1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/runstate.h" 48 #include "sysemu/tpm.h" 49 #include "sysemu/tcg.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hvf.h" 52 #include "sysemu/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/core/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/intc/arm_gicv3_its_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/qmp/qlist.h" 73 #include "standard-headers/linux/input.h" 74 #include "hw/arm/smmuv3.h" 75 #include "hw/acpi/acpi.h" 76 #include "target/arm/cpu-qom.h" 77 #include "target/arm/internals.h" 78 #include "target/arm/multiprocessing.h" 79 #include "target/arm/gtimer.h" 80 #include "hw/mem/pc-dimm.h" 81 #include "hw/mem/nvdimm.h" 82 #include "hw/acpi/generic_event_device.h" 83 #include "hw/virtio/virtio-md-pci.h" 84 #include "hw/virtio/virtio-iommu.h" 85 #include "hw/char/pl011.h" 86 #include "qemu/guest-random.h" 87 88 static GlobalProperty arm_virt_compat[] = { 89 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, 90 }; 91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); 92 93 /* 94 * This cannot be called from the virt_machine_class_init() because 95 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() 96 * only is called on virt non abstract class init. 97 */ 98 static void arm_virt_compat_set(MachineClass *mc) 99 { 100 compat_props_add(mc->compat_props, arm_virt_compat, 101 arm_virt_compat_len); 102 } 103 104 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 105 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 106 void *data) \ 107 { \ 108 MachineClass *mc = MACHINE_CLASS(oc); \ 109 arm_virt_compat_set(mc); \ 110 virt_machine_##major##_##minor##_options(mc); \ 111 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 112 if (latest) { \ 113 mc->alias = "virt"; \ 114 } \ 115 } \ 116 static const TypeInfo machvirt_##major##_##minor##_info = { \ 117 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 118 .parent = TYPE_VIRT_MACHINE, \ 119 .class_init = virt_##major##_##minor##_class_init, \ 120 }; \ 121 static void machvirt_machine_##major##_##minor##_init(void) \ 122 { \ 123 type_register_static(&machvirt_##major##_##minor##_info); \ 124 } \ 125 type_init(machvirt_machine_##major##_##minor##_init); 126 127 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 128 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 129 #define DEFINE_VIRT_MACHINE(major, minor) \ 130 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 131 132 133 /* Number of external interrupt lines to configure the GIC with */ 134 #define NUM_IRQS 256 135 136 #define PLATFORM_BUS_NUM_IRQS 64 137 138 /* Legacy RAM limit in GB (< version 4.0) */ 139 #define LEGACY_RAMLIMIT_GB 255 140 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 141 142 /* Addresses and sizes of our components. 143 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 144 * 128MB..256MB is used for miscellaneous device I/O. 145 * 256MB..1GB is reserved for possible future PCI support (ie where the 146 * PCI memory window will go if we add a PCI host controller). 147 * 1GB and up is RAM (which may happily spill over into the 148 * high memory region beyond 4GB). 149 * This represents a compromise between how much RAM can be given to 150 * a 32 bit VM and leaving space for expansion and in particular for PCI. 151 * Note that devices should generally be placed at multiples of 0x10000, 152 * to accommodate guests using 64K pages. 153 */ 154 static const MemMapEntry base_memmap[] = { 155 /* Space up to 0x8000000 is reserved for a boot ROM */ 156 [VIRT_FLASH] = { 0, 0x08000000 }, 157 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 158 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 159 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 160 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 161 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 162 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 163 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 164 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 165 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 166 /* This redistributor space allows up to 2*64kB*123 CPUs */ 167 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 168 [VIRT_UART0] = { 0x09000000, 0x00001000 }, 169 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 170 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 171 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 172 [VIRT_UART1] = { 0x09040000, 0x00001000 }, 173 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 174 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 175 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 176 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 177 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 178 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 179 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 180 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 181 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 182 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 183 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 184 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 185 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 186 /* Actual RAM size depends on initial RAM and device memory settings */ 187 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 188 }; 189 190 /* 191 * Highmem IO Regions: This memory map is floating, located after the RAM. 192 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 193 * top of the RAM, so that its base get the same alignment as the size, 194 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 195 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 196 * Note the extended_memmap is sized so that it eventually also includes the 197 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 198 * index of base_memmap). 199 * 200 * The memory map for these Highmem IO Regions can be in legacy or compact 201 * layout, depending on 'compact-highmem' property. With legacy layout, the 202 * PA space for one specific region is always reserved, even if the region 203 * has been disabled or doesn't fit into the PA space. However, the PA space 204 * for the region won't be reserved in these circumstances with compact layout. 205 */ 206 static MemMapEntry extended_memmap[] = { 207 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 208 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 209 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 210 /* Second PCIe window */ 211 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 212 }; 213 214 static const int a15irqmap[] = { 215 [VIRT_UART0] = 1, 216 [VIRT_RTC] = 2, 217 [VIRT_PCIE] = 3, /* ... to 6 */ 218 [VIRT_GPIO] = 7, 219 [VIRT_UART1] = 8, 220 [VIRT_ACPI_GED] = 9, 221 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 222 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 223 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 224 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 225 }; 226 227 static void create_randomness(MachineState *ms, const char *node) 228 { 229 struct { 230 uint64_t kaslr; 231 uint8_t rng[32]; 232 } seed; 233 234 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 235 return; 236 } 237 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 238 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 239 } 240 241 /* 242 * The CPU object always exposes the NS EL2 virt timer IRQ line, 243 * but we don't want to advertise it to the guest in the dtb or ACPI 244 * table unless it's really going to do something. 245 */ 246 static bool ns_el2_virt_timer_present(void) 247 { 248 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 249 CPUARMState *env = &cpu->env; 250 251 return arm_feature(env, ARM_FEATURE_AARCH64) && 252 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); 253 } 254 255 static void create_fdt(VirtMachineState *vms) 256 { 257 MachineState *ms = MACHINE(vms); 258 int nb_numa_nodes = ms->numa_state->num_nodes; 259 void *fdt = create_device_tree(&vms->fdt_size); 260 261 if (!fdt) { 262 error_report("create_device_tree() failed"); 263 exit(1); 264 } 265 266 ms->fdt = fdt; 267 268 /* Header */ 269 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 270 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 271 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 272 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 273 274 /* 275 * For QEMU, all DMA is coherent. Advertising this in the root node 276 * has two benefits: 277 * 278 * - It avoids potential bugs where we forget to mark a DMA 279 * capable device as being dma-coherent 280 * - It avoids spurious warnings from the Linux kernel about 281 * devices which can't do DMA at all 282 */ 283 qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); 284 285 /* /chosen must exist for load_dtb to fill in necessary properties later */ 286 qemu_fdt_add_subnode(fdt, "/chosen"); 287 if (vms->dtb_randomness) { 288 create_randomness(ms, "/chosen"); 289 } 290 291 if (vms->secure) { 292 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 293 if (vms->dtb_randomness) { 294 create_randomness(ms, "/secure-chosen"); 295 } 296 } 297 298 qemu_fdt_add_subnode(fdt, "/aliases"); 299 300 /* Clock node, for the benefit of the UART. The kernel device tree 301 * binding documentation claims the PL011 node clock properties are 302 * optional but in practice if you omit them the kernel refuses to 303 * probe for the device. 304 */ 305 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 306 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 307 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 308 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 309 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 310 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 311 "clk24mhz"); 312 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 313 314 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 315 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 316 uint32_t *matrix = g_malloc0(size); 317 int idx, i, j; 318 319 for (i = 0; i < nb_numa_nodes; i++) { 320 for (j = 0; j < nb_numa_nodes; j++) { 321 idx = (i * nb_numa_nodes + j) * 3; 322 matrix[idx + 0] = cpu_to_be32(i); 323 matrix[idx + 1] = cpu_to_be32(j); 324 matrix[idx + 2] = 325 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 326 } 327 } 328 329 qemu_fdt_add_subnode(fdt, "/distance-map"); 330 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 331 "numa-distance-map-v1"); 332 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 333 matrix, size); 334 g_free(matrix); 335 } 336 } 337 338 static void fdt_add_timer_nodes(const VirtMachineState *vms) 339 { 340 /* On real hardware these interrupts are level-triggered. 341 * On KVM they were edge-triggered before host kernel version 4.4, 342 * and level-triggered afterwards. 343 * On emulated QEMU they are level-triggered. 344 * 345 * Getting the DTB info about them wrong is awkward for some 346 * guest kernels: 347 * pre-4.8 ignore the DT and leave the interrupt configured 348 * with whatever the GIC reset value (or the bootloader) left it at 349 * 4.8 before rc6 honour the incorrect data by programming it back 350 * into the GIC, causing problems 351 * 4.8rc6 and later ignore the DT and always write "level triggered" 352 * into the GIC 353 * 354 * For backwards-compatibility, virt-2.8 and earlier will continue 355 * to say these are edge-triggered, but later machines will report 356 * the correct information. 357 */ 358 ARMCPU *armcpu; 359 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 360 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 361 MachineState *ms = MACHINE(vms); 362 363 if (vmc->claim_edge_triggered_timers) { 364 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 365 } 366 367 if (vms->gic_version == VIRT_GIC_VERSION_2) { 368 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 369 GIC_FDT_IRQ_PPI_CPU_WIDTH, 370 (1 << MACHINE(vms)->smp.cpus) - 1); 371 } 372 373 qemu_fdt_add_subnode(ms->fdt, "/timer"); 374 375 armcpu = ARM_CPU(qemu_get_cpu(0)); 376 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 377 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 378 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 379 compat, sizeof(compat)); 380 } else { 381 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 382 "arm,armv7-timer"); 383 } 384 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 385 if (vms->ns_el2_virt_timer_irq) { 386 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 387 GIC_FDT_IRQ_TYPE_PPI, 388 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 389 GIC_FDT_IRQ_TYPE_PPI, 390 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 391 GIC_FDT_IRQ_TYPE_PPI, 392 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 393 GIC_FDT_IRQ_TYPE_PPI, 394 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, 395 GIC_FDT_IRQ_TYPE_PPI, 396 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); 397 } else { 398 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 399 GIC_FDT_IRQ_TYPE_PPI, 400 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 401 GIC_FDT_IRQ_TYPE_PPI, 402 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 403 GIC_FDT_IRQ_TYPE_PPI, 404 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 405 GIC_FDT_IRQ_TYPE_PPI, 406 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 407 } 408 } 409 410 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 411 { 412 int cpu; 413 int addr_cells = 1; 414 const MachineState *ms = MACHINE(vms); 415 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 416 int smp_cpus = ms->smp.cpus; 417 418 /* 419 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 420 * On ARM v8 64-bit systems value should be set to 2, 421 * that corresponds to the MPIDR_EL1 register size. 422 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 423 * in the system, #address-cells can be set to 1, since 424 * MPIDR_EL1[63:32] bits are not used for CPUs 425 * identification. 426 * 427 * Here we actually don't know whether our system is 32- or 64-bit one. 428 * The simplest way to go is to examine affinity IDs of all our CPUs. If 429 * at least one of them has Aff3 populated, we set #address-cells to 2. 430 */ 431 for (cpu = 0; cpu < smp_cpus; cpu++) { 432 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 433 434 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { 435 addr_cells = 2; 436 break; 437 } 438 } 439 440 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 441 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 442 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 443 444 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 445 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 446 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 447 CPUState *cs = CPU(armcpu); 448 449 qemu_fdt_add_subnode(ms->fdt, nodename); 450 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 451 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 452 armcpu->dtb_compatible); 453 454 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 455 qemu_fdt_setprop_string(ms->fdt, nodename, 456 "enable-method", "psci"); 457 } 458 459 if (addr_cells == 2) { 460 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 461 arm_cpu_mp_affinity(armcpu)); 462 } else { 463 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 464 arm_cpu_mp_affinity(armcpu)); 465 } 466 467 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 468 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 469 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 470 } 471 472 if (!vmc->no_cpu_topology) { 473 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 474 qemu_fdt_alloc_phandle(ms->fdt)); 475 } 476 477 g_free(nodename); 478 } 479 480 if (!vmc->no_cpu_topology) { 481 /* 482 * Add vCPU topology description through fdt node cpu-map. 483 * 484 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 485 * In a SMP system, the hierarchy of CPUs can be defined through 486 * four entities that are used to describe the layout of CPUs in 487 * the system: socket/cluster/core/thread. 488 * 489 * A socket node represents the boundary of system physical package 490 * and its child nodes must be one or more cluster nodes. A system 491 * can contain several layers of clustering within a single physical 492 * package and cluster nodes can be contained in parent cluster nodes. 493 * 494 * Note: currently we only support one layer of clustering within 495 * each physical package. 496 */ 497 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 498 499 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 500 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 501 char *map_path; 502 503 if (ms->smp.threads > 1) { 504 map_path = g_strdup_printf( 505 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 506 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 507 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 508 (cpu / ms->smp.threads) % ms->smp.cores, 509 cpu % ms->smp.threads); 510 } else { 511 map_path = g_strdup_printf( 512 "/cpus/cpu-map/socket%d/cluster%d/core%d", 513 cpu / (ms->smp.clusters * ms->smp.cores), 514 (cpu / ms->smp.cores) % ms->smp.clusters, 515 cpu % ms->smp.cores); 516 } 517 qemu_fdt_add_path(ms->fdt, map_path); 518 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 519 520 g_free(map_path); 521 g_free(cpu_path); 522 } 523 } 524 } 525 526 static void fdt_add_its_gic_node(VirtMachineState *vms) 527 { 528 char *nodename; 529 MachineState *ms = MACHINE(vms); 530 531 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 532 nodename = g_strdup_printf("/intc/its@%" PRIx64, 533 vms->memmap[VIRT_GIC_ITS].base); 534 qemu_fdt_add_subnode(ms->fdt, nodename); 535 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 536 "arm,gic-v3-its"); 537 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 538 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 539 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 540 2, vms->memmap[VIRT_GIC_ITS].base, 541 2, vms->memmap[VIRT_GIC_ITS].size); 542 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 543 g_free(nodename); 544 } 545 546 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 547 { 548 MachineState *ms = MACHINE(vms); 549 char *nodename; 550 551 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 552 vms->memmap[VIRT_GIC_V2M].base); 553 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 554 qemu_fdt_add_subnode(ms->fdt, nodename); 555 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 556 "arm,gic-v2m-frame"); 557 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 558 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 559 2, vms->memmap[VIRT_GIC_V2M].base, 560 2, vms->memmap[VIRT_GIC_V2M].size); 561 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 562 g_free(nodename); 563 } 564 565 static void fdt_add_gic_node(VirtMachineState *vms) 566 { 567 MachineState *ms = MACHINE(vms); 568 char *nodename; 569 570 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 571 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 572 573 nodename = g_strdup_printf("/intc@%" PRIx64, 574 vms->memmap[VIRT_GIC_DIST].base); 575 qemu_fdt_add_subnode(ms->fdt, nodename); 576 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 577 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 578 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 579 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 580 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 581 if (vms->gic_version != VIRT_GIC_VERSION_2) { 582 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 583 584 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 585 "arm,gic-v3"); 586 587 qemu_fdt_setprop_cell(ms->fdt, nodename, 588 "#redistributor-regions", nb_redist_regions); 589 590 if (nb_redist_regions == 1) { 591 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 592 2, vms->memmap[VIRT_GIC_DIST].base, 593 2, vms->memmap[VIRT_GIC_DIST].size, 594 2, vms->memmap[VIRT_GIC_REDIST].base, 595 2, vms->memmap[VIRT_GIC_REDIST].size); 596 } else { 597 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 598 2, vms->memmap[VIRT_GIC_DIST].base, 599 2, vms->memmap[VIRT_GIC_DIST].size, 600 2, vms->memmap[VIRT_GIC_REDIST].base, 601 2, vms->memmap[VIRT_GIC_REDIST].size, 602 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 603 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 604 } 605 606 if (vms->virt) { 607 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 608 GIC_FDT_IRQ_TYPE_PPI, 609 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 610 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 611 } 612 } else { 613 /* 'cortex-a15-gic' means 'GIC v2' */ 614 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 615 "arm,cortex-a15-gic"); 616 if (!vms->virt) { 617 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 618 2, vms->memmap[VIRT_GIC_DIST].base, 619 2, vms->memmap[VIRT_GIC_DIST].size, 620 2, vms->memmap[VIRT_GIC_CPU].base, 621 2, vms->memmap[VIRT_GIC_CPU].size); 622 } else { 623 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 624 2, vms->memmap[VIRT_GIC_DIST].base, 625 2, vms->memmap[VIRT_GIC_DIST].size, 626 2, vms->memmap[VIRT_GIC_CPU].base, 627 2, vms->memmap[VIRT_GIC_CPU].size, 628 2, vms->memmap[VIRT_GIC_HYP].base, 629 2, vms->memmap[VIRT_GIC_HYP].size, 630 2, vms->memmap[VIRT_GIC_VCPU].base, 631 2, vms->memmap[VIRT_GIC_VCPU].size); 632 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 633 GIC_FDT_IRQ_TYPE_PPI, 634 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 635 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 636 } 637 } 638 639 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 640 g_free(nodename); 641 } 642 643 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 644 { 645 ARMCPU *armcpu = ARM_CPU(first_cpu); 646 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 647 MachineState *ms = MACHINE(vms); 648 649 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 650 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 651 return; 652 } 653 654 if (vms->gic_version == VIRT_GIC_VERSION_2) { 655 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 656 GIC_FDT_IRQ_PPI_CPU_WIDTH, 657 (1 << MACHINE(vms)->smp.cpus) - 1); 658 } 659 660 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 661 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 662 const char compat[] = "arm,armv8-pmuv3"; 663 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 664 compat, sizeof(compat)); 665 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 666 GIC_FDT_IRQ_TYPE_PPI, 667 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 668 } 669 } 670 671 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 672 { 673 DeviceState *dev; 674 MachineState *ms = MACHINE(vms); 675 int irq = vms->irqmap[VIRT_ACPI_GED]; 676 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 677 678 if (ms->ram_slots) { 679 event |= ACPI_GED_MEM_HOTPLUG_EVT; 680 } 681 682 if (ms->nvdimms_state->is_enabled) { 683 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 684 } 685 686 dev = qdev_new(TYPE_ACPI_GED); 687 qdev_prop_set_uint32(dev, "ged-event", event); 688 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 689 690 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 691 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 692 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 693 694 return dev; 695 } 696 697 static void create_its(VirtMachineState *vms) 698 { 699 const char *itsclass = its_class_name(); 700 DeviceState *dev; 701 702 if (!strcmp(itsclass, "arm-gicv3-its")) { 703 if (!vms->tcg_its) { 704 itsclass = NULL; 705 } 706 } 707 708 if (!itsclass) { 709 /* Do nothing if not supported */ 710 return; 711 } 712 713 dev = qdev_new(itsclass); 714 715 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 716 &error_abort); 717 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 718 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 719 720 fdt_add_its_gic_node(vms); 721 vms->msi_controller = VIRT_MSI_CTRL_ITS; 722 } 723 724 static void create_v2m(VirtMachineState *vms) 725 { 726 int i; 727 int irq = vms->irqmap[VIRT_GIC_V2M]; 728 DeviceState *dev; 729 730 dev = qdev_new("arm-gicv2m"); 731 qdev_prop_set_uint32(dev, "base-spi", irq); 732 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 733 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 734 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 735 736 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 737 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 738 qdev_get_gpio_in(vms->gic, irq + i)); 739 } 740 741 fdt_add_v2m_gic_node(vms); 742 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 743 } 744 745 /* 746 * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. 747 * It's permitted to have a configuration with NMI in the CPU (and thus the 748 * GICv3 CPU interface) but not in the distributor/redistributors, but it's 749 * not very useful. 750 */ 751 static bool gicv3_nmi_present(VirtMachineState *vms) 752 { 753 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 754 755 return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && 756 (vms->gic_version != VIRT_GIC_VERSION_2); 757 } 758 759 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 760 { 761 MachineState *ms = MACHINE(vms); 762 /* We create a standalone GIC */ 763 SysBusDevice *gicbusdev; 764 const char *gictype; 765 int i; 766 unsigned int smp_cpus = ms->smp.cpus; 767 uint32_t nb_redist_regions = 0; 768 int revision; 769 770 if (vms->gic_version == VIRT_GIC_VERSION_2) { 771 gictype = gic_class_name(); 772 } else { 773 gictype = gicv3_class_name(); 774 } 775 776 switch (vms->gic_version) { 777 case VIRT_GIC_VERSION_2: 778 revision = 2; 779 break; 780 case VIRT_GIC_VERSION_3: 781 revision = 3; 782 break; 783 case VIRT_GIC_VERSION_4: 784 revision = 4; 785 break; 786 default: 787 g_assert_not_reached(); 788 } 789 vms->gic = qdev_new(gictype); 790 qdev_prop_set_uint32(vms->gic, "revision", revision); 791 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 792 /* Note that the num-irq property counts both internal and external 793 * interrupts; there are always 32 of the former (mandated by GIC spec). 794 */ 795 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 796 if (!kvm_irqchip_in_kernel()) { 797 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 798 } 799 800 if (vms->gic_version != VIRT_GIC_VERSION_2) { 801 QList *redist_region_count; 802 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 803 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 804 805 nb_redist_regions = virt_gicv3_redist_region_count(vms); 806 807 redist_region_count = qlist_new(); 808 qlist_append_int(redist_region_count, redist0_count); 809 if (nb_redist_regions == 2) { 810 uint32_t redist1_capacity = 811 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 812 813 qlist_append_int(redist_region_count, 814 MIN(smp_cpus - redist0_count, redist1_capacity)); 815 } 816 qdev_prop_set_array(vms->gic, "redist-region-count", 817 redist_region_count); 818 819 if (!kvm_irqchip_in_kernel()) { 820 if (vms->tcg_its) { 821 object_property_set_link(OBJECT(vms->gic), "sysmem", 822 OBJECT(mem), &error_fatal); 823 qdev_prop_set_bit(vms->gic, "has-lpi", true); 824 } 825 } 826 } else { 827 if (!kvm_irqchip_in_kernel()) { 828 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 829 vms->virt); 830 } 831 } 832 833 if (gicv3_nmi_present(vms)) { 834 qdev_prop_set_bit(vms->gic, "has-nmi", true); 835 } 836 837 gicbusdev = SYS_BUS_DEVICE(vms->gic); 838 sysbus_realize_and_unref(gicbusdev, &error_fatal); 839 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 840 if (vms->gic_version != VIRT_GIC_VERSION_2) { 841 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 842 if (nb_redist_regions == 2) { 843 sysbus_mmio_map(gicbusdev, 2, 844 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 845 } 846 } else { 847 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 848 if (vms->virt) { 849 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 850 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 851 } 852 } 853 854 /* Wire the outputs from each CPU's generic timer and the GICv3 855 * maintenance interrupt signal to the appropriate GIC PPI inputs, 856 * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the 857 * CPU's inputs. 858 */ 859 for (i = 0; i < smp_cpus; i++) { 860 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 861 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 862 /* Mapping from the output timer irq lines from the CPU to the 863 * GIC PPI inputs we use for the virt board. 864 */ 865 const int timer_irq[] = { 866 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 867 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 868 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 869 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 870 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 871 }; 872 873 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 874 qdev_connect_gpio_out(cpudev, irq, 875 qdev_get_gpio_in(vms->gic, 876 intidbase + timer_irq[irq])); 877 } 878 879 if (vms->gic_version != VIRT_GIC_VERSION_2) { 880 qemu_irq irq = qdev_get_gpio_in(vms->gic, 881 intidbase + ARCH_GIC_MAINT_IRQ); 882 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 883 0, irq); 884 } else if (vms->virt) { 885 qemu_irq irq = qdev_get_gpio_in(vms->gic, 886 intidbase + ARCH_GIC_MAINT_IRQ); 887 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 888 } 889 890 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 891 qdev_get_gpio_in(vms->gic, intidbase 892 + VIRTUAL_PMU_IRQ)); 893 894 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 895 sysbus_connect_irq(gicbusdev, i + smp_cpus, 896 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 897 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 898 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 899 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 900 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 901 902 if (vms->gic_version != VIRT_GIC_VERSION_2) { 903 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, 904 qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); 905 sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, 906 qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); 907 } 908 } 909 910 fdt_add_gic_node(vms); 911 912 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 913 create_its(vms); 914 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 915 create_v2m(vms); 916 } 917 } 918 919 static void create_uart(const VirtMachineState *vms, int uart, 920 MemoryRegion *mem, Chardev *chr, bool secure) 921 { 922 char *nodename; 923 hwaddr base = vms->memmap[uart].base; 924 hwaddr size = vms->memmap[uart].size; 925 int irq = vms->irqmap[uart]; 926 const char compat[] = "arm,pl011\0arm,primecell"; 927 const char clocknames[] = "uartclk\0apb_pclk"; 928 DeviceState *dev = qdev_new(TYPE_PL011); 929 SysBusDevice *s = SYS_BUS_DEVICE(dev); 930 MachineState *ms = MACHINE(vms); 931 932 qdev_prop_set_chr(dev, "chardev", chr); 933 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 934 memory_region_add_subregion(mem, base, 935 sysbus_mmio_get_region(s, 0)); 936 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 937 938 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 939 qemu_fdt_add_subnode(ms->fdt, nodename); 940 /* Note that we can't use setprop_string because of the embedded NUL */ 941 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 942 compat, sizeof(compat)); 943 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 944 2, base, 2, size); 945 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 946 GIC_FDT_IRQ_TYPE_SPI, irq, 947 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 948 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 949 vms->clock_phandle, vms->clock_phandle); 950 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 951 clocknames, sizeof(clocknames)); 952 953 if (uart == VIRT_UART0) { 954 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 955 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); 956 } else { 957 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); 958 } 959 if (secure) { 960 /* Mark as not usable by the normal world */ 961 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 962 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 963 964 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 965 nodename); 966 } 967 968 g_free(nodename); 969 } 970 971 static void create_rtc(const VirtMachineState *vms) 972 { 973 char *nodename; 974 hwaddr base = vms->memmap[VIRT_RTC].base; 975 hwaddr size = vms->memmap[VIRT_RTC].size; 976 int irq = vms->irqmap[VIRT_RTC]; 977 const char compat[] = "arm,pl031\0arm,primecell"; 978 MachineState *ms = MACHINE(vms); 979 980 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 981 982 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 983 qemu_fdt_add_subnode(ms->fdt, nodename); 984 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 985 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 986 2, base, 2, size); 987 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 988 GIC_FDT_IRQ_TYPE_SPI, irq, 989 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 990 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 991 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 992 g_free(nodename); 993 } 994 995 static DeviceState *gpio_key_dev; 996 static void virt_powerdown_req(Notifier *n, void *opaque) 997 { 998 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 999 1000 if (s->acpi_dev) { 1001 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 1002 } else { 1003 /* use gpio Pin 3 for power button event */ 1004 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 1005 } 1006 } 1007 1008 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 1009 uint32_t phandle) 1010 { 1011 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 1012 qdev_get_gpio_in(pl061_dev, 3)); 1013 1014 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 1015 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 1016 1017 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 1018 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 1019 "label", "GPIO Key Poweroff"); 1020 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 1021 KEY_POWER); 1022 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 1023 "gpios", phandle, 3, 0); 1024 } 1025 1026 #define SECURE_GPIO_POWEROFF 0 1027 #define SECURE_GPIO_RESET 1 1028 1029 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 1030 uint32_t phandle) 1031 { 1032 DeviceState *gpio_pwr_dev; 1033 1034 /* gpio-pwr */ 1035 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 1036 1037 /* connect secure pl061 to gpio-pwr */ 1038 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 1039 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 1040 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 1041 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 1042 1043 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 1044 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 1045 "gpio-poweroff"); 1046 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 1047 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 1048 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 1049 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 1050 "okay"); 1051 1052 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 1053 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 1054 "gpio-restart"); 1055 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 1056 "gpios", phandle, SECURE_GPIO_RESET, 0); 1057 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 1058 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 1059 "okay"); 1060 } 1061 1062 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 1063 MemoryRegion *mem) 1064 { 1065 char *nodename; 1066 DeviceState *pl061_dev; 1067 hwaddr base = vms->memmap[gpio].base; 1068 hwaddr size = vms->memmap[gpio].size; 1069 int irq = vms->irqmap[gpio]; 1070 const char compat[] = "arm,pl061\0arm,primecell"; 1071 SysBusDevice *s; 1072 MachineState *ms = MACHINE(vms); 1073 1074 pl061_dev = qdev_new("pl061"); 1075 /* Pull lines down to 0 if not driven by the PL061 */ 1076 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1077 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1078 s = SYS_BUS_DEVICE(pl061_dev); 1079 sysbus_realize_and_unref(s, &error_fatal); 1080 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1081 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1082 1083 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1084 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1085 qemu_fdt_add_subnode(ms->fdt, nodename); 1086 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1087 2, base, 2, size); 1088 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1089 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1090 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1091 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1092 GIC_FDT_IRQ_TYPE_SPI, irq, 1093 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1094 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1095 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1096 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1097 1098 if (gpio != VIRT_GPIO) { 1099 /* Mark as not usable by the normal world */ 1100 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1101 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1102 } 1103 g_free(nodename); 1104 1105 /* Child gpio devices */ 1106 if (gpio == VIRT_GPIO) { 1107 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1108 } else { 1109 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1110 } 1111 } 1112 1113 static void create_virtio_devices(const VirtMachineState *vms) 1114 { 1115 int i; 1116 hwaddr size = vms->memmap[VIRT_MMIO].size; 1117 MachineState *ms = MACHINE(vms); 1118 1119 /* We create the transports in forwards order. Since qbus_realize() 1120 * prepends (not appends) new child buses, the incrementing loop below will 1121 * create a list of virtio-mmio buses with decreasing base addresses. 1122 * 1123 * When a -device option is processed from the command line, 1124 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1125 * order. The upshot is that -device options in increasing command line 1126 * order are mapped to virtio-mmio buses with decreasing base addresses. 1127 * 1128 * When this code was originally written, that arrangement ensured that the 1129 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1130 * the first -device on the command line. (The end-to-end order is a 1131 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1132 * guest kernel's name-to-address assignment strategy.) 1133 * 1134 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1135 * the message, if not necessarily the code, of commit 70161ff336. 1136 * Therefore the loop now establishes the inverse of the original intent. 1137 * 1138 * Unfortunately, we can't counteract the kernel change by reversing the 1139 * loop; it would break existing command lines. 1140 * 1141 * In any case, the kernel makes no guarantee about the stability of 1142 * enumeration order of virtio devices (as demonstrated by it changing 1143 * between kernel versions). For reliable and stable identification 1144 * of disks users must use UUIDs or similar mechanisms. 1145 */ 1146 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1147 int irq = vms->irqmap[VIRT_MMIO] + i; 1148 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1149 1150 sysbus_create_simple("virtio-mmio", base, 1151 qdev_get_gpio_in(vms->gic, irq)); 1152 } 1153 1154 /* We add dtb nodes in reverse order so that they appear in the finished 1155 * device tree lowest address first. 1156 * 1157 * Note that this mapping is independent of the loop above. The previous 1158 * loop influences virtio device to virtio transport assignment, whereas 1159 * this loop controls how virtio transports are laid out in the dtb. 1160 */ 1161 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1162 char *nodename; 1163 int irq = vms->irqmap[VIRT_MMIO] + i; 1164 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1165 1166 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1167 qemu_fdt_add_subnode(ms->fdt, nodename); 1168 qemu_fdt_setprop_string(ms->fdt, nodename, 1169 "compatible", "virtio,mmio"); 1170 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1171 2, base, 2, size); 1172 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1173 GIC_FDT_IRQ_TYPE_SPI, irq, 1174 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1175 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1176 g_free(nodename); 1177 } 1178 } 1179 1180 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1181 1182 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1183 const char *name, 1184 const char *alias_prop_name) 1185 { 1186 /* 1187 * Create a single flash device. We use the same parameters as 1188 * the flash devices on the Versatile Express board. 1189 */ 1190 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1191 1192 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1193 qdev_prop_set_uint8(dev, "width", 4); 1194 qdev_prop_set_uint8(dev, "device-width", 2); 1195 qdev_prop_set_bit(dev, "big-endian", false); 1196 qdev_prop_set_uint16(dev, "id0", 0x89); 1197 qdev_prop_set_uint16(dev, "id1", 0x18); 1198 qdev_prop_set_uint16(dev, "id2", 0x00); 1199 qdev_prop_set_uint16(dev, "id3", 0x00); 1200 qdev_prop_set_string(dev, "name", name); 1201 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1202 object_property_add_alias(OBJECT(vms), alias_prop_name, 1203 OBJECT(dev), "drive"); 1204 return PFLASH_CFI01(dev); 1205 } 1206 1207 static void virt_flash_create(VirtMachineState *vms) 1208 { 1209 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1210 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1211 } 1212 1213 static void virt_flash_map1(PFlashCFI01 *flash, 1214 hwaddr base, hwaddr size, 1215 MemoryRegion *sysmem) 1216 { 1217 DeviceState *dev = DEVICE(flash); 1218 1219 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1220 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1221 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1222 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1223 1224 memory_region_add_subregion(sysmem, base, 1225 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1226 0)); 1227 } 1228 1229 static void virt_flash_map(VirtMachineState *vms, 1230 MemoryRegion *sysmem, 1231 MemoryRegion *secure_sysmem) 1232 { 1233 /* 1234 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1235 * sysmem is the system memory space. secure_sysmem is the secure view 1236 * of the system, and the first flash device should be made visible only 1237 * there. The second flash device is visible to both secure and nonsecure. 1238 * If sysmem == secure_sysmem this means there is no separate Secure 1239 * address space and both flash devices are generally visible. 1240 */ 1241 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1242 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1243 1244 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1245 secure_sysmem); 1246 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1247 sysmem); 1248 } 1249 1250 static void virt_flash_fdt(VirtMachineState *vms, 1251 MemoryRegion *sysmem, 1252 MemoryRegion *secure_sysmem) 1253 { 1254 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1255 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1256 MachineState *ms = MACHINE(vms); 1257 char *nodename; 1258 1259 if (sysmem == secure_sysmem) { 1260 /* Report both flash devices as a single node in the DT */ 1261 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1262 qemu_fdt_add_subnode(ms->fdt, nodename); 1263 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1264 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1265 2, flashbase, 2, flashsize, 1266 2, flashbase + flashsize, 2, flashsize); 1267 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1268 g_free(nodename); 1269 } else { 1270 /* 1271 * Report the devices as separate nodes so we can mark one as 1272 * only visible to the secure world. 1273 */ 1274 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1275 qemu_fdt_add_subnode(ms->fdt, nodename); 1276 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1277 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1278 2, flashbase, 2, flashsize); 1279 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1280 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1281 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1282 g_free(nodename); 1283 1284 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1285 qemu_fdt_add_subnode(ms->fdt, nodename); 1286 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1287 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1288 2, flashbase + flashsize, 2, flashsize); 1289 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1290 g_free(nodename); 1291 } 1292 } 1293 1294 static bool virt_firmware_init(VirtMachineState *vms, 1295 MemoryRegion *sysmem, 1296 MemoryRegion *secure_sysmem) 1297 { 1298 int i; 1299 const char *bios_name; 1300 BlockBackend *pflash_blk0; 1301 1302 /* Map legacy -drive if=pflash to machine properties */ 1303 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1304 pflash_cfi01_legacy_drive(vms->flash[i], 1305 drive_get(IF_PFLASH, 0, i)); 1306 } 1307 1308 virt_flash_map(vms, sysmem, secure_sysmem); 1309 1310 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1311 1312 bios_name = MACHINE(vms)->firmware; 1313 if (bios_name) { 1314 char *fname; 1315 MemoryRegion *mr; 1316 int image_size; 1317 1318 if (pflash_blk0) { 1319 error_report("The contents of the first flash device may be " 1320 "specified with -bios or with -drive if=pflash... " 1321 "but you cannot use both options at once"); 1322 exit(1); 1323 } 1324 1325 /* Fall back to -bios */ 1326 1327 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1328 if (!fname) { 1329 error_report("Could not find ROM image '%s'", bios_name); 1330 exit(1); 1331 } 1332 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1333 image_size = load_image_mr(fname, mr); 1334 g_free(fname); 1335 if (image_size < 0) { 1336 error_report("Could not load ROM image '%s'", bios_name); 1337 exit(1); 1338 } 1339 } 1340 1341 return pflash_blk0 || bios_name; 1342 } 1343 1344 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1345 { 1346 MachineState *ms = MACHINE(vms); 1347 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1348 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1349 FWCfgState *fw_cfg; 1350 char *nodename; 1351 1352 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1353 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1354 1355 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1356 qemu_fdt_add_subnode(ms->fdt, nodename); 1357 qemu_fdt_setprop_string(ms->fdt, nodename, 1358 "compatible", "qemu,fw-cfg-mmio"); 1359 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1360 2, base, 2, size); 1361 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1362 g_free(nodename); 1363 return fw_cfg; 1364 } 1365 1366 static void create_pcie_irq_map(const MachineState *ms, 1367 uint32_t gic_phandle, 1368 int first_irq, const char *nodename) 1369 { 1370 int devfn, pin; 1371 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1372 uint32_t *irq_map = full_irq_map; 1373 1374 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1375 for (pin = 0; pin < 4; pin++) { 1376 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1377 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1378 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1379 int i; 1380 1381 uint32_t map[] = { 1382 devfn << 8, 0, 0, /* devfn */ 1383 pin + 1, /* PCI pin */ 1384 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1385 1386 /* Convert map to big endian */ 1387 for (i = 0; i < 10; i++) { 1388 irq_map[i] = cpu_to_be32(map[i]); 1389 } 1390 irq_map += 10; 1391 } 1392 } 1393 1394 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1395 full_irq_map, sizeof(full_irq_map)); 1396 1397 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1398 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1399 0, 0, 1400 0x7 /* PCI irq */); 1401 } 1402 1403 static void create_smmu(const VirtMachineState *vms, 1404 PCIBus *bus) 1405 { 1406 char *node; 1407 const char compat[] = "arm,smmu-v3"; 1408 int irq = vms->irqmap[VIRT_SMMU]; 1409 int i; 1410 hwaddr base = vms->memmap[VIRT_SMMU].base; 1411 hwaddr size = vms->memmap[VIRT_SMMU].size; 1412 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1413 DeviceState *dev; 1414 MachineState *ms = MACHINE(vms); 1415 1416 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1417 return; 1418 } 1419 1420 dev = qdev_new(TYPE_ARM_SMMUV3); 1421 1422 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1423 &error_abort); 1424 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1425 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1426 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1427 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1428 qdev_get_gpio_in(vms->gic, irq + i)); 1429 } 1430 1431 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1432 qemu_fdt_add_subnode(ms->fdt, node); 1433 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1434 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1435 1436 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1437 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1438 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1439 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1440 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1441 1442 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1443 sizeof(irq_names)); 1444 1445 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1446 1447 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1448 1449 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1450 g_free(node); 1451 } 1452 1453 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1454 { 1455 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1456 uint16_t bdf = vms->virtio_iommu_bdf; 1457 MachineState *ms = MACHINE(vms); 1458 char *node; 1459 1460 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1461 1462 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1463 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1464 qemu_fdt_add_subnode(ms->fdt, node); 1465 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1466 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1467 1, bdf << 8, 1, 0, 1, 0, 1468 1, 0, 1, 0); 1469 1470 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1471 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1472 g_free(node); 1473 1474 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1475 0x0, vms->iommu_phandle, 0x0, bdf, 1476 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1477 } 1478 1479 static void create_pcie(VirtMachineState *vms) 1480 { 1481 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1482 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1483 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1484 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1485 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1486 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1487 hwaddr base_ecam, size_ecam; 1488 hwaddr base = base_mmio; 1489 int nr_pcie_buses; 1490 int irq = vms->irqmap[VIRT_PCIE]; 1491 MemoryRegion *mmio_alias; 1492 MemoryRegion *mmio_reg; 1493 MemoryRegion *ecam_alias; 1494 MemoryRegion *ecam_reg; 1495 DeviceState *dev; 1496 char *nodename; 1497 int i, ecam_id; 1498 PCIHostState *pci; 1499 MachineState *ms = MACHINE(vms); 1500 MachineClass *mc = MACHINE_GET_CLASS(ms); 1501 1502 dev = qdev_new(TYPE_GPEX_HOST); 1503 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1504 1505 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1506 base_ecam = vms->memmap[ecam_id].base; 1507 size_ecam = vms->memmap[ecam_id].size; 1508 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1509 /* Map only the first size_ecam bytes of ECAM space */ 1510 ecam_alias = g_new0(MemoryRegion, 1); 1511 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1512 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1513 ecam_reg, 0, size_ecam); 1514 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1515 1516 /* Map the MMIO window into system address space so as to expose 1517 * the section of PCI MMIO space which starts at the same base address 1518 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1519 * the window). 1520 */ 1521 mmio_alias = g_new0(MemoryRegion, 1); 1522 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1523 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1524 mmio_reg, base_mmio, size_mmio); 1525 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1526 1527 if (vms->highmem_mmio) { 1528 /* Map high MMIO space */ 1529 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1530 1531 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1532 mmio_reg, base_mmio_high, size_mmio_high); 1533 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1534 high_mmio_alias); 1535 } 1536 1537 /* Map IO port space */ 1538 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1539 1540 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1541 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1542 qdev_get_gpio_in(vms->gic, irq + i)); 1543 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1544 } 1545 1546 pci = PCI_HOST_BRIDGE(dev); 1547 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1548 vms->bus = pci->bus; 1549 if (vms->bus) { 1550 pci_init_nic_devices(pci->bus, mc->default_nic); 1551 } 1552 1553 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1554 qemu_fdt_add_subnode(ms->fdt, nodename); 1555 qemu_fdt_setprop_string(ms->fdt, nodename, 1556 "compatible", "pci-host-ecam-generic"); 1557 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1558 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1559 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1560 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1561 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1562 nr_pcie_buses - 1); 1563 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1564 1565 if (vms->msi_phandle) { 1566 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1567 0, vms->msi_phandle, 0, 0x10000); 1568 } 1569 1570 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1571 2, base_ecam, 2, size_ecam); 1572 1573 if (vms->highmem_mmio) { 1574 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1575 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1576 2, base_pio, 2, size_pio, 1577 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1578 2, base_mmio, 2, size_mmio, 1579 1, FDT_PCI_RANGE_MMIO_64BIT, 1580 2, base_mmio_high, 1581 2, base_mmio_high, 2, size_mmio_high); 1582 } else { 1583 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1584 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1585 2, base_pio, 2, size_pio, 1586 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1587 2, base_mmio, 2, size_mmio); 1588 } 1589 1590 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1591 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1592 1593 if (vms->iommu) { 1594 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1595 1596 switch (vms->iommu) { 1597 case VIRT_IOMMU_SMMUV3: 1598 create_smmu(vms, vms->bus); 1599 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1600 0x0, vms->iommu_phandle, 0x0, 0x10000); 1601 break; 1602 default: 1603 g_assert_not_reached(); 1604 } 1605 } 1606 } 1607 1608 static void create_platform_bus(VirtMachineState *vms) 1609 { 1610 DeviceState *dev; 1611 SysBusDevice *s; 1612 int i; 1613 MemoryRegion *sysmem = get_system_memory(); 1614 1615 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1616 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1617 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1618 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1619 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1620 vms->platform_bus_dev = dev; 1621 1622 s = SYS_BUS_DEVICE(dev); 1623 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1624 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1625 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1626 } 1627 1628 memory_region_add_subregion(sysmem, 1629 vms->memmap[VIRT_PLATFORM_BUS].base, 1630 sysbus_mmio_get_region(s, 0)); 1631 } 1632 1633 static void create_tag_ram(MemoryRegion *tag_sysmem, 1634 hwaddr base, hwaddr size, 1635 const char *name) 1636 { 1637 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1638 1639 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1640 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1641 } 1642 1643 static void create_secure_ram(VirtMachineState *vms, 1644 MemoryRegion *secure_sysmem, 1645 MemoryRegion *secure_tag_sysmem) 1646 { 1647 MemoryRegion *secram = g_new(MemoryRegion, 1); 1648 char *nodename; 1649 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1650 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1651 MachineState *ms = MACHINE(vms); 1652 1653 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1654 &error_fatal); 1655 memory_region_add_subregion(secure_sysmem, base, secram); 1656 1657 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1658 qemu_fdt_add_subnode(ms->fdt, nodename); 1659 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1660 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1661 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1662 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1663 1664 if (secure_tag_sysmem) { 1665 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1666 } 1667 1668 g_free(nodename); 1669 } 1670 1671 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1672 { 1673 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1674 bootinfo); 1675 MachineState *ms = MACHINE(board); 1676 1677 1678 *fdt_size = board->fdt_size; 1679 return ms->fdt; 1680 } 1681 1682 static void virt_build_smbios(VirtMachineState *vms) 1683 { 1684 MachineClass *mc = MACHINE_GET_CLASS(vms); 1685 MachineState *ms = MACHINE(vms); 1686 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1687 uint8_t *smbios_tables, *smbios_anchor; 1688 size_t smbios_tables_len, smbios_anchor_len; 1689 struct smbios_phys_mem_area mem_array; 1690 const char *product = "QEMU Virtual Machine"; 1691 1692 if (kvm_enabled()) { 1693 product = "KVM Virtual Machine"; 1694 } 1695 1696 smbios_set_defaults("QEMU", product, 1697 vmc->smbios_old_sys_ver ? "1.0" : mc->name); 1698 1699 /* build the array of physical mem area from base_memmap */ 1700 mem_array.address = vms->memmap[VIRT_MEM].base; 1701 mem_array.length = ms->ram_size; 1702 1703 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, 1704 &smbios_tables, &smbios_tables_len, 1705 &smbios_anchor, &smbios_anchor_len, 1706 &error_fatal); 1707 1708 if (smbios_anchor) { 1709 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1710 smbios_tables, smbios_tables_len); 1711 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1712 smbios_anchor, smbios_anchor_len); 1713 } 1714 } 1715 1716 static 1717 void virt_machine_done(Notifier *notifier, void *data) 1718 { 1719 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1720 machine_done); 1721 MachineState *ms = MACHINE(vms); 1722 ARMCPU *cpu = ARM_CPU(first_cpu); 1723 struct arm_boot_info *info = &vms->bootinfo; 1724 AddressSpace *as = arm_boot_address_space(cpu, info); 1725 1726 /* 1727 * If the user provided a dtb, we assume the dynamic sysbus nodes 1728 * already are integrated there. This corresponds to a use case where 1729 * the dynamic sysbus nodes are complex and their generation is not yet 1730 * supported. In that case the user can take charge of the guest dt 1731 * while qemu takes charge of the qom stuff. 1732 */ 1733 if (info->dtb_filename == NULL) { 1734 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1735 vms->memmap[VIRT_PLATFORM_BUS].base, 1736 vms->memmap[VIRT_PLATFORM_BUS].size, 1737 vms->irqmap[VIRT_PLATFORM_BUS]); 1738 } 1739 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1740 exit(1); 1741 } 1742 1743 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1744 1745 virt_acpi_setup(vms); 1746 virt_build_smbios(vms); 1747 } 1748 1749 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1750 { 1751 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1752 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1753 1754 if (!vmc->disallow_affinity_adjustment) { 1755 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1756 * GIC's target-list limitations. 32-bit KVM hosts currently 1757 * always create clusters of 4 CPUs, but that is expected to 1758 * change when they gain support for gicv3. When KVM is enabled 1759 * it will override the changes we make here, therefore our 1760 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1761 * and to improve SGI efficiency. 1762 */ 1763 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1764 clustersz = GIC_TARGETLIST_BITS; 1765 } else { 1766 clustersz = GICV3_TARGETLIST_BITS; 1767 } 1768 } 1769 return arm_build_mp_affinity(idx, clustersz); 1770 } 1771 1772 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1773 int index) 1774 { 1775 bool *enabled_array[] = { 1776 &vms->highmem_redists, 1777 &vms->highmem_ecam, 1778 &vms->highmem_mmio, 1779 }; 1780 1781 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1782 ARRAY_SIZE(enabled_array)); 1783 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1784 1785 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1786 } 1787 1788 static void virt_set_high_memmap(VirtMachineState *vms, 1789 hwaddr base, int pa_bits) 1790 { 1791 hwaddr region_base, region_size; 1792 bool *region_enabled, fits; 1793 int i; 1794 1795 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1796 region_enabled = virt_get_high_memmap_enabled(vms, i); 1797 region_base = ROUND_UP(base, extended_memmap[i].size); 1798 region_size = extended_memmap[i].size; 1799 1800 vms->memmap[i].base = region_base; 1801 vms->memmap[i].size = region_size; 1802 1803 /* 1804 * Check each device to see if it fits in the PA space, 1805 * moving highest_gpa as we go. For compatibility, move 1806 * highest_gpa for disabled fitting devices as well, if 1807 * the compact layout has been disabled. 1808 * 1809 * For each device that doesn't fit, disable it. 1810 */ 1811 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1812 *region_enabled &= fits; 1813 if (vms->highmem_compact && !*region_enabled) { 1814 continue; 1815 } 1816 1817 base = region_base + region_size; 1818 if (fits) { 1819 vms->highest_gpa = base - 1; 1820 } 1821 } 1822 } 1823 1824 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1825 { 1826 MachineState *ms = MACHINE(vms); 1827 hwaddr base, device_memory_base, device_memory_size, memtop; 1828 int i; 1829 1830 vms->memmap = extended_memmap; 1831 1832 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1833 vms->memmap[i] = base_memmap[i]; 1834 } 1835 1836 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1837 error_report("unsupported number of memory slots: %"PRIu64, 1838 ms->ram_slots); 1839 exit(EXIT_FAILURE); 1840 } 1841 1842 /* 1843 * !highmem is exactly the same as limiting the PA space to 32bit, 1844 * irrespective of the underlying capabilities of the HW. 1845 */ 1846 if (!vms->highmem) { 1847 pa_bits = 32; 1848 } 1849 1850 /* 1851 * We compute the base of the high IO region depending on the 1852 * amount of initial and device memory. The device memory start/size 1853 * is aligned on 1GiB. We never put the high IO region below 256GiB 1854 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1855 * The device region size assumes 1GiB page max alignment per slot. 1856 */ 1857 device_memory_base = 1858 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1859 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1860 1861 /* Base address of the high IO region */ 1862 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1863 if (memtop > BIT_ULL(pa_bits)) { 1864 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", 1865 pa_bits, memtop - BIT_ULL(pa_bits)); 1866 exit(EXIT_FAILURE); 1867 } 1868 if (base < device_memory_base) { 1869 error_report("maxmem/slots too huge"); 1870 exit(EXIT_FAILURE); 1871 } 1872 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1873 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1874 } 1875 1876 /* We know for sure that at least the memory fits in the PA space */ 1877 vms->highest_gpa = memtop - 1; 1878 1879 virt_set_high_memmap(vms, base, pa_bits); 1880 1881 if (device_memory_size > 0) { 1882 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1883 } 1884 } 1885 1886 static VirtGICType finalize_gic_version_do(const char *accel_name, 1887 VirtGICType gic_version, 1888 int gics_supported, 1889 unsigned int max_cpus) 1890 { 1891 /* Convert host/max/nosel to GIC version number */ 1892 switch (gic_version) { 1893 case VIRT_GIC_VERSION_HOST: 1894 if (!kvm_enabled()) { 1895 error_report("gic-version=host requires KVM"); 1896 exit(1); 1897 } 1898 1899 /* For KVM, gic-version=host means gic-version=max */ 1900 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1901 gics_supported, max_cpus); 1902 case VIRT_GIC_VERSION_MAX: 1903 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1904 gic_version = VIRT_GIC_VERSION_4; 1905 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1906 gic_version = VIRT_GIC_VERSION_3; 1907 } else { 1908 gic_version = VIRT_GIC_VERSION_2; 1909 } 1910 break; 1911 case VIRT_GIC_VERSION_NOSEL: 1912 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1913 max_cpus <= GIC_NCPU) { 1914 gic_version = VIRT_GIC_VERSION_2; 1915 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1916 /* 1917 * in case the host does not support v2 emulation or 1918 * the end-user requested more than 8 VCPUs we now default 1919 * to v3. In any case defaulting to v2 would be broken. 1920 */ 1921 gic_version = VIRT_GIC_VERSION_3; 1922 } else if (max_cpus > GIC_NCPU) { 1923 error_report("%s only supports GICv2 emulation but more than 8 " 1924 "vcpus are requested", accel_name); 1925 exit(1); 1926 } 1927 break; 1928 case VIRT_GIC_VERSION_2: 1929 case VIRT_GIC_VERSION_3: 1930 case VIRT_GIC_VERSION_4: 1931 break; 1932 } 1933 1934 /* Check chosen version is effectively supported */ 1935 switch (gic_version) { 1936 case VIRT_GIC_VERSION_2: 1937 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1938 error_report("%s does not support GICv2 emulation", accel_name); 1939 exit(1); 1940 } 1941 break; 1942 case VIRT_GIC_VERSION_3: 1943 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1944 error_report("%s does not support GICv3 emulation", accel_name); 1945 exit(1); 1946 } 1947 break; 1948 case VIRT_GIC_VERSION_4: 1949 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1950 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1951 accel_name); 1952 exit(1); 1953 } 1954 break; 1955 default: 1956 error_report("logic error in finalize_gic_version"); 1957 exit(1); 1958 break; 1959 } 1960 1961 return gic_version; 1962 } 1963 1964 /* 1965 * finalize_gic_version - Determines the final gic_version 1966 * according to the gic-version property 1967 * 1968 * Default GIC type is v2 1969 */ 1970 static void finalize_gic_version(VirtMachineState *vms) 1971 { 1972 const char *accel_name = current_accel_name(); 1973 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1974 int gics_supported = 0; 1975 1976 /* Determine which GIC versions the current environment supports */ 1977 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1978 int probe_bitmap = kvm_arm_vgic_probe(); 1979 1980 if (!probe_bitmap) { 1981 error_report("Unable to determine GIC version supported by host"); 1982 exit(1); 1983 } 1984 1985 if (probe_bitmap & KVM_ARM_VGIC_V2) { 1986 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1987 } 1988 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1989 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1990 } 1991 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 1992 /* KVM w/o kernel irqchip can only deal with GICv2 */ 1993 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1994 accel_name = "KVM with kernel-irqchip=off"; 1995 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 1996 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1997 if (module_object_class_by_name("arm-gicv3")) { 1998 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1999 if (vms->virt) { 2000 /* GICv4 only makes sense if CPU has EL2 */ 2001 gics_supported |= VIRT_GIC_VERSION_4_MASK; 2002 } 2003 } 2004 } else { 2005 error_report("Unsupported accelerator, can not determine GIC support"); 2006 exit(1); 2007 } 2008 2009 /* 2010 * Then convert helpers like host/max to concrete GIC versions and ensure 2011 * the desired version is supported 2012 */ 2013 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 2014 gics_supported, max_cpus); 2015 } 2016 2017 /* 2018 * virt_cpu_post_init() must be called after the CPUs have 2019 * been realized and the GIC has been created. 2020 */ 2021 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 2022 { 2023 int max_cpus = MACHINE(vms)->smp.max_cpus; 2024 bool aarch64, pmu, steal_time; 2025 CPUState *cpu; 2026 2027 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 2028 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 2029 steal_time = object_property_get_bool(OBJECT(first_cpu), 2030 "kvm-steal-time", NULL); 2031 2032 if (kvm_enabled()) { 2033 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 2034 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 2035 2036 if (steal_time) { 2037 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 2038 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 2039 2040 /* The memory region size must be a multiple of host page size. */ 2041 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 2042 2043 if (pvtime_size > pvtime_reg_size) { 2044 error_report("pvtime requires a %" HWADDR_PRId 2045 " byte memory region for %d CPUs," 2046 " but only %" HWADDR_PRId " has been reserved", 2047 pvtime_size, max_cpus, pvtime_reg_size); 2048 exit(1); 2049 } 2050 2051 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 2052 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 2053 } 2054 2055 CPU_FOREACH(cpu) { 2056 if (pmu) { 2057 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 2058 if (kvm_irqchip_in_kernel()) { 2059 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 2060 } 2061 kvm_arm_pmu_init(ARM_CPU(cpu)); 2062 } 2063 if (steal_time) { 2064 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 2065 + cpu->cpu_index 2066 * PVTIME_SIZE_PER_CPU); 2067 } 2068 } 2069 } else { 2070 if (aarch64 && vms->highmem) { 2071 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2072 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2073 2074 if (pamax < requested_pa_size) { 2075 error_report("VCPU supports less PA bits (%d) than " 2076 "requested by the memory map (%d)", 2077 pamax, requested_pa_size); 2078 exit(1); 2079 } 2080 } 2081 } 2082 } 2083 2084 static void machvirt_init(MachineState *machine) 2085 { 2086 VirtMachineState *vms = VIRT_MACHINE(machine); 2087 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2088 MachineClass *mc = MACHINE_GET_CLASS(machine); 2089 const CPUArchIdList *possible_cpus; 2090 MemoryRegion *sysmem = get_system_memory(); 2091 MemoryRegion *secure_sysmem = NULL; 2092 MemoryRegion *tag_sysmem = NULL; 2093 MemoryRegion *secure_tag_sysmem = NULL; 2094 int n, virt_max_cpus; 2095 bool firmware_loaded; 2096 bool aarch64 = true; 2097 bool has_ged = !vmc->no_ged; 2098 unsigned int smp_cpus = machine->smp.cpus; 2099 unsigned int max_cpus = machine->smp.max_cpus; 2100 2101 possible_cpus = mc->possible_cpu_arch_ids(machine); 2102 2103 /* 2104 * In accelerated mode, the memory map is computed earlier in kvm_type() 2105 * to create a VM with the right number of IPA bits. 2106 */ 2107 if (!vms->memmap) { 2108 Object *cpuobj; 2109 ARMCPU *armcpu; 2110 int pa_bits; 2111 2112 /* 2113 * Instantiate a temporary CPU object to find out about what 2114 * we are about to deal with. Once this is done, get rid of 2115 * the object. 2116 */ 2117 cpuobj = object_new(possible_cpus->cpus[0].type); 2118 armcpu = ARM_CPU(cpuobj); 2119 2120 pa_bits = arm_pamax(armcpu); 2121 2122 object_unref(cpuobj); 2123 2124 virt_set_memmap(vms, pa_bits); 2125 } 2126 2127 /* We can probe only here because during property set 2128 * KVM is not available yet 2129 */ 2130 finalize_gic_version(vms); 2131 2132 if (vms->secure) { 2133 /* 2134 * The Secure view of the world is the same as the NonSecure, 2135 * but with a few extra devices. Create it as a container region 2136 * containing the system memory at low priority; any secure-only 2137 * devices go in at higher priority and take precedence. 2138 */ 2139 secure_sysmem = g_new(MemoryRegion, 1); 2140 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2141 UINT64_MAX); 2142 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2143 } 2144 2145 firmware_loaded = virt_firmware_init(vms, sysmem, 2146 secure_sysmem ?: sysmem); 2147 2148 /* If we have an EL3 boot ROM then the assumption is that it will 2149 * implement PSCI itself, so disable QEMU's internal implementation 2150 * so it doesn't get in the way. Instead of starting secondary 2151 * CPUs in PSCI powerdown state we will start them all running and 2152 * let the boot ROM sort them out. 2153 * The usual case is that we do use QEMU's PSCI implementation; 2154 * if the guest has EL2 then we will use SMC as the conduit, 2155 * and otherwise we will use HVC (for backwards compatibility and 2156 * because if we're using KVM then we must use HVC). 2157 */ 2158 if (vms->secure && firmware_loaded) { 2159 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2160 } else if (vms->virt) { 2161 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2162 } else { 2163 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2164 } 2165 2166 /* 2167 * The maximum number of CPUs depends on the GIC version, or on how 2168 * many redistributors we can fit into the memory map (which in turn 2169 * depends on whether this is a GICv3 or v4). 2170 */ 2171 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2172 virt_max_cpus = GIC_NCPU; 2173 } else { 2174 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2175 if (vms->highmem_redists) { 2176 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2177 } 2178 } 2179 2180 if (max_cpus > virt_max_cpus) { 2181 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2182 "supported by machine 'mach-virt' (%d)", 2183 max_cpus, virt_max_cpus); 2184 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2185 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2186 } 2187 2188 exit(1); 2189 } 2190 2191 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2192 error_report("mach-virt: %s does not support providing " 2193 "Security extensions (TrustZone) to the guest CPU", 2194 current_accel_name()); 2195 exit(1); 2196 } 2197 2198 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2199 error_report("mach-virt: %s does not support providing " 2200 "Virtualization extensions to the guest CPU", 2201 current_accel_name()); 2202 exit(1); 2203 } 2204 2205 if (vms->mte && (kvm_enabled() || hvf_enabled())) { 2206 error_report("mach-virt: %s does not support providing " 2207 "MTE to the guest CPU", 2208 current_accel_name()); 2209 exit(1); 2210 } 2211 2212 create_fdt(vms); 2213 2214 assert(possible_cpus->len == max_cpus); 2215 for (n = 0; n < possible_cpus->len; n++) { 2216 Object *cpuobj; 2217 CPUState *cs; 2218 2219 if (n >= smp_cpus) { 2220 break; 2221 } 2222 2223 cpuobj = object_new(possible_cpus->cpus[n].type); 2224 object_property_set_int(cpuobj, "mp-affinity", 2225 possible_cpus->cpus[n].arch_id, NULL); 2226 2227 cs = CPU(cpuobj); 2228 cs->cpu_index = n; 2229 2230 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2231 &error_fatal); 2232 2233 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2234 2235 if (!vms->secure) { 2236 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2237 } 2238 2239 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2240 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2241 } 2242 2243 if (vmc->kvm_no_adjvtime && 2244 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2245 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2246 } 2247 2248 if (vmc->no_kvm_steal_time && 2249 object_property_find(cpuobj, "kvm-steal-time")) { 2250 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2251 } 2252 2253 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2254 object_property_set_bool(cpuobj, "pmu", false, NULL); 2255 } 2256 2257 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2258 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2259 } 2260 2261 if (object_property_find(cpuobj, "reset-cbar")) { 2262 object_property_set_int(cpuobj, "reset-cbar", 2263 vms->memmap[VIRT_CPUPERIPHS].base, 2264 &error_abort); 2265 } 2266 2267 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2268 &error_abort); 2269 if (vms->secure) { 2270 object_property_set_link(cpuobj, "secure-memory", 2271 OBJECT(secure_sysmem), &error_abort); 2272 } 2273 2274 if (vms->mte) { 2275 /* Create the memory region only once, but link to all cpus. */ 2276 if (!tag_sysmem) { 2277 /* 2278 * The property exists only if MemTag is supported. 2279 * If it is, we must allocate the ram to back that up. 2280 */ 2281 if (!object_property_find(cpuobj, "tag-memory")) { 2282 error_report("MTE requested, but not supported " 2283 "by the guest CPU"); 2284 exit(1); 2285 } 2286 2287 tag_sysmem = g_new(MemoryRegion, 1); 2288 memory_region_init(tag_sysmem, OBJECT(machine), 2289 "tag-memory", UINT64_MAX / 32); 2290 2291 if (vms->secure) { 2292 secure_tag_sysmem = g_new(MemoryRegion, 1); 2293 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2294 "secure-tag-memory", UINT64_MAX / 32); 2295 2296 /* As with ram, secure-tag takes precedence over tag. */ 2297 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2298 tag_sysmem, -1); 2299 } 2300 } 2301 2302 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2303 &error_abort); 2304 if (vms->secure) { 2305 object_property_set_link(cpuobj, "secure-tag-memory", 2306 OBJECT(secure_tag_sysmem), 2307 &error_abort); 2308 } 2309 } 2310 2311 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2312 object_unref(cpuobj); 2313 } 2314 2315 /* Now we've created the CPUs we can see if they have the hypvirt timer */ 2316 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && 2317 !vmc->no_ns_el2_virt_timer_irq; 2318 2319 fdt_add_timer_nodes(vms); 2320 fdt_add_cpu_nodes(vms); 2321 2322 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2323 machine->ram); 2324 2325 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2326 2327 create_gic(vms, sysmem); 2328 2329 virt_cpu_post_init(vms, sysmem); 2330 2331 fdt_add_pmu_nodes(vms); 2332 2333 /* 2334 * The first UART always exists. If the security extensions are 2335 * enabled, the second UART also always exists. Otherwise, it only exists 2336 * if a backend is configured explicitly via '-serial <backend>'. 2337 * This avoids potentially breaking existing user setups that expect 2338 * only one NonSecure UART to be present (for instance, older EDK2 2339 * binaries). 2340 * 2341 * The nodes end up in the DTB in reverse order of creation, so we must 2342 * create UART0 last to ensure it appears as the first node in the DTB, 2343 * for compatibility with guest software that just iterates through the 2344 * DTB to find the first UART, as older versions of EDK2 do. 2345 * DTB readers that follow the spec, as Linux does, should honour the 2346 * aliases node information and /chosen/stdout-path regardless of 2347 * the order that nodes appear in the DTB. 2348 * 2349 * For similar back-compatibility reasons, if UART1 is the secure UART 2350 * we create it second (and so it appears first in the DTB), because 2351 * that's what QEMU has always done. 2352 */ 2353 if (!vms->secure) { 2354 Chardev *serial1 = serial_hd(1); 2355 2356 if (serial1) { 2357 vms->second_ns_uart_present = true; 2358 create_uart(vms, VIRT_UART1, sysmem, serial1, false); 2359 } 2360 } 2361 create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); 2362 if (vms->secure) { 2363 create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); 2364 } 2365 2366 if (vms->secure) { 2367 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2368 } 2369 2370 if (tag_sysmem) { 2371 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2372 machine->ram_size, "mach-virt.tag"); 2373 } 2374 2375 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2376 2377 create_rtc(vms); 2378 2379 create_pcie(vms); 2380 2381 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2382 vms->acpi_dev = create_acpi_ged(vms); 2383 } else { 2384 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2385 } 2386 2387 if (vms->secure && !vmc->no_secure_gpio) { 2388 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2389 } 2390 2391 /* connect powerdown request */ 2392 vms->powerdown_notifier.notify = virt_powerdown_req; 2393 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2394 2395 /* Create mmio transports, so the user can create virtio backends 2396 * (which will be automatically plugged in to the transports). If 2397 * no backend is created the transport will just sit harmlessly idle. 2398 */ 2399 create_virtio_devices(vms); 2400 2401 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2402 rom_set_fw(vms->fw_cfg); 2403 2404 create_platform_bus(vms); 2405 2406 if (machine->nvdimms_state->is_enabled) { 2407 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2408 .space_id = AML_AS_SYSTEM_MEMORY, 2409 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2410 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2411 }; 2412 2413 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2414 arm_virt_nvdimm_acpi_dsmio, 2415 vms->fw_cfg, OBJECT(vms)); 2416 } 2417 2418 vms->bootinfo.ram_size = machine->ram_size; 2419 vms->bootinfo.board_id = -1; 2420 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2421 vms->bootinfo.get_dtb = machvirt_dtb; 2422 vms->bootinfo.skip_dtb_autoload = true; 2423 vms->bootinfo.firmware_loaded = firmware_loaded; 2424 vms->bootinfo.psci_conduit = vms->psci_conduit; 2425 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2426 2427 vms->machine_done.notify = virt_machine_done; 2428 qemu_add_machine_init_done_notifier(&vms->machine_done); 2429 } 2430 2431 static bool virt_get_secure(Object *obj, Error **errp) 2432 { 2433 VirtMachineState *vms = VIRT_MACHINE(obj); 2434 2435 return vms->secure; 2436 } 2437 2438 static void virt_set_secure(Object *obj, bool value, Error **errp) 2439 { 2440 VirtMachineState *vms = VIRT_MACHINE(obj); 2441 2442 vms->secure = value; 2443 } 2444 2445 static bool virt_get_virt(Object *obj, Error **errp) 2446 { 2447 VirtMachineState *vms = VIRT_MACHINE(obj); 2448 2449 return vms->virt; 2450 } 2451 2452 static void virt_set_virt(Object *obj, bool value, Error **errp) 2453 { 2454 VirtMachineState *vms = VIRT_MACHINE(obj); 2455 2456 vms->virt = value; 2457 } 2458 2459 static bool virt_get_highmem(Object *obj, Error **errp) 2460 { 2461 VirtMachineState *vms = VIRT_MACHINE(obj); 2462 2463 return vms->highmem; 2464 } 2465 2466 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2467 { 2468 VirtMachineState *vms = VIRT_MACHINE(obj); 2469 2470 vms->highmem = value; 2471 } 2472 2473 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2474 { 2475 VirtMachineState *vms = VIRT_MACHINE(obj); 2476 2477 return vms->highmem_compact; 2478 } 2479 2480 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2481 { 2482 VirtMachineState *vms = VIRT_MACHINE(obj); 2483 2484 vms->highmem_compact = value; 2485 } 2486 2487 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2488 { 2489 VirtMachineState *vms = VIRT_MACHINE(obj); 2490 2491 return vms->highmem_redists; 2492 } 2493 2494 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2495 { 2496 VirtMachineState *vms = VIRT_MACHINE(obj); 2497 2498 vms->highmem_redists = value; 2499 } 2500 2501 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2502 { 2503 VirtMachineState *vms = VIRT_MACHINE(obj); 2504 2505 return vms->highmem_ecam; 2506 } 2507 2508 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2509 { 2510 VirtMachineState *vms = VIRT_MACHINE(obj); 2511 2512 vms->highmem_ecam = value; 2513 } 2514 2515 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2516 { 2517 VirtMachineState *vms = VIRT_MACHINE(obj); 2518 2519 return vms->highmem_mmio; 2520 } 2521 2522 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2523 { 2524 VirtMachineState *vms = VIRT_MACHINE(obj); 2525 2526 vms->highmem_mmio = value; 2527 } 2528 2529 2530 static bool virt_get_its(Object *obj, Error **errp) 2531 { 2532 VirtMachineState *vms = VIRT_MACHINE(obj); 2533 2534 return vms->its; 2535 } 2536 2537 static void virt_set_its(Object *obj, bool value, Error **errp) 2538 { 2539 VirtMachineState *vms = VIRT_MACHINE(obj); 2540 2541 vms->its = value; 2542 } 2543 2544 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2545 { 2546 VirtMachineState *vms = VIRT_MACHINE(obj); 2547 2548 return vms->dtb_randomness; 2549 } 2550 2551 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2552 { 2553 VirtMachineState *vms = VIRT_MACHINE(obj); 2554 2555 vms->dtb_randomness = value; 2556 } 2557 2558 static char *virt_get_oem_id(Object *obj, Error **errp) 2559 { 2560 VirtMachineState *vms = VIRT_MACHINE(obj); 2561 2562 return g_strdup(vms->oem_id); 2563 } 2564 2565 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2566 { 2567 VirtMachineState *vms = VIRT_MACHINE(obj); 2568 size_t len = strlen(value); 2569 2570 if (len > 6) { 2571 error_setg(errp, 2572 "User specified oem-id value is bigger than 6 bytes in size"); 2573 return; 2574 } 2575 2576 strncpy(vms->oem_id, value, 6); 2577 } 2578 2579 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2580 { 2581 VirtMachineState *vms = VIRT_MACHINE(obj); 2582 2583 return g_strdup(vms->oem_table_id); 2584 } 2585 2586 static void virt_set_oem_table_id(Object *obj, const char *value, 2587 Error **errp) 2588 { 2589 VirtMachineState *vms = VIRT_MACHINE(obj); 2590 size_t len = strlen(value); 2591 2592 if (len > 8) { 2593 error_setg(errp, 2594 "User specified oem-table-id value is bigger than 8 bytes in size"); 2595 return; 2596 } 2597 strncpy(vms->oem_table_id, value, 8); 2598 } 2599 2600 2601 bool virt_is_acpi_enabled(VirtMachineState *vms) 2602 { 2603 if (vms->acpi == ON_OFF_AUTO_OFF) { 2604 return false; 2605 } 2606 return true; 2607 } 2608 2609 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2610 void *opaque, Error **errp) 2611 { 2612 VirtMachineState *vms = VIRT_MACHINE(obj); 2613 OnOffAuto acpi = vms->acpi; 2614 2615 visit_type_OnOffAuto(v, name, &acpi, errp); 2616 } 2617 2618 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2619 void *opaque, Error **errp) 2620 { 2621 VirtMachineState *vms = VIRT_MACHINE(obj); 2622 2623 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2624 } 2625 2626 static bool virt_get_ras(Object *obj, Error **errp) 2627 { 2628 VirtMachineState *vms = VIRT_MACHINE(obj); 2629 2630 return vms->ras; 2631 } 2632 2633 static void virt_set_ras(Object *obj, bool value, Error **errp) 2634 { 2635 VirtMachineState *vms = VIRT_MACHINE(obj); 2636 2637 vms->ras = value; 2638 } 2639 2640 static bool virt_get_mte(Object *obj, Error **errp) 2641 { 2642 VirtMachineState *vms = VIRT_MACHINE(obj); 2643 2644 return vms->mte; 2645 } 2646 2647 static void virt_set_mte(Object *obj, bool value, Error **errp) 2648 { 2649 VirtMachineState *vms = VIRT_MACHINE(obj); 2650 2651 vms->mte = value; 2652 } 2653 2654 static char *virt_get_gic_version(Object *obj, Error **errp) 2655 { 2656 VirtMachineState *vms = VIRT_MACHINE(obj); 2657 const char *val; 2658 2659 switch (vms->gic_version) { 2660 case VIRT_GIC_VERSION_4: 2661 val = "4"; 2662 break; 2663 case VIRT_GIC_VERSION_3: 2664 val = "3"; 2665 break; 2666 default: 2667 val = "2"; 2668 break; 2669 } 2670 return g_strdup(val); 2671 } 2672 2673 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2674 { 2675 VirtMachineState *vms = VIRT_MACHINE(obj); 2676 2677 if (!strcmp(value, "4")) { 2678 vms->gic_version = VIRT_GIC_VERSION_4; 2679 } else if (!strcmp(value, "3")) { 2680 vms->gic_version = VIRT_GIC_VERSION_3; 2681 } else if (!strcmp(value, "2")) { 2682 vms->gic_version = VIRT_GIC_VERSION_2; 2683 } else if (!strcmp(value, "host")) { 2684 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2685 } else if (!strcmp(value, "max")) { 2686 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2687 } else { 2688 error_setg(errp, "Invalid gic-version value"); 2689 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2690 } 2691 } 2692 2693 static char *virt_get_iommu(Object *obj, Error **errp) 2694 { 2695 VirtMachineState *vms = VIRT_MACHINE(obj); 2696 2697 switch (vms->iommu) { 2698 case VIRT_IOMMU_NONE: 2699 return g_strdup("none"); 2700 case VIRT_IOMMU_SMMUV3: 2701 return g_strdup("smmuv3"); 2702 default: 2703 g_assert_not_reached(); 2704 } 2705 } 2706 2707 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2708 { 2709 VirtMachineState *vms = VIRT_MACHINE(obj); 2710 2711 if (!strcmp(value, "smmuv3")) { 2712 vms->iommu = VIRT_IOMMU_SMMUV3; 2713 } else if (!strcmp(value, "none")) { 2714 vms->iommu = VIRT_IOMMU_NONE; 2715 } else { 2716 error_setg(errp, "Invalid iommu value"); 2717 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2718 } 2719 } 2720 2721 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2722 { 2723 VirtMachineState *vms = VIRT_MACHINE(obj); 2724 2725 return vms->default_bus_bypass_iommu; 2726 } 2727 2728 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2729 Error **errp) 2730 { 2731 VirtMachineState *vms = VIRT_MACHINE(obj); 2732 2733 vms->default_bus_bypass_iommu = value; 2734 } 2735 2736 static CpuInstanceProperties 2737 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2738 { 2739 MachineClass *mc = MACHINE_GET_CLASS(ms); 2740 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2741 2742 assert(cpu_index < possible_cpus->len); 2743 return possible_cpus->cpus[cpu_index].props; 2744 } 2745 2746 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2747 { 2748 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2749 2750 return socket_id % ms->numa_state->num_nodes; 2751 } 2752 2753 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2754 { 2755 int n; 2756 unsigned int max_cpus = ms->smp.max_cpus; 2757 VirtMachineState *vms = VIRT_MACHINE(ms); 2758 MachineClass *mc = MACHINE_GET_CLASS(vms); 2759 2760 if (ms->possible_cpus) { 2761 assert(ms->possible_cpus->len == max_cpus); 2762 return ms->possible_cpus; 2763 } 2764 2765 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2766 sizeof(CPUArchId) * max_cpus); 2767 ms->possible_cpus->len = max_cpus; 2768 for (n = 0; n < ms->possible_cpus->len; n++) { 2769 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2770 ms->possible_cpus->cpus[n].arch_id = 2771 virt_cpu_mp_affinity(vms, n); 2772 2773 assert(!mc->smp_props.dies_supported); 2774 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2775 ms->possible_cpus->cpus[n].props.socket_id = 2776 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2777 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2778 ms->possible_cpus->cpus[n].props.cluster_id = 2779 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2780 ms->possible_cpus->cpus[n].props.has_core_id = true; 2781 ms->possible_cpus->cpus[n].props.core_id = 2782 (n / ms->smp.threads) % ms->smp.cores; 2783 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2784 ms->possible_cpus->cpus[n].props.thread_id = 2785 n % ms->smp.threads; 2786 } 2787 return ms->possible_cpus; 2788 } 2789 2790 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2791 Error **errp) 2792 { 2793 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2794 const MachineState *ms = MACHINE(hotplug_dev); 2795 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2796 2797 if (!vms->acpi_dev) { 2798 error_setg(errp, 2799 "memory hotplug is not enabled: missing acpi-ged device"); 2800 return; 2801 } 2802 2803 if (vms->mte) { 2804 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2805 return; 2806 } 2807 2808 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2809 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2810 return; 2811 } 2812 2813 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); 2814 } 2815 2816 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2817 DeviceState *dev, Error **errp) 2818 { 2819 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2820 MachineState *ms = MACHINE(hotplug_dev); 2821 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2822 2823 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2824 2825 if (is_nvdimm) { 2826 nvdimm_plug(ms->nvdimms_state); 2827 } 2828 2829 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2830 dev, &error_abort); 2831 } 2832 2833 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2834 DeviceState *dev, Error **errp) 2835 { 2836 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2837 2838 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2839 virt_memory_pre_plug(hotplug_dev, dev, errp); 2840 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2841 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2842 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2843 hwaddr db_start = 0, db_end = 0; 2844 QList *reserved_regions; 2845 char *resv_prop_str; 2846 2847 if (vms->iommu != VIRT_IOMMU_NONE) { 2848 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2849 return; 2850 } 2851 2852 switch (vms->msi_controller) { 2853 case VIRT_MSI_CTRL_NONE: 2854 return; 2855 case VIRT_MSI_CTRL_ITS: 2856 /* GITS_TRANSLATER page */ 2857 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2858 db_end = base_memmap[VIRT_GIC_ITS].base + 2859 base_memmap[VIRT_GIC_ITS].size - 1; 2860 break; 2861 case VIRT_MSI_CTRL_GICV2M: 2862 /* MSI_SETSPI_NS page */ 2863 db_start = base_memmap[VIRT_GIC_V2M].base; 2864 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2865 break; 2866 } 2867 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2868 db_start, db_end, 2869 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2870 2871 reserved_regions = qlist_new(); 2872 qlist_append_str(reserved_regions, resv_prop_str); 2873 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2874 g_free(resv_prop_str); 2875 } 2876 } 2877 2878 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2879 DeviceState *dev, Error **errp) 2880 { 2881 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2882 2883 if (vms->platform_bus_dev) { 2884 MachineClass *mc = MACHINE_GET_CLASS(vms); 2885 2886 if (device_is_dynamic_sysbus(mc, dev)) { 2887 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2888 SYS_BUS_DEVICE(dev)); 2889 } 2890 } 2891 2892 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2893 virt_memory_plug(hotplug_dev, dev, errp); 2894 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2895 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2896 } 2897 2898 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2899 PCIDevice *pdev = PCI_DEVICE(dev); 2900 2901 vms->iommu = VIRT_IOMMU_VIRTIO; 2902 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2903 create_virtio_iommu_dt_bindings(vms); 2904 } 2905 } 2906 2907 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2908 DeviceState *dev, Error **errp) 2909 { 2910 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2911 2912 if (!vms->acpi_dev) { 2913 error_setg(errp, 2914 "memory hotplug is not enabled: missing acpi-ged device"); 2915 return; 2916 } 2917 2918 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2919 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2920 return; 2921 } 2922 2923 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2924 errp); 2925 } 2926 2927 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2928 DeviceState *dev, Error **errp) 2929 { 2930 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2931 Error *local_err = NULL; 2932 2933 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2934 if (local_err) { 2935 goto out; 2936 } 2937 2938 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2939 qdev_unrealize(dev); 2940 2941 out: 2942 error_propagate(errp, local_err); 2943 } 2944 2945 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2946 DeviceState *dev, Error **errp) 2947 { 2948 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2949 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2950 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2951 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 2952 errp); 2953 } else { 2954 error_setg(errp, "device unplug request for unsupported device" 2955 " type: %s", object_get_typename(OBJECT(dev))); 2956 } 2957 } 2958 2959 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2960 DeviceState *dev, Error **errp) 2961 { 2962 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2963 virt_dimm_unplug(hotplug_dev, dev, errp); 2964 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2965 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2966 } else { 2967 error_setg(errp, "virt: device unplug for unsupported device" 2968 " type: %s", object_get_typename(OBJECT(dev))); 2969 } 2970 } 2971 2972 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2973 DeviceState *dev) 2974 { 2975 MachineClass *mc = MACHINE_GET_CLASS(machine); 2976 2977 if (device_is_dynamic_sysbus(mc, dev) || 2978 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2979 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 2980 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2981 return HOTPLUG_HANDLER(machine); 2982 } 2983 return NULL; 2984 } 2985 2986 /* 2987 * for arm64 kvm_type [7-0] encodes the requested number of bits 2988 * in the IPA address space 2989 */ 2990 static int virt_kvm_type(MachineState *ms, const char *type_str) 2991 { 2992 VirtMachineState *vms = VIRT_MACHINE(ms); 2993 int max_vm_pa_size, requested_pa_size; 2994 bool fixed_ipa; 2995 2996 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2997 2998 /* we freeze the memory map to compute the highest gpa */ 2999 virt_set_memmap(vms, max_vm_pa_size); 3000 3001 requested_pa_size = 64 - clz64(vms->highest_gpa); 3002 3003 /* 3004 * KVM requires the IPA size to be at least 32 bits. 3005 */ 3006 if (requested_pa_size < 32) { 3007 requested_pa_size = 32; 3008 } 3009 3010 if (requested_pa_size > max_vm_pa_size) { 3011 error_report("-m and ,maxmem option values " 3012 "require an IPA range (%d bits) larger than " 3013 "the one supported by the host (%d bits)", 3014 requested_pa_size, max_vm_pa_size); 3015 return -1; 3016 } 3017 /* 3018 * We return the requested PA log size, unless KVM only supports 3019 * the implicit legacy 40b IPA setting, in which case the kvm_type 3020 * must be 0. 3021 */ 3022 return fixed_ipa ? 0 : requested_pa_size; 3023 } 3024 3025 static void virt_machine_class_init(ObjectClass *oc, void *data) 3026 { 3027 MachineClass *mc = MACHINE_CLASS(oc); 3028 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3029 static const char * const valid_cpu_types[] = { 3030 #ifdef CONFIG_TCG 3031 ARM_CPU_TYPE_NAME("cortex-a7"), 3032 ARM_CPU_TYPE_NAME("cortex-a15"), 3033 #ifdef TARGET_AARCH64 3034 ARM_CPU_TYPE_NAME("cortex-a35"), 3035 ARM_CPU_TYPE_NAME("cortex-a55"), 3036 ARM_CPU_TYPE_NAME("cortex-a72"), 3037 ARM_CPU_TYPE_NAME("cortex-a76"), 3038 ARM_CPU_TYPE_NAME("cortex-a710"), 3039 ARM_CPU_TYPE_NAME("a64fx"), 3040 ARM_CPU_TYPE_NAME("neoverse-n1"), 3041 ARM_CPU_TYPE_NAME("neoverse-v1"), 3042 ARM_CPU_TYPE_NAME("neoverse-n2"), 3043 #endif /* TARGET_AARCH64 */ 3044 #endif /* CONFIG_TCG */ 3045 #ifdef TARGET_AARCH64 3046 ARM_CPU_TYPE_NAME("cortex-a53"), 3047 ARM_CPU_TYPE_NAME("cortex-a57"), 3048 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 3049 ARM_CPU_TYPE_NAME("host"), 3050 #endif /* CONFIG_KVM || CONFIG_HVF */ 3051 #endif /* TARGET_AARCH64 */ 3052 ARM_CPU_TYPE_NAME("max"), 3053 NULL 3054 }; 3055 3056 mc->init = machvirt_init; 3057 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 3058 * The value may be reduced later when we have more information about the 3059 * configuration of the particular instance. 3060 */ 3061 mc->max_cpus = 512; 3062 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 3063 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 3064 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 3065 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 3066 #ifdef CONFIG_TPM 3067 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 3068 #endif 3069 mc->block_default_type = IF_VIRTIO; 3070 mc->no_cdrom = 1; 3071 mc->pci_allow_0_address = true; 3072 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 3073 mc->minimum_page_bits = 12; 3074 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 3075 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 3076 #ifdef CONFIG_TCG 3077 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 3078 #else 3079 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 3080 #endif 3081 mc->valid_cpu_types = valid_cpu_types; 3082 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 3083 mc->kvm_type = virt_kvm_type; 3084 assert(!mc->get_hotplug_handler); 3085 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 3086 hc->pre_plug = virt_machine_device_pre_plug_cb; 3087 hc->plug = virt_machine_device_plug_cb; 3088 hc->unplug_request = virt_machine_device_unplug_request_cb; 3089 hc->unplug = virt_machine_device_unplug_cb; 3090 mc->nvdimm_supported = true; 3091 mc->smp_props.clusters_supported = true; 3092 mc->auto_enable_numa_with_memhp = true; 3093 mc->auto_enable_numa_with_memdev = true; 3094 /* platform instead of architectural choice */ 3095 mc->cpu_cluster_has_numa_boundary = true; 3096 mc->default_ram_id = "mach-virt.ram"; 3097 mc->default_nic = "virtio-net-pci"; 3098 3099 object_class_property_add(oc, "acpi", "OnOffAuto", 3100 virt_get_acpi, virt_set_acpi, 3101 NULL, NULL); 3102 object_class_property_set_description(oc, "acpi", 3103 "Enable ACPI"); 3104 object_class_property_add_bool(oc, "secure", virt_get_secure, 3105 virt_set_secure); 3106 object_class_property_set_description(oc, "secure", 3107 "Set on/off to enable/disable the ARM " 3108 "Security Extensions (TrustZone)"); 3109 3110 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 3111 virt_set_virt); 3112 object_class_property_set_description(oc, "virtualization", 3113 "Set on/off to enable/disable emulating a " 3114 "guest CPU which implements the ARM " 3115 "Virtualization Extensions"); 3116 3117 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 3118 virt_set_highmem); 3119 object_class_property_set_description(oc, "highmem", 3120 "Set on/off to enable/disable using " 3121 "physical address space above 32 bits"); 3122 3123 object_class_property_add_bool(oc, "compact-highmem", 3124 virt_get_compact_highmem, 3125 virt_set_compact_highmem); 3126 object_class_property_set_description(oc, "compact-highmem", 3127 "Set on/off to enable/disable compact " 3128 "layout for high memory regions"); 3129 3130 object_class_property_add_bool(oc, "highmem-redists", 3131 virt_get_highmem_redists, 3132 virt_set_highmem_redists); 3133 object_class_property_set_description(oc, "highmem-redists", 3134 "Set on/off to enable/disable high " 3135 "memory region for GICv3 or GICv4 " 3136 "redistributor"); 3137 3138 object_class_property_add_bool(oc, "highmem-ecam", 3139 virt_get_highmem_ecam, 3140 virt_set_highmem_ecam); 3141 object_class_property_set_description(oc, "highmem-ecam", 3142 "Set on/off to enable/disable high " 3143 "memory region for PCI ECAM"); 3144 3145 object_class_property_add_bool(oc, "highmem-mmio", 3146 virt_get_highmem_mmio, 3147 virt_set_highmem_mmio); 3148 object_class_property_set_description(oc, "highmem-mmio", 3149 "Set on/off to enable/disable high " 3150 "memory region for PCI MMIO"); 3151 3152 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3153 virt_set_gic_version); 3154 object_class_property_set_description(oc, "gic-version", 3155 "Set GIC version. " 3156 "Valid values are 2, 3, 4, host and max"); 3157 3158 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3159 object_class_property_set_description(oc, "iommu", 3160 "Set the IOMMU type. " 3161 "Valid values are none and smmuv3"); 3162 3163 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3164 virt_get_default_bus_bypass_iommu, 3165 virt_set_default_bus_bypass_iommu); 3166 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3167 "Set on/off to enable/disable " 3168 "bypass_iommu for default root bus"); 3169 3170 object_class_property_add_bool(oc, "ras", virt_get_ras, 3171 virt_set_ras); 3172 object_class_property_set_description(oc, "ras", 3173 "Set on/off to enable/disable reporting host memory errors " 3174 "to a KVM guest using ACPI and guest external abort exceptions"); 3175 3176 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3177 object_class_property_set_description(oc, "mte", 3178 "Set on/off to enable/disable emulating a " 3179 "guest CPU which implements the ARM " 3180 "Memory Tagging Extension"); 3181 3182 object_class_property_add_bool(oc, "its", virt_get_its, 3183 virt_set_its); 3184 object_class_property_set_description(oc, "its", 3185 "Set on/off to enable/disable " 3186 "ITS instantiation"); 3187 3188 object_class_property_add_bool(oc, "dtb-randomness", 3189 virt_get_dtb_randomness, 3190 virt_set_dtb_randomness); 3191 object_class_property_set_description(oc, "dtb-randomness", 3192 "Set off to disable passing random or " 3193 "non-deterministic dtb nodes to guest"); 3194 3195 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3196 virt_get_dtb_randomness, 3197 virt_set_dtb_randomness); 3198 object_class_property_set_description(oc, "dtb-kaslr-seed", 3199 "Deprecated synonym of dtb-randomness"); 3200 3201 object_class_property_add_str(oc, "x-oem-id", 3202 virt_get_oem_id, 3203 virt_set_oem_id); 3204 object_class_property_set_description(oc, "x-oem-id", 3205 "Override the default value of field OEMID " 3206 "in ACPI table header." 3207 "The string may be up to 6 bytes in size"); 3208 3209 3210 object_class_property_add_str(oc, "x-oem-table-id", 3211 virt_get_oem_table_id, 3212 virt_set_oem_table_id); 3213 object_class_property_set_description(oc, "x-oem-table-id", 3214 "Override the default value of field OEM Table ID " 3215 "in ACPI table header." 3216 "The string may be up to 8 bytes in size"); 3217 3218 } 3219 3220 static void virt_instance_init(Object *obj) 3221 { 3222 VirtMachineState *vms = VIRT_MACHINE(obj); 3223 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3224 3225 /* EL3 is disabled by default on virt: this makes us consistent 3226 * between KVM and TCG for this board, and it also allows us to 3227 * boot UEFI blobs which assume no TrustZone support. 3228 */ 3229 vms->secure = false; 3230 3231 /* EL2 is also disabled by default, for similar reasons */ 3232 vms->virt = false; 3233 3234 /* High memory is enabled by default */ 3235 vms->highmem = true; 3236 vms->highmem_compact = !vmc->no_highmem_compact; 3237 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3238 3239 vms->highmem_ecam = !vmc->no_highmem_ecam; 3240 vms->highmem_mmio = true; 3241 vms->highmem_redists = true; 3242 3243 if (vmc->no_its) { 3244 vms->its = false; 3245 } else { 3246 /* Default allows ITS instantiation */ 3247 vms->its = true; 3248 3249 if (vmc->no_tcg_its) { 3250 vms->tcg_its = false; 3251 } else { 3252 vms->tcg_its = true; 3253 } 3254 } 3255 3256 /* Default disallows iommu instantiation */ 3257 vms->iommu = VIRT_IOMMU_NONE; 3258 3259 /* The default root bus is attached to iommu by default */ 3260 vms->default_bus_bypass_iommu = false; 3261 3262 /* Default disallows RAS instantiation */ 3263 vms->ras = false; 3264 3265 /* MTE is disabled by default. */ 3266 vms->mte = false; 3267 3268 /* Supply kaslr-seed and rng-seed by default */ 3269 vms->dtb_randomness = true; 3270 3271 vms->irqmap = a15irqmap; 3272 3273 virt_flash_create(vms); 3274 3275 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3276 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3277 } 3278 3279 static const TypeInfo virt_machine_info = { 3280 .name = TYPE_VIRT_MACHINE, 3281 .parent = TYPE_MACHINE, 3282 .abstract = true, 3283 .instance_size = sizeof(VirtMachineState), 3284 .class_size = sizeof(VirtMachineClass), 3285 .class_init = virt_machine_class_init, 3286 .instance_init = virt_instance_init, 3287 .interfaces = (InterfaceInfo[]) { 3288 { TYPE_HOTPLUG_HANDLER }, 3289 { } 3290 }, 3291 }; 3292 3293 static void machvirt_machine_init(void) 3294 { 3295 type_register_static(&virt_machine_info); 3296 } 3297 type_init(machvirt_machine_init); 3298 3299 static void virt_machine_9_1_options(MachineClass *mc) 3300 { 3301 } 3302 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1) 3303 3304 static void virt_machine_9_0_options(MachineClass *mc) 3305 { 3306 virt_machine_9_1_options(mc); 3307 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 3308 } 3309 DEFINE_VIRT_MACHINE(9, 0) 3310 3311 static void virt_machine_8_2_options(MachineClass *mc) 3312 { 3313 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3314 3315 virt_machine_9_0_options(mc); 3316 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3317 /* 3318 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and 3319 * earlier machines. (Exposing it tickles a bug in older EDK2 3320 * guest BIOS binaries.) 3321 */ 3322 vmc->no_ns_el2_virt_timer_irq = true; 3323 } 3324 DEFINE_VIRT_MACHINE(8, 2) 3325 3326 static void virt_machine_8_1_options(MachineClass *mc) 3327 { 3328 virt_machine_8_2_options(mc); 3329 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3330 } 3331 DEFINE_VIRT_MACHINE(8, 1) 3332 3333 static void virt_machine_8_0_options(MachineClass *mc) 3334 { 3335 virt_machine_8_1_options(mc); 3336 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3337 } 3338 DEFINE_VIRT_MACHINE(8, 0) 3339 3340 static void virt_machine_7_2_options(MachineClass *mc) 3341 { 3342 virt_machine_8_0_options(mc); 3343 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3344 } 3345 DEFINE_VIRT_MACHINE(7, 2) 3346 3347 static void virt_machine_7_1_options(MachineClass *mc) 3348 { 3349 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3350 3351 virt_machine_7_2_options(mc); 3352 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3353 /* Compact layout for high memory regions was introduced with 7.2 */ 3354 vmc->no_highmem_compact = true; 3355 } 3356 DEFINE_VIRT_MACHINE(7, 1) 3357 3358 static void virt_machine_7_0_options(MachineClass *mc) 3359 { 3360 virt_machine_7_1_options(mc); 3361 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3362 } 3363 DEFINE_VIRT_MACHINE(7, 0) 3364 3365 static void virt_machine_6_2_options(MachineClass *mc) 3366 { 3367 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3368 3369 virt_machine_7_0_options(mc); 3370 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3371 vmc->no_tcg_lpa2 = true; 3372 } 3373 DEFINE_VIRT_MACHINE(6, 2) 3374 3375 static void virt_machine_6_1_options(MachineClass *mc) 3376 { 3377 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3378 3379 virt_machine_6_2_options(mc); 3380 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3381 mc->smp_props.prefer_sockets = true; 3382 vmc->no_cpu_topology = true; 3383 3384 /* qemu ITS was introduced with 6.2 */ 3385 vmc->no_tcg_its = true; 3386 } 3387 DEFINE_VIRT_MACHINE(6, 1) 3388 3389 static void virt_machine_6_0_options(MachineClass *mc) 3390 { 3391 virt_machine_6_1_options(mc); 3392 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3393 } 3394 DEFINE_VIRT_MACHINE(6, 0) 3395 3396 static void virt_machine_5_2_options(MachineClass *mc) 3397 { 3398 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3399 3400 virt_machine_6_0_options(mc); 3401 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3402 vmc->no_secure_gpio = true; 3403 } 3404 DEFINE_VIRT_MACHINE(5, 2) 3405 3406 static void virt_machine_5_1_options(MachineClass *mc) 3407 { 3408 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3409 3410 virt_machine_5_2_options(mc); 3411 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3412 vmc->no_kvm_steal_time = true; 3413 } 3414 DEFINE_VIRT_MACHINE(5, 1) 3415 3416 static void virt_machine_5_0_options(MachineClass *mc) 3417 { 3418 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3419 3420 virt_machine_5_1_options(mc); 3421 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3422 mc->numa_mem_supported = true; 3423 vmc->acpi_expose_flash = true; 3424 mc->auto_enable_numa_with_memdev = false; 3425 } 3426 DEFINE_VIRT_MACHINE(5, 0) 3427 3428 static void virt_machine_4_2_options(MachineClass *mc) 3429 { 3430 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3431 3432 virt_machine_5_0_options(mc); 3433 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3434 vmc->kvm_no_adjvtime = true; 3435 } 3436 DEFINE_VIRT_MACHINE(4, 2) 3437 3438 static void virt_machine_4_1_options(MachineClass *mc) 3439 { 3440 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3441 3442 virt_machine_4_2_options(mc); 3443 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3444 vmc->no_ged = true; 3445 mc->auto_enable_numa_with_memhp = false; 3446 } 3447 DEFINE_VIRT_MACHINE(4, 1) 3448 3449 static void virt_machine_4_0_options(MachineClass *mc) 3450 { 3451 virt_machine_4_1_options(mc); 3452 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3453 } 3454 DEFINE_VIRT_MACHINE(4, 0) 3455 3456 static void virt_machine_3_1_options(MachineClass *mc) 3457 { 3458 virt_machine_4_0_options(mc); 3459 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3460 } 3461 DEFINE_VIRT_MACHINE(3, 1) 3462 3463 static void virt_machine_3_0_options(MachineClass *mc) 3464 { 3465 virt_machine_3_1_options(mc); 3466 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3467 } 3468 DEFINE_VIRT_MACHINE(3, 0) 3469 3470 static void virt_machine_2_12_options(MachineClass *mc) 3471 { 3472 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3473 3474 virt_machine_3_0_options(mc); 3475 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3476 vmc->no_highmem_ecam = true; 3477 mc->max_cpus = 255; 3478 } 3479 DEFINE_VIRT_MACHINE(2, 12) 3480 3481 static void virt_machine_2_11_options(MachineClass *mc) 3482 { 3483 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3484 3485 virt_machine_2_12_options(mc); 3486 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3487 vmc->smbios_old_sys_ver = true; 3488 } 3489 DEFINE_VIRT_MACHINE(2, 11) 3490 3491 static void virt_machine_2_10_options(MachineClass *mc) 3492 { 3493 virt_machine_2_11_options(mc); 3494 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3495 /* before 2.11 we never faulted accesses to bad addresses */ 3496 mc->ignore_memory_transaction_failures = true; 3497 } 3498 DEFINE_VIRT_MACHINE(2, 10) 3499 3500 static void virt_machine_2_9_options(MachineClass *mc) 3501 { 3502 virt_machine_2_10_options(mc); 3503 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3504 } 3505 DEFINE_VIRT_MACHINE(2, 9) 3506 3507 static void virt_machine_2_8_options(MachineClass *mc) 3508 { 3509 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3510 3511 virt_machine_2_9_options(mc); 3512 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3513 /* For 2.8 and earlier we falsely claimed in the DT that 3514 * our timers were edge-triggered, not level-triggered. 3515 */ 3516 vmc->claim_edge_triggered_timers = true; 3517 } 3518 DEFINE_VIRT_MACHINE(2, 8) 3519 3520 static void virt_machine_2_7_options(MachineClass *mc) 3521 { 3522 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3523 3524 virt_machine_2_8_options(mc); 3525 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3526 /* ITS was introduced with 2.8 */ 3527 vmc->no_its = true; 3528 /* Stick with 1K pages for migration compatibility */ 3529 mc->minimum_page_bits = 0; 3530 } 3531 DEFINE_VIRT_MACHINE(2, 7) 3532 3533 static void virt_machine_2_6_options(MachineClass *mc) 3534 { 3535 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3536 3537 virt_machine_2_7_options(mc); 3538 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3539 vmc->disallow_affinity_adjustment = true; 3540 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3541 vmc->no_pmu = true; 3542 } 3543 DEFINE_VIRT_MACHINE(2, 6) 3544