_randomness) { 299 create_randomness(ms, "/secure-chosen"); 300 } 301 } 302 303 qemu_fdt_add_subnode(fdt, "/aliases"); 304 305 /* Clock node, for the benefit of the UART. The kernel device tree 306 * binding documentation claims the PL011 node clock properties are 307 * optional but in practice if you omit them the kernel refuses to 308 * probe for the device. 309 */ 310 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 311 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 312 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 313 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 314 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 315 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 316 "clk24mhz"); 317 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 318 319 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 320 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 321 uint32_t *matrix = g_malloc0(size); 322 int idx, i, j; 323 324 for (i = 0; i < nb_numa_nodes; i++) { 325 for (j = 0; j < nb_numa_nodes; j++) { 326 idx = (i * nb_numa_nodes + j) * 3; 327 matrix[idx + 0] = cpu_to_be32(i); 328 matrix[idx + 1] = cpu_to_be32(j); 329 matrix[idx + 2] = 330 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 331 } 332 } 333 334 qemu_fdt_add_subnode(fdt, "/distance-map"); 335 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 336 "numa-distance-map-v1"); 337 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 338 matrix, size); 339 g_free(matrix); 340 } 341 } 342 343 static void fdt_add_timer_nodes(const VirtMachineState *vms) 344 { 345 /* On real hardware these interrupts are level-triggered. 346 * On KVM they were edge-triggered before host kernel version 4.4, 347 * and level-triggered afterwards. 348 * On emulated QEMU they are level-triggered. 349 * 350 * Getting the DTB info about them wrong is awkward for some 351 * guest kernels: 352 * pre-4.8 ignore the DT and leave the interrupt configured 353 * with whatever the GIC reset value (or the bootloader) left it at 354 * 4.8 before rc6 honour the incorrect data by programming it back 355 * into the GIC, causing problems 356 * 4.8rc6 and later ignore the DT and always write "level triggered" 357 * into the GIC 358 * 359 * For backwards-compatibility, virt-2.8 and earlier will continue 360 * to say these are edge-triggered, but later machines will report 361 * the correct information. 362 */ 363 ARMCPU *armcpu; 364 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 365 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 366 MachineState *ms = MACHINE(vms); 367 368 if (vmc->claim_edge_triggered_timers) { 369 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 370 } 371 372 if (vms->gic_version == VIRT_GIC_VERSION_2) { 373 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 374 GIC_FDT_IRQ_PPI_CPU_WIDTH, 375 (1 << MACHINE(vms)->smp.cpus) - 1); 376 } 377 378 qemu_fdt_add_subnode(ms->fdt, "/timer"); 379 380 armcpu = ARM_CPU(qemu_get_cpu(0)); 381 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 382 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 383 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 384 compat, sizeof(compat)); 385 } else { 386 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 387 "arm,armv7-timer"); 388 } 389 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 390 if (vms->ns_el2_virt_timer_irq) { 391 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 392 GIC_FDT_IRQ_TYPE_PPI, 393 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 394 GIC_FDT_IRQ_TYPE_PPI, 395 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 396 GIC_FDT_IRQ_TYPE_PPI, 397 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 398 GIC_FDT_IRQ_TYPE_PPI, 399 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, 400 GIC_FDT_IRQ_TYPE_PPI, 401 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); 402 } else { 403 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 404 GIC_FDT_IRQ_TYPE_PPI, 405 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 406 GIC_FDT_IRQ_TYPE_PPI, 407 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 408 GIC_FDT_IRQ_TYPE_PPI, 409 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 410 GIC_FDT_IRQ_TYPE_PPI, 411 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 412 } 413 } 414 415 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 416 { 417 int cpu; 418 int addr_cells = 1; 419 const MachineState *ms = MACHINE(vms); 420 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 421 int smp_cpus = ms->smp.cpus; 422 423 /* 424 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 425 * On ARM v8 64-bit systems value should be set to 2, 426 * that corresponds to the MPIDR_EL1 register size. 427 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 428 * in the system, #address-cells can be set to 1, since 429 * MPIDR_EL1[63:32] bits are not used for CPUs 430 * identification. 431 * 432 * Here we actually don't know whether our system is 32- or 64-bit one. 433 * The simplest way to go is to examine affinity IDs of all our CPUs. If 434 * at least one of them has Aff3 populated, we set #address-cells to 2. 435 */ 436 for (cpu = 0; cpu < smp_cpus; cpu++) { 437 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 438 439 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { 440 addr_cells = 2; 441 break; 442 } 443 } 444 445 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 446 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 447 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 448 449 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 450 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 451 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 452 CPUState *cs = CPU(armcpu); 453 454 qemu_fdt_add_subnode(ms->fdt, nodename); 455 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 456 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 457 armcpu->dtb_compatible); 458 459 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 460 qemu_fdt_setprop_string(ms->fdt, nodename, 461 "enable-method", "psci"); 462 } 463 464 if (addr_cells == 2) { 465 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 466 arm_cpu_mp_affinity(armcpu)); 467 } else { 468 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 469 arm_cpu_mp_affinity(armcpu)); 470 } 471 472 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 473 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 474 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 475 } 476 477 if (!vmc->no_cpu_topology) { 478 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 479 qemu_fdt_alloc_phandle(ms->fdt)); 480 } 481 482 g_free(nodename); 483 } 484 485 if (!vmc->no_cpu_topology) { 486 /* 487 * Add vCPU topology description through fdt node cpu-map. 488 * 489 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 490 * In a SMP system, the hierarchy of CPUs can be defined through 491 * four entities that are used to describe the layout of CPUs in 492 * the system: socket/cluster/core/thread. 493 * 494 * A socket node represents the boundary of system physical package 495 * and its child nodes must be one or more cluster nodes. A system 496 * can contain several layers of clustering within a single physical 497 * package and cluster nodes can be contained in parent cluster nodes. 498 * 499 * Note: currently we only support one layer of clustering within 500 * each physical package. 501 */ 502 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 503 504 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 505 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 506 char *map_path; 507 508 if (ms->smp.threads > 1) { 509 map_path = g_strdup_printf( 510 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 511 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 512 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 513 (cpu / ms->smp.threads) % ms->smp.cores, 514 cpu % ms->smp.threads); 515 } else { 516 map_path = g_strdup_printf( 517 "/cpus/cpu-map/socket%d/cluster%d/core%d", 518 cpu / (ms->smp.clusters * ms->smp.cores), 519 (cpu / ms->smp.cores) % ms->smp.clusters, 520 cpu % ms->smp.cores); 521 } 522 qemu_fdt_add_path(ms->fdt, map_path); 523 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 524 525 g_free(map_path); 526 g_free(cpu_path); 527 } 528 } 529 } 530 531 static void fdt_add_its_gic_node(VirtMachineState *vms) 532 { 533 char *nodename; 534 MachineState *ms = MACHINE(vms); 535 536 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 537 nodename = g_strdup_printf("/intc/its@%" PRIx64, 538 vms->memmap[VIRT_GIC_ITS].base); 539 qemu_fdt_add_subnode(ms->fdt, nodename); 540 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 541 "arm,gic-v3-its"); 542 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 543 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 544 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 545 2, vms->memmap[VIRT_GIC_ITS].base, 546 2, vms->memmap[VIRT_GIC_ITS].size); 547 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 548 g_free(nodename); 549 } 550 551 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 552 { 553 MachineState *ms = MACHINE(vms); 554 char *nodename; 555 556 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 557 vms->memmap[VIRT_GIC_V2M].base); 558 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 559 qemu_fdt_add_subnode(ms->fdt, nodename); 560 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 561 "arm,gic-v2m-frame"); 562 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 563 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 564 2, vms->memmap[VIRT_GIC_V2M].base, 565 2, vms->memmap[VIRT_GIC_V2M].size); 566 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 567 g_free(nodename); 568 } 569 570 static void fdt_add_gic_node(VirtMachineState *vms) 571 { 572 MachineState *ms = MACHINE(vms); 573 char *nodename; 574 575 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 576 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 577 578 nodename = g_strdup_printf("/intc@%" PRIx64, 579 vms->memmap[VIRT_GIC_DIST].base); 580 qemu_fdt_add_subnode(ms->fdt, nodename); 581 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 582 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 583 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 584 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 585 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 586 if (vms->gic_version != VIRT_GIC_VERSION_2) { 587 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 588 589 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 590 "arm,gic-v3"); 591 592 qemu_fdt_setprop_cell(ms->fdt, nodename, 593 "#redistributor-regions", nb_redist_regions); 594 595 if (nb_redist_regions == 1) { 596 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 597 2, vms->memmap[VIRT_GIC_DIST].base, 598 2, vms->memmap[VIRT_GIC_DIST].size, 599 2, vms->memmap[VIRT_GIC_REDIST].base, 600 2, vms->memmap[VIRT_GIC_REDIST].size); 601 } else { 602 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 603 2, vms->memmap[VIRT_GIC_DIST].base, 604 2, vms->memmap[VIRT_GIC_DIST].size, 605 2, vms->memmap[VIRT_GIC_REDIST].base, 606 2, vms->memmap[VIRT_GIC_REDIST].size, 607 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 608 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 609 } 610 611 if (vms->virt) { 612 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 613 GIC_FDT_IRQ_TYPE_PPI, 614 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 615 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 616 } 617 } else { 618 /* 'cortex-a15-gic' means 'GIC v2' */ 619 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 620 "arm,cortex-a15-gic"); 621 if (!vms->virt) { 622 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 623 2, vms->memmap[VIRT_GIC_DIST].base, 624 2, vms->memmap[VIRT_GIC_DIST].size, 625 2, vms->memmap[VIRT_GIC_CPU].base, 626 2, vms->memmap[VIRT_GIC_CPU].size); 627 } else { 628 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 629 2, vms->memmap[VIRT_GIC_DIST].base, 630 2, vms->memmap[VIRT_GIC_DIST].size, 631 2, vms->memmap[VIRT_GIC_CPU].base, 632 2, vms->memmap[VIRT_GIC_CPU].size, 633 2, vms->memmap[VIRT_GIC_HYP].base, 634 2, vms->memmap[VIRT_GIC_HYP].size, 635 2, vms->memmap[VIRT_GIC_VCPU].base, 636 2, vms->memmap[VIRT_GIC_VCPU].size); 637 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 638 GIC_FDT_IRQ_TYPE_PPI, 639 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 640 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 641 } 642 } 643 644 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 645 g_free(nodename); 646 } 647 648 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 649 { 650 ARMCPU *armcpu = ARM_CPU(first_cpu); 651 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 652 MachineState *ms = MACHINE(vms); 653 654 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 655 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 656 return; 657 } 658 659 if (vms->gic_version == VIRT_GIC_VERSION_2) { 660 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 661 GIC_FDT_IRQ_PPI_CPU_WIDTH, 662 (1 << MACHINE(vms)->smp.cpus) - 1); 663 } 664 665 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 666 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 667 const char compat[] = "arm,armv8-pmuv3"; 668 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 669 compat, sizeof(compat)); 670 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 671 GIC_FDT_IRQ_TYPE_PPI, 672 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 673 } 674 } 675 676 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 677 { 678 DeviceState *dev; 679 MachineState *ms = MACHINE(vms); 680 int irq = vms->irqmap[VIRT_ACPI_GED]; 681 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 682 683 if (ms->ram_slots) { 684 event |= ACPI_GED_MEM_HOTPLUG_EVT; 685 } 686 687 if (ms->nvdimms_state->is_enabled) { 688 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 689 } 690 691 dev = qdev_new(TYPE_ACPI_GED); 692 qdev_prop_set_uint32(dev, "ged-event", event); 693 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 694 695 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 696 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 697 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 698 699 return dev; 700 } 701 702 static void create_its(VirtMachineState *vms) 703 { 704 const char *itsclass = its_class_name(); 705 DeviceState *dev; 706 707 if (!strcmp(itsclass, "arm-gicv3-its")) { 708 if (!vms->tcg_its) { 709 itsclass = NULL; 710 } 711 } 712 713 if (!itsclass) { 714 /* Do nothing if not supported */ 715 return; 716 } 717 718 dev = qdev_new(itsclass); 719 720 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 721 &error_abort); 722 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 723 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 724 725 fdt_add_its_gic_node(vms); 726 vms->msi_controller = VIRT_MSI_CTRL_ITS; 727 } 728 729 static void create_v2m(VirtMachineState *vms) 730 { 731 int i; 732 int irq = vms->irqmap[VIRT_GIC_V2M]; 733 DeviceState *dev; 734 735 dev = qdev_new("arm-gicv2m"); 736 qdev_prop_set_uint32(dev, "base-spi", irq); 737 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 738 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 739 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 740 741 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 742 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 743 qdev_get_gpio_in(vms->gic, irq + i)); 744 } 745 746 fdt_add_v2m_gic_node(vms); 747 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 748 } 749 750 /* 751 * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. 752 * It's permitted to have a configuration with NMI in the CPU (and thus the 753 * GICv3 CPU interface) but not in the distributor/redistributors, but it's 754 * not very useful. 755 */ 756 static bool gicv3_nmi_present(VirtMachineState *vms) 757 { 758 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 759 760 return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && 761 (vms->gic_version != VIRT_GIC_VERSION_2); 762 } 763 764 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 765 { 766 MachineState *ms = MACHINE(vms); 767 /* We create a standalone GIC */ 768 SysBusDevice *gicbusdev; 769 const char *gictype; 770 int i; 771 unsigned int smp_cpus = ms->smp.cpus; 772 uint32_t nb_redist_regions = 0; 773 int revision; 774 775 if (vms->gic_version == VIRT_GIC_VERSION_2) { 776 gictype = gic_class_name(); 777 } else { 778 gictype = gicv3_class_name(); 779 } 780 781 switch (vms->gic_version) { 782 case VIRT_GIC_VERSION_2: 783 revision = 2; 784 break; 785 case VIRT_GIC_VERSION_3: 786 revision = 3; 787 break; 788 case VIRT_GIC_VERSION_4: 789 revision = 4; 790 break; 791 default: 792 g_assert_not_reached(); 793 } 794 vms->gic = qdev_new(gictype); 795 qdev_prop_set_uint32(vms->gic, "revision", revision); 796 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 797 /* Note that the num-irq property counts both internal and external 798 * interrupts; there are always 32 of the former (mandated by GIC spec). 799 */ 800 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 801 if (!kvm_irqchip_in_kernel()) { 802 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 803 } 804 805 if (vms->gic_version != VIRT_GIC_VERSION_2) { 806 QList *redist_region_count; 807 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 808 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 809 810 nb_redist_regions = virt_gicv3_redist_region_count(vms); 811 812 redist_region_count = qlist_new(); 813 qlist_append_int(redist_region_count, redist0_count); 814 if (nb_redist_regions == 2) { 815 uint32_t redist1_capacity = 816 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 817 818 qlist_append_int(redist_region_count, 819 MIN(smp_cpus - redist0_count, redist1_capacity)); 820 } 821 qdev_prop_set_array(vms->gic, "redist-region-count", 822 redist_region_count); 823 824 if (!kvm_irqchip_in_kernel()) { 825 if (vms->tcg_its) { 826 object_property_set_link(OBJECT(vms->gic), "sysmem", 827 OBJECT(mem), &error_fatal); 828 qdev_prop_set_bit(vms->gic, "has-lpi", true); 829 } 830 } 831 } else { 832 if (!kvm_irqchip_in_kernel()) { 833 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 834 vms->virt); 835 } 836 } 837 838 if (gicv3_nmi_present(vms)) { 839 qdev_prop_set_bit(vms->gic, "has-nmi", true); 840 } 841 842 gicbusdev = SYS_BUS_DEVICE(vms->gic); 843 sysbus_realize_and_unref(gicbusdev, &error_fatal); 844 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 845 if (vms->gic_version != VIRT_GIC_VERSION_2) { 846 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 847 if (nb_redist_regions == 2) { 848 sysbus_mmio_map(gicbusdev, 2, 849 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 850 } 851 } else { 852 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 853 if (vms->virt) { 854 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 855 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 856 } 857 } 858 859 /* Wire the outputs from each CPU's generic timer and the GICv3 860 * maintenance interrupt signal to the appropriate GIC PPI inputs, 861 * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the 862 * CPU's inputs. 863 */ 864 for (i = 0; i < smp_cpus; i++) { 865 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 866 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 867 /* Mapping from the output timer irq lines from the CPU to the 868 * GIC PPI inputs we use for the virt board. 869 */ 870 const int timer_irq[] = { 871 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 872 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 873 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 874 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 875 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 876 }; 877 878 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 879 qdev_connect_gpio_out(cpudev, irq, 880 qdev_get_gpio_in(vms->gic, 881 intidbase + timer_irq[irq])); 882 } 883 884 if (vms->gic_version != VIRT_GIC_VERSION_2) { 885 qemu_irq irq = qdev_get_gpio_in(vms->gic, 886 intidbase + ARCH_GIC_MAINT_IRQ); 887 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 888 0, irq); 889 } else if (vms->virt) { 890 qemu_irq irq = qdev_get_gpio_in(vms->gic, 891 intidbase + ARCH_GIC_MAINT_IRQ); 892 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 893 } 894 895 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 896 qdev_get_gpio_in(vms->gic, intidbase 897 + VIRTUAL_PMU_IRQ)); 898 899 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 900 sysbus_connect_irq(gicbusdev, i + smp_cpus, 901 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 902 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 903 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 904 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 905 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 906 907 if (vms->gic_version != VIRT_GIC_VERSION_2) { 908 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, 909 qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); 910 sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, 911 qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); 912 } 913 } 914 915 fdt_add_gic_node(vms); 916 917 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 918 create_its(vms); 919 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 920 create_v2m(vms); 921 } 922 } 923 924 static void create_uart(const VirtMachineState *vms, int uart, 925 MemoryRegion *mem, Chardev *chr, bool secure) 926 { 927 char *nodename; 928 hwaddr base = vms->memmap[uart].base; 929 hwaddr size = vms->memmap[uart].size; 930 int irq = vms->irqmap[uart]; 931 const char compat[] = "arm,pl011\0arm,primecell"; 932 const char clocknames[] = "uartclk\0apb_pclk"; 933 DeviceState *dev = qdev_new(TYPE_PL011); 934 SysBusDevice *s = SYS_BUS_DEVICE(dev); 935 MachineState *ms = MACHINE(vms); 936 937 qdev_prop_set_chr(dev, "chardev", chr); 938 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 939 memory_region_add_subregion(mem, base, 940 sysbus_mmio_get_region(s, 0)); 941 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 942 943 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 944 qemu_fdt_add_subnode(ms->fdt, nodename); 945 /* Note that we can't use setprop_string because of the embedded NUL */ 946 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 947 compat, sizeof(compat)); 948 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 949 2, base, 2, size); 950 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 951 GIC_FDT_IRQ_TYPE_SPI, irq, 952 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 953 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 954 vms->clock_phandle, vms->clock_phandle); 955 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 956 clocknames, sizeof(clocknames)); 957 958 if (uart == VIRT_UART0) { 959 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 960 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); 961 } else { 962 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); 963 } 964 if (secure) { 965 /* Mark as not usable by the normal world */ 966 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 967 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 968 969 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 970 nodename); 971 } 972 973 g_free(nodename); 974 } 975 976 static void create_rtc(const VirtMachineState *vms) 977 { 978 char *nodename; 979 hwaddr base = vms->memmap[VIRT_RTC].base; 980 hwaddr size = vms->memmap[VIRT_RTC].size; 981 int irq = vms->irqmap[VIRT_RTC]; 982 const char compat[] = "arm,pl031\0arm,primecell"; 983 MachineState *ms = MACHINE(vms); 984 985 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 986 987 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 988 qemu_fdt_add_subnode(ms->fdt, nodename); 989 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 990 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 991 2, base, 2, size); 992 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 993 GIC_FDT_IRQ_TYPE_SPI, irq, 994 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 995 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 996 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 997 g_free(nodename); 998 } 999 1000 static DeviceState *gpio_key_dev; 1001 static void virt_powerdown_req(Notifier *n, void *opaque) 1002 { 1003 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 1004 1005 if (s->acpi_dev) { 1006 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 1007 } else { 1008 /* use gpio Pin for power button event */ 1009 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 1010 } 1011 } 1012 1013 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 1014 uint32_t phandle) 1015 { 1016 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 1017 qdev_get_gpio_in(pl061_dev, 1018 GPIO_PIN_POWER_BUTTON)); 1019 1020 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 1021 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 1022 1023 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 1024 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 1025 "label", "GPIO Key Poweroff"); 1026 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 1027 KEY_POWER); 1028 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 1029 "gpios", phandle, GPIO_PIN_POWER_BUTTON, 0); 1030 } 1031 1032 #define SECURE_GPIO_POWEROFF 0 1033 #define SECURE_GPIO_RESET 1 1034 1035 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 1036 uint32_t phandle) 1037 { 1038 DeviceState *gpio_pwr_dev; 1039 1040 /* gpio-pwr */ 1041 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 1042 1043 /* connect secure pl061 to gpio-pwr */ 1044 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 1045 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 1046 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 1047 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 1048 1049 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 1050 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 1051 "gpio-poweroff"); 1052 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 1053 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 1054 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 1055 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 1056 "okay"); 1057 1058 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 1059 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 1060 "gpio-restart"); 1061 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 1062 "gpios", phandle, SECURE_GPIO_RESET, 0); 1063 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 1064 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 1065 "okay"); 1066 } 1067 1068 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 1069 MemoryRegion *mem) 1070 { 1071 char *nodename; 1072 DeviceState *pl061_dev; 1073 hwaddr base = vms->memmap[gpio].base; 1074 hwaddr size = vms->memmap[gpio].size; 1075 int irq = vms->irqmap[gpio]; 1076 const char compat[] = "arm,pl061\0arm,primecell"; 1077 SysBusDevice *s; 1078 MachineState *ms = MACHINE(vms); 1079 1080 pl061_dev = qdev_new("pl061"); 1081 /* Pull lines down to 0 if not driven by the PL061 */ 1082 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1083 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1084 s = SYS_BUS_DEVICE(pl061_dev); 1085 sysbus_realize_and_unref(s, &error_fatal); 1086 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1087 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1088 1089 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1090 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1091 qemu_fdt_add_subnode(ms->fdt, nodename); 1092 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1093 2, base, 2, size); 1094 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1095 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1096 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1097 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1098 GIC_FDT_IRQ_TYPE_SPI, irq, 1099 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1100 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1101 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1102 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1103 1104 if (gpio != VIRT_GPIO) { 1105 /* Mark as not usable by the normal world */ 1106 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1107 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1108 } 1109 g_free(nodename); 1110 1111 /* Child gpio devices */ 1112 if (gpio == VIRT_GPIO) { 1113 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1114 } else { 1115 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1116 } 1117 } 1118 1119 static void create_virtio_devices(const VirtMachineState *vms) 1120 { 1121 int i; 1122 hwaddr size = vms->memmap[VIRT_MMIO].size; 1123 MachineState *ms = MACHINE(vms); 1124 1125 /* We create the transports in forwards order. Since qbus_realize() 1126 * prepends (not appends) new child buses, the incrementing loop below will 1127 * create a list of virtio-mmio buses with decreasing base addresses. 1128 * 1129 * When a -device option is processed from the command line, 1130 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1131 * order. The upshot is that -device options in increasing command line 1132 * order are mapped to virtio-mmio buses with decreasing base addresses. 1133 * 1134 * When this code was originally written, that arrangement ensured that the 1135 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1136 * the first -device on the command line. (The end-to-end order is a 1137 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1138 * guest kernel's name-to-address assignment strategy.) 1139 * 1140 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1141 * the message, if not necessarily the code, of commit 70161ff336. 1142 * Therefore the loop now establishes the inverse of the original intent. 1143 * 1144 * Unfortunately, we can't counteract the kernel change by reversing the 1145 * loop; it would break existing command lines. 1146 * 1147 * In any case, the kernel makes no guarantee about the stability of 1148 * enumeration order of virtio devices (as demonstrated by it changing 1149 * between kernel versions). For reliable and stable identification 1150 * of disks users must use UUIDs or similar mechanisms. 1151 */ 1152 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1153 int irq = vms->irqmap[VIRT_MMIO] + i; 1154 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1155 1156 sysbus_create_simple("virtio-mmio", base, 1157 qdev_get_gpio_in(vms->gic, irq)); 1158 } 1159 1160 /* We add dtb nodes in reverse order so that they appear in the finished 1161 * device tree lowest address first. 1162 * 1163 * Note that this mapping is independent of the loop above. The previous 1164 * loop influences virtio device to virtio transport assignment, whereas 1165 * this loop controls how virtio transports are laid out in the dtb. 1166 */ 1167 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1168 char *nodename; 1169 int irq = vms->irqmap[VIRT_MMIO] + i; 1170 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1171 1172 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1173 qemu_fdt_add_subnode(ms->fdt, nodename); 1174 qemu_fdt_setprop_string(ms->fdt, nodename, 1175 "compatible", "virtio,mmio"); 1176 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1177 2, base, 2, size); 1178 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1179 GIC_FDT_IRQ_TYPE_SPI, irq, 1180 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1181 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1182 g_free(nodename); 1183 } 1184 } 1185 1186 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1187 1188 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1189 const char *name, 1190 const char *alias_prop_name) 1191 { 1192 /* 1193 * Create a single flash device. We use the same parameters as 1194 * the flash devices on the Versatile Express board. 1195 */ 1196 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1197 1198 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1199 qdev_prop_set_uint8(dev, "width", 4); 1200 qdev_prop_set_uint8(dev, "device-width", 2); 1201 qdev_prop_set_bit(dev, "big-endian", false); 1202 qdev_prop_set_uint16(dev, "id0", 0x89); 1203 qdev_prop_set_uint16(dev, "id1", 0x18); 1204 qdev_prop_set_uint16(dev, "id2", 0x00); 1205 qdev_prop_set_uint16(dev, "id3", 0x00); 1206 qdev_prop_set_string(dev, "name", name); 1207 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1208 object_property_add_alias(OBJECT(vms), alias_prop_name, 1209 OBJECT(dev), "drive"); 1210 return PFLASH_CFI01(dev); 1211 } 1212 1213 static void virt_flash_create(VirtMachineState *vms) 1214 { 1215 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1216 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1217 } 1218 1219 static void virt_flash_map1(PFlashCFI01 *flash, 1220 hwaddr base, hwaddr size, 1221 MemoryRegion *sysmem) 1222 { 1223 DeviceState *dev = DEVICE(flash); 1224 1225 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1226 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1227 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1228 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1229 1230 memory_region_add_subregion(sysmem, base, 1231 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1232 0)); 1233 } 1234 1235 static void virt_flash_map(VirtMachineState *vms, 1236 MemoryRegion *sysmem, 1237 MemoryRegion *secure_sysmem) 1238 { 1239 /* 1240 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1241 * sysmem is the system memory space. secure_sysmem is the secure view 1242 * of the system, and the first flash device should be made visible only 1243 * there. The second flash device is visible to both secure and nonsecure. 1244 * If sysmem == secure_sysmem this means there is no separate Secure 1245 * address space and both flash devices are generally visible. 1246 */ 1247 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1248 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1249 1250 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1251 secure_sysmem); 1252 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1253 sysmem); 1254 } 1255 1256 static void virt_flash_fdt(VirtMachineState *vms, 1257 MemoryRegion *sysmem, 1258 MemoryRegion *secure_sysmem) 1259 { 1260 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1261 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1262 MachineState *ms = MACHINE(vms); 1263 char *nodename; 1264 1265 if (sysmem == secure_sysmem) { 1266 /* Report both flash devices as a single node in the DT */ 1267 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1268 qemu_fdt_add_subnode(ms->fdt, nodename); 1269 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1270 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1271 2, flashbase, 2, flashsize, 1272 2, flashbase + flashsize, 2, flashsize); 1273 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1274 g_free(nodename); 1275 } else { 1276 /* 1277 * Report the devices as separate nodes so we can mark one as 1278 * only visible to the secure world. 1279 */ 1280 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1281 qemu_fdt_add_subnode(ms->fdt, nodename); 1282 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1283 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1284 2, flashbase, 2, flashsize); 1285 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1286 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1287 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1288 g_free(nodename); 1289 1290 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1291 qemu_fdt_add_subnode(ms->fdt, nodename); 1292 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1293 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1294 2, flashbase + flashsize, 2, flashsize); 1295 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1296 g_free(nodename); 1297 } 1298 } 1299 1300 static bool virt_firmware_init(VirtMachineState *vms, 1301 MemoryRegion *sysmem, 1302 MemoryRegion *secure_sysmem) 1303 { 1304 int i; 1305 const char *bios_name; 1306 BlockBackend *pflash_blk0; 1307 1308 /* Map legacy -drive if=pflash to machine properties */ 1309 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1310 pflash_cfi01_legacy_drive(vms->flash[i], 1311 drive_get(IF_PFLASH, 0, i)); 1312 } 1313 1314 virt_flash_map(vms, sysmem, secure_sysmem); 1315 1316 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1317 1318 bios_name = MACHINE(vms)->firmware; 1319 if (bios_name) { 1320 char *fname; 1321 MemoryRegion *mr; 1322 int image_size; 1323 1324 if (pflash_blk0) { 1325 error_report("The contents of the first flash device may be " 1326 "specified with -bios or with -drive if=pflash... " 1327 "but you cannot use both options at once"); 1328 exit(1); 1329 } 1330 1331 /* Fall back to -bios */ 1332 1333 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1334 if (!fname) { 1335 error_report("Could not find ROM image '%s'", bios_name); 1336 exit(1); 1337 } 1338 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1339 image_size = load_image_mr(fname, mr); 1340 g_free(fname); 1341 if (image_size < 0) { 1342 error_report("Could not load ROM image '%s'", bios_name); 1343 exit(1); 1344 } 1345 } 1346 1347 return pflash_blk0 || bios_name; 1348 } 1349 1350 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1351 { 1352 MachineState *ms = MACHINE(vms); 1353 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1354 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1355 FWCfgState *fw_cfg; 1356 char *nodename; 1357 1358 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1359 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1360 1361 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1362 qemu_fdt_add_subnode(ms->fdt, nodename); 1363 qemu_fdt_setprop_string(ms->fdt, nodename, 1364 "compatible", "qemu,fw-cfg-mmio"); 1365 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1366 2, base, 2, size); 1367 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1368 g_free(nodename); 1369 return fw_cfg; 1370 } 1371 1372 static void create_pcie_irq_map(const MachineState *ms, 1373 uint32_t gic_phandle, 1374 int first_irq, const char *nodename) 1375 { 1376 int devfn, pin; 1377 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1378 uint32_t *irq_map = full_irq_map; 1379 1380 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1381 for (pin = 0; pin < 4; pin++) { 1382 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1383 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1384 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1385 int i; 1386 1387 uint32_t map[] = { 1388 devfn << 8, 0, 0, /* devfn */ 1389 pin + 1, /* PCI pin */ 1390 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1391 1392 /* Convert map to big endian */ 1393 for (i = 0; i < 10; i++) { 1394 irq_map[i] = cpu_to_be32(map[i]); 1395 } 1396 irq_map += 10; 1397 } 1398 } 1399 1400 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1401 full_irq_map, sizeof(full_irq_map)); 1402 1403 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1404 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1405 0, 0, 1406 0x7 /* PCI irq */); 1407 } 1408 1409 static void create_smmu(const VirtMachineState *vms, 1410 PCIBus *bus) 1411 { 1412 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1413 char *node; 1414 const char compat[] = "arm,smmu-v3"; 1415 int irq = vms->irqmap[VIRT_SMMU]; 1416 int i; 1417 hwaddr base = vms->memmap[VIRT_SMMU].base; 1418 hwaddr size = vms->memmap[VIRT_SMMU].size; 1419 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1420 DeviceState *dev; 1421 MachineState *ms = MACHINE(vms); 1422 1423 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1424 return; 1425 } 1426 1427 dev = qdev_new(TYPE_ARM_SMMUV3); 1428 1429 if (!vmc->no_nested_smmu) { 1430 object_property_set_str(OBJECT(dev), "stage", "nested", &error_fatal); 1431 } 1432 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1433 &error_abort); 1434 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1435 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1436 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1437 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1438 qdev_get_gpio_in(vms->gic, irq + i)); 1439 } 1440 1441 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1442 qemu_fdt_add_subnode(ms->fdt, node); 1443 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1444 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1445 1446 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1447 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1448 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1449 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1450 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1451 1452 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1453 sizeof(irq_names)); 1454 1455 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1456 1457 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1458 1459 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1460 g_free(node); 1461 } 1462 1463 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1464 { 1465 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1466 uint16_t bdf = vms->virtio_iommu_bdf; 1467 MachineState *ms = MACHINE(vms); 1468 char *node; 1469 1470 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1471 1472 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1473 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1474 qemu_fdt_add_subnode(ms->fdt, node); 1475 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1476 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1477 1, bdf << 8, 1, 0, 1, 0, 1478 1, 0, 1, 0); 1479 1480 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1481 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1482 g_free(node); 1483 1484 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1485 0x0, vms->iommu_phandle, 0x0, bdf, 1486 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1487 } 1488 1489 static void create_pcie(VirtMachineState *vms) 1490 { 1491 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1492 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1493 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1494 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1495 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1496 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1497 hwaddr base_ecam, size_ecam; 1498 hwaddr base = base_mmio; 1499 int nr_pcie_buses; 1500 int irq = vms->irqmap[VIRT_PCIE]; 1501 MemoryRegion *mmio_alias; 1502 MemoryRegion *mmio_reg; 1503 MemoryRegion *ecam_alias; 1504 MemoryRegion *ecam_reg; 1505 DeviceState *dev; 1506 char *nodename; 1507 int i, ecam_id; 1508 PCIHostState *pci; 1509 MachineState *ms = MACHINE(vms); 1510 MachineClass *mc = MACHINE_GET_CLASS(ms); 1511 1512 dev = qdev_new(TYPE_GPEX_HOST); 1513 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1514 1515 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1516 base_ecam = vms->memmap[ecam_id].base; 1517 size_ecam = vms->memmap[ecam_id].size; 1518 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1519 /* Map only the first size_ecam bytes of ECAM space */ 1520 ecam_alias = g_new0(MemoryRegion, 1); 1521 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1522 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1523 ecam_reg, 0, size_ecam); 1524 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1525 1526 /* Map the MMIO window into system address space so as to expose 1527 * the section of PCI MMIO space which starts at the same base address 1528 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1529 * the window). 1530 */ 1531 mmio_alias = g_new0(MemoryRegion, 1); 1532 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1533 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1534 mmio_reg, base_mmio, size_mmio); 1535 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1536 1537 if (vms->highmem_mmio) { 1538 /* Map high MMIO space */ 1539 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1540 1541 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1542 mmio_reg, base_mmio_high, size_mmio_high); 1543 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1544 high_mmio_alias); 1545 } 1546 1547 /* Map IO port space */ 1548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1549 1550 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1551 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1552 qdev_get_gpio_in(vms->gic, irq + i)); 1553 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1554 } 1555 1556 pci = PCI_HOST_BRIDGE(dev); 1557 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1558 vms->bus = pci->bus; 1559 if (vms->bus) { 1560 pci_init_nic_devices(pci->bus, mc->default_nic); 1561 } 1562 1563 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1564 qemu_fdt_add_subnode(ms->fdt, nodename); 1565 qemu_fdt_setprop_string(ms->fdt, nodename, 1566 "compatible", "pci-host-ecam-generic"); 1567 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1568 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1569 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1570 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1571 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1572 nr_pcie_buses - 1); 1573 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1574 1575 if (vms->msi_phandle) { 1576 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1577 0, vms->msi_phandle, 0, 0x10000); 1578 } 1579 1580 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1581 2, base_ecam, 2, size_ecam); 1582 1583 if (vms->highmem_mmio) { 1584 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1585 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1586 2, base_pio, 2, size_pio, 1587 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1588 2, base_mmio, 2, size_mmio, 1589 1, FDT_PCI_RANGE_MMIO_64BIT, 1590 2, base_mmio_high, 1591 2, base_mmio_high, 2, size_mmio_high); 1592 } else { 1593 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1594 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1595 2, base_pio, 2, size_pio, 1596 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1597 2, base_mmio, 2, size_mmio); 1598 } 1599 1600 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1601 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1602 1603 if (vms->iommu) { 1604 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1605 1606 switch (vms->iommu) { 1607 case VIRT_IOMMU_SMMUV3: 1608 create_smmu(vms, vms->bus); 1609 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1610 0x0, vms->iommu_phandle, 0x0, 0x10000); 1611 break; 1612 default: 1613 g_assert_not_reached(); 1614 } 1615 } 1616 } 1617 1618 static void create_platform_bus(VirtMachineState *vms) 1619 { 1620 DeviceState *dev; 1621 SysBusDevice *s; 1622 int i; 1623 MemoryRegion *sysmem = get_system_memory(); 1624 1625 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1626 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1627 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1628 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1629 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1630 vms->platform_bus_dev = dev; 1631 1632 s = SYS_BUS_DEVICE(dev); 1633 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1634 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1635 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1636 } 1637 1638 memory_region_add_subregion(sysmem, 1639 vms->memmap[VIRT_PLATFORM_BUS].base, 1640 sysbus_mmio_get_region(s, 0)); 1641 } 1642 1643 static void create_tag_ram(MemoryRegion *tag_sysmem, 1644 hwaddr base, hwaddr size, 1645 const char *name) 1646 { 1647 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1648 1649 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1650 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1651 } 1652 1653 static void create_secure_ram(VirtMachineState *vms, 1654 MemoryRegion *secure_sysmem, 1655 MemoryRegion *secure_tag_sysmem) 1656 { 1657 MemoryRegion *secram = g_new(MemoryRegion, 1); 1658 char *nodename; 1659 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1660 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1661 MachineState *ms = MACHINE(vms); 1662 1663 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1664 &error_fatal); 1665 memory_region_add_subregion(secure_sysmem, base, secram); 1666 1667 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1668 qemu_fdt_add_subnode(ms->fdt, nodename); 1669 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1670 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1671 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1672 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1673 1674 if (secure_tag_sysmem) { 1675 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1676 } 1677 1678 g_free(nodename); 1679 } 1680 1681 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1682 { 1683 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1684 bootinfo); 1685 MachineState *ms = MACHINE(board); 1686 1687 1688 *fdt_size = board->fdt_size; 1689 return ms->fdt; 1690 } 1691 1692 static void virt_build_smbios(VirtMachineState *vms) 1693 { 1694 MachineClass *mc = MACHINE_GET_CLASS(vms); 1695 MachineState *ms = MACHINE(vms); 1696 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1697 uint8_t *smbios_tables, *smbios_anchor; 1698 size_t smbios_tables_len, smbios_anchor_len; 1699 struct smbios_phys_mem_area mem_array; 1700 const char *product = "QEMU Virtual Machine"; 1701 1702 if (kvm_enabled()) { 1703 product = "KVM Virtual Machine"; 1704 } 1705 1706 smbios_set_defaults("QEMU", product, 1707 vmc->smbios_old_sys_ver ? "1.0" : mc->name); 1708 1709 /* build the array of physical mem area from base_memmap */ 1710 mem_array.address = vms->memmap[VIRT_MEM].base; 1711 mem_array.length = ms->ram_size; 1712 1713 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, 1714 &smbios_tables, &smbios_tables_len, 1715 &smbios_anchor, &smbios_anchor_len, 1716 &error_fatal); 1717 1718 if (smbios_anchor) { 1719 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1720 smbios_tables, smbios_tables_len); 1721 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1722 smbios_anchor, smbios_anchor_len); 1723 } 1724 } 1725 1726 static 1727 void virt_machine_done(Notifier *notifier, void *data) 1728 { 1729 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1730 machine_done); 1731 MachineState *ms = MACHINE(vms); 1732 ARMCPU *cpu = ARM_CPU(first_cpu); 1733 struct arm_boot_info *info = &vms->bootinfo; 1734 AddressSpace *as = arm_boot_address_space(cpu, info); 1735 1736 /* 1737 * If the user provided a dtb, we assume the dynamic sysbus nodes 1738 * already are integrated there. This corresponds to a use case where 1739 * the dynamic sysbus nodes are complex and their generation is not yet 1740 * supported. In that case the user can take charge of the guest dt 1741 * while qemu takes charge of the qom stuff. 1742 */ 1743 if (info->dtb_filename == NULL) { 1744 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1745 vms->memmap[VIRT_PLATFORM_BUS].base, 1746 vms->memmap[VIRT_PLATFORM_BUS].size, 1747 vms->irqmap[VIRT_PLATFORM_BUS]); 1748 } 1749 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1750 exit(1); 1751 } 1752 1753 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1754 1755 virt_acpi_setup(vms); 1756 virt_build_smbios(vms); 1757 } 1758 1759 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1760 { 1761 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1762 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1763 1764 if (!vmc->disallow_affinity_adjustment) { 1765 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1766 * GIC's target-list limitations. 32-bit KVM hosts currently 1767 * always create clusters of 4 CPUs, but that is expected to 1768 * change when they gain support for gicv3. When KVM is enabled 1769 * it will override the changes we make here, therefore our 1770 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1771 * and to improve SGI efficiency. 1772 */ 1773 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1774 clustersz = GIC_TARGETLIST_BITS; 1775 } else { 1776 clustersz = GICV3_TARGETLIST_BITS; 1777 } 1778 } 1779 return arm_build_mp_affinity(idx, clustersz); 1780 } 1781 1782 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1783 int index) 1784 { 1785 bool *enabled_array[] = { 1786 &vms->highmem_redists, 1787 &vms->highmem_ecam, 1788 &vms->highmem_mmio, 1789 }; 1790 1791 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1792 ARRAY_SIZE(enabled_array)); 1793 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1794 1795 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1796 } 1797 1798 static void virt_set_high_memmap(VirtMachineState *vms, 1799 hwaddr base, int pa_bits) 1800 { 1801 hwaddr region_base, region_size; 1802 bool *region_enabled, fits; 1803 int i; 1804 1805 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1806 region_enabled = virt_get_high_memmap_enabled(vms, i); 1807 region_base = ROUND_UP(base, extended_memmap[i].size); 1808 region_size = extended_memmap[i].size; 1809 1810 vms->memmap[i].base = region_base; 1811 vms->memmap[i].size = region_size; 1812 1813 /* 1814 * Check each device to see if it fits in the PA space, 1815 * moving highest_gpa as we go. For compatibility, move 1816 * highest_gpa for disabled fitting devices as well, if 1817 * the compact layout has been disabled. 1818 * 1819 * For each device that doesn't fit, disable it. 1820 */ 1821 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1822 *region_enabled &= fits; 1823 if (vms->highmem_compact && !*region_enabled) { 1824 continue; 1825 } 1826 1827 base = region_base + region_size; 1828 if (fits) { 1829 vms->highest_gpa = base - 1; 1830 } 1831 } 1832 } 1833 1834 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1835 { 1836 MachineState *ms = MACHINE(vms); 1837 hwaddr base, device_memory_base, device_memory_size, memtop; 1838 int i; 1839 1840 vms->memmap = extended_memmap; 1841 1842 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1843 vms->memmap[i] = base_memmap[i]; 1844 } 1845 1846 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1847 error_report("unsupported number of memory slots: %"PRIu64, 1848 ms->ram_slots); 1849 exit(EXIT_FAILURE); 1850 } 1851 1852 /* 1853 * !highmem is exactly the same as limiting the PA space to 32bit, 1854 * irrespective of the underlying capabilities of the HW. 1855 */ 1856 if (!vms->highmem) { 1857 pa_bits = 32; 1858 } 1859 1860 /* 1861 * We compute the base of the high IO region depending on the 1862 * amount of initial and device memory. The device memory start/size 1863 * is aligned on 1GiB. We never put the high IO region below 256GiB 1864 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1865 * The device region size assumes 1GiB page max alignment per slot. 1866 */ 1867 device_memory_base = 1868 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1869 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1870 1871 /* Base address of the high IO region */ 1872 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1873 if (memtop > BIT_ULL(pa_bits)) { 1874 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", 1875 pa_bits, memtop - BIT_ULL(pa_bits)); 1876 exit(EXIT_FAILURE); 1877 } 1878 if (base < device_memory_base) { 1879 error_report("maxmem/slots too huge"); 1880 exit(EXIT_FAILURE); 1881 } 1882 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1883 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1884 } 1885 1886 /* We know for sure that at least the memory fits in the PA space */ 1887 vms->highest_gpa = memtop - 1; 1888 1889 virt_set_high_memmap(vms, base, pa_bits); 1890 1891 if (device_memory_size > 0) { 1892 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1893 } 1894 } 1895 1896 static VirtGICType finalize_gic_version_do(const char *accel_name, 1897 VirtGICType gic_version, 1898 int gics_supported, 1899 unsigned int max_cpus) 1900 { 1901 /* Convert host/max/nosel to GIC version number */ 1902 switch (gic_version) { 1903 case VIRT_GIC_VERSION_HOST: 1904 if (!kvm_enabled()) { 1905 error_report("gic-version=host requires KVM"); 1906 exit(1); 1907 } 1908 1909 /* For KVM, gic-version=host means gic-version=max */ 1910 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1911 gics_supported, max_cpus); 1912 case VIRT_GIC_VERSION_MAX: 1913 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1914 gic_version = VIRT_GIC_VERSION_4; 1915 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1916 gic_version = VIRT_GIC_VERSION_3; 1917 } else { 1918 gic_version = VIRT_GIC_VERSION_2; 1919 } 1920 break; 1921 case VIRT_GIC_VERSION_NOSEL: 1922 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1923 max_cpus <= GIC_NCPU) { 1924 gic_version = VIRT_GIC_VERSION_2; 1925 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1926 /* 1927 * in case the host does not support v2 emulation or 1928 * the end-user requested more than 8 VCPUs we now default 1929 * to v3. In any case defaulting to v2 would be broken. 1930 */ 1931 gic_version = VIRT_GIC_VERSION_3; 1932 } else if (max_cpus > GIC_NCPU) { 1933 error_report("%s only supports GICv2 emulation but more than 8 " 1934 "vcpus are requested", accel_name); 1935 exit(1); 1936 } 1937 break; 1938 case VIRT_GIC_VERSION_2: 1939 case VIRT_GIC_VERSION_3: 1940 case VIRT_GIC_VERSION_4: 1941 break; 1942 } 1943 1944 /* Check chosen version is effectively supported */ 1945 switch (gic_version) { 1946 case VIRT_GIC_VERSION_2: 1947 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1948 error_report("%s does not support GICv2 emulation", accel_name); 1949 exit(1); 1950 } 1951 break; 1952 case VIRT_GIC_VERSION_3: 1953 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1954 error_report("%s does not support GICv3 emulation", accel_name); 1955 exit(1); 1956 } 1957 break; 1958 case VIRT_GIC_VERSION_4: 1959 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1960 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1961 accel_name); 1962 exit(1); 1963 } 1964 break; 1965 default: 1966 error_report("logic error in finalize_gic_version"); 1967 exit(1); 1968 break; 1969 } 1970 1971 return gic_version; 1972 } 1973 1974 /* 1975 * finalize_gic_version - Determines the final gic_version 1976 * according to the gic-version property 1977 * 1978 * Default GIC type is v2 1979 */ 1980 static void finalize_gic_version(VirtMachineState *vms) 1981 { 1982 const char *accel_name = current_accel_name(); 1983 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1984 int gics_supported = 0; 1985 1986 /* Determine which GIC versions the current environment supports */ 1987 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1988 int probe_bitmap = kvm_arm_vgic_probe(); 1989 1990 if (!probe_bitmap) { 1991 error_report("Unable to determine GIC version supported by host"); 1992 exit(1); 1993 } 1994 1995 if (probe_bitmap & KVM_ARM_VGIC_V2) { 1996 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1997 } 1998 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1999 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2000 } 2001 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 2002 /* KVM w/o kernel irqchip can only deal with GICv2 */ 2003 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2004 accel_name = "KVM with kernel-irqchip=off"; 2005 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 2006 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2007 if (module_object_class_by_name("arm-gicv3")) { 2008 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2009 if (vms->virt) { 2010 /* GICv4 only makes sense if CPU has EL2 */ 2011 gics_supported |= VIRT_GIC_VERSION_4_MASK; 2012 } 2013 } 2014 } else { 2015 error_report("Unsupported accelerator, can not determine GIC support"); 2016 exit(1); 2017 } 2018 2019 /* 2020 * Then convert helpers like host/max to concrete GIC versions and ensure 2021 * the desired version is supported 2022 */ 2023 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 2024 gics_supported, max_cpus); 2025 } 2026 2027 /* 2028 * virt_cpu_post_init() must be called after the CPUs have 2029 * been realized and the GIC has been created. 2030 */ 2031 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 2032 { 2033 int max_cpus = MACHINE(vms)->smp.max_cpus; 2034 bool aarch64, pmu, steal_time; 2035 CPUState *cpu; 2036 2037 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 2038 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 2039 steal_time = object_property_get_bool(OBJECT(first_cpu), 2040 "kvm-steal-time", NULL); 2041 2042 if (kvm_enabled()) { 2043 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 2044 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 2045 2046 if (steal_time) { 2047 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 2048 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 2049 2050 /* The memory region size must be a multiple of host page size. */ 2051 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 2052 2053 if (pvtime_size > pvtime_reg_size) { 2054 error_report("pvtime requires a %" HWADDR_PRId 2055 " byte memory region for %d CPUs," 2056 " but only %" HWADDR_PRId " has been reserved", 2057 pvtime_size, max_cpus, pvtime_reg_size); 2058 exit(1); 2059 } 2060 2061 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 2062 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 2063 } 2064 2065 CPU_FOREACH(cpu) { 2066 if (pmu) { 2067 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 2068 if (kvm_irqchip_in_kernel()) { 2069 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 2070 } 2071 kvm_arm_pmu_init(ARM_CPU(cpu)); 2072 } 2073 if (steal_time) { 2074 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 2075 + cpu->cpu_index 2076 * PVTIME_SIZE_PER_CPU); 2077 } 2078 } 2079 } else { 2080 if (aarch64 && vms->highmem) { 2081 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2082 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2083 2084 if (pamax < requested_pa_size) { 2085 error_report("VCPU supports less PA bits (%d) than " 2086 "requested by the memory map (%d)", 2087 pamax, requested_pa_size); 2088 exit(1); 2089 } 2090 } 2091 } 2092 } 2093 2094 static void machvirt_init(MachineState *machine) 2095 { 2096 VirtMachineState *vms = VIRT_MACHINE(machine); 2097 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2098 MachineClass *mc = MACHINE_GET_CLASS(machine); 2099 const CPUArchIdList *possible_cpus; 2100 MemoryRegion *sysmem = get_system_memory(); 2101 MemoryRegion *secure_sysmem = NULL; 2102 MemoryRegion *tag_sysmem = NULL; 2103 MemoryRegion *secure_tag_sysmem = NULL; 2104 int n, virt_max_cpus; 2105 bool firmware_loaded; 2106 bool aarch64 = true; 2107 bool has_ged = !vmc->no_ged; 2108 unsigned int smp_cpus = machine->smp.cpus; 2109 unsigned int max_cpus = machine->smp.max_cpus; 2110 2111 possible_cpus = mc->possible_cpu_arch_ids(machine); 2112 2113 /* 2114 * In accelerated mode, the memory map is computed earlier in kvm_type() 2115 * for Linux, or hvf_get_physical_address_range() for macOS to create a 2116 * VM with the right number of IPA bits. 2117 */ 2118 if (!vms->memmap) { 2119 Object *cpuobj; 2120 ARMCPU *armcpu; 2121 int pa_bits; 2122 2123 /* 2124 * Instantiate a temporary CPU object to find out about what 2125 * we are about to deal with. Once this is done, get rid of 2126 * the object. 2127 */ 2128 cpuobj = object_new(possible_cpus->cpus[0].type); 2129 armcpu = ARM_CPU(cpuobj); 2130 2131 pa_bits = arm_pamax(armcpu); 2132 2133 object_unref(cpuobj); 2134 2135 virt_set_memmap(vms, pa_bits); 2136 } 2137 2138 /* We can probe only here because during property set 2139 * KVM is not available yet 2140 */ 2141 finalize_gic_version(vms); 2142 2143 if (vms->secure) { 2144 /* 2145 * The Secure view of the world is the same as the NonSecure, 2146 * but with a few extra devices. Create it as a container region 2147 * containing the system memory at low priority; any secure-only 2148 * devices go in at higher priority and take precedence. 2149 */ 2150 secure_sysmem = g_new(MemoryRegion, 1); 2151 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2152 UINT64_MAX); 2153 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2154 } 2155 2156 firmware_loaded = virt_firmware_init(vms, sysmem, 2157 secure_sysmem ?: sysmem); 2158 2159 /* If we have an EL3 boot ROM then the assumption is that it will 2160 * implement PSCI itself, so disable QEMU's internal implementation 2161 * so it doesn't get in the way. Instead of starting secondary 2162 * CPUs in PSCI powerdown state we will start them all running and 2163 * let the boot ROM sort them out. 2164 * The usual case is that we do use QEMU's PSCI implementation; 2165 * if the guest has EL2 then we will use SMC as the conduit, 2166 * and otherwise we will use HVC (for backwards compatibility and 2167 * because if we're using KVM then we must use HVC). 2168 */ 2169 if (vms->secure && firmware_loaded) { 2170 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2171 } else if (vms->virt) { 2172 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2173 } else { 2174 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2175 } 2176 2177 /* 2178 * The maximum number of CPUs depends on the GIC version, or on how 2179 * many redistributors we can fit into the memory map (which in turn 2180 * depends on whether this is a GICv3 or v4). 2181 */ 2182 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2183 virt_max_cpus = GIC_NCPU; 2184 } else { 2185 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2186 if (vms->highmem_redists) { 2187 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2188 } 2189 } 2190 2191 if (max_cpus > virt_max_cpus) { 2192 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2193 "supported by machine 'mach-virt' (%d)", 2194 max_cpus, virt_max_cpus); 2195 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2196 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2197 } 2198 2199 exit(1); 2200 } 2201 2202 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2203 error_report("mach-virt: %s does not support providing " 2204 "Security extensions (TrustZone) to the guest CPU", 2205 current_accel_name()); 2206 exit(1); 2207 } 2208 2209 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2210 error_report("mach-virt: %s does not support providing " 2211 "Virtualization extensions to the guest CPU", 2212 current_accel_name()); 2213 exit(1); 2214 } 2215 2216 if (vms->mte && (kvm_enabled() || hvf_enabled())) { 2217 error_report("mach-virt: %s does not support providing " 2218 "MTE to the guest CPU", 2219 current_accel_name()); 2220 exit(1); 2221 } 2222 2223 create_fdt(vms); 2224 2225 assert(possible_cpus->len == max_cpus); 2226 for (n = 0; n < possible_cpus->len; n++) { 2227 Object *cpuobj; 2228 CPUState *cs; 2229 2230 if (n >= smp_cpus) { 2231 break; 2232 } 2233 2234 cpuobj = object_new(possible_cpus->cpus[n].type); 2235 object_property_set_int(cpuobj, "mp-affinity", 2236 possible_cpus->cpus[n].arch_id, NULL); 2237 2238 cs = CPU(cpuobj); 2239 cs->cpu_index = n; 2240 2241 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2242 &error_fatal); 2243 2244 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2245 2246 if (!vms->secure) { 2247 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2248 } 2249 2250 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2251 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2252 } 2253 2254 if (vmc->kvm_no_adjvtime && 2255 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2256 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2257 } 2258 2259 if (vmc->no_kvm_steal_time && 2260 object_property_find(cpuobj, "kvm-steal-time")) { 2261 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2262 } 2263 2264 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2265 object_property_set_bool(cpuobj, "pmu", false, NULL); 2266 } 2267 2268 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2269 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2270 } 2271 2272 if (object_property_find(cpuobj, "reset-cbar")) { 2273 object_property_set_int(cpuobj, "reset-cbar", 2274 vms->memmap[VIRT_CPUPERIPHS].base, 2275 &error_abort); 2276 } 2277 2278 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2279 &error_abort); 2280 if (vms->secure) { 2281 object_property_set_link(cpuobj, "secure-memory", 2282 OBJECT(secure_sysmem), &error_abort); 2283 } 2284 2285 if (vms->mte) { 2286 /* Create the memory region only once, but link to all cpus. */ 2287 if (!tag_sysmem) { 2288 /* 2289 * The property exists only if MemTag is supported. 2290 * If it is, we must allocate the ram to back that up. 2291 */ 2292 if (!object_property_find(cpuobj, "tag-memory")) { 2293 error_report("MTE requested, but not supported " 2294 "by the guest CPU"); 2295 exit(1); 2296 } 2297 2298 tag_sysmem = g_new(MemoryRegion, 1); 2299 memory_region_init(tag_sysmem, OBJECT(machine), 2300 "tag-memory", UINT64_MAX / 32); 2301 2302 if (vms->secure) { 2303 secure_tag_sysmem = g_new(MemoryRegion, 1); 2304 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2305 "secure-tag-memory", UINT64_MAX / 32); 2306 2307 /* As with ram, secure-tag takes precedence over tag. */ 2308 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2309 tag_sysmem, -1); 2310 } 2311 } 2312 2313 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2314 &error_abort); 2315 if (vms->secure) { 2316 object_property_set_link(cpuobj, "secure-tag-memory", 2317 OBJECT(secure_tag_sysmem), 2318 &error_abort); 2319 } 2320 } 2321 2322 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2323 object_unref(cpuobj); 2324 } 2325 2326 /* Now we've created the CPUs we can see if they have the hypvirt timer */ 2327 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && 2328 !vmc->no_ns_el2_virt_timer_irq; 2329 2330 fdt_add_timer_nodes(vms); 2331 fdt_add_cpu_nodes(vms); 2332 2333 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2334 machine->ram); 2335 2336 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2337 2338 create_gic(vms, sysmem); 2339 2340 virt_cpu_post_init(vms, sysmem); 2341 2342 fdt_add_pmu_nodes(vms); 2343 2344 /* 2345 * The first UART always exists. If the security extensions are 2346 * enabled, the second UART also always exists. Otherwise, it only exists 2347 * if a backend is configured explicitly via '-serial <backend>'. 2348 * This avoids potentially breaking existing user setups that expect 2349 * only one NonSecure UART to be present (for instance, older EDK2 2350 * binaries). 2351 * 2352 * The nodes end up in the DTB in reverse order of creation, so we must 2353 * create UART0 last to ensure it appears as the first node in the DTB, 2354 * for compatibility with guest software that just iterates through the 2355 * DTB to find the first UART, as older versions of EDK2 do. 2356 * DTB readers that follow the spec, as Linux does, should honour the 2357 * aliases node information and /chosen/stdout-path regardless of 2358 * the order that nodes appear in the DTB. 2359 * 2360 * For similar back-compatibility reasons, if UART1 is the secure UART 2361 * we create it second (and so it appears first in the DTB), because 2362 * that's what QEMU has always done. 2363 */ 2364 if (!vms->secure) { 2365 Chardev *serial1 = serial_hd(1); 2366 2367 if (serial1) { 2368 vms->second_ns_uart_present = true; 2369 create_uart(vms, VIRT_UART1, sysmem, serial1, false); 2370 } 2371 } 2372 create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); 2373 if (vms->secure) { 2374 create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); 2375 } 2376 2377 if (vms->secure) { 2378 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2379 } 2380 2381 if (tag_sysmem) { 2382 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2383 machine->ram_size, "mach-virt.tag"); 2384 } 2385 2386 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2387 2388 create_rtc(vms); 2389 2390 create_pcie(vms); 2391 2392 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2393 vms->acpi_dev = create_acpi_ged(vms); 2394 } else { 2395 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2396 } 2397 2398 if (vms->secure && !vmc->no_secure_gpio) { 2399 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2400 } 2401 2402 /* connect powerdown request */ 2403 vms->powerdown_notifier.notify = virt_powerdown_req; 2404 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2405 2406 /* Create mmio transports, so the user can create virtio backends 2407 * (which will be automatically plugged in to the transports). If 2408 * no backend is created the transport will just sit harmlessly idle. 2409 */ 2410 create_virtio_devices(vms); 2411 2412 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2413 rom_set_fw(vms->fw_cfg); 2414 2415 create_platform_bus(vms); 2416 2417 if (machine->nvdimms_state->is_enabled) { 2418 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2419 .space_id = AML_AS_SYSTEM_MEMORY, 2420 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2421 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2422 }; 2423 2424 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2425 arm_virt_nvdimm_acpi_dsmio, 2426 vms->fw_cfg, OBJECT(vms)); 2427 } 2428 2429 vms->bootinfo.ram_size = machine->ram_size; 2430 vms->bootinfo.board_id = -1; 2431 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2432 vms->bootinfo.get_dtb = machvirt_dtb; 2433 vms->bootinfo.skip_dtb_autoload = true; 2434 vms->bootinfo.firmware_loaded = firmware_loaded; 2435 vms->bootinfo.psci_conduit = vms->psci_conduit; 2436 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2437 2438 vms->machine_done.notify = virt_machine_done; 2439 qemu_add_machine_init_done_notifier(&vms->machine_done); 2440 } 2441 2442 static bool virt_get_secure(Object *obj, Error **errp) 2443 { 2444 VirtMachineState *vms = VIRT_MACHINE(obj); 2445 2446 return vms->secure; 2447 } 2448 2449 static void virt_set_secure(Object *obj, bool value, Error **errp) 2450 { 2451 VirtMachineState *vms = VIRT_MACHINE(obj); 2452 2453 vms->secure = value; 2454 } 2455 2456 static bool virt_get_virt(Object *obj, Error **errp) 2457 { 2458 VirtMachineState *vms = VIRT_MACHINE(obj); 2459 2460 return vms->virt; 2461 } 2462 2463 static void virt_set_virt(Object *obj, bool value, Error **errp) 2464 { 2465 VirtMachineState *vms = VIRT_MACHINE(obj); 2466 2467 vms->virt = value; 2468 } 2469 2470 static bool virt_get_highmem(Object *obj, Error **errp) 2471 { 2472 VirtMachineState *vms = VIRT_MACHINE(obj); 2473 2474 return vms->highmem; 2475 } 2476 2477 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2478 { 2479 VirtMachineState *vms = VIRT_MACHINE(obj); 2480 2481 vms->highmem = value; 2482 } 2483 2484 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2485 { 2486 VirtMachineState *vms = VIRT_MACHINE(obj); 2487 2488 return vms->highmem_compact; 2489 } 2490 2491 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2492 { 2493 VirtMachineState *vms = VIRT_MACHINE(obj); 2494 2495 vms->highmem_compact = value; 2496 } 2497 2498 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2499 { 2500 VirtMachineState *vms = VIRT_MACHINE(obj); 2501 2502 return vms->highmem_redists; 2503 } 2504 2505 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2506 { 2507 VirtMachineState *vms = VIRT_MACHINE(obj); 2508 2509 vms->highmem_redists = value; 2510 } 2511 2512 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2513 { 2514 VirtMachineState *vms = VIRT_MACHINE(obj); 2515 2516 return vms->highmem_ecam; 2517 } 2518 2519 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2520 { 2521 VirtMachineState *vms = VIRT_MACHINE(obj); 2522 2523 vms->highmem_ecam = value; 2524 } 2525 2526 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2527 { 2528 VirtMachineState *vms = VIRT_MACHINE(obj); 2529 2530 return vms->highmem_mmio; 2531 } 2532 2533 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2534 { 2535 VirtMachineState *vms = VIRT_MACHINE(obj); 2536 2537 vms->highmem_mmio = value; 2538 } 2539 2540 2541 static bool virt_get_its(Object *obj, Error **errp) 2542 { 2543 VirtMachineState *vms = VIRT_MACHINE(obj); 2544 2545 return vms->its; 2546 } 2547 2548 static void virt_set_its(Object *obj, bool value, Error **errp) 2549 { 2550 VirtMachineState *vms = VIRT_MACHINE(obj); 2551 2552 vms->its = value; 2553 } 2554 2555 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2556 { 2557 VirtMachineState *vms = VIRT_MACHINE(obj); 2558 2559 return vms->dtb_randomness; 2560 } 2561 2562 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2563 { 2564 VirtMachineState *vms = VIRT_MACHINE(obj); 2565 2566 vms->dtb_randomness = value; 2567 } 2568 2569 static char *virt_get_oem_id(Object *obj, Error **errp) 2570 { 2571 VirtMachineState *vms = VIRT_MACHINE(obj); 2572 2573 return g_strdup(vms->oem_id); 2574 } 2575 2576 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2577 { 2578 VirtMachineState *vms = VIRT_MACHINE(obj); 2579 size_t len = strlen(value); 2580 2581 if (len > 6) { 2582 error_setg(errp, 2583 "User specified oem-id value is bigger than 6 bytes in size"); 2584 return; 2585 } 2586 2587 strncpy(vms->oem_id, value, 6); 2588 } 2589 2590 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2591 { 2592 VirtMachineState *vms = VIRT_MACHINE(obj); 2593 2594 return g_strdup(vms->oem_table_id); 2595 } 2596 2597 static void virt_set_oem_table_id(Object *obj, const char *value, 2598 Error **errp) 2599 { 2600 VirtMachineState *vms = VIRT_MACHINE(obj); 2601 size_t len = strlen(value); 2602 2603 if (len > 8) { 2604 error_setg(errp, 2605 "User specified oem-table-id value is bigger than 8 bytes in size"); 2606 return; 2607 } 2608 strncpy(vms->oem_table_id, value, 8); 2609 } 2610 2611 2612 bool virt_is_acpi_enabled(VirtMachineState *vms) 2613 { 2614 if (vms->acpi == ON_OFF_AUTO_OFF) { 2615 return false; 2616 } 2617 return true; 2618 } 2619 2620 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2621 void *opaque, Error **errp) 2622 { 2623 VirtMachineState *vms = VIRT_MACHINE(obj); 2624 OnOffAuto acpi = vms->acpi; 2625 2626 visit_type_OnOffAuto(v, name, &acpi, errp); 2627 } 2628 2629 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2630 void *opaque, Error **errp) 2631 { 2632 VirtMachineState *vms = VIRT_MACHINE(obj); 2633 2634 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2635 } 2636 2637 static bool virt_get_ras(Object *obj, Error **errp) 2638 { 2639 VirtMachineState *vms = VIRT_MACHINE(obj); 2640 2641 return vms->ras; 2642 } 2643 2644 static void virt_set_ras(Object *obj, bool value, Error **errp) 2645 { 2646 VirtMachineState *vms = VIRT_MACHINE(obj); 2647 2648 vms->ras = value; 2649 } 2650 2651 static bool virt_get_mte(Object *obj, Error **errp) 2652 { 2653 VirtMachineState *vms = VIRT_MACHINE(obj); 2654 2655 return vms->mte; 2656 } 2657 2658 static void virt_set_mte(Object *obj, bool value, Error **errp) 2659 { 2660 VirtMachineState *vms = VIRT_MACHINE(obj); 2661 2662 vms->mte = value; 2663 } 2664 2665 static char *virt_get_gic_version(Object *obj, Error **errp) 2666 { 2667 VirtMachineState *vms = VIRT_MACHINE(obj); 2668 const char *val; 2669 2670 switch (vms->gic_version) { 2671 case VIRT_GIC_VERSION_4: 2672 val = "4"; 2673 break; 2674 case VIRT_GIC_VERSION_3: 2675 val = "3"; 2676 break; 2677 default: 2678 val = "2"; 2679 break; 2680 } 2681 return g_strdup(val); 2682 } 2683 2684 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2685 { 2686 VirtMachineState *vms = VIRT_MACHINE(obj); 2687 2688 if (!strcmp(value, "4")) { 2689 vms->gic_version = VIRT_GIC_VERSION_4; 2690 } else if (!strcmp(value, "3")) { 2691 vms->gic_version = VIRT_GIC_VERSION_3; 2692 } else if (!strcmp(value, "2")) { 2693 vms->gic_version = VIRT_GIC_VERSION_2; 2694 } else if (!strcmp(value, "host")) { 2695 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2696 } else if (!strcmp(value, "max")) { 2697 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2698 } else { 2699 error_setg(errp, "Invalid gic-version value"); 2700 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2701 } 2702 } 2703 2704 static char *virt_get_iommu(Object *obj, Error **errp) 2705 { 2706 VirtMachineState *vms = VIRT_MACHINE(obj); 2707 2708 switch (vms->iommu) { 2709 case VIRT_IOMMU_NONE: 2710 return g_strdup("none"); 2711 case VIRT_IOMMU_SMMUV3: 2712 return g_strdup("smmuv3"); 2713 default: 2714 g_assert_not_reached(); 2715 } 2716 } 2717 2718 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2719 { 2720 VirtMachineState *vms = VIRT_MACHINE(obj); 2721 2722 if (!strcmp(value, "smmuv3")) { 2723 vms->iommu = VIRT_IOMMU_SMMUV3; 2724 } else if (!strcmp(value, "none")) { 2725 vms->iommu = VIRT_IOMMU_NONE; 2726 } else { 2727 error_setg(errp, "Invalid iommu value"); 2728 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2729 } 2730 } 2731 2732 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2733 { 2734 VirtMachineState *vms = VIRT_MACHINE(obj); 2735 2736 return vms->default_bus_bypass_iommu; 2737 } 2738 2739 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2740 Error **errp) 2741 { 2742 VirtMachineState *vms = VIRT_MACHINE(obj); 2743 2744 vms->default_bus_bypass_iommu = value; 2745 } 2746 2747 static CpuInstanceProperties 2748 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2749 { 2750 MachineClass *mc = MACHINE_GET_CLASS(ms); 2751 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2752 2753 assert(cpu_index < possible_cpus->len); 2754 return possible_cpus->cpus[cpu_index].props; 2755 } 2756 2757 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2758 { 2759 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2760 2761 return socket_id % ms->numa_state->num_nodes; 2762 } 2763 2764 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2765 { 2766 int n; 2767 unsigned int max_cpus = ms->smp.max_cpus; 2768 VirtMachineState *vms = VIRT_MACHINE(ms); 2769 MachineClass *mc = MACHINE_GET_CLASS(vms); 2770 2771 if (ms->possible_cpus) { 2772 assert(ms->possible_cpus->len == max_cpus); 2773 return ms->possible_cpus; 2774 } 2775 2776 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2777 sizeof(CPUArchId) * max_cpus); 2778 ms->possible_cpus->len = max_cpus; 2779 for (n = 0; n < ms->possible_cpus->len; n++) { 2780 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2781 ms->possible_cpus->cpus[n].arch_id = 2782 virt_cpu_mp_affinity(vms, n); 2783 2784 assert(!mc->smp_props.dies_supported); 2785 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2786 ms->possible_cpus->cpus[n].props.socket_id = 2787 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2788 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2789 ms->possible_cpus->cpus[n].props.cluster_id = 2790 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2791 ms->possible_cpus->cpus[n].props.has_core_id = true; 2792 ms->possible_cpus->cpus[n].props.core_id = 2793 (n / ms->smp.threads) % ms->smp.cores; 2794 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2795 ms->possible_cpus->cpus[n].props.thread_id = 2796 n % ms->smp.threads; 2797 } 2798 return ms->possible_cpus; 2799 } 2800 2801 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2802 Error **errp) 2803 { 2804 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2805 const MachineState *ms = MACHINE(hotplug_dev); 2806 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2807 2808 if (!vms->acpi_dev) { 2809 error_setg(errp, 2810 "memory hotplug is not enabled: missing acpi-ged device"); 2811 return; 2812 } 2813 2814 if (vms->mte) { 2815 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2816 return; 2817 } 2818 2819 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2820 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2821 return; 2822 } 2823 2824 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); 2825 } 2826 2827 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2828 DeviceState *dev, Error **errp) 2829 { 2830 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2831 MachineState *ms = MACHINE(hotplug_dev); 2832 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2833 2834 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2835 2836 if (is_nvdimm) { 2837 nvdimm_plug(ms->nvdimms_state); 2838 } 2839 2840 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2841 dev, &error_abort); 2842 } 2843 2844 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2845 DeviceState *dev, Error **errp) 2846 { 2847 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2848 2849 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2850 virt_memory_pre_plug(hotplug_dev, dev, errp); 2851 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2852 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2853 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2854 hwaddr db_start = 0, db_end = 0; 2855 QList *reserved_regions; 2856 char *resv_prop_str; 2857 2858 if (vms->iommu != VIRT_IOMMU_NONE) { 2859 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2860 return; 2861 } 2862 2863 switch (vms->msi_controller) { 2864 case VIRT_MSI_CTRL_NONE: 2865 return; 2866 case VIRT_MSI_CTRL_ITS: 2867 /* GITS_TRANSLATER page */ 2868 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2869 db_end = base_memmap[VIRT_GIC_ITS].base + 2870 base_memmap[VIRT_GIC_ITS].size - 1; 2871 break; 2872 case VIRT_MSI_CTRL_GICV2M: 2873 /* MSI_SETSPI_NS page */ 2874 db_start = base_memmap[VIRT_GIC_V2M].base; 2875 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2876 break; 2877 } 2878 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2879 db_start, db_end, 2880 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2881 2882 reserved_regions = qlist_new(); 2883 qlist_append_str(reserved_regions, resv_prop_str); 2884 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2885 g_free(resv_prop_str); 2886 } 2887 } 2888 2889 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2890 DeviceState *dev, Error **errp) 2891 { 2892 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2893 2894 if (vms->platform_bus_dev) { 2895 MachineClass *mc = MACHINE_GET_CLASS(vms); 2896 2897 if (device_is_dynamic_sysbus(mc, dev)) { 2898 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2899 SYS_BUS_DEVICE(dev)); 2900 } 2901 } 2902 2903 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2904 virt_memory_plug(hotplug_dev, dev, errp); 2905 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2906 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2907 } 2908 2909 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2910 PCIDevice *pdev = PCI_DEVICE(dev); 2911 2912 vms->iommu = VIRT_IOMMU_VIRTIO; 2913 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2914 create_virtio_iommu_dt_bindings(vms); 2915 } 2916 } 2917 2918 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2919 DeviceState *dev, Error **errp) 2920 { 2921 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2922 2923 if (!vms->acpi_dev) { 2924 error_setg(errp, 2925 "memory hotplug is not enabled: missing acpi-ged device"); 2926 return; 2927 } 2928 2929 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2930 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2931 return; 2932 } 2933 2934 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2935 errp); 2936 } 2937 2938 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2939 DeviceState *dev, Error **errp) 2940 { 2941 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2942 Error *local_err = NULL; 2943 2944 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2945 if (local_err) { 2946 goto out; 2947 } 2948 2949 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2950 qdev_unrealize(dev); 2951 2952 out: 2953 error_propagate(errp, local_err); 2954 } 2955 2956 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2957 DeviceState *dev, Error **errp) 2958 { 2959 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2960 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2961 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2962 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 2963 errp); 2964 } else { 2965 error_setg(errp, "device unplug request for unsupported device" 2966 " type: %s", object_get_typename(OBJECT(dev))); 2967 } 2968 } 2969 2970 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2971 DeviceState *dev, Error **errp) 2972 { 2973 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2974 virt_dimm_unplug(hotplug_dev, dev, errp); 2975 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2976 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2977 } else { 2978 error_setg(errp, "virt: device unplug for unsupported device" 2979 " type: %s", object_get_typename(OBJECT(dev))); 2980 } 2981 } 2982 2983 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2984 DeviceState *dev) 2985 { 2986 MachineClass *mc = MACHINE_GET_CLASS(machine); 2987 2988 if (device_is_dynamic_sysbus(mc, dev) || 2989 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2990 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 2991 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2992 return HOTPLUG_HANDLER(machine); 2993 } 2994 return NULL; 2995 } 2996 2997 /* 2998 * for arm64 kvm_type [7-0] encodes the requested number of bits 2999 * in the IPA address space 3000 */ 3001 static int virt_kvm_type(MachineState *ms, const char *type_str) 3002 { 3003 VirtMachineState *vms = VIRT_MACHINE(ms); 3004 int max_vm_pa_size, requested_pa_size; 3005 bool fixed_ipa; 3006 3007 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 3008 3009 /* we freeze the memory map to compute the highest gpa */ 3010 virt_set_memmap(vms, max_vm_pa_size); 3011 3012 requested_pa_size = 64 - clz64(vms->highest_gpa); 3013 3014 /* 3015 * KVM requires the IPA size to be at least 32 bits. 3016 */ 3017 if (requested_pa_size < 32) { 3018 requested_pa_size = 32; 3019 } 3020 3021 if (requested_pa_size > max_vm_pa_size) { 3022 error_report("-m and ,maxmem option values " 3023 "require an IPA range (%d bits) larger than " 3024 "the one supported by the host (%d bits)", 3025 requested_pa_size, max_vm_pa_size); 3026 return -1; 3027 } 3028 /* 3029 * We return the requested PA log size, unless KVM only supports 3030 * the implicit legacy 40b IPA setting, in which case the kvm_type 3031 * must be 0. 3032 */ 3033 return fixed_ipa ? 0 : requested_pa_size; 3034 } 3035 3036 static int virt_hvf_get_physical_address_range(MachineState *ms) 3037 { 3038 VirtMachineState *vms = VIRT_MACHINE(ms); 3039 3040 int default_ipa_size = hvf_arm_get_default_ipa_bit_size(); 3041 int max_ipa_size = hvf_arm_get_max_ipa_bit_size(); 3042 3043 /* We freeze the memory map to compute the highest gpa */ 3044 virt_set_memmap(vms, max_ipa_size); 3045 3046 int requested_ipa_size = 64 - clz64(vms->highest_gpa); 3047 3048 /* 3049 * If we're <= the default IPA size just use the default. 3050 * If we're above the default but below the maximum, round up to 3051 * the maximum. hvf_arm_get_max_ipa_bit_size() conveniently only 3052 * returns values that are valid ARM PARange values. 3053 */ 3054 if (requested_ipa_size <= default_ipa_size) { 3055 requested_ipa_size = default_ipa_size; 3056 } else if (requested_ipa_size <= max_ipa_size) { 3057 requested_ipa_size = max_ipa_size; 3058 } else { 3059 error_report("-m and ,maxmem option values " 3060 "require an IPA range (%d bits) larger than " 3061 "the one supported by the host (%d bits)", 3062 requested_ipa_size, max_ipa_size); 3063 return -1; 3064 } 3065 3066 return requested_ipa_size; 3067 } 3068 3069 static void virt_machine_class_init(ObjectClass *oc, void *data) 3070 { 3071 MachineClass *mc = MACHINE_CLASS(oc); 3072 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3073 static const char * const valid_cpu_types[] = { 3074 #ifdef CONFIG_TCG 3075 ARM_CPU_TYPE_NAME("cortex-a7"), 3076 ARM_CPU_TYPE_NAME("cortex-a15"), 3077 #ifdef TARGET_AARCH64 3078 ARM_CPU_TYPE_NAME("cortex-a35"), 3079 ARM_CPU_TYPE_NAME("cortex-a55"), 3080 ARM_CPU_TYPE_NAME("cortex-a72"), 3081 ARM_CPU_TYPE_NAME("cortex-a76"), 3082 ARM_CPU_TYPE_NAME("cortex-a710"), 3083 ARM_CPU_TYPE_NAME("a64fx"), 3084 ARM_CPU_TYPE_NAME("neoverse-n1"), 3085 ARM_CPU_TYPE_NAME("neoverse-v1"), 3086 ARM_CPU_TYPE_NAME("neoverse-n2"), 3087 #endif /* TARGET_AARCH64 */ 3088 #endif /* CONFIG_TCG */ 3089 #ifdef TARGET_AARCH64 3090 ARM_CPU_TYPE_NAME("cortex-a53"), 3091 ARM_CPU_TYPE_NAME("cortex-a57"), 3092 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 3093 ARM_CPU_TYPE_NAME("host"), 3094 #endif /* CONFIG_KVM || CONFIG_HVF */ 3095 #endif /* TARGET_AARCH64 */ 3096 ARM_CPU_TYPE_NAME("max"), 3097 NULL 3098 }; 3099 3100 mc->init = machvirt_init; 3101 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 3102 * The value may be reduced later when we have more information about the 3103 * configuration of the particular instance. 3104 */ 3105 mc->max_cpus = 512; 3106 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 3107 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 3108 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 3109 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 3110 #ifdef CONFIG_TPM 3111 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 3112 #endif 3113 mc->block_default_type = IF_VIRTIO; 3114 mc->no_cdrom = 1; 3115 mc->pci_allow_0_address = true; 3116 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 3117 mc->minimum_page_bits = 12; 3118 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 3119 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 3120 #ifdef CONFIG_TCG 3121 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 3122 #else 3123 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 3124 #endif 3125 mc->valid_cpu_types = valid_cpu_types; 3126 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 3127 mc->kvm_type = virt_kvm_type; 3128 mc->hvf_get_physical_address_range = virt_hvf_get_physical_address_range; 3129 assert(!mc->get_hotplug_handler); 3130 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 3131 hc->pre_plug = virt_machine_device_pre_plug_cb; 3132 hc->plug = virt_machine_device_plug_cb; 3133 hc->unplug_request = virt_machine_device_unplug_request_cb; 3134 hc->unplug = virt_machine_device_unplug_cb; 3135 mc->nvdimm_supported = true; 3136 mc->smp_props.clusters_supported = true; 3137 mc->auto_enable_numa_with_memhp = true; 3138 mc->auto_enable_numa_with_memdev = true; 3139 /* platform instead of architectural choice */ 3140 mc->cpu_cluster_has_numa_boundary = true; 3141 mc->default_ram_id = "mach-virt.ram"; 3142 mc->default_nic = "virtio-net-pci"; 3143 3144 object_class_property_add(oc, "acpi", "OnOffAuto", 3145 virt_get_acpi, virt_set_acpi, 3146 NULL, NULL); 3147 object_class_property_set_description(oc, "acpi", 3148 "Enable ACPI"); 3149 object_class_property_add_bool(oc, "secure", virt_get_secure, 3150 virt_set_secure); 3151 object_class_property_set_description(oc, "secure", 3152 "Set on/off to enable/disable the ARM " 3153 "Security Extensions (TrustZone)"); 3154 3155 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 3156 virt_set_virt); 3157 object_class_property_set_description(oc, "virtualization", 3158 "Set on/off to enable/disable emulating a " 3159 "guest CPU which implements the ARM " 3160 "Virtualization Extensions"); 3161 3162 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 3163 virt_set_highmem); 3164 object_class_property_set_description(oc, "highmem", 3165 "Set on/off to enable/disable using " 3166 "physical address space above 32 bits"); 3167 3168 object_class_property_add_bool(oc, "compact-highmem", 3169 virt_get_compact_highmem, 3170 virt_set_compact_highmem); 3171 object_class_property_set_description(oc, "compact-highmem", 3172 "Set on/off to enable/disable compact " 3173 "layout for high memory regions"); 3174 3175 object_class_property_add_bool(oc, "highmem-redists", 3176 virt_get_highmem_redists, 3177 virt_set_highmem_redists); 3178 object_class_property_set_description(oc, "highmem-redists", 3179 "Set on/off to enable/disable high " 3180 "memory region for GICv3 or GICv4 " 3181 "redistributor"); 3182 3183 object_class_property_add_bool(oc, "highmem-ecam", 3184 virt_get_highmem_ecam, 3185 virt_set_highmem_ecam); 3186 object_class_property_set_description(oc, "highmem-ecam", 3187 "Set on/off to enable/disable high " 3188 "memory region for PCI ECAM"); 3189 3190 object_class_property_add_bool(oc, "highmem-mmio", 3191 virt_get_highmem_mmio, 3192 virt_set_highmem_mmio); 3193 object_class_property_set_description(oc, "highmem-mmio", 3194 "Set on/off to enable/disable high " 3195 "memory region for PCI MMIO"); 3196 3197 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3198 virt_set_gic_version); 3199 object_class_property_set_description(oc, "gic-version", 3200 "Set GIC version. " 3201 "Valid values are 2, 3, 4, host and max"); 3202 3203 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3204 object_class_property_set_description(oc, "iommu", 3205 "Set the IOMMU type. " 3206 "Valid values are none and smmuv3"); 3207 3208 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3209 virt_get_default_bus_bypass_iommu, 3210 virt_set_default_bus_bypass_iommu); 3211 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3212 "Set on/off to enable/disable " 3213 "bypass_iommu for default root bus"); 3214 3215 object_class_property_add_bool(oc, "ras", virt_get_ras, 3216 virt_set_ras); 3217 object_class_property_set_description(oc, "ras", 3218 "Set on/off to enable/disable reporting host memory errors " 3219 "to a KVM guest using ACPI and guest external abort exceptions"); 3220 3221 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3222 object_class_property_set_description(oc, "mte", 3223 "Set on/off to enable/disable emulating a " 3224 "guest CPU which implements the ARM " 3225 "Memory Tagging Extension"); 3226 3227 object_class_property_add_bool(oc, "its", virt_get_its, 3228 virt_set_its); 3229 object_class_property_set_description(oc, "its", 3230 "Set on/off to enable/disable " 3231 "ITS instantiation"); 3232 3233 object_class_property_add_bool(oc, "dtb-randomness", 3234 virt_get_dtb_randomness, 3235 virt_set_dtb_randomness); 3236 object_class_property_set_description(oc, "dtb-randomness", 3237 "Set off to disable passing random or " 3238 "non-deterministic dtb nodes to guest"); 3239 3240 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3241 virt_get_dtb_randomness, 3242 virt_set_dtb_randomness); 3243 object_class_property_set_description(oc, "dtb-kaslr-seed", 3244 "Deprecated synonym of dtb-randomness"); 3245 3246 object_class_property_add_str(oc, "x-oem-id", 3247 virt_get_oem_id, 3248 virt_set_oem_id); 3249 object_class_property_set_description(oc, "x-oem-id", 3250 "Override the default value of field OEMID " 3251 "in ACPI table header." 3252 "The string may be up to 6 bytes in size"); 3253 3254 3255 object_class_property_add_str(oc, "x-oem-table-id", 3256 virt_get_oem_table_id, 3257 virt_set_oem_table_id); 3258 object_class_property_set_description(oc, "x-oem-table-id", 3259 "Override the default value of field OEM Table ID " 3260 "in ACPI table header." 3261 "The string may be up to 8 bytes in size"); 3262 3263 } 3264 3265 static void virt_instance_init(Object *obj) 3266 { 3267 VirtMachineState *vms = VIRT_MACHINE(obj); 3268 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3269 3270 /* EL3 is disabled by default on virt: this makes us consistent 3271 * between KVM and TCG for this board, and it also allows us to 3272 * boot UEFI blobs which assume no TrustZone support. 3273 */ 3274 vms->secure = false; 3275 3276 /* EL2 is also disabled by default, for similar reasons */ 3277 vms->virt = false; 3278 3279 /* High memory is enabled by default */ 3280 vms->highmem = true; 3281 vms->highmem_compact = !vmc->no_highmem_compact; 3282 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3283 3284 vms->highmem_ecam = !vmc->no_highmem_ecam; 3285 vms->highmem_mmio = true; 3286 vms->highmem_redists = true; 3287 3288 if (vmc->no_its) { 3289 vms->its = false; 3290 } else { 3291 /* Default allows ITS instantiation */ 3292 vms->its = true; 3293 3294 if (vmc->no_tcg_its) { 3295 vms->tcg_its = false; 3296 } else { 3297 vms->tcg_its = true; 3298 } 3299 } 3300 3301 /* Default disallows iommu instantiation */ 3302 vms->iommu = VIRT_IOMMU_NONE; 3303 3304 /* The default root bus is attached to iommu by default */ 3305 vms->default_bus_bypass_iommu = false; 3306 3307 /* Default disallows RAS instantiation */ 3308 vms->ras = false; 3309 3310 /* MTE is disabled by default. */ 3311 vms->mte = false; 3312 3313 /* Supply kaslr-seed and rng-seed by default */ 3314 vms->dtb_randomness = true; 3315 3316 vms->irqmap = a15irqmap; 3317 3318 virt_flash_create(vms); 3319 3320 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3321 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3322 } 3323 3324 static const TypeInfo virt_machine_info = { 3325 .name = TYPE_VIRT_MACHINE, 3326 .parent = TYPE_MACHINE, 3327 .abstract = true, 3328 .instance_size = sizeof(VirtMachineState), 3329 .class_size = sizeof(VirtMachineClass), 3330 .class_init = virt_machine_class_init, 3331 .instance_init = virt_instance_init, 3332 .interfaces = (InterfaceInfo[]) { 3333 { TYPE_HOTPLUG_HANDLER }, 3334 { } 3335 }, 3336 }; 3337 3338 static void machvirt_machine_init(void) 3339 { 3340 type_register_static(&virt_machine_info); 3341 } 3342 type_init(machvirt_machine_init); 3343 3344 static void virt_machine_9_2_options(MachineClass *mc) 3345 { 3346 } 3347 DEFINE_VIRT_MACHINE_AS_LATEST(9, 2) 3348 3349 static void virt_machine_9_1_options(MachineClass *mc) 3350 { 3351 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3352 3353 virt_machine_9_2_options(mc); 3354 compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); 3355 /* 9.1 and earlier have only a stage-1 SMMU, not a nested s1+2 one */ 3356 vmc->no_nested_smmu = true; 3357 } 3358 DEFINE_VIRT_MACHINE(9, 1) 3359 3360 static void virt_machine_9_0_options(MachineClass *mc) 3361 { 3362 virt_machine_9_1_options(mc); 3363 mc->smbios_memory_device_size = 16 * GiB; 3364 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 3365 } 3366 DEFINE_VIRT_MACHINE(9, 0) 3367 3368 static void virt_machine_8_2_options(MachineClass *mc) 3369 { 3370 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3371 3372 virt_machine_9_0_options(mc); 3373 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3374 /* 3375 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and 3376 * earlier machines. (Exposing it tickles a bug in older EDK2 3377 * guest BIOS binaries.) 3378 */ 3379 vmc->no_ns_el2_virt_timer_irq = true; 3380 } 3381 DEFINE_VIRT_MACHINE(8, 2) 3382 3383 static void virt_machine_8_1_options(MachineClass *mc) 3384 { 3385 virt_machine_8_2_options(mc); 3386 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3387 } 3388 DEFINE_VIRT_MACHINE(8, 1) 3389 3390 static void virt_machine_8_0_options(MachineClass *mc) 3391 { 3392 virt_machine_8_1_options(mc); 3393 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3394 } 3395 DEFINE_VIRT_MACHINE(8, 0) 3396 3397 static void virt_machine_7_2_options(MachineClass *mc) 3398 { 3399 virt_machine_8_0_options(mc); 3400 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3401 } 3402 DEFINE_VIRT_MACHINE(7, 2) 3403 3404 static void virt_machine_7_1_options(MachineClass *mc) 3405 { 3406 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3407 3408 virt_machine_7_2_options(mc); 3409 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3410 /* Compact layout for high memory regions was introduced with 7.2 */ 3411 vmc->no_highmem_compact = true; 3412 } 3413 DEFINE_VIRT_MACHINE(7, 1) 3414 3415 static void virt_machine_7_0_options(MachineClass *mc) 3416 { 3417 virt_machine_7_1_options(mc); 3418 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3419 } 3420 DEFINE_VIRT_MACHINE(7, 0) 3421 3422 static void virt_machine_6_2_options(MachineClass *mc) 3423 { 3424 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3425 3426 virt_machine_7_0_options(mc); 3427 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3428 vmc->no_tcg_lpa2 = true; 3429 } 3430 DEFINE_VIRT_MACHINE(6, 2) 3431 3432 static void virt_machine_6_1_options(MachineClass *mc) 3433 { 3434 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3435 3436 virt_machine_6_2_options(mc); 3437 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3438 mc->smp_props.prefer_sockets = true; 3439 vmc->no_cpu_topology = true; 3440 3441 /* qemu ITS was introduced with 6.2 */ 3442 vmc->no_tcg_its = true; 3443 } 3444 DEFINE_VIRT_MACHINE(6, 1) 3445 3446 static void virt_machine_6_0_options(MachineClass *mc) 3447 { 3448 virt_machine_6_1_options(mc); 3449 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3450 } 3451 DEFINE_VIRT_MACHINE(6, 0) 3452 3453 static void virt_machine_5_2_options(MachineClass *mc) 3454 { 3455 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3456 3457 virt_machine_6_0_options(mc); 3458 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3459 vmc->no_secure_gpio = true; 3460 } 3461 DEFINE_VIRT_MACHINE(5, 2) 3462 3463 static void virt_machine_5_1_options(MachineClass *mc) 3464 { 3465 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3466 3467 virt_machine_5_2_options(mc); 3468 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3469 vmc->no_kvm_steal_time = true; 3470 } 3471 DEFINE_VIRT_MACHINE(5, 1) 3472 3473 static void virt_machine_5_0_options(MachineClass *mc) 3474 { 3475 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3476 3477 virt_machine_5_1_options(mc); 3478 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3479 mc->numa_mem_supported = true; 3480 vmc->acpi_expose_flash = true; 3481 mc->auto_enable_numa_with_memdev = false; 3482 } 3483 DEFINE_VIRT_MACHINE(5, 0) 3484 3485 static void virt_machine_4_2_options(MachineClass *mc) 3486 { 3487 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3488 3489 virt_machine_5_0_options(mc); 3490 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3491 vmc->kvm_no_adjvtime = true; 3492 } 3493 DEFINE_VIRT_MACHINE(4, 2) 3494 3495 static void virt_machine_4_1_options(MachineClass *mc) 3496 { 3497 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3498 3499 virt_machine_4_2_options(mc); 3500 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3501 vmc->no_ged = true; 3502 mc->auto_enable_numa_with_memhp = false; 3503 } 3504 DEFINE_VIRT_MACHINE(4, 1) 3505 3506 static void virt_machine_4_0_options(MachineClass *mc) 3507 { 3508 virt_machine_4_1_options(mc); 3509 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3510 } 3511 DEFINE_VIRT_MACHINE(4, 0) 3512 3513 static void virt_machine_3_1_options(MachineClass *mc) 3514 { 3515 virt_machine_4_0_options(mc); 3516 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3517 } 3518 DEFINE_VIRT_MACHINE(3, 1) 3519 3520 static void virt_machine_3_0_options(MachineClass *mc) 3521 { 3522 virt_machine_3_1_options(mc); 3523 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3524 } 3525 DEFINE_VIRT_MACHINE(3, 0) 3526 3527 static void virt_machine_2_12_options(MachineClass *mc) 3528 { 3529 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3530 3531 virt_machine_3_0_options(mc); 3532 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3533 vmc->no_highmem_ecam = true; 3534 mc->max_cpus = 255; 3535 } 3536 DEFINE_VIRT_MACHINE(2, 12) 3537 3538 static void virt_machine_2_11_options(MachineClass *mc) 3539 { 3540 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3541 3542 virt_machine_2_12_options(mc); 3543 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3544 vmc->smbios_old_sys_ver = true; 3545 } 3546 DEFINE_VIRT_MACHINE(2, 11) 3547 3548 static void virt_machine_2_10_options(MachineClass *mc) 3549 { 3550 virt_machine_2_11_options(mc); 3551 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3552 /* before 2.11 we never faulted accesses to bad addresses */ 3553 mc->ignore_memory_transaction_failures = true; 3554 } 3555 DEFINE_VIRT_MACHINE(2, 10) 3556 3557 static void virt_machine_2_9_options(MachineClass *mc) 3558 { 3559 virt_machine_2_10_options(mc); 3560 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3561 } 3562 DEFINE_VIRT_MACHINE(2, 9) 3563 3564 static void virt_machine_2_8_options(MachineClass *mc) 3565 { 3566 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3567 3568 virt_machine_2_9_options(mc); 3569 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3570 /* For 2.8 and earlier we falsely claimed in the DT that 3571 * our timers were edge-triggered, not level-triggered. 3572 */ 3573 vmc->claim_edge_triggered_timers = true; 3574 } 3575 DEFINE_VIRT_MACHINE(2, 8) 3576 3577 static void virt_machine_2_7_options(MachineClass *mc) 3578 { 3579 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3580 3581 virt_machine_2_8_options(mc); 3582 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3583 /* ITS was introduced with 2.8 */ 3584 vmc->no_its = true; 3585 /* Stick with 1K pages for migration compatibility */ 3586 mc->minimum_page_bits = 0; 3587 } 3588 DEFINE_VIRT_MACHINE(2, 7) 3589 3590 static void virt_machine_2_6_options(MachineClass *mc) 3591 { 3592 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3593 3594 virt_machine_2_7_options(mc); 3595 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3596 vmc->disallow_affinity_adjustment = true; 3597 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3598 vmc->no_pmu = true; 3599 } 3600 DEFINE_VIRT_MACHINE(2, 6) 3601