1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/runstate.h" 48 #include "sysemu/tpm.h" 49 #include "sysemu/tcg.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hvf.h" 52 #include "sysemu/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/core/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/intc/arm_gicv3_its_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "standard-headers/linux/input.h" 73 #include "hw/arm/smmuv3.h" 74 #include "hw/acpi/acpi.h" 75 #include "target/arm/internals.h" 76 #include "hw/mem/pc-dimm.h" 77 #include "hw/mem/nvdimm.h" 78 #include "hw/acpi/generic_event_device.h" 79 #include "hw/virtio/virtio-md-pci.h" 80 #include "hw/virtio/virtio-iommu.h" 81 #include "hw/char/pl011.h" 82 #include "qemu/guest-random.h" 83 84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 86 void *data) \ 87 { \ 88 MachineClass *mc = MACHINE_CLASS(oc); \ 89 virt_machine_##major##_##minor##_options(mc); \ 90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 91 if (latest) { \ 92 mc->alias = "virt"; \ 93 } \ 94 } \ 95 static const TypeInfo machvirt_##major##_##minor##_info = { \ 96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 97 .parent = TYPE_VIRT_MACHINE, \ 98 .class_init = virt_##major##_##minor##_class_init, \ 99 }; \ 100 static void machvirt_machine_##major##_##minor##_init(void) \ 101 { \ 102 type_register_static(&machvirt_##major##_##minor##_info); \ 103 } \ 104 type_init(machvirt_machine_##major##_##minor##_init); 105 106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 108 #define DEFINE_VIRT_MACHINE(major, minor) \ 109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 110 111 112 /* Number of external interrupt lines to configure the GIC with */ 113 #define NUM_IRQS 256 114 115 #define PLATFORM_BUS_NUM_IRQS 64 116 117 /* Legacy RAM limit in GB (< version 4.0) */ 118 #define LEGACY_RAMLIMIT_GB 255 119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 120 121 /* Addresses and sizes of our components. 122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 123 * 128MB..256MB is used for miscellaneous device I/O. 124 * 256MB..1GB is reserved for possible future PCI support (ie where the 125 * PCI memory window will go if we add a PCI host controller). 126 * 1GB and up is RAM (which may happily spill over into the 127 * high memory region beyond 4GB). 128 * This represents a compromise between how much RAM can be given to 129 * a 32 bit VM and leaving space for expansion and in particular for PCI. 130 * Note that devices should generally be placed at multiples of 0x10000, 131 * to accommodate guests using 64K pages. 132 */ 133 static const MemMapEntry base_memmap[] = { 134 /* Space up to 0x8000000 is reserved for a boot ROM */ 135 [VIRT_FLASH] = { 0, 0x08000000 }, 136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 145 /* This redistributor space allows up to 2*64kB*123 CPUs */ 146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 147 [VIRT_UART] = { 0x09000000, 0x00001000 }, 148 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 150 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 152 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 165 /* Actual RAM size depends on initial RAM and device memory settings */ 166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 167 }; 168 169 /* 170 * Highmem IO Regions: This memory map is floating, located after the RAM. 171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 172 * top of the RAM, so that its base get the same alignment as the size, 173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 175 * Note the extended_memmap is sized so that it eventually also includes the 176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 177 * index of base_memmap). 178 * 179 * The memory map for these Highmem IO Regions can be in legacy or compact 180 * layout, depending on 'compact-highmem' property. With legacy layout, the 181 * PA space for one specific region is always reserved, even if the region 182 * has been disabled or doesn't fit into the PA space. However, the PA space 183 * for the region won't be reserved in these circumstances with compact layout. 184 */ 185 static MemMapEntry extended_memmap[] = { 186 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 187 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 188 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 189 /* Second PCIe window */ 190 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 191 }; 192 193 static const int a15irqmap[] = { 194 [VIRT_UART] = 1, 195 [VIRT_RTC] = 2, 196 [VIRT_PCIE] = 3, /* ... to 6 */ 197 [VIRT_GPIO] = 7, 198 [VIRT_SECURE_UART] = 8, 199 [VIRT_ACPI_GED] = 9, 200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 202 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 203 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 204 }; 205 206 static const char *valid_cpus[] = { 207 #ifdef CONFIG_TCG 208 ARM_CPU_TYPE_NAME("cortex-a7"), 209 ARM_CPU_TYPE_NAME("cortex-a15"), 210 ARM_CPU_TYPE_NAME("cortex-a35"), 211 ARM_CPU_TYPE_NAME("cortex-a55"), 212 ARM_CPU_TYPE_NAME("cortex-a72"), 213 ARM_CPU_TYPE_NAME("cortex-a76"), 214 ARM_CPU_TYPE_NAME("cortex-a710"), 215 ARM_CPU_TYPE_NAME("a64fx"), 216 ARM_CPU_TYPE_NAME("neoverse-n1"), 217 ARM_CPU_TYPE_NAME("neoverse-v1"), 218 ARM_CPU_TYPE_NAME("neoverse-n2"), 219 #endif 220 ARM_CPU_TYPE_NAME("cortex-a53"), 221 ARM_CPU_TYPE_NAME("cortex-a57"), 222 ARM_CPU_TYPE_NAME("host"), 223 ARM_CPU_TYPE_NAME("max"), 224 }; 225 226 static bool cpu_type_valid(const char *cpu) 227 { 228 int i; 229 230 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 231 if (strcmp(cpu, valid_cpus[i]) == 0) { 232 return true; 233 } 234 } 235 return false; 236 } 237 238 static void create_randomness(MachineState *ms, const char *node) 239 { 240 struct { 241 uint64_t kaslr; 242 uint8_t rng[32]; 243 } seed; 244 245 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 246 return; 247 } 248 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 249 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 250 } 251 252 static void create_fdt(VirtMachineState *vms) 253 { 254 MachineState *ms = MACHINE(vms); 255 int nb_numa_nodes = ms->numa_state->num_nodes; 256 void *fdt = create_device_tree(&vms->fdt_size); 257 258 if (!fdt) { 259 error_report("create_device_tree() failed"); 260 exit(1); 261 } 262 263 ms->fdt = fdt; 264 265 /* Header */ 266 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 267 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 268 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 269 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 270 271 /* /chosen must exist for load_dtb to fill in necessary properties later */ 272 qemu_fdt_add_subnode(fdt, "/chosen"); 273 if (vms->dtb_randomness) { 274 create_randomness(ms, "/chosen"); 275 } 276 277 if (vms->secure) { 278 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 279 if (vms->dtb_randomness) { 280 create_randomness(ms, "/secure-chosen"); 281 } 282 } 283 284 /* Clock node, for the benefit of the UART. The kernel device tree 285 * binding documentation claims the PL011 node clock properties are 286 * optional but in practice if you omit them the kernel refuses to 287 * probe for the device. 288 */ 289 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 290 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 291 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 292 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 293 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 294 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 295 "clk24mhz"); 296 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 297 298 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 299 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 300 uint32_t *matrix = g_malloc0(size); 301 int idx, i, j; 302 303 for (i = 0; i < nb_numa_nodes; i++) { 304 for (j = 0; j < nb_numa_nodes; j++) { 305 idx = (i * nb_numa_nodes + j) * 3; 306 matrix[idx + 0] = cpu_to_be32(i); 307 matrix[idx + 1] = cpu_to_be32(j); 308 matrix[idx + 2] = 309 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 310 } 311 } 312 313 qemu_fdt_add_subnode(fdt, "/distance-map"); 314 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 315 "numa-distance-map-v1"); 316 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 317 matrix, size); 318 g_free(matrix); 319 } 320 } 321 322 static void fdt_add_timer_nodes(const VirtMachineState *vms) 323 { 324 /* On real hardware these interrupts are level-triggered. 325 * On KVM they were edge-triggered before host kernel version 4.4, 326 * and level-triggered afterwards. 327 * On emulated QEMU they are level-triggered. 328 * 329 * Getting the DTB info about them wrong is awkward for some 330 * guest kernels: 331 * pre-4.8 ignore the DT and leave the interrupt configured 332 * with whatever the GIC reset value (or the bootloader) left it at 333 * 4.8 before rc6 honour the incorrect data by programming it back 334 * into the GIC, causing problems 335 * 4.8rc6 and later ignore the DT and always write "level triggered" 336 * into the GIC 337 * 338 * For backwards-compatibility, virt-2.8 and earlier will continue 339 * to say these are edge-triggered, but later machines will report 340 * the correct information. 341 */ 342 ARMCPU *armcpu; 343 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 344 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 345 MachineState *ms = MACHINE(vms); 346 347 if (vmc->claim_edge_triggered_timers) { 348 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 349 } 350 351 if (vms->gic_version == VIRT_GIC_VERSION_2) { 352 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 353 GIC_FDT_IRQ_PPI_CPU_WIDTH, 354 (1 << MACHINE(vms)->smp.cpus) - 1); 355 } 356 357 qemu_fdt_add_subnode(ms->fdt, "/timer"); 358 359 armcpu = ARM_CPU(qemu_get_cpu(0)); 360 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 361 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 362 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 363 compat, sizeof(compat)); 364 } else { 365 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 366 "arm,armv7-timer"); 367 } 368 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 369 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 370 GIC_FDT_IRQ_TYPE_PPI, 371 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 372 GIC_FDT_IRQ_TYPE_PPI, 373 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 374 GIC_FDT_IRQ_TYPE_PPI, 375 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 376 GIC_FDT_IRQ_TYPE_PPI, 377 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 378 } 379 380 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 381 { 382 int cpu; 383 int addr_cells = 1; 384 const MachineState *ms = MACHINE(vms); 385 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 386 int smp_cpus = ms->smp.cpus; 387 388 /* 389 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 390 * On ARM v8 64-bit systems value should be set to 2, 391 * that corresponds to the MPIDR_EL1 register size. 392 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 393 * in the system, #address-cells can be set to 1, since 394 * MPIDR_EL1[63:32] bits are not used for CPUs 395 * identification. 396 * 397 * Here we actually don't know whether our system is 32- or 64-bit one. 398 * The simplest way to go is to examine affinity IDs of all our CPUs. If 399 * at least one of them has Aff3 populated, we set #address-cells to 2. 400 */ 401 for (cpu = 0; cpu < smp_cpus; cpu++) { 402 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 403 404 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 405 addr_cells = 2; 406 break; 407 } 408 } 409 410 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 411 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 412 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 413 414 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 415 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 416 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 417 CPUState *cs = CPU(armcpu); 418 419 qemu_fdt_add_subnode(ms->fdt, nodename); 420 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 421 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 422 armcpu->dtb_compatible); 423 424 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 425 qemu_fdt_setprop_string(ms->fdt, nodename, 426 "enable-method", "psci"); 427 } 428 429 if (addr_cells == 2) { 430 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 431 armcpu->mp_affinity); 432 } else { 433 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 434 armcpu->mp_affinity); 435 } 436 437 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 438 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 439 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 440 } 441 442 if (!vmc->no_cpu_topology) { 443 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 444 qemu_fdt_alloc_phandle(ms->fdt)); 445 } 446 447 g_free(nodename); 448 } 449 450 if (!vmc->no_cpu_topology) { 451 /* 452 * Add vCPU topology description through fdt node cpu-map. 453 * 454 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 455 * In a SMP system, the hierarchy of CPUs can be defined through 456 * four entities that are used to describe the layout of CPUs in 457 * the system: socket/cluster/core/thread. 458 * 459 * A socket node represents the boundary of system physical package 460 * and its child nodes must be one or more cluster nodes. A system 461 * can contain several layers of clustering within a single physical 462 * package and cluster nodes can be contained in parent cluster nodes. 463 * 464 * Note: currently we only support one layer of clustering within 465 * each physical package. 466 */ 467 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 468 469 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 470 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 471 char *map_path; 472 473 if (ms->smp.threads > 1) { 474 map_path = g_strdup_printf( 475 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 476 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 477 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 478 (cpu / ms->smp.threads) % ms->smp.cores, 479 cpu % ms->smp.threads); 480 } else { 481 map_path = g_strdup_printf( 482 "/cpus/cpu-map/socket%d/cluster%d/core%d", 483 cpu / (ms->smp.clusters * ms->smp.cores), 484 (cpu / ms->smp.cores) % ms->smp.clusters, 485 cpu % ms->smp.cores); 486 } 487 qemu_fdt_add_path(ms->fdt, map_path); 488 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 489 490 g_free(map_path); 491 g_free(cpu_path); 492 } 493 } 494 } 495 496 static void fdt_add_its_gic_node(VirtMachineState *vms) 497 { 498 char *nodename; 499 MachineState *ms = MACHINE(vms); 500 501 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 502 nodename = g_strdup_printf("/intc/its@%" PRIx64, 503 vms->memmap[VIRT_GIC_ITS].base); 504 qemu_fdt_add_subnode(ms->fdt, nodename); 505 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 506 "arm,gic-v3-its"); 507 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 508 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 510 2, vms->memmap[VIRT_GIC_ITS].base, 511 2, vms->memmap[VIRT_GIC_ITS].size); 512 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 513 g_free(nodename); 514 } 515 516 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 517 { 518 MachineState *ms = MACHINE(vms); 519 char *nodename; 520 521 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 522 vms->memmap[VIRT_GIC_V2M].base); 523 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 524 qemu_fdt_add_subnode(ms->fdt, nodename); 525 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 526 "arm,gic-v2m-frame"); 527 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 528 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 529 2, vms->memmap[VIRT_GIC_V2M].base, 530 2, vms->memmap[VIRT_GIC_V2M].size); 531 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 532 g_free(nodename); 533 } 534 535 static void fdt_add_gic_node(VirtMachineState *vms) 536 { 537 MachineState *ms = MACHINE(vms); 538 char *nodename; 539 540 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 541 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 542 543 nodename = g_strdup_printf("/intc@%" PRIx64, 544 vms->memmap[VIRT_GIC_DIST].base); 545 qemu_fdt_add_subnode(ms->fdt, nodename); 546 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 547 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 548 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 549 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 550 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 551 if (vms->gic_version != VIRT_GIC_VERSION_2) { 552 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 553 554 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 555 "arm,gic-v3"); 556 557 qemu_fdt_setprop_cell(ms->fdt, nodename, 558 "#redistributor-regions", nb_redist_regions); 559 560 if (nb_redist_regions == 1) { 561 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 562 2, vms->memmap[VIRT_GIC_DIST].base, 563 2, vms->memmap[VIRT_GIC_DIST].size, 564 2, vms->memmap[VIRT_GIC_REDIST].base, 565 2, vms->memmap[VIRT_GIC_REDIST].size); 566 } else { 567 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 568 2, vms->memmap[VIRT_GIC_DIST].base, 569 2, vms->memmap[VIRT_GIC_DIST].size, 570 2, vms->memmap[VIRT_GIC_REDIST].base, 571 2, vms->memmap[VIRT_GIC_REDIST].size, 572 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 573 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 574 } 575 576 if (vms->virt) { 577 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 578 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 579 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 580 } 581 } else { 582 /* 'cortex-a15-gic' means 'GIC v2' */ 583 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 584 "arm,cortex-a15-gic"); 585 if (!vms->virt) { 586 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 587 2, vms->memmap[VIRT_GIC_DIST].base, 588 2, vms->memmap[VIRT_GIC_DIST].size, 589 2, vms->memmap[VIRT_GIC_CPU].base, 590 2, vms->memmap[VIRT_GIC_CPU].size); 591 } else { 592 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 593 2, vms->memmap[VIRT_GIC_DIST].base, 594 2, vms->memmap[VIRT_GIC_DIST].size, 595 2, vms->memmap[VIRT_GIC_CPU].base, 596 2, vms->memmap[VIRT_GIC_CPU].size, 597 2, vms->memmap[VIRT_GIC_HYP].base, 598 2, vms->memmap[VIRT_GIC_HYP].size, 599 2, vms->memmap[VIRT_GIC_VCPU].base, 600 2, vms->memmap[VIRT_GIC_VCPU].size); 601 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 602 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 603 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 604 } 605 } 606 607 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 608 g_free(nodename); 609 } 610 611 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 612 { 613 ARMCPU *armcpu = ARM_CPU(first_cpu); 614 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 615 MachineState *ms = MACHINE(vms); 616 617 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 618 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 619 return; 620 } 621 622 if (vms->gic_version == VIRT_GIC_VERSION_2) { 623 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 624 GIC_FDT_IRQ_PPI_CPU_WIDTH, 625 (1 << MACHINE(vms)->smp.cpus) - 1); 626 } 627 628 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 629 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 630 const char compat[] = "arm,armv8-pmuv3"; 631 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 632 compat, sizeof(compat)); 633 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 634 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 635 } 636 } 637 638 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 639 { 640 DeviceState *dev; 641 MachineState *ms = MACHINE(vms); 642 int irq = vms->irqmap[VIRT_ACPI_GED]; 643 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 644 645 if (ms->ram_slots) { 646 event |= ACPI_GED_MEM_HOTPLUG_EVT; 647 } 648 649 if (ms->nvdimms_state->is_enabled) { 650 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 651 } 652 653 dev = qdev_new(TYPE_ACPI_GED); 654 qdev_prop_set_uint32(dev, "ged-event", event); 655 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 656 657 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 658 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 659 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 660 661 return dev; 662 } 663 664 static void create_its(VirtMachineState *vms) 665 { 666 const char *itsclass = its_class_name(); 667 DeviceState *dev; 668 669 if (!strcmp(itsclass, "arm-gicv3-its")) { 670 if (!vms->tcg_its) { 671 itsclass = NULL; 672 } 673 } 674 675 if (!itsclass) { 676 /* Do nothing if not supported */ 677 return; 678 } 679 680 dev = qdev_new(itsclass); 681 682 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 683 &error_abort); 684 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 685 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 686 687 fdt_add_its_gic_node(vms); 688 vms->msi_controller = VIRT_MSI_CTRL_ITS; 689 } 690 691 static void create_v2m(VirtMachineState *vms) 692 { 693 int i; 694 int irq = vms->irqmap[VIRT_GIC_V2M]; 695 DeviceState *dev; 696 697 dev = qdev_new("arm-gicv2m"); 698 qdev_prop_set_uint32(dev, "base-spi", irq); 699 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 700 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 701 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 702 703 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 704 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 705 qdev_get_gpio_in(vms->gic, irq + i)); 706 } 707 708 fdt_add_v2m_gic_node(vms); 709 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 710 } 711 712 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 713 { 714 MachineState *ms = MACHINE(vms); 715 /* We create a standalone GIC */ 716 SysBusDevice *gicbusdev; 717 const char *gictype; 718 int i; 719 unsigned int smp_cpus = ms->smp.cpus; 720 uint32_t nb_redist_regions = 0; 721 int revision; 722 723 if (vms->gic_version == VIRT_GIC_VERSION_2) { 724 gictype = gic_class_name(); 725 } else { 726 gictype = gicv3_class_name(); 727 } 728 729 switch (vms->gic_version) { 730 case VIRT_GIC_VERSION_2: 731 revision = 2; 732 break; 733 case VIRT_GIC_VERSION_3: 734 revision = 3; 735 break; 736 case VIRT_GIC_VERSION_4: 737 revision = 4; 738 break; 739 default: 740 g_assert_not_reached(); 741 } 742 vms->gic = qdev_new(gictype); 743 qdev_prop_set_uint32(vms->gic, "revision", revision); 744 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 745 /* Note that the num-irq property counts both internal and external 746 * interrupts; there are always 32 of the former (mandated by GIC spec). 747 */ 748 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 749 if (!kvm_irqchip_in_kernel()) { 750 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 751 } 752 753 if (vms->gic_version != VIRT_GIC_VERSION_2) { 754 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 755 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 756 757 nb_redist_regions = virt_gicv3_redist_region_count(vms); 758 759 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 760 nb_redist_regions); 761 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 762 763 if (!kvm_irqchip_in_kernel()) { 764 if (vms->tcg_its) { 765 object_property_set_link(OBJECT(vms->gic), "sysmem", 766 OBJECT(mem), &error_fatal); 767 qdev_prop_set_bit(vms->gic, "has-lpi", true); 768 } 769 } 770 771 if (nb_redist_regions == 2) { 772 uint32_t redist1_capacity = 773 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 774 775 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 776 MIN(smp_cpus - redist0_count, redist1_capacity)); 777 } 778 } else { 779 if (!kvm_irqchip_in_kernel()) { 780 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 781 vms->virt); 782 } 783 } 784 gicbusdev = SYS_BUS_DEVICE(vms->gic); 785 sysbus_realize_and_unref(gicbusdev, &error_fatal); 786 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 787 if (vms->gic_version != VIRT_GIC_VERSION_2) { 788 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 789 if (nb_redist_regions == 2) { 790 sysbus_mmio_map(gicbusdev, 2, 791 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 792 } 793 } else { 794 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 795 if (vms->virt) { 796 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 797 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 798 } 799 } 800 801 /* Wire the outputs from each CPU's generic timer and the GICv3 802 * maintenance interrupt signal to the appropriate GIC PPI inputs, 803 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 804 */ 805 for (i = 0; i < smp_cpus; i++) { 806 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 807 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 808 /* Mapping from the output timer irq lines from the CPU to the 809 * GIC PPI inputs we use for the virt board. 810 */ 811 const int timer_irq[] = { 812 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 813 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 814 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 815 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 816 }; 817 818 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 819 qdev_connect_gpio_out(cpudev, irq, 820 qdev_get_gpio_in(vms->gic, 821 intidbase + timer_irq[irq])); 822 } 823 824 if (vms->gic_version != VIRT_GIC_VERSION_2) { 825 qemu_irq irq = qdev_get_gpio_in(vms->gic, 826 intidbase + ARCH_GIC_MAINT_IRQ); 827 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 828 0, irq); 829 } else if (vms->virt) { 830 qemu_irq irq = qdev_get_gpio_in(vms->gic, 831 intidbase + ARCH_GIC_MAINT_IRQ); 832 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 833 } 834 835 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 836 qdev_get_gpio_in(vms->gic, intidbase 837 + VIRTUAL_PMU_IRQ)); 838 839 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 840 sysbus_connect_irq(gicbusdev, i + smp_cpus, 841 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 842 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 843 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 844 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 845 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 846 } 847 848 fdt_add_gic_node(vms); 849 850 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 851 create_its(vms); 852 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 853 create_v2m(vms); 854 } 855 } 856 857 static void create_uart(const VirtMachineState *vms, int uart, 858 MemoryRegion *mem, Chardev *chr) 859 { 860 char *nodename; 861 hwaddr base = vms->memmap[uart].base; 862 hwaddr size = vms->memmap[uart].size; 863 int irq = vms->irqmap[uart]; 864 const char compat[] = "arm,pl011\0arm,primecell"; 865 const char clocknames[] = "uartclk\0apb_pclk"; 866 DeviceState *dev = qdev_new(TYPE_PL011); 867 SysBusDevice *s = SYS_BUS_DEVICE(dev); 868 MachineState *ms = MACHINE(vms); 869 870 qdev_prop_set_chr(dev, "chardev", chr); 871 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 872 memory_region_add_subregion(mem, base, 873 sysbus_mmio_get_region(s, 0)); 874 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 875 876 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 877 qemu_fdt_add_subnode(ms->fdt, nodename); 878 /* Note that we can't use setprop_string because of the embedded NUL */ 879 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 880 compat, sizeof(compat)); 881 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 882 2, base, 2, size); 883 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 884 GIC_FDT_IRQ_TYPE_SPI, irq, 885 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 886 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 887 vms->clock_phandle, vms->clock_phandle); 888 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 889 clocknames, sizeof(clocknames)); 890 891 if (uart == VIRT_UART) { 892 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 893 } else { 894 /* Mark as not usable by the normal world */ 895 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 896 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 897 898 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 899 nodename); 900 } 901 902 g_free(nodename); 903 } 904 905 static void create_rtc(const VirtMachineState *vms) 906 { 907 char *nodename; 908 hwaddr base = vms->memmap[VIRT_RTC].base; 909 hwaddr size = vms->memmap[VIRT_RTC].size; 910 int irq = vms->irqmap[VIRT_RTC]; 911 const char compat[] = "arm,pl031\0arm,primecell"; 912 MachineState *ms = MACHINE(vms); 913 914 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 915 916 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 917 qemu_fdt_add_subnode(ms->fdt, nodename); 918 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 919 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 920 2, base, 2, size); 921 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 922 GIC_FDT_IRQ_TYPE_SPI, irq, 923 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 924 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 925 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 926 g_free(nodename); 927 } 928 929 static DeviceState *gpio_key_dev; 930 static void virt_powerdown_req(Notifier *n, void *opaque) 931 { 932 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 933 934 if (s->acpi_dev) { 935 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 936 } else { 937 /* use gpio Pin 3 for power button event */ 938 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 939 } 940 } 941 942 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 943 uint32_t phandle) 944 { 945 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 946 qdev_get_gpio_in(pl061_dev, 3)); 947 948 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 949 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 950 951 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 952 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 953 "label", "GPIO Key Poweroff"); 954 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 955 KEY_POWER); 956 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 957 "gpios", phandle, 3, 0); 958 } 959 960 #define SECURE_GPIO_POWEROFF 0 961 #define SECURE_GPIO_RESET 1 962 963 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 964 uint32_t phandle) 965 { 966 DeviceState *gpio_pwr_dev; 967 968 /* gpio-pwr */ 969 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 970 971 /* connect secure pl061 to gpio-pwr */ 972 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 973 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 974 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 975 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 976 977 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 978 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 979 "gpio-poweroff"); 980 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 981 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 982 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 983 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 984 "okay"); 985 986 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 987 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 988 "gpio-restart"); 989 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 990 "gpios", phandle, SECURE_GPIO_RESET, 0); 991 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 992 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 993 "okay"); 994 } 995 996 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 997 MemoryRegion *mem) 998 { 999 char *nodename; 1000 DeviceState *pl061_dev; 1001 hwaddr base = vms->memmap[gpio].base; 1002 hwaddr size = vms->memmap[gpio].size; 1003 int irq = vms->irqmap[gpio]; 1004 const char compat[] = "arm,pl061\0arm,primecell"; 1005 SysBusDevice *s; 1006 MachineState *ms = MACHINE(vms); 1007 1008 pl061_dev = qdev_new("pl061"); 1009 /* Pull lines down to 0 if not driven by the PL061 */ 1010 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1011 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1012 s = SYS_BUS_DEVICE(pl061_dev); 1013 sysbus_realize_and_unref(s, &error_fatal); 1014 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1015 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1016 1017 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1018 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1019 qemu_fdt_add_subnode(ms->fdt, nodename); 1020 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1021 2, base, 2, size); 1022 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1023 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1024 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1025 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1026 GIC_FDT_IRQ_TYPE_SPI, irq, 1027 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1028 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1029 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1030 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1031 1032 if (gpio != VIRT_GPIO) { 1033 /* Mark as not usable by the normal world */ 1034 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1035 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1036 } 1037 g_free(nodename); 1038 1039 /* Child gpio devices */ 1040 if (gpio == VIRT_GPIO) { 1041 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1042 } else { 1043 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1044 } 1045 } 1046 1047 static void create_virtio_devices(const VirtMachineState *vms) 1048 { 1049 int i; 1050 hwaddr size = vms->memmap[VIRT_MMIO].size; 1051 MachineState *ms = MACHINE(vms); 1052 1053 /* We create the transports in forwards order. Since qbus_realize() 1054 * prepends (not appends) new child buses, the incrementing loop below will 1055 * create a list of virtio-mmio buses with decreasing base addresses. 1056 * 1057 * When a -device option is processed from the command line, 1058 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1059 * order. The upshot is that -device options in increasing command line 1060 * order are mapped to virtio-mmio buses with decreasing base addresses. 1061 * 1062 * When this code was originally written, that arrangement ensured that the 1063 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1064 * the first -device on the command line. (The end-to-end order is a 1065 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1066 * guest kernel's name-to-address assignment strategy.) 1067 * 1068 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1069 * the message, if not necessarily the code, of commit 70161ff336. 1070 * Therefore the loop now establishes the inverse of the original intent. 1071 * 1072 * Unfortunately, we can't counteract the kernel change by reversing the 1073 * loop; it would break existing command lines. 1074 * 1075 * In any case, the kernel makes no guarantee about the stability of 1076 * enumeration order of virtio devices (as demonstrated by it changing 1077 * between kernel versions). For reliable and stable identification 1078 * of disks users must use UUIDs or similar mechanisms. 1079 */ 1080 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1081 int irq = vms->irqmap[VIRT_MMIO] + i; 1082 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1083 1084 sysbus_create_simple("virtio-mmio", base, 1085 qdev_get_gpio_in(vms->gic, irq)); 1086 } 1087 1088 /* We add dtb nodes in reverse order so that they appear in the finished 1089 * device tree lowest address first. 1090 * 1091 * Note that this mapping is independent of the loop above. The previous 1092 * loop influences virtio device to virtio transport assignment, whereas 1093 * this loop controls how virtio transports are laid out in the dtb. 1094 */ 1095 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1096 char *nodename; 1097 int irq = vms->irqmap[VIRT_MMIO] + i; 1098 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1099 1100 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1101 qemu_fdt_add_subnode(ms->fdt, nodename); 1102 qemu_fdt_setprop_string(ms->fdt, nodename, 1103 "compatible", "virtio,mmio"); 1104 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1105 2, base, 2, size); 1106 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1107 GIC_FDT_IRQ_TYPE_SPI, irq, 1108 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1109 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1110 g_free(nodename); 1111 } 1112 } 1113 1114 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1115 1116 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1117 const char *name, 1118 const char *alias_prop_name) 1119 { 1120 /* 1121 * Create a single flash device. We use the same parameters as 1122 * the flash devices on the Versatile Express board. 1123 */ 1124 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1125 1126 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1127 qdev_prop_set_uint8(dev, "width", 4); 1128 qdev_prop_set_uint8(dev, "device-width", 2); 1129 qdev_prop_set_bit(dev, "big-endian", false); 1130 qdev_prop_set_uint16(dev, "id0", 0x89); 1131 qdev_prop_set_uint16(dev, "id1", 0x18); 1132 qdev_prop_set_uint16(dev, "id2", 0x00); 1133 qdev_prop_set_uint16(dev, "id3", 0x00); 1134 qdev_prop_set_string(dev, "name", name); 1135 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1136 object_property_add_alias(OBJECT(vms), alias_prop_name, 1137 OBJECT(dev), "drive"); 1138 return PFLASH_CFI01(dev); 1139 } 1140 1141 static void virt_flash_create(VirtMachineState *vms) 1142 { 1143 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1144 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1145 } 1146 1147 static void virt_flash_map1(PFlashCFI01 *flash, 1148 hwaddr base, hwaddr size, 1149 MemoryRegion *sysmem) 1150 { 1151 DeviceState *dev = DEVICE(flash); 1152 1153 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1154 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1155 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1156 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1157 1158 memory_region_add_subregion(sysmem, base, 1159 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1160 0)); 1161 } 1162 1163 static void virt_flash_map(VirtMachineState *vms, 1164 MemoryRegion *sysmem, 1165 MemoryRegion *secure_sysmem) 1166 { 1167 /* 1168 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1169 * sysmem is the system memory space. secure_sysmem is the secure view 1170 * of the system, and the first flash device should be made visible only 1171 * there. The second flash device is visible to both secure and nonsecure. 1172 * If sysmem == secure_sysmem this means there is no separate Secure 1173 * address space and both flash devices are generally visible. 1174 */ 1175 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1176 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1177 1178 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1179 secure_sysmem); 1180 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1181 sysmem); 1182 } 1183 1184 static void virt_flash_fdt(VirtMachineState *vms, 1185 MemoryRegion *sysmem, 1186 MemoryRegion *secure_sysmem) 1187 { 1188 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1189 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1190 MachineState *ms = MACHINE(vms); 1191 char *nodename; 1192 1193 if (sysmem == secure_sysmem) { 1194 /* Report both flash devices as a single node in the DT */ 1195 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1196 qemu_fdt_add_subnode(ms->fdt, nodename); 1197 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1198 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1199 2, flashbase, 2, flashsize, 1200 2, flashbase + flashsize, 2, flashsize); 1201 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1202 g_free(nodename); 1203 } else { 1204 /* 1205 * Report the devices as separate nodes so we can mark one as 1206 * only visible to the secure world. 1207 */ 1208 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1209 qemu_fdt_add_subnode(ms->fdt, nodename); 1210 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1211 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1212 2, flashbase, 2, flashsize); 1213 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1214 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1215 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1216 g_free(nodename); 1217 1218 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1219 qemu_fdt_add_subnode(ms->fdt, nodename); 1220 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1221 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1222 2, flashbase + flashsize, 2, flashsize); 1223 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1224 g_free(nodename); 1225 } 1226 } 1227 1228 static bool virt_firmware_init(VirtMachineState *vms, 1229 MemoryRegion *sysmem, 1230 MemoryRegion *secure_sysmem) 1231 { 1232 int i; 1233 const char *bios_name; 1234 BlockBackend *pflash_blk0; 1235 1236 /* Map legacy -drive if=pflash to machine properties */ 1237 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1238 pflash_cfi01_legacy_drive(vms->flash[i], 1239 drive_get(IF_PFLASH, 0, i)); 1240 } 1241 1242 virt_flash_map(vms, sysmem, secure_sysmem); 1243 1244 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1245 1246 bios_name = MACHINE(vms)->firmware; 1247 if (bios_name) { 1248 char *fname; 1249 MemoryRegion *mr; 1250 int image_size; 1251 1252 if (pflash_blk0) { 1253 error_report("The contents of the first flash device may be " 1254 "specified with -bios or with -drive if=pflash... " 1255 "but you cannot use both options at once"); 1256 exit(1); 1257 } 1258 1259 /* Fall back to -bios */ 1260 1261 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1262 if (!fname) { 1263 error_report("Could not find ROM image '%s'", bios_name); 1264 exit(1); 1265 } 1266 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1267 image_size = load_image_mr(fname, mr); 1268 g_free(fname); 1269 if (image_size < 0) { 1270 error_report("Could not load ROM image '%s'", bios_name); 1271 exit(1); 1272 } 1273 } 1274 1275 return pflash_blk0 || bios_name; 1276 } 1277 1278 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1279 { 1280 MachineState *ms = MACHINE(vms); 1281 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1282 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1283 FWCfgState *fw_cfg; 1284 char *nodename; 1285 1286 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1287 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1288 1289 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1290 qemu_fdt_add_subnode(ms->fdt, nodename); 1291 qemu_fdt_setprop_string(ms->fdt, nodename, 1292 "compatible", "qemu,fw-cfg-mmio"); 1293 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1294 2, base, 2, size); 1295 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1296 g_free(nodename); 1297 return fw_cfg; 1298 } 1299 1300 static void create_pcie_irq_map(const MachineState *ms, 1301 uint32_t gic_phandle, 1302 int first_irq, const char *nodename) 1303 { 1304 int devfn, pin; 1305 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1306 uint32_t *irq_map = full_irq_map; 1307 1308 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1309 for (pin = 0; pin < 4; pin++) { 1310 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1311 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1312 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1313 int i; 1314 1315 uint32_t map[] = { 1316 devfn << 8, 0, 0, /* devfn */ 1317 pin + 1, /* PCI pin */ 1318 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1319 1320 /* Convert map to big endian */ 1321 for (i = 0; i < 10; i++) { 1322 irq_map[i] = cpu_to_be32(map[i]); 1323 } 1324 irq_map += 10; 1325 } 1326 } 1327 1328 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1329 full_irq_map, sizeof(full_irq_map)); 1330 1331 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1332 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1333 0, 0, 1334 0x7 /* PCI irq */); 1335 } 1336 1337 static void create_smmu(const VirtMachineState *vms, 1338 PCIBus *bus) 1339 { 1340 char *node; 1341 const char compat[] = "arm,smmu-v3"; 1342 int irq = vms->irqmap[VIRT_SMMU]; 1343 int i; 1344 hwaddr base = vms->memmap[VIRT_SMMU].base; 1345 hwaddr size = vms->memmap[VIRT_SMMU].size; 1346 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1347 DeviceState *dev; 1348 MachineState *ms = MACHINE(vms); 1349 1350 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1351 return; 1352 } 1353 1354 dev = qdev_new(TYPE_ARM_SMMUV3); 1355 1356 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1357 &error_abort); 1358 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1359 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1360 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1361 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1362 qdev_get_gpio_in(vms->gic, irq + i)); 1363 } 1364 1365 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1366 qemu_fdt_add_subnode(ms->fdt, node); 1367 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1368 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1369 1370 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1371 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1372 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1373 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1374 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1375 1376 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1377 sizeof(irq_names)); 1378 1379 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1380 1381 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1382 1383 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1384 g_free(node); 1385 } 1386 1387 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1388 { 1389 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1390 uint16_t bdf = vms->virtio_iommu_bdf; 1391 MachineState *ms = MACHINE(vms); 1392 char *node; 1393 1394 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1395 1396 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1397 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1398 qemu_fdt_add_subnode(ms->fdt, node); 1399 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1400 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1401 1, bdf << 8, 1, 0, 1, 0, 1402 1, 0, 1, 0); 1403 1404 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1405 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1406 g_free(node); 1407 1408 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1409 0x0, vms->iommu_phandle, 0x0, bdf, 1410 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1411 } 1412 1413 static void create_pcie(VirtMachineState *vms) 1414 { 1415 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1416 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1417 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1418 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1419 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1420 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1421 hwaddr base_ecam, size_ecam; 1422 hwaddr base = base_mmio; 1423 int nr_pcie_buses; 1424 int irq = vms->irqmap[VIRT_PCIE]; 1425 MemoryRegion *mmio_alias; 1426 MemoryRegion *mmio_reg; 1427 MemoryRegion *ecam_alias; 1428 MemoryRegion *ecam_reg; 1429 DeviceState *dev; 1430 char *nodename; 1431 int i, ecam_id; 1432 PCIHostState *pci; 1433 MachineState *ms = MACHINE(vms); 1434 MachineClass *mc = MACHINE_GET_CLASS(ms); 1435 1436 dev = qdev_new(TYPE_GPEX_HOST); 1437 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1438 1439 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1440 base_ecam = vms->memmap[ecam_id].base; 1441 size_ecam = vms->memmap[ecam_id].size; 1442 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1443 /* Map only the first size_ecam bytes of ECAM space */ 1444 ecam_alias = g_new0(MemoryRegion, 1); 1445 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1446 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1447 ecam_reg, 0, size_ecam); 1448 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1449 1450 /* Map the MMIO window into system address space so as to expose 1451 * the section of PCI MMIO space which starts at the same base address 1452 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1453 * the window). 1454 */ 1455 mmio_alias = g_new0(MemoryRegion, 1); 1456 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1457 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1458 mmio_reg, base_mmio, size_mmio); 1459 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1460 1461 if (vms->highmem_mmio) { 1462 /* Map high MMIO space */ 1463 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1464 1465 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1466 mmio_reg, base_mmio_high, size_mmio_high); 1467 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1468 high_mmio_alias); 1469 } 1470 1471 /* Map IO port space */ 1472 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1473 1474 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1475 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1476 qdev_get_gpio_in(vms->gic, irq + i)); 1477 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1478 } 1479 1480 pci = PCI_HOST_BRIDGE(dev); 1481 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1482 vms->bus = pci->bus; 1483 if (vms->bus) { 1484 for (i = 0; i < nb_nics; i++) { 1485 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL); 1486 } 1487 } 1488 1489 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1490 qemu_fdt_add_subnode(ms->fdt, nodename); 1491 qemu_fdt_setprop_string(ms->fdt, nodename, 1492 "compatible", "pci-host-ecam-generic"); 1493 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1494 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1495 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1496 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1497 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1498 nr_pcie_buses - 1); 1499 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1500 1501 if (vms->msi_phandle) { 1502 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1503 0, vms->msi_phandle, 0, 0x10000); 1504 } 1505 1506 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1507 2, base_ecam, 2, size_ecam); 1508 1509 if (vms->highmem_mmio) { 1510 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1511 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1512 2, base_pio, 2, size_pio, 1513 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1514 2, base_mmio, 2, size_mmio, 1515 1, FDT_PCI_RANGE_MMIO_64BIT, 1516 2, base_mmio_high, 1517 2, base_mmio_high, 2, size_mmio_high); 1518 } else { 1519 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1520 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1521 2, base_pio, 2, size_pio, 1522 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1523 2, base_mmio, 2, size_mmio); 1524 } 1525 1526 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1527 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1528 1529 if (vms->iommu) { 1530 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1531 1532 switch (vms->iommu) { 1533 case VIRT_IOMMU_SMMUV3: 1534 create_smmu(vms, vms->bus); 1535 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1536 0x0, vms->iommu_phandle, 0x0, 0x10000); 1537 break; 1538 default: 1539 g_assert_not_reached(); 1540 } 1541 } 1542 } 1543 1544 static void create_platform_bus(VirtMachineState *vms) 1545 { 1546 DeviceState *dev; 1547 SysBusDevice *s; 1548 int i; 1549 MemoryRegion *sysmem = get_system_memory(); 1550 1551 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1552 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1553 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1554 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1555 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1556 vms->platform_bus_dev = dev; 1557 1558 s = SYS_BUS_DEVICE(dev); 1559 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1560 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1561 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1562 } 1563 1564 memory_region_add_subregion(sysmem, 1565 vms->memmap[VIRT_PLATFORM_BUS].base, 1566 sysbus_mmio_get_region(s, 0)); 1567 } 1568 1569 static void create_tag_ram(MemoryRegion *tag_sysmem, 1570 hwaddr base, hwaddr size, 1571 const char *name) 1572 { 1573 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1574 1575 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1576 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1577 } 1578 1579 static void create_secure_ram(VirtMachineState *vms, 1580 MemoryRegion *secure_sysmem, 1581 MemoryRegion *secure_tag_sysmem) 1582 { 1583 MemoryRegion *secram = g_new(MemoryRegion, 1); 1584 char *nodename; 1585 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1586 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1587 MachineState *ms = MACHINE(vms); 1588 1589 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1590 &error_fatal); 1591 memory_region_add_subregion(secure_sysmem, base, secram); 1592 1593 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1594 qemu_fdt_add_subnode(ms->fdt, nodename); 1595 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1596 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1597 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1598 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1599 1600 if (secure_tag_sysmem) { 1601 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1602 } 1603 1604 g_free(nodename); 1605 } 1606 1607 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1608 { 1609 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1610 bootinfo); 1611 MachineState *ms = MACHINE(board); 1612 1613 1614 *fdt_size = board->fdt_size; 1615 return ms->fdt; 1616 } 1617 1618 static void virt_build_smbios(VirtMachineState *vms) 1619 { 1620 MachineClass *mc = MACHINE_GET_CLASS(vms); 1621 MachineState *ms = MACHINE(vms); 1622 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1623 uint8_t *smbios_tables, *smbios_anchor; 1624 size_t smbios_tables_len, smbios_anchor_len; 1625 struct smbios_phys_mem_area mem_array; 1626 const char *product = "QEMU Virtual Machine"; 1627 1628 if (kvm_enabled()) { 1629 product = "KVM Virtual Machine"; 1630 } 1631 1632 smbios_set_defaults("QEMU", product, 1633 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1634 true, SMBIOS_ENTRY_POINT_TYPE_64); 1635 1636 /* build the array of physical mem area from base_memmap */ 1637 mem_array.address = vms->memmap[VIRT_MEM].base; 1638 mem_array.length = ms->ram_size; 1639 1640 smbios_get_tables(ms, &mem_array, 1, 1641 &smbios_tables, &smbios_tables_len, 1642 &smbios_anchor, &smbios_anchor_len, 1643 &error_fatal); 1644 1645 if (smbios_anchor) { 1646 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1647 smbios_tables, smbios_tables_len); 1648 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1649 smbios_anchor, smbios_anchor_len); 1650 } 1651 } 1652 1653 static 1654 void virt_machine_done(Notifier *notifier, void *data) 1655 { 1656 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1657 machine_done); 1658 MachineState *ms = MACHINE(vms); 1659 ARMCPU *cpu = ARM_CPU(first_cpu); 1660 struct arm_boot_info *info = &vms->bootinfo; 1661 AddressSpace *as = arm_boot_address_space(cpu, info); 1662 1663 /* 1664 * If the user provided a dtb, we assume the dynamic sysbus nodes 1665 * already are integrated there. This corresponds to a use case where 1666 * the dynamic sysbus nodes are complex and their generation is not yet 1667 * supported. In that case the user can take charge of the guest dt 1668 * while qemu takes charge of the qom stuff. 1669 */ 1670 if (info->dtb_filename == NULL) { 1671 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1672 vms->memmap[VIRT_PLATFORM_BUS].base, 1673 vms->memmap[VIRT_PLATFORM_BUS].size, 1674 vms->irqmap[VIRT_PLATFORM_BUS]); 1675 } 1676 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1677 exit(1); 1678 } 1679 1680 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1681 1682 virt_acpi_setup(vms); 1683 virt_build_smbios(vms); 1684 } 1685 1686 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1687 { 1688 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1689 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1690 1691 if (!vmc->disallow_affinity_adjustment) { 1692 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1693 * GIC's target-list limitations. 32-bit KVM hosts currently 1694 * always create clusters of 4 CPUs, but that is expected to 1695 * change when they gain support for gicv3. When KVM is enabled 1696 * it will override the changes we make here, therefore our 1697 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1698 * and to improve SGI efficiency. 1699 */ 1700 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1701 clustersz = GIC_TARGETLIST_BITS; 1702 } else { 1703 clustersz = GICV3_TARGETLIST_BITS; 1704 } 1705 } 1706 return arm_cpu_mp_affinity(idx, clustersz); 1707 } 1708 1709 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1710 int index) 1711 { 1712 bool *enabled_array[] = { 1713 &vms->highmem_redists, 1714 &vms->highmem_ecam, 1715 &vms->highmem_mmio, 1716 }; 1717 1718 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1719 ARRAY_SIZE(enabled_array)); 1720 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1721 1722 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1723 } 1724 1725 static void virt_set_high_memmap(VirtMachineState *vms, 1726 hwaddr base, int pa_bits) 1727 { 1728 hwaddr region_base, region_size; 1729 bool *region_enabled, fits; 1730 int i; 1731 1732 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1733 region_enabled = virt_get_high_memmap_enabled(vms, i); 1734 region_base = ROUND_UP(base, extended_memmap[i].size); 1735 region_size = extended_memmap[i].size; 1736 1737 vms->memmap[i].base = region_base; 1738 vms->memmap[i].size = region_size; 1739 1740 /* 1741 * Check each device to see if it fits in the PA space, 1742 * moving highest_gpa as we go. For compatibility, move 1743 * highest_gpa for disabled fitting devices as well, if 1744 * the compact layout has been disabled. 1745 * 1746 * For each device that doesn't fit, disable it. 1747 */ 1748 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1749 *region_enabled &= fits; 1750 if (vms->highmem_compact && !*region_enabled) { 1751 continue; 1752 } 1753 1754 base = region_base + region_size; 1755 if (fits) { 1756 vms->highest_gpa = base - 1; 1757 } 1758 } 1759 } 1760 1761 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1762 { 1763 MachineState *ms = MACHINE(vms); 1764 hwaddr base, device_memory_base, device_memory_size, memtop; 1765 int i; 1766 1767 vms->memmap = extended_memmap; 1768 1769 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1770 vms->memmap[i] = base_memmap[i]; 1771 } 1772 1773 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1774 error_report("unsupported number of memory slots: %"PRIu64, 1775 ms->ram_slots); 1776 exit(EXIT_FAILURE); 1777 } 1778 1779 /* 1780 * !highmem is exactly the same as limiting the PA space to 32bit, 1781 * irrespective of the underlying capabilities of the HW. 1782 */ 1783 if (!vms->highmem) { 1784 pa_bits = 32; 1785 } 1786 1787 /* 1788 * We compute the base of the high IO region depending on the 1789 * amount of initial and device memory. The device memory start/size 1790 * is aligned on 1GiB. We never put the high IO region below 256GiB 1791 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1792 * The device region size assumes 1GiB page max alignment per slot. 1793 */ 1794 device_memory_base = 1795 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1796 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1797 1798 /* Base address of the high IO region */ 1799 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1800 if (memtop > BIT_ULL(pa_bits)) { 1801 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n", 1802 pa_bits, memtop - BIT_ULL(pa_bits)); 1803 exit(EXIT_FAILURE); 1804 } 1805 if (base < device_memory_base) { 1806 error_report("maxmem/slots too huge"); 1807 exit(EXIT_FAILURE); 1808 } 1809 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1810 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1811 } 1812 1813 /* We know for sure that at least the memory fits in the PA space */ 1814 vms->highest_gpa = memtop - 1; 1815 1816 virt_set_high_memmap(vms, base, pa_bits); 1817 1818 if (device_memory_size > 0) { 1819 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1820 } 1821 } 1822 1823 static VirtGICType finalize_gic_version_do(const char *accel_name, 1824 VirtGICType gic_version, 1825 int gics_supported, 1826 unsigned int max_cpus) 1827 { 1828 /* Convert host/max/nosel to GIC version number */ 1829 switch (gic_version) { 1830 case VIRT_GIC_VERSION_HOST: 1831 if (!kvm_enabled()) { 1832 error_report("gic-version=host requires KVM"); 1833 exit(1); 1834 } 1835 1836 /* For KVM, gic-version=host means gic-version=max */ 1837 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1838 gics_supported, max_cpus); 1839 case VIRT_GIC_VERSION_MAX: 1840 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1841 gic_version = VIRT_GIC_VERSION_4; 1842 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1843 gic_version = VIRT_GIC_VERSION_3; 1844 } else { 1845 gic_version = VIRT_GIC_VERSION_2; 1846 } 1847 break; 1848 case VIRT_GIC_VERSION_NOSEL: 1849 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1850 max_cpus <= GIC_NCPU) { 1851 gic_version = VIRT_GIC_VERSION_2; 1852 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1853 /* 1854 * in case the host does not support v2 emulation or 1855 * the end-user requested more than 8 VCPUs we now default 1856 * to v3. In any case defaulting to v2 would be broken. 1857 */ 1858 gic_version = VIRT_GIC_VERSION_3; 1859 } else if (max_cpus > GIC_NCPU) { 1860 error_report("%s only supports GICv2 emulation but more than 8 " 1861 "vcpus are requested", accel_name); 1862 exit(1); 1863 } 1864 break; 1865 case VIRT_GIC_VERSION_2: 1866 case VIRT_GIC_VERSION_3: 1867 case VIRT_GIC_VERSION_4: 1868 break; 1869 } 1870 1871 /* Check chosen version is effectively supported */ 1872 switch (gic_version) { 1873 case VIRT_GIC_VERSION_2: 1874 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1875 error_report("%s does not support GICv2 emulation", accel_name); 1876 exit(1); 1877 } 1878 break; 1879 case VIRT_GIC_VERSION_3: 1880 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1881 error_report("%s does not support GICv3 emulation", accel_name); 1882 exit(1); 1883 } 1884 break; 1885 case VIRT_GIC_VERSION_4: 1886 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1887 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1888 accel_name); 1889 exit(1); 1890 } 1891 break; 1892 default: 1893 error_report("logic error in finalize_gic_version"); 1894 exit(1); 1895 break; 1896 } 1897 1898 return gic_version; 1899 } 1900 1901 /* 1902 * finalize_gic_version - Determines the final gic_version 1903 * according to the gic-version property 1904 * 1905 * Default GIC type is v2 1906 */ 1907 static void finalize_gic_version(VirtMachineState *vms) 1908 { 1909 const char *accel_name = current_accel_name(); 1910 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1911 int gics_supported = 0; 1912 1913 /* Determine which GIC versions the current environment supports */ 1914 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1915 int probe_bitmap = kvm_arm_vgic_probe(); 1916 1917 if (!probe_bitmap) { 1918 error_report("Unable to determine GIC version supported by host"); 1919 exit(1); 1920 } 1921 1922 if (probe_bitmap & KVM_ARM_VGIC_V2) { 1923 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1924 } 1925 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1926 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1927 } 1928 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 1929 /* KVM w/o kernel irqchip can only deal with GICv2 */ 1930 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1931 accel_name = "KVM with kernel-irqchip=off"; 1932 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 1933 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1934 if (module_object_class_by_name("arm-gicv3")) { 1935 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1936 if (vms->virt) { 1937 /* GICv4 only makes sense if CPU has EL2 */ 1938 gics_supported |= VIRT_GIC_VERSION_4_MASK; 1939 } 1940 } 1941 } else { 1942 error_report("Unsupported accelerator, can not determine GIC support"); 1943 exit(1); 1944 } 1945 1946 /* 1947 * Then convert helpers like host/max to concrete GIC versions and ensure 1948 * the desired version is supported 1949 */ 1950 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 1951 gics_supported, max_cpus); 1952 } 1953 1954 /* 1955 * virt_cpu_post_init() must be called after the CPUs have 1956 * been realized and the GIC has been created. 1957 */ 1958 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1959 { 1960 int max_cpus = MACHINE(vms)->smp.max_cpus; 1961 bool aarch64, pmu, steal_time; 1962 CPUState *cpu; 1963 1964 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1965 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1966 steal_time = object_property_get_bool(OBJECT(first_cpu), 1967 "kvm-steal-time", NULL); 1968 1969 if (kvm_enabled()) { 1970 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1971 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1972 1973 if (steal_time) { 1974 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1975 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1976 1977 /* The memory region size must be a multiple of host page size. */ 1978 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1979 1980 if (pvtime_size > pvtime_reg_size) { 1981 error_report("pvtime requires a %" HWADDR_PRId 1982 " byte memory region for %d CPUs," 1983 " but only %" HWADDR_PRId " has been reserved", 1984 pvtime_size, max_cpus, pvtime_reg_size); 1985 exit(1); 1986 } 1987 1988 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1989 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1990 } 1991 1992 CPU_FOREACH(cpu) { 1993 if (pmu) { 1994 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1995 if (kvm_irqchip_in_kernel()) { 1996 kvm_arm_pmu_set_irq(cpu, VIRTUAL_PMU_IRQ); 1997 } 1998 kvm_arm_pmu_init(cpu); 1999 } 2000 if (steal_time) { 2001 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 2002 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 2003 } 2004 } 2005 } else { 2006 if (aarch64 && vms->highmem) { 2007 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2008 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2009 2010 if (pamax < requested_pa_size) { 2011 error_report("VCPU supports less PA bits (%d) than " 2012 "requested by the memory map (%d)", 2013 pamax, requested_pa_size); 2014 exit(1); 2015 } 2016 } 2017 } 2018 } 2019 2020 static void machvirt_init(MachineState *machine) 2021 { 2022 VirtMachineState *vms = VIRT_MACHINE(machine); 2023 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2024 MachineClass *mc = MACHINE_GET_CLASS(machine); 2025 const CPUArchIdList *possible_cpus; 2026 MemoryRegion *sysmem = get_system_memory(); 2027 MemoryRegion *secure_sysmem = NULL; 2028 MemoryRegion *tag_sysmem = NULL; 2029 MemoryRegion *secure_tag_sysmem = NULL; 2030 int n, virt_max_cpus; 2031 bool firmware_loaded; 2032 bool aarch64 = true; 2033 bool has_ged = !vmc->no_ged; 2034 unsigned int smp_cpus = machine->smp.cpus; 2035 unsigned int max_cpus = machine->smp.max_cpus; 2036 2037 if (!cpu_type_valid(machine->cpu_type)) { 2038 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 2039 exit(1); 2040 } 2041 2042 possible_cpus = mc->possible_cpu_arch_ids(machine); 2043 2044 /* 2045 * In accelerated mode, the memory map is computed earlier in kvm_type() 2046 * to create a VM with the right number of IPA bits. 2047 */ 2048 if (!vms->memmap) { 2049 Object *cpuobj; 2050 ARMCPU *armcpu; 2051 int pa_bits; 2052 2053 /* 2054 * Instantiate a temporary CPU object to find out about what 2055 * we are about to deal with. Once this is done, get rid of 2056 * the object. 2057 */ 2058 cpuobj = object_new(possible_cpus->cpus[0].type); 2059 armcpu = ARM_CPU(cpuobj); 2060 2061 pa_bits = arm_pamax(armcpu); 2062 2063 object_unref(cpuobj); 2064 2065 virt_set_memmap(vms, pa_bits); 2066 } 2067 2068 /* We can probe only here because during property set 2069 * KVM is not available yet 2070 */ 2071 finalize_gic_version(vms); 2072 2073 if (vms->secure) { 2074 /* 2075 * The Secure view of the world is the same as the NonSecure, 2076 * but with a few extra devices. Create it as a container region 2077 * containing the system memory at low priority; any secure-only 2078 * devices go in at higher priority and take precedence. 2079 */ 2080 secure_sysmem = g_new(MemoryRegion, 1); 2081 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2082 UINT64_MAX); 2083 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2084 } 2085 2086 firmware_loaded = virt_firmware_init(vms, sysmem, 2087 secure_sysmem ?: sysmem); 2088 2089 /* If we have an EL3 boot ROM then the assumption is that it will 2090 * implement PSCI itself, so disable QEMU's internal implementation 2091 * so it doesn't get in the way. Instead of starting secondary 2092 * CPUs in PSCI powerdown state we will start them all running and 2093 * let the boot ROM sort them out. 2094 * The usual case is that we do use QEMU's PSCI implementation; 2095 * if the guest has EL2 then we will use SMC as the conduit, 2096 * and otherwise we will use HVC (for backwards compatibility and 2097 * because if we're using KVM then we must use HVC). 2098 */ 2099 if (vms->secure && firmware_loaded) { 2100 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2101 } else if (vms->virt) { 2102 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2103 } else { 2104 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2105 } 2106 2107 /* 2108 * The maximum number of CPUs depends on the GIC version, or on how 2109 * many redistributors we can fit into the memory map (which in turn 2110 * depends on whether this is a GICv3 or v4). 2111 */ 2112 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2113 virt_max_cpus = GIC_NCPU; 2114 } else { 2115 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2116 if (vms->highmem_redists) { 2117 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2118 } 2119 } 2120 2121 if (max_cpus > virt_max_cpus) { 2122 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2123 "supported by machine 'mach-virt' (%d)", 2124 max_cpus, virt_max_cpus); 2125 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2126 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2127 } 2128 2129 exit(1); 2130 } 2131 2132 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2133 error_report("mach-virt: %s does not support providing " 2134 "Security extensions (TrustZone) to the guest CPU", 2135 current_accel_name()); 2136 exit(1); 2137 } 2138 2139 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2140 error_report("mach-virt: %s does not support providing " 2141 "Virtualization extensions to the guest CPU", 2142 current_accel_name()); 2143 exit(1); 2144 } 2145 2146 if (vms->mte && (kvm_enabled() || hvf_enabled())) { 2147 error_report("mach-virt: %s does not support providing " 2148 "MTE to the guest CPU", 2149 current_accel_name()); 2150 exit(1); 2151 } 2152 2153 create_fdt(vms); 2154 2155 assert(possible_cpus->len == max_cpus); 2156 for (n = 0; n < possible_cpus->len; n++) { 2157 Object *cpuobj; 2158 CPUState *cs; 2159 2160 if (n >= smp_cpus) { 2161 break; 2162 } 2163 2164 cpuobj = object_new(possible_cpus->cpus[n].type); 2165 object_property_set_int(cpuobj, "mp-affinity", 2166 possible_cpus->cpus[n].arch_id, NULL); 2167 2168 cs = CPU(cpuobj); 2169 cs->cpu_index = n; 2170 2171 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2172 &error_fatal); 2173 2174 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2175 2176 if (!vms->secure) { 2177 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2178 } 2179 2180 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2181 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2182 } 2183 2184 if (vmc->kvm_no_adjvtime && 2185 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2186 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2187 } 2188 2189 if (vmc->no_kvm_steal_time && 2190 object_property_find(cpuobj, "kvm-steal-time")) { 2191 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2192 } 2193 2194 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2195 object_property_set_bool(cpuobj, "pmu", false, NULL); 2196 } 2197 2198 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2199 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2200 } 2201 2202 if (object_property_find(cpuobj, "reset-cbar")) { 2203 object_property_set_int(cpuobj, "reset-cbar", 2204 vms->memmap[VIRT_CPUPERIPHS].base, 2205 &error_abort); 2206 } 2207 2208 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2209 &error_abort); 2210 if (vms->secure) { 2211 object_property_set_link(cpuobj, "secure-memory", 2212 OBJECT(secure_sysmem), &error_abort); 2213 } 2214 2215 if (vms->mte) { 2216 /* Create the memory region only once, but link to all cpus. */ 2217 if (!tag_sysmem) { 2218 /* 2219 * The property exists only if MemTag is supported. 2220 * If it is, we must allocate the ram to back that up. 2221 */ 2222 if (!object_property_find(cpuobj, "tag-memory")) { 2223 error_report("MTE requested, but not supported " 2224 "by the guest CPU"); 2225 exit(1); 2226 } 2227 2228 tag_sysmem = g_new(MemoryRegion, 1); 2229 memory_region_init(tag_sysmem, OBJECT(machine), 2230 "tag-memory", UINT64_MAX / 32); 2231 2232 if (vms->secure) { 2233 secure_tag_sysmem = g_new(MemoryRegion, 1); 2234 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2235 "secure-tag-memory", UINT64_MAX / 32); 2236 2237 /* As with ram, secure-tag takes precedence over tag. */ 2238 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2239 tag_sysmem, -1); 2240 } 2241 } 2242 2243 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2244 &error_abort); 2245 if (vms->secure) { 2246 object_property_set_link(cpuobj, "secure-tag-memory", 2247 OBJECT(secure_tag_sysmem), 2248 &error_abort); 2249 } 2250 } 2251 2252 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2253 object_unref(cpuobj); 2254 } 2255 fdt_add_timer_nodes(vms); 2256 fdt_add_cpu_nodes(vms); 2257 2258 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2259 machine->ram); 2260 2261 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2262 2263 create_gic(vms, sysmem); 2264 2265 virt_cpu_post_init(vms, sysmem); 2266 2267 fdt_add_pmu_nodes(vms); 2268 2269 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2270 2271 if (vms->secure) { 2272 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2273 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2274 } 2275 2276 if (tag_sysmem) { 2277 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2278 machine->ram_size, "mach-virt.tag"); 2279 } 2280 2281 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2282 2283 create_rtc(vms); 2284 2285 create_pcie(vms); 2286 2287 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2288 vms->acpi_dev = create_acpi_ged(vms); 2289 } else { 2290 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2291 } 2292 2293 if (vms->secure && !vmc->no_secure_gpio) { 2294 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2295 } 2296 2297 /* connect powerdown request */ 2298 vms->powerdown_notifier.notify = virt_powerdown_req; 2299 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2300 2301 /* Create mmio transports, so the user can create virtio backends 2302 * (which will be automatically plugged in to the transports). If 2303 * no backend is created the transport will just sit harmlessly idle. 2304 */ 2305 create_virtio_devices(vms); 2306 2307 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2308 rom_set_fw(vms->fw_cfg); 2309 2310 create_platform_bus(vms); 2311 2312 if (machine->nvdimms_state->is_enabled) { 2313 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2314 .space_id = AML_AS_SYSTEM_MEMORY, 2315 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2316 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2317 }; 2318 2319 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2320 arm_virt_nvdimm_acpi_dsmio, 2321 vms->fw_cfg, OBJECT(vms)); 2322 } 2323 2324 vms->bootinfo.ram_size = machine->ram_size; 2325 vms->bootinfo.board_id = -1; 2326 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2327 vms->bootinfo.get_dtb = machvirt_dtb; 2328 vms->bootinfo.skip_dtb_autoload = true; 2329 vms->bootinfo.firmware_loaded = firmware_loaded; 2330 vms->bootinfo.psci_conduit = vms->psci_conduit; 2331 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2332 2333 vms->machine_done.notify = virt_machine_done; 2334 qemu_add_machine_init_done_notifier(&vms->machine_done); 2335 } 2336 2337 static bool virt_get_secure(Object *obj, Error **errp) 2338 { 2339 VirtMachineState *vms = VIRT_MACHINE(obj); 2340 2341 return vms->secure; 2342 } 2343 2344 static void virt_set_secure(Object *obj, bool value, Error **errp) 2345 { 2346 VirtMachineState *vms = VIRT_MACHINE(obj); 2347 2348 vms->secure = value; 2349 } 2350 2351 static bool virt_get_virt(Object *obj, Error **errp) 2352 { 2353 VirtMachineState *vms = VIRT_MACHINE(obj); 2354 2355 return vms->virt; 2356 } 2357 2358 static void virt_set_virt(Object *obj, bool value, Error **errp) 2359 { 2360 VirtMachineState *vms = VIRT_MACHINE(obj); 2361 2362 vms->virt = value; 2363 } 2364 2365 static bool virt_get_highmem(Object *obj, Error **errp) 2366 { 2367 VirtMachineState *vms = VIRT_MACHINE(obj); 2368 2369 return vms->highmem; 2370 } 2371 2372 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2373 { 2374 VirtMachineState *vms = VIRT_MACHINE(obj); 2375 2376 vms->highmem = value; 2377 } 2378 2379 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2380 { 2381 VirtMachineState *vms = VIRT_MACHINE(obj); 2382 2383 return vms->highmem_compact; 2384 } 2385 2386 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2387 { 2388 VirtMachineState *vms = VIRT_MACHINE(obj); 2389 2390 vms->highmem_compact = value; 2391 } 2392 2393 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2394 { 2395 VirtMachineState *vms = VIRT_MACHINE(obj); 2396 2397 return vms->highmem_redists; 2398 } 2399 2400 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2401 { 2402 VirtMachineState *vms = VIRT_MACHINE(obj); 2403 2404 vms->highmem_redists = value; 2405 } 2406 2407 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2408 { 2409 VirtMachineState *vms = VIRT_MACHINE(obj); 2410 2411 return vms->highmem_ecam; 2412 } 2413 2414 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2415 { 2416 VirtMachineState *vms = VIRT_MACHINE(obj); 2417 2418 vms->highmem_ecam = value; 2419 } 2420 2421 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2422 { 2423 VirtMachineState *vms = VIRT_MACHINE(obj); 2424 2425 return vms->highmem_mmio; 2426 } 2427 2428 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2429 { 2430 VirtMachineState *vms = VIRT_MACHINE(obj); 2431 2432 vms->highmem_mmio = value; 2433 } 2434 2435 2436 static bool virt_get_its(Object *obj, Error **errp) 2437 { 2438 VirtMachineState *vms = VIRT_MACHINE(obj); 2439 2440 return vms->its; 2441 } 2442 2443 static void virt_set_its(Object *obj, bool value, Error **errp) 2444 { 2445 VirtMachineState *vms = VIRT_MACHINE(obj); 2446 2447 vms->its = value; 2448 } 2449 2450 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2451 { 2452 VirtMachineState *vms = VIRT_MACHINE(obj); 2453 2454 return vms->dtb_randomness; 2455 } 2456 2457 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2458 { 2459 VirtMachineState *vms = VIRT_MACHINE(obj); 2460 2461 vms->dtb_randomness = value; 2462 } 2463 2464 static char *virt_get_oem_id(Object *obj, Error **errp) 2465 { 2466 VirtMachineState *vms = VIRT_MACHINE(obj); 2467 2468 return g_strdup(vms->oem_id); 2469 } 2470 2471 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2472 { 2473 VirtMachineState *vms = VIRT_MACHINE(obj); 2474 size_t len = strlen(value); 2475 2476 if (len > 6) { 2477 error_setg(errp, 2478 "User specified oem-id value is bigger than 6 bytes in size"); 2479 return; 2480 } 2481 2482 strncpy(vms->oem_id, value, 6); 2483 } 2484 2485 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2486 { 2487 VirtMachineState *vms = VIRT_MACHINE(obj); 2488 2489 return g_strdup(vms->oem_table_id); 2490 } 2491 2492 static void virt_set_oem_table_id(Object *obj, const char *value, 2493 Error **errp) 2494 { 2495 VirtMachineState *vms = VIRT_MACHINE(obj); 2496 size_t len = strlen(value); 2497 2498 if (len > 8) { 2499 error_setg(errp, 2500 "User specified oem-table-id value is bigger than 8 bytes in size"); 2501 return; 2502 } 2503 strncpy(vms->oem_table_id, value, 8); 2504 } 2505 2506 2507 bool virt_is_acpi_enabled(VirtMachineState *vms) 2508 { 2509 if (vms->acpi == ON_OFF_AUTO_OFF) { 2510 return false; 2511 } 2512 return true; 2513 } 2514 2515 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2516 void *opaque, Error **errp) 2517 { 2518 VirtMachineState *vms = VIRT_MACHINE(obj); 2519 OnOffAuto acpi = vms->acpi; 2520 2521 visit_type_OnOffAuto(v, name, &acpi, errp); 2522 } 2523 2524 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2525 void *opaque, Error **errp) 2526 { 2527 VirtMachineState *vms = VIRT_MACHINE(obj); 2528 2529 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2530 } 2531 2532 static bool virt_get_ras(Object *obj, Error **errp) 2533 { 2534 VirtMachineState *vms = VIRT_MACHINE(obj); 2535 2536 return vms->ras; 2537 } 2538 2539 static void virt_set_ras(Object *obj, bool value, Error **errp) 2540 { 2541 VirtMachineState *vms = VIRT_MACHINE(obj); 2542 2543 vms->ras = value; 2544 } 2545 2546 static bool virt_get_mte(Object *obj, Error **errp) 2547 { 2548 VirtMachineState *vms = VIRT_MACHINE(obj); 2549 2550 return vms->mte; 2551 } 2552 2553 static void virt_set_mte(Object *obj, bool value, Error **errp) 2554 { 2555 VirtMachineState *vms = VIRT_MACHINE(obj); 2556 2557 vms->mte = value; 2558 } 2559 2560 static char *virt_get_gic_version(Object *obj, Error **errp) 2561 { 2562 VirtMachineState *vms = VIRT_MACHINE(obj); 2563 const char *val; 2564 2565 switch (vms->gic_version) { 2566 case VIRT_GIC_VERSION_4: 2567 val = "4"; 2568 break; 2569 case VIRT_GIC_VERSION_3: 2570 val = "3"; 2571 break; 2572 default: 2573 val = "2"; 2574 break; 2575 } 2576 return g_strdup(val); 2577 } 2578 2579 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2580 { 2581 VirtMachineState *vms = VIRT_MACHINE(obj); 2582 2583 if (!strcmp(value, "4")) { 2584 vms->gic_version = VIRT_GIC_VERSION_4; 2585 } else if (!strcmp(value, "3")) { 2586 vms->gic_version = VIRT_GIC_VERSION_3; 2587 } else if (!strcmp(value, "2")) { 2588 vms->gic_version = VIRT_GIC_VERSION_2; 2589 } else if (!strcmp(value, "host")) { 2590 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2591 } else if (!strcmp(value, "max")) { 2592 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2593 } else { 2594 error_setg(errp, "Invalid gic-version value"); 2595 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2596 } 2597 } 2598 2599 static char *virt_get_iommu(Object *obj, Error **errp) 2600 { 2601 VirtMachineState *vms = VIRT_MACHINE(obj); 2602 2603 switch (vms->iommu) { 2604 case VIRT_IOMMU_NONE: 2605 return g_strdup("none"); 2606 case VIRT_IOMMU_SMMUV3: 2607 return g_strdup("smmuv3"); 2608 default: 2609 g_assert_not_reached(); 2610 } 2611 } 2612 2613 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2614 { 2615 VirtMachineState *vms = VIRT_MACHINE(obj); 2616 2617 if (!strcmp(value, "smmuv3")) { 2618 vms->iommu = VIRT_IOMMU_SMMUV3; 2619 } else if (!strcmp(value, "none")) { 2620 vms->iommu = VIRT_IOMMU_NONE; 2621 } else { 2622 error_setg(errp, "Invalid iommu value"); 2623 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2624 } 2625 } 2626 2627 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2628 { 2629 VirtMachineState *vms = VIRT_MACHINE(obj); 2630 2631 return vms->default_bus_bypass_iommu; 2632 } 2633 2634 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2635 Error **errp) 2636 { 2637 VirtMachineState *vms = VIRT_MACHINE(obj); 2638 2639 vms->default_bus_bypass_iommu = value; 2640 } 2641 2642 static CpuInstanceProperties 2643 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2644 { 2645 MachineClass *mc = MACHINE_GET_CLASS(ms); 2646 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2647 2648 assert(cpu_index < possible_cpus->len); 2649 return possible_cpus->cpus[cpu_index].props; 2650 } 2651 2652 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2653 { 2654 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2655 2656 return socket_id % ms->numa_state->num_nodes; 2657 } 2658 2659 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2660 { 2661 int n; 2662 unsigned int max_cpus = ms->smp.max_cpus; 2663 VirtMachineState *vms = VIRT_MACHINE(ms); 2664 MachineClass *mc = MACHINE_GET_CLASS(vms); 2665 2666 if (ms->possible_cpus) { 2667 assert(ms->possible_cpus->len == max_cpus); 2668 return ms->possible_cpus; 2669 } 2670 2671 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2672 sizeof(CPUArchId) * max_cpus); 2673 ms->possible_cpus->len = max_cpus; 2674 for (n = 0; n < ms->possible_cpus->len; n++) { 2675 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2676 ms->possible_cpus->cpus[n].arch_id = 2677 virt_cpu_mp_affinity(vms, n); 2678 2679 assert(!mc->smp_props.dies_supported); 2680 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2681 ms->possible_cpus->cpus[n].props.socket_id = 2682 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2683 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2684 ms->possible_cpus->cpus[n].props.cluster_id = 2685 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2686 ms->possible_cpus->cpus[n].props.has_core_id = true; 2687 ms->possible_cpus->cpus[n].props.core_id = 2688 (n / ms->smp.threads) % ms->smp.cores; 2689 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2690 ms->possible_cpus->cpus[n].props.thread_id = 2691 n % ms->smp.threads; 2692 } 2693 return ms->possible_cpus; 2694 } 2695 2696 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2697 Error **errp) 2698 { 2699 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2700 const MachineState *ms = MACHINE(hotplug_dev); 2701 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2702 2703 if (!vms->acpi_dev) { 2704 error_setg(errp, 2705 "memory hotplug is not enabled: missing acpi-ged device"); 2706 return; 2707 } 2708 2709 if (vms->mte) { 2710 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2711 return; 2712 } 2713 2714 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2715 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2716 return; 2717 } 2718 2719 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2720 } 2721 2722 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2723 DeviceState *dev, Error **errp) 2724 { 2725 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2726 MachineState *ms = MACHINE(hotplug_dev); 2727 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2728 2729 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2730 2731 if (is_nvdimm) { 2732 nvdimm_plug(ms->nvdimms_state); 2733 } 2734 2735 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2736 dev, &error_abort); 2737 } 2738 2739 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2740 DeviceState *dev, Error **errp) 2741 { 2742 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2743 2744 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2745 virt_memory_pre_plug(hotplug_dev, dev, errp); 2746 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2747 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2748 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2749 hwaddr db_start = 0, db_end = 0; 2750 char *resv_prop_str; 2751 2752 if (vms->iommu != VIRT_IOMMU_NONE) { 2753 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2754 return; 2755 } 2756 2757 switch (vms->msi_controller) { 2758 case VIRT_MSI_CTRL_NONE: 2759 return; 2760 case VIRT_MSI_CTRL_ITS: 2761 /* GITS_TRANSLATER page */ 2762 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2763 db_end = base_memmap[VIRT_GIC_ITS].base + 2764 base_memmap[VIRT_GIC_ITS].size - 1; 2765 break; 2766 case VIRT_MSI_CTRL_GICV2M: 2767 /* MSI_SETSPI_NS page */ 2768 db_start = base_memmap[VIRT_GIC_V2M].base; 2769 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2770 break; 2771 } 2772 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2773 db_start, db_end, 2774 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2775 2776 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp); 2777 object_property_set_str(OBJECT(dev), "reserved-regions[0]", 2778 resv_prop_str, errp); 2779 g_free(resv_prop_str); 2780 } 2781 } 2782 2783 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2784 DeviceState *dev, Error **errp) 2785 { 2786 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2787 2788 if (vms->platform_bus_dev) { 2789 MachineClass *mc = MACHINE_GET_CLASS(vms); 2790 2791 if (device_is_dynamic_sysbus(mc, dev)) { 2792 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2793 SYS_BUS_DEVICE(dev)); 2794 } 2795 } 2796 2797 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2798 virt_memory_plug(hotplug_dev, dev, errp); 2799 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2800 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2801 } 2802 2803 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2804 PCIDevice *pdev = PCI_DEVICE(dev); 2805 2806 vms->iommu = VIRT_IOMMU_VIRTIO; 2807 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2808 create_virtio_iommu_dt_bindings(vms); 2809 } 2810 } 2811 2812 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2813 DeviceState *dev, Error **errp) 2814 { 2815 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2816 2817 if (!vms->acpi_dev) { 2818 error_setg(errp, 2819 "memory hotplug is not enabled: missing acpi-ged device"); 2820 return; 2821 } 2822 2823 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2824 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2825 return; 2826 } 2827 2828 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2829 errp); 2830 } 2831 2832 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2833 DeviceState *dev, Error **errp) 2834 { 2835 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2836 Error *local_err = NULL; 2837 2838 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2839 if (local_err) { 2840 goto out; 2841 } 2842 2843 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2844 qdev_unrealize(dev); 2845 2846 out: 2847 error_propagate(errp, local_err); 2848 } 2849 2850 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2851 DeviceState *dev, Error **errp) 2852 { 2853 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2854 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2855 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2856 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 2857 errp); 2858 } else { 2859 error_setg(errp, "device unplug request for unsupported device" 2860 " type: %s", object_get_typename(OBJECT(dev))); 2861 } 2862 } 2863 2864 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2865 DeviceState *dev, Error **errp) 2866 { 2867 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2868 virt_dimm_unplug(hotplug_dev, dev, errp); 2869 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2870 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2871 } else { 2872 error_setg(errp, "virt: device unplug for unsupported device" 2873 " type: %s", object_get_typename(OBJECT(dev))); 2874 } 2875 } 2876 2877 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2878 DeviceState *dev) 2879 { 2880 MachineClass *mc = MACHINE_GET_CLASS(machine); 2881 2882 if (device_is_dynamic_sysbus(mc, dev) || 2883 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2884 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 2885 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2886 return HOTPLUG_HANDLER(machine); 2887 } 2888 return NULL; 2889 } 2890 2891 /* 2892 * for arm64 kvm_type [7-0] encodes the requested number of bits 2893 * in the IPA address space 2894 */ 2895 static int virt_kvm_type(MachineState *ms, const char *type_str) 2896 { 2897 VirtMachineState *vms = VIRT_MACHINE(ms); 2898 int max_vm_pa_size, requested_pa_size; 2899 bool fixed_ipa; 2900 2901 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2902 2903 /* we freeze the memory map to compute the highest gpa */ 2904 virt_set_memmap(vms, max_vm_pa_size); 2905 2906 requested_pa_size = 64 - clz64(vms->highest_gpa); 2907 2908 /* 2909 * KVM requires the IPA size to be at least 32 bits. 2910 */ 2911 if (requested_pa_size < 32) { 2912 requested_pa_size = 32; 2913 } 2914 2915 if (requested_pa_size > max_vm_pa_size) { 2916 error_report("-m and ,maxmem option values " 2917 "require an IPA range (%d bits) larger than " 2918 "the one supported by the host (%d bits)", 2919 requested_pa_size, max_vm_pa_size); 2920 return -1; 2921 } 2922 /* 2923 * We return the requested PA log size, unless KVM only supports 2924 * the implicit legacy 40b IPA setting, in which case the kvm_type 2925 * must be 0. 2926 */ 2927 return fixed_ipa ? 0 : requested_pa_size; 2928 } 2929 2930 static void virt_machine_class_init(ObjectClass *oc, void *data) 2931 { 2932 MachineClass *mc = MACHINE_CLASS(oc); 2933 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2934 2935 mc->init = machvirt_init; 2936 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2937 * The value may be reduced later when we have more information about the 2938 * configuration of the particular instance. 2939 */ 2940 mc->max_cpus = 512; 2941 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2943 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2944 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2945 #ifdef CONFIG_TPM 2946 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2947 #endif 2948 mc->block_default_type = IF_VIRTIO; 2949 mc->no_cdrom = 1; 2950 mc->pci_allow_0_address = true; 2951 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2952 mc->minimum_page_bits = 12; 2953 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2954 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2955 #ifdef CONFIG_TCG 2956 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2957 #else 2958 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 2959 #endif 2960 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2961 mc->kvm_type = virt_kvm_type; 2962 assert(!mc->get_hotplug_handler); 2963 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2964 hc->pre_plug = virt_machine_device_pre_plug_cb; 2965 hc->plug = virt_machine_device_plug_cb; 2966 hc->unplug_request = virt_machine_device_unplug_request_cb; 2967 hc->unplug = virt_machine_device_unplug_cb; 2968 mc->nvdimm_supported = true; 2969 mc->smp_props.clusters_supported = true; 2970 mc->auto_enable_numa_with_memhp = true; 2971 mc->auto_enable_numa_with_memdev = true; 2972 /* platform instead of architectural choice */ 2973 mc->cpu_cluster_has_numa_boundary = true; 2974 mc->default_ram_id = "mach-virt.ram"; 2975 mc->default_nic = "virtio-net-pci"; 2976 2977 object_class_property_add(oc, "acpi", "OnOffAuto", 2978 virt_get_acpi, virt_set_acpi, 2979 NULL, NULL); 2980 object_class_property_set_description(oc, "acpi", 2981 "Enable ACPI"); 2982 object_class_property_add_bool(oc, "secure", virt_get_secure, 2983 virt_set_secure); 2984 object_class_property_set_description(oc, "secure", 2985 "Set on/off to enable/disable the ARM " 2986 "Security Extensions (TrustZone)"); 2987 2988 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2989 virt_set_virt); 2990 object_class_property_set_description(oc, "virtualization", 2991 "Set on/off to enable/disable emulating a " 2992 "guest CPU which implements the ARM " 2993 "Virtualization Extensions"); 2994 2995 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2996 virt_set_highmem); 2997 object_class_property_set_description(oc, "highmem", 2998 "Set on/off to enable/disable using " 2999 "physical address space above 32 bits"); 3000 3001 object_class_property_add_bool(oc, "compact-highmem", 3002 virt_get_compact_highmem, 3003 virt_set_compact_highmem); 3004 object_class_property_set_description(oc, "compact-highmem", 3005 "Set on/off to enable/disable compact " 3006 "layout for high memory regions"); 3007 3008 object_class_property_add_bool(oc, "highmem-redists", 3009 virt_get_highmem_redists, 3010 virt_set_highmem_redists); 3011 object_class_property_set_description(oc, "highmem-redists", 3012 "Set on/off to enable/disable high " 3013 "memory region for GICv3 or GICv4 " 3014 "redistributor"); 3015 3016 object_class_property_add_bool(oc, "highmem-ecam", 3017 virt_get_highmem_ecam, 3018 virt_set_highmem_ecam); 3019 object_class_property_set_description(oc, "highmem-ecam", 3020 "Set on/off to enable/disable high " 3021 "memory region for PCI ECAM"); 3022 3023 object_class_property_add_bool(oc, "highmem-mmio", 3024 virt_get_highmem_mmio, 3025 virt_set_highmem_mmio); 3026 object_class_property_set_description(oc, "highmem-mmio", 3027 "Set on/off to enable/disable high " 3028 "memory region for PCI MMIO"); 3029 3030 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3031 virt_set_gic_version); 3032 object_class_property_set_description(oc, "gic-version", 3033 "Set GIC version. " 3034 "Valid values are 2, 3, 4, host and max"); 3035 3036 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3037 object_class_property_set_description(oc, "iommu", 3038 "Set the IOMMU type. " 3039 "Valid values are none and smmuv3"); 3040 3041 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3042 virt_get_default_bus_bypass_iommu, 3043 virt_set_default_bus_bypass_iommu); 3044 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3045 "Set on/off to enable/disable " 3046 "bypass_iommu for default root bus"); 3047 3048 object_class_property_add_bool(oc, "ras", virt_get_ras, 3049 virt_set_ras); 3050 object_class_property_set_description(oc, "ras", 3051 "Set on/off to enable/disable reporting host memory errors " 3052 "to a KVM guest using ACPI and guest external abort exceptions"); 3053 3054 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3055 object_class_property_set_description(oc, "mte", 3056 "Set on/off to enable/disable emulating a " 3057 "guest CPU which implements the ARM " 3058 "Memory Tagging Extension"); 3059 3060 object_class_property_add_bool(oc, "its", virt_get_its, 3061 virt_set_its); 3062 object_class_property_set_description(oc, "its", 3063 "Set on/off to enable/disable " 3064 "ITS instantiation"); 3065 3066 object_class_property_add_bool(oc, "dtb-randomness", 3067 virt_get_dtb_randomness, 3068 virt_set_dtb_randomness); 3069 object_class_property_set_description(oc, "dtb-randomness", 3070 "Set off to disable passing random or " 3071 "non-deterministic dtb nodes to guest"); 3072 3073 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3074 virt_get_dtb_randomness, 3075 virt_set_dtb_randomness); 3076 object_class_property_set_description(oc, "dtb-kaslr-seed", 3077 "Deprecated synonym of dtb-randomness"); 3078 3079 object_class_property_add_str(oc, "x-oem-id", 3080 virt_get_oem_id, 3081 virt_set_oem_id); 3082 object_class_property_set_description(oc, "x-oem-id", 3083 "Override the default value of field OEMID " 3084 "in ACPI table header." 3085 "The string may be up to 6 bytes in size"); 3086 3087 3088 object_class_property_add_str(oc, "x-oem-table-id", 3089 virt_get_oem_table_id, 3090 virt_set_oem_table_id); 3091 object_class_property_set_description(oc, "x-oem-table-id", 3092 "Override the default value of field OEM Table ID " 3093 "in ACPI table header." 3094 "The string may be up to 8 bytes in size"); 3095 3096 } 3097 3098 static void virt_instance_init(Object *obj) 3099 { 3100 VirtMachineState *vms = VIRT_MACHINE(obj); 3101 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3102 3103 /* EL3 is disabled by default on virt: this makes us consistent 3104 * between KVM and TCG for this board, and it also allows us to 3105 * boot UEFI blobs which assume no TrustZone support. 3106 */ 3107 vms->secure = false; 3108 3109 /* EL2 is also disabled by default, for similar reasons */ 3110 vms->virt = false; 3111 3112 /* High memory is enabled by default */ 3113 vms->highmem = true; 3114 vms->highmem_compact = !vmc->no_highmem_compact; 3115 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3116 3117 vms->highmem_ecam = !vmc->no_highmem_ecam; 3118 vms->highmem_mmio = true; 3119 vms->highmem_redists = true; 3120 3121 if (vmc->no_its) { 3122 vms->its = false; 3123 } else { 3124 /* Default allows ITS instantiation */ 3125 vms->its = true; 3126 3127 if (vmc->no_tcg_its) { 3128 vms->tcg_its = false; 3129 } else { 3130 vms->tcg_its = true; 3131 } 3132 } 3133 3134 /* Default disallows iommu instantiation */ 3135 vms->iommu = VIRT_IOMMU_NONE; 3136 3137 /* The default root bus is attached to iommu by default */ 3138 vms->default_bus_bypass_iommu = false; 3139 3140 /* Default disallows RAS instantiation */ 3141 vms->ras = false; 3142 3143 /* MTE is disabled by default. */ 3144 vms->mte = false; 3145 3146 /* Supply kaslr-seed and rng-seed by default */ 3147 vms->dtb_randomness = true; 3148 3149 vms->irqmap = a15irqmap; 3150 3151 virt_flash_create(vms); 3152 3153 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3154 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3155 } 3156 3157 static const TypeInfo virt_machine_info = { 3158 .name = TYPE_VIRT_MACHINE, 3159 .parent = TYPE_MACHINE, 3160 .abstract = true, 3161 .instance_size = sizeof(VirtMachineState), 3162 .class_size = sizeof(VirtMachineClass), 3163 .class_init = virt_machine_class_init, 3164 .instance_init = virt_instance_init, 3165 .interfaces = (InterfaceInfo[]) { 3166 { TYPE_HOTPLUG_HANDLER }, 3167 { } 3168 }, 3169 }; 3170 3171 static void machvirt_machine_init(void) 3172 { 3173 type_register_static(&virt_machine_info); 3174 } 3175 type_init(machvirt_machine_init); 3176 3177 static void virt_machine_8_2_options(MachineClass *mc) 3178 { 3179 } 3180 DEFINE_VIRT_MACHINE_AS_LATEST(8, 2) 3181 3182 static void virt_machine_8_1_options(MachineClass *mc) 3183 { 3184 virt_machine_8_2_options(mc); 3185 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3186 } 3187 DEFINE_VIRT_MACHINE(8, 1) 3188 3189 static void virt_machine_8_0_options(MachineClass *mc) 3190 { 3191 virt_machine_8_1_options(mc); 3192 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3193 } 3194 DEFINE_VIRT_MACHINE(8, 0) 3195 3196 static void virt_machine_7_2_options(MachineClass *mc) 3197 { 3198 virt_machine_8_0_options(mc); 3199 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3200 } 3201 DEFINE_VIRT_MACHINE(7, 2) 3202 3203 static void virt_machine_7_1_options(MachineClass *mc) 3204 { 3205 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3206 3207 virt_machine_7_2_options(mc); 3208 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3209 /* Compact layout for high memory regions was introduced with 7.2 */ 3210 vmc->no_highmem_compact = true; 3211 } 3212 DEFINE_VIRT_MACHINE(7, 1) 3213 3214 static void virt_machine_7_0_options(MachineClass *mc) 3215 { 3216 virt_machine_7_1_options(mc); 3217 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3218 } 3219 DEFINE_VIRT_MACHINE(7, 0) 3220 3221 static void virt_machine_6_2_options(MachineClass *mc) 3222 { 3223 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3224 3225 virt_machine_7_0_options(mc); 3226 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3227 vmc->no_tcg_lpa2 = true; 3228 } 3229 DEFINE_VIRT_MACHINE(6, 2) 3230 3231 static void virt_machine_6_1_options(MachineClass *mc) 3232 { 3233 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3234 3235 virt_machine_6_2_options(mc); 3236 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3237 mc->smp_props.prefer_sockets = true; 3238 vmc->no_cpu_topology = true; 3239 3240 /* qemu ITS was introduced with 6.2 */ 3241 vmc->no_tcg_its = true; 3242 } 3243 DEFINE_VIRT_MACHINE(6, 1) 3244 3245 static void virt_machine_6_0_options(MachineClass *mc) 3246 { 3247 virt_machine_6_1_options(mc); 3248 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3249 } 3250 DEFINE_VIRT_MACHINE(6, 0) 3251 3252 static void virt_machine_5_2_options(MachineClass *mc) 3253 { 3254 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3255 3256 virt_machine_6_0_options(mc); 3257 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3258 vmc->no_secure_gpio = true; 3259 } 3260 DEFINE_VIRT_MACHINE(5, 2) 3261 3262 static void virt_machine_5_1_options(MachineClass *mc) 3263 { 3264 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3265 3266 virt_machine_5_2_options(mc); 3267 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3268 vmc->no_kvm_steal_time = true; 3269 } 3270 DEFINE_VIRT_MACHINE(5, 1) 3271 3272 static void virt_machine_5_0_options(MachineClass *mc) 3273 { 3274 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3275 3276 virt_machine_5_1_options(mc); 3277 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3278 mc->numa_mem_supported = true; 3279 vmc->acpi_expose_flash = true; 3280 mc->auto_enable_numa_with_memdev = false; 3281 } 3282 DEFINE_VIRT_MACHINE(5, 0) 3283 3284 static void virt_machine_4_2_options(MachineClass *mc) 3285 { 3286 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3287 3288 virt_machine_5_0_options(mc); 3289 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3290 vmc->kvm_no_adjvtime = true; 3291 } 3292 DEFINE_VIRT_MACHINE(4, 2) 3293 3294 static void virt_machine_4_1_options(MachineClass *mc) 3295 { 3296 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3297 3298 virt_machine_4_2_options(mc); 3299 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3300 vmc->no_ged = true; 3301 mc->auto_enable_numa_with_memhp = false; 3302 } 3303 DEFINE_VIRT_MACHINE(4, 1) 3304 3305 static void virt_machine_4_0_options(MachineClass *mc) 3306 { 3307 virt_machine_4_1_options(mc); 3308 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3309 } 3310 DEFINE_VIRT_MACHINE(4, 0) 3311 3312 static void virt_machine_3_1_options(MachineClass *mc) 3313 { 3314 virt_machine_4_0_options(mc); 3315 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3316 } 3317 DEFINE_VIRT_MACHINE(3, 1) 3318 3319 static void virt_machine_3_0_options(MachineClass *mc) 3320 { 3321 virt_machine_3_1_options(mc); 3322 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3323 } 3324 DEFINE_VIRT_MACHINE(3, 0) 3325 3326 static void virt_machine_2_12_options(MachineClass *mc) 3327 { 3328 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3329 3330 virt_machine_3_0_options(mc); 3331 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3332 vmc->no_highmem_ecam = true; 3333 mc->max_cpus = 255; 3334 } 3335 DEFINE_VIRT_MACHINE(2, 12) 3336 3337 static void virt_machine_2_11_options(MachineClass *mc) 3338 { 3339 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3340 3341 virt_machine_2_12_options(mc); 3342 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3343 vmc->smbios_old_sys_ver = true; 3344 } 3345 DEFINE_VIRT_MACHINE(2, 11) 3346 3347 static void virt_machine_2_10_options(MachineClass *mc) 3348 { 3349 virt_machine_2_11_options(mc); 3350 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3351 /* before 2.11 we never faulted accesses to bad addresses */ 3352 mc->ignore_memory_transaction_failures = true; 3353 } 3354 DEFINE_VIRT_MACHINE(2, 10) 3355 3356 static void virt_machine_2_9_options(MachineClass *mc) 3357 { 3358 virt_machine_2_10_options(mc); 3359 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3360 } 3361 DEFINE_VIRT_MACHINE(2, 9) 3362 3363 static void virt_machine_2_8_options(MachineClass *mc) 3364 { 3365 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3366 3367 virt_machine_2_9_options(mc); 3368 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3369 /* For 2.8 and earlier we falsely claimed in the DT that 3370 * our timers were edge-triggered, not level-triggered. 3371 */ 3372 vmc->claim_edge_triggered_timers = true; 3373 } 3374 DEFINE_VIRT_MACHINE(2, 8) 3375 3376 static void virt_machine_2_7_options(MachineClass *mc) 3377 { 3378 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3379 3380 virt_machine_2_8_options(mc); 3381 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3382 /* ITS was introduced with 2.8 */ 3383 vmc->no_its = true; 3384 /* Stick with 1K pages for migration compatibility */ 3385 mc->minimum_page_bits = 0; 3386 } 3387 DEFINE_VIRT_MACHINE(2, 7) 3388 3389 static void virt_machine_2_6_options(MachineClass *mc) 3390 { 3391 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3392 3393 virt_machine_2_7_options(mc); 3394 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3395 vmc->disallow_affinity_adjustment = true; 3396 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3397 vmc->no_pmu = true; 3398 } 3399 DEFINE_VIRT_MACHINE(2, 6) 3400