xref: /openbmc/qemu/hw/arm/virt.c (revision 24b94625)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 
62 /* Number of external interrupt lines to configure the GIC with */
63 #define NUM_IRQS 256
64 
65 #define PLATFORM_BUS_NUM_IRQS 64
66 
67 static ARMPlatformBusSystemParams platform_bus_params;
68 
69 typedef struct VirtBoardInfo {
70     struct arm_boot_info bootinfo;
71     const char *cpu_model;
72     const MemMapEntry *memmap;
73     const int *irqmap;
74     int smp_cpus;
75     void *fdt;
76     int fdt_size;
77     uint32_t clock_phandle;
78     uint32_t gic_phandle;
79     uint32_t msi_phandle;
80     bool using_psci;
81 } VirtBoardInfo;
82 
83 typedef struct {
84     MachineClass parent;
85     VirtBoardInfo *daughterboard;
86     bool disallow_affinity_adjustment;
87     bool no_its;
88 } VirtMachineClass;
89 
90 typedef struct {
91     MachineState parent;
92     bool secure;
93     bool highmem;
94     int32_t gic_version;
95 } VirtMachineState;
96 
97 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
98 #define VIRT_MACHINE(obj) \
99     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
100 #define VIRT_MACHINE_GET_CLASS(obj) \
101     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
102 #define VIRT_MACHINE_CLASS(klass) \
103     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
104 
105 
106 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
107     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
108                                                     void *data) \
109     { \
110         MachineClass *mc = MACHINE_CLASS(oc); \
111         virt_machine_##major##_##minor##_options(mc); \
112         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
113         if (latest) { \
114             mc->alias = "virt"; \
115         } \
116     } \
117     static const TypeInfo machvirt_##major##_##minor##_info = { \
118         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
119         .parent = TYPE_VIRT_MACHINE, \
120         .instance_init = virt_##major##_##minor##_instance_init, \
121         .class_init = virt_##major##_##minor##_class_init, \
122     }; \
123     static void machvirt_machine_##major##_##minor##_init(void) \
124     { \
125         type_register_static(&machvirt_##major##_##minor##_info); \
126     } \
127     type_init(machvirt_machine_##major##_##minor##_init);
128 
129 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
130     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
131 #define DEFINE_VIRT_MACHINE(major, minor) \
132     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
133 
134 
135 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
136  * RAM can go up to the 256GB mark, leaving 256GB of the physical
137  * address space unallocated and free for future use between 256G and 512G.
138  * If we need to provide more RAM to VMs in the future then we need to:
139  *  * allocate a second bank of RAM starting at 2TB and working up
140  *  * fix the DT and ACPI table generation code in QEMU to correctly
141  *    report two split lumps of RAM to the guest
142  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
143  * (We don't want to fill all the way up to 512GB with RAM because
144  * we might want it for non-RAM purposes later. Conversely it seems
145  * reasonable to assume that anybody configuring a VM with a quarter
146  * of a terabyte of RAM will be doing it on a host with more than a
147  * terabyte of physical address space.)
148  */
149 #define RAMLIMIT_GB 255
150 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
151 
152 /* Addresses and sizes of our components.
153  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
154  * 128MB..256MB is used for miscellaneous device I/O.
155  * 256MB..1GB is reserved for possible future PCI support (ie where the
156  * PCI memory window will go if we add a PCI host controller).
157  * 1GB and up is RAM (which may happily spill over into the
158  * high memory region beyond 4GB).
159  * This represents a compromise between how much RAM can be given to
160  * a 32 bit VM and leaving space for expansion and in particular for PCI.
161  * Note that devices should generally be placed at multiples of 0x10000,
162  * to accommodate guests using 64K pages.
163  */
164 static const MemMapEntry a15memmap[] = {
165     /* Space up to 0x8000000 is reserved for a boot ROM */
166     [VIRT_FLASH] =              {          0, 0x08000000 },
167     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
168     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
169     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
170     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
171     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
172     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
173     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
174     /* This redistributor space allows up to 2*64kB*123 CPUs */
175     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
176     [VIRT_UART] =               { 0x09000000, 0x00001000 },
177     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
178     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
179     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
180     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
181     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
182     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
183     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
184     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
185     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
186     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
187     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
188     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
189     /* Second PCIe window, 512GB wide at the 512GB boundary */
190     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
191 };
192 
193 static const int a15irqmap[] = {
194     [VIRT_UART] = 1,
195     [VIRT_RTC] = 2,
196     [VIRT_PCIE] = 3, /* ... to 6 */
197     [VIRT_GPIO] = 7,
198     [VIRT_SECURE_UART] = 8,
199     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
200     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
201     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
202 };
203 
204 static VirtBoardInfo machines[] = {
205     {
206         .cpu_model = "cortex-a15",
207         .memmap = a15memmap,
208         .irqmap = a15irqmap,
209     },
210     {
211         .cpu_model = "cortex-a53",
212         .memmap = a15memmap,
213         .irqmap = a15irqmap,
214     },
215     {
216         .cpu_model = "cortex-a57",
217         .memmap = a15memmap,
218         .irqmap = a15irqmap,
219     },
220     {
221         .cpu_model = "host",
222         .memmap = a15memmap,
223         .irqmap = a15irqmap,
224     },
225 };
226 
227 static VirtBoardInfo *find_machine_info(const char *cpu)
228 {
229     int i;
230 
231     for (i = 0; i < ARRAY_SIZE(machines); i++) {
232         if (strcmp(cpu, machines[i].cpu_model) == 0) {
233             return &machines[i];
234         }
235     }
236     return NULL;
237 }
238 
239 static void create_fdt(VirtBoardInfo *vbi)
240 {
241     void *fdt = create_device_tree(&vbi->fdt_size);
242 
243     if (!fdt) {
244         error_report("create_device_tree() failed");
245         exit(1);
246     }
247 
248     vbi->fdt = fdt;
249 
250     /* Header */
251     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
252     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
253     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
254 
255     /*
256      * /chosen and /memory nodes must exist for load_dtb
257      * to fill in necessary properties later
258      */
259     qemu_fdt_add_subnode(fdt, "/chosen");
260     qemu_fdt_add_subnode(fdt, "/memory");
261     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
262 
263     /* Clock node, for the benefit of the UART. The kernel device tree
264      * binding documentation claims the PL011 node clock properties are
265      * optional but in practice if you omit them the kernel refuses to
266      * probe for the device.
267      */
268     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
269     qemu_fdt_add_subnode(fdt, "/apb-pclk");
270     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
271     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
272     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
273     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
274                                 "clk24mhz");
275     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
276 
277 }
278 
279 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
280 {
281     uint32_t cpu_suspend_fn;
282     uint32_t cpu_off_fn;
283     uint32_t cpu_on_fn;
284     uint32_t migrate_fn;
285     void *fdt = vbi->fdt;
286     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
287 
288     if (!vbi->using_psci) {
289         return;
290     }
291 
292     qemu_fdt_add_subnode(fdt, "/psci");
293     if (armcpu->psci_version == 2) {
294         const char comp[] = "arm,psci-0.2\0arm,psci";
295         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
296 
297         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
298         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
299             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
300             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
301             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
302         } else {
303             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
304             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
305             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
306         }
307     } else {
308         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
309 
310         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
311         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
312         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
313         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
314     }
315 
316     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
317      * to the instruction that should be used to invoke PSCI functions.
318      * However, the device tree binding uses 'method' instead, so that is
319      * what we should use here.
320      */
321     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
322 
323     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
324     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
325     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
326     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
327 }
328 
329 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
330 {
331     /* Note that on A15 h/w these interrupts are level-triggered,
332      * but for the GIC implementation provided by both QEMU and KVM
333      * they are edge-triggered.
334      */
335     ARMCPU *armcpu;
336     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
337 
338     if (gictype == 2) {
339         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
340                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
341                              (1 << vbi->smp_cpus) - 1);
342     }
343 
344     qemu_fdt_add_subnode(vbi->fdt, "/timer");
345 
346     armcpu = ARM_CPU(qemu_get_cpu(0));
347     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
348         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
349         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
350                          compat, sizeof(compat));
351     } else {
352         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
353                                 "arm,armv7-timer");
354     }
355     qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
356     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
357                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
358                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
359                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
360                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
361 }
362 
363 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
364 {
365     int cpu;
366     int addr_cells = 1;
367     unsigned int i;
368 
369     /*
370      * From Documentation/devicetree/bindings/arm/cpus.txt
371      *  On ARM v8 64-bit systems value should be set to 2,
372      *  that corresponds to the MPIDR_EL1 register size.
373      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
374      *  in the system, #address-cells can be set to 1, since
375      *  MPIDR_EL1[63:32] bits are not used for CPUs
376      *  identification.
377      *
378      *  Here we actually don't know whether our system is 32- or 64-bit one.
379      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
380      *  at least one of them has Aff3 populated, we set #address-cells to 2.
381      */
382     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
383         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
384 
385         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
386             addr_cells = 2;
387             break;
388         }
389     }
390 
391     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
392     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
393     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
394 
395     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
396         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
397         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
398 
399         qemu_fdt_add_subnode(vbi->fdt, nodename);
400         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
401         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
402                                     armcpu->dtb_compatible);
403 
404         if (vbi->using_psci && vbi->smp_cpus > 1) {
405             qemu_fdt_setprop_string(vbi->fdt, nodename,
406                                         "enable-method", "psci");
407         }
408 
409         if (addr_cells == 2) {
410             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
411                                  armcpu->mp_affinity);
412         } else {
413             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
414                                   armcpu->mp_affinity);
415         }
416 
417         i = numa_get_node_for_cpu(cpu);
418         if (i < nb_numa_nodes) {
419             qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
420         }
421 
422         g_free(nodename);
423     }
424 }
425 
426 static void fdt_add_its_gic_node(VirtBoardInfo *vbi)
427 {
428     vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
429     qemu_fdt_add_subnode(vbi->fdt, "/intc/its");
430     qemu_fdt_setprop_string(vbi->fdt, "/intc/its", "compatible",
431                             "arm,gic-v3-its");
432     qemu_fdt_setprop(vbi->fdt, "/intc/its", "msi-controller", NULL, 0);
433     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/its", "reg",
434                                  2, vbi->memmap[VIRT_GIC_ITS].base,
435                                  2, vbi->memmap[VIRT_GIC_ITS].size);
436     qemu_fdt_setprop_cell(vbi->fdt, "/intc/its", "phandle", vbi->msi_phandle);
437 }
438 
439 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
440 {
441     vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
442     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
443     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
444                             "arm,gic-v2m-frame");
445     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
446     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
447                                  2, vbi->memmap[VIRT_GIC_V2M].base,
448                                  2, vbi->memmap[VIRT_GIC_V2M].size);
449     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->msi_phandle);
450 }
451 
452 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
453 {
454     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
455     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
456 
457     qemu_fdt_add_subnode(vbi->fdt, "/intc");
458     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
459     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
460     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
461     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
462     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
463     if (type == 3) {
464         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
465                                 "arm,gic-v3");
466         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
467                                      2, vbi->memmap[VIRT_GIC_DIST].base,
468                                      2, vbi->memmap[VIRT_GIC_DIST].size,
469                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
470                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
471     } else {
472         /* 'cortex-a15-gic' means 'GIC v2' */
473         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
474                                 "arm,cortex-a15-gic");
475         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
476                                       2, vbi->memmap[VIRT_GIC_DIST].base,
477                                       2, vbi->memmap[VIRT_GIC_DIST].size,
478                                       2, vbi->memmap[VIRT_GIC_CPU].base,
479                                       2, vbi->memmap[VIRT_GIC_CPU].size);
480     }
481 
482     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
483 }
484 
485 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
486 {
487     CPUState *cpu;
488     ARMCPU *armcpu;
489     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
490 
491     CPU_FOREACH(cpu) {
492         armcpu = ARM_CPU(cpu);
493         if (!armcpu->has_pmu ||
494             !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
495             return;
496         }
497     }
498 
499     if (gictype == 2) {
500         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
501                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
502                              (1 << vbi->smp_cpus) - 1);
503     }
504 
505     armcpu = ARM_CPU(qemu_get_cpu(0));
506     qemu_fdt_add_subnode(vbi->fdt, "/pmu");
507     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
508         const char compat[] = "arm,armv8-pmuv3";
509         qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
510                          compat, sizeof(compat));
511         qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
512                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
513     }
514 }
515 
516 static void create_its(VirtBoardInfo *vbi, DeviceState *gicdev)
517 {
518     const char *itsclass = its_class_name();
519     DeviceState *dev;
520 
521     if (!itsclass) {
522         /* Do nothing if not supported */
523         return;
524     }
525 
526     dev = qdev_create(NULL, itsclass);
527 
528     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
529                              &error_abort);
530     qdev_init_nofail(dev);
531     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_ITS].base);
532 
533     fdt_add_its_gic_node(vbi);
534 }
535 
536 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
537 {
538     int i;
539     int irq = vbi->irqmap[VIRT_GIC_V2M];
540     DeviceState *dev;
541 
542     dev = qdev_create(NULL, "arm-gicv2m");
543     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
544     qdev_prop_set_uint32(dev, "base-spi", irq);
545     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
546     qdev_init_nofail(dev);
547 
548     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
549         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
550     }
551 
552     fdt_add_v2m_gic_node(vbi);
553 }
554 
555 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type,
556                        bool secure, bool no_its)
557 {
558     /* We create a standalone GIC */
559     DeviceState *gicdev;
560     SysBusDevice *gicbusdev;
561     const char *gictype;
562     int i;
563 
564     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
565 
566     gicdev = qdev_create(NULL, gictype);
567     qdev_prop_set_uint32(gicdev, "revision", type);
568     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
569     /* Note that the num-irq property counts both internal and external
570      * interrupts; there are always 32 of the former (mandated by GIC spec).
571      */
572     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
573     if (!kvm_irqchip_in_kernel()) {
574         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
575     }
576     qdev_init_nofail(gicdev);
577     gicbusdev = SYS_BUS_DEVICE(gicdev);
578     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
579     if (type == 3) {
580         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
581     } else {
582         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
583     }
584 
585     /* Wire the outputs from each CPU's generic timer to the
586      * appropriate GIC PPI inputs, and the GIC's IRQ output to
587      * the CPU's IRQ input.
588      */
589     for (i = 0; i < smp_cpus; i++) {
590         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
591         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
592         int irq;
593         /* Mapping from the output timer irq lines from the CPU to the
594          * GIC PPI inputs we use for the virt board.
595          */
596         const int timer_irq[] = {
597             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
598             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
599             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
600             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
601         };
602 
603         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
604             qdev_connect_gpio_out(cpudev, irq,
605                                   qdev_get_gpio_in(gicdev,
606                                                    ppibase + timer_irq[irq]));
607         }
608 
609         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
610         sysbus_connect_irq(gicbusdev, i + smp_cpus,
611                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
612     }
613 
614     for (i = 0; i < NUM_IRQS; i++) {
615         pic[i] = qdev_get_gpio_in(gicdev, i);
616     }
617 
618     fdt_add_gic_node(vbi, type);
619 
620     if (type == 3 && !no_its) {
621         create_its(vbi, gicdev);
622     } else if (type == 2) {
623         create_v2m(vbi, pic);
624     }
625 }
626 
627 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
628                         MemoryRegion *mem, CharDriverState *chr)
629 {
630     char *nodename;
631     hwaddr base = vbi->memmap[uart].base;
632     hwaddr size = vbi->memmap[uart].size;
633     int irq = vbi->irqmap[uart];
634     const char compat[] = "arm,pl011\0arm,primecell";
635     const char clocknames[] = "uartclk\0apb_pclk";
636     DeviceState *dev = qdev_create(NULL, "pl011");
637     SysBusDevice *s = SYS_BUS_DEVICE(dev);
638 
639     qdev_prop_set_chr(dev, "chardev", chr);
640     qdev_init_nofail(dev);
641     memory_region_add_subregion(mem, base,
642                                 sysbus_mmio_get_region(s, 0));
643     sysbus_connect_irq(s, 0, pic[irq]);
644 
645     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
646     qemu_fdt_add_subnode(vbi->fdt, nodename);
647     /* Note that we can't use setprop_string because of the embedded NUL */
648     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
649                          compat, sizeof(compat));
650     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
651                                      2, base, 2, size);
652     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
653                                GIC_FDT_IRQ_TYPE_SPI, irq,
654                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
655     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
656                                vbi->clock_phandle, vbi->clock_phandle);
657     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
658                          clocknames, sizeof(clocknames));
659 
660     if (uart == VIRT_UART) {
661         qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
662     } else {
663         /* Mark as not usable by the normal world */
664         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
665         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
666     }
667 
668     g_free(nodename);
669 }
670 
671 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
672 {
673     char *nodename;
674     hwaddr base = vbi->memmap[VIRT_RTC].base;
675     hwaddr size = vbi->memmap[VIRT_RTC].size;
676     int irq = vbi->irqmap[VIRT_RTC];
677     const char compat[] = "arm,pl031\0arm,primecell";
678 
679     sysbus_create_simple("pl031", base, pic[irq]);
680 
681     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
682     qemu_fdt_add_subnode(vbi->fdt, nodename);
683     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
684     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
685                                  2, base, 2, size);
686     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
687                            GIC_FDT_IRQ_TYPE_SPI, irq,
688                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
689     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
690     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
691     g_free(nodename);
692 }
693 
694 static DeviceState *gpio_key_dev;
695 static void virt_powerdown_req(Notifier *n, void *opaque)
696 {
697     /* use gpio Pin 3 for power button event */
698     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
699 }
700 
701 static Notifier virt_system_powerdown_notifier = {
702     .notify = virt_powerdown_req
703 };
704 
705 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
706 {
707     char *nodename;
708     DeviceState *pl061_dev;
709     hwaddr base = vbi->memmap[VIRT_GPIO].base;
710     hwaddr size = vbi->memmap[VIRT_GPIO].size;
711     int irq = vbi->irqmap[VIRT_GPIO];
712     const char compat[] = "arm,pl061\0arm,primecell";
713 
714     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
715 
716     uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
717     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
718     qemu_fdt_add_subnode(vbi->fdt, nodename);
719     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
720                                  2, base, 2, size);
721     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
722     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
723     qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
724     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
725                            GIC_FDT_IRQ_TYPE_SPI, irq,
726                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
727     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
728     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
729     qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
730 
731     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
732                                         qdev_get_gpio_in(pl061_dev, 3));
733     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
734     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
735     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
736     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
737 
738     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
739     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
740                             "label", "GPIO Key Poweroff");
741     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
742                           KEY_POWER);
743     qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
744                            "gpios", phandle, 3, 0);
745 
746     /* connect powerdown request */
747     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
748 
749     g_free(nodename);
750 }
751 
752 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
753 {
754     int i;
755     hwaddr size = vbi->memmap[VIRT_MMIO].size;
756 
757     /* We create the transports in forwards order. Since qbus_realize()
758      * prepends (not appends) new child buses, the incrementing loop below will
759      * create a list of virtio-mmio buses with decreasing base addresses.
760      *
761      * When a -device option is processed from the command line,
762      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
763      * order. The upshot is that -device options in increasing command line
764      * order are mapped to virtio-mmio buses with decreasing base addresses.
765      *
766      * When this code was originally written, that arrangement ensured that the
767      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
768      * the first -device on the command line. (The end-to-end order is a
769      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
770      * guest kernel's name-to-address assignment strategy.)
771      *
772      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
773      * the message, if not necessarily the code, of commit 70161ff336.
774      * Therefore the loop now establishes the inverse of the original intent.
775      *
776      * Unfortunately, we can't counteract the kernel change by reversing the
777      * loop; it would break existing command lines.
778      *
779      * In any case, the kernel makes no guarantee about the stability of
780      * enumeration order of virtio devices (as demonstrated by it changing
781      * between kernel versions). For reliable and stable identification
782      * of disks users must use UUIDs or similar mechanisms.
783      */
784     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
785         int irq = vbi->irqmap[VIRT_MMIO] + i;
786         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
787 
788         sysbus_create_simple("virtio-mmio", base, pic[irq]);
789     }
790 
791     /* We add dtb nodes in reverse order so that they appear in the finished
792      * device tree lowest address first.
793      *
794      * Note that this mapping is independent of the loop above. The previous
795      * loop influences virtio device to virtio transport assignment, whereas
796      * this loop controls how virtio transports are laid out in the dtb.
797      */
798     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
799         char *nodename;
800         int irq = vbi->irqmap[VIRT_MMIO] + i;
801         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
802 
803         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
804         qemu_fdt_add_subnode(vbi->fdt, nodename);
805         qemu_fdt_setprop_string(vbi->fdt, nodename,
806                                 "compatible", "virtio,mmio");
807         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
808                                      2, base, 2, size);
809         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
810                                GIC_FDT_IRQ_TYPE_SPI, irq,
811                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
812         g_free(nodename);
813     }
814 }
815 
816 static void create_one_flash(const char *name, hwaddr flashbase,
817                              hwaddr flashsize, const char *file,
818                              MemoryRegion *sysmem)
819 {
820     /* Create and map a single flash device. We use the same
821      * parameters as the flash devices on the Versatile Express board.
822      */
823     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
824     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
825     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
826     const uint64_t sectorlength = 256 * 1024;
827 
828     if (dinfo) {
829         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
830                             &error_abort);
831     }
832 
833     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
834     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
835     qdev_prop_set_uint8(dev, "width", 4);
836     qdev_prop_set_uint8(dev, "device-width", 2);
837     qdev_prop_set_bit(dev, "big-endian", false);
838     qdev_prop_set_uint16(dev, "id0", 0x89);
839     qdev_prop_set_uint16(dev, "id1", 0x18);
840     qdev_prop_set_uint16(dev, "id2", 0x00);
841     qdev_prop_set_uint16(dev, "id3", 0x00);
842     qdev_prop_set_string(dev, "name", name);
843     qdev_init_nofail(dev);
844 
845     memory_region_add_subregion(sysmem, flashbase,
846                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
847 
848     if (file) {
849         char *fn;
850         int image_size;
851 
852         if (drive_get(IF_PFLASH, 0, 0)) {
853             error_report("The contents of the first flash device may be "
854                          "specified with -bios or with -drive if=pflash... "
855                          "but you cannot use both options at once");
856             exit(1);
857         }
858         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
859         if (!fn) {
860             error_report("Could not find ROM image '%s'", file);
861             exit(1);
862         }
863         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
864         g_free(fn);
865         if (image_size < 0) {
866             error_report("Could not load ROM image '%s'", file);
867             exit(1);
868         }
869     }
870 }
871 
872 static void create_flash(const VirtBoardInfo *vbi,
873                          MemoryRegion *sysmem,
874                          MemoryRegion *secure_sysmem)
875 {
876     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
877      * Any file passed via -bios goes in the first of these.
878      * sysmem is the system memory space. secure_sysmem is the secure view
879      * of the system, and the first flash device should be made visible only
880      * there. The second flash device is visible to both secure and nonsecure.
881      * If sysmem == secure_sysmem this means there is no separate Secure
882      * address space and both flash devices are generally visible.
883      */
884     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
885     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
886     char *nodename;
887 
888     create_one_flash("virt.flash0", flashbase, flashsize,
889                      bios_name, secure_sysmem);
890     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
891                      NULL, sysmem);
892 
893     if (sysmem == secure_sysmem) {
894         /* Report both flash devices as a single node in the DT */
895         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
896         qemu_fdt_add_subnode(vbi->fdt, nodename);
897         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
898         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
899                                      2, flashbase, 2, flashsize,
900                                      2, flashbase + flashsize, 2, flashsize);
901         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
902         g_free(nodename);
903     } else {
904         /* Report the devices as separate nodes so we can mark one as
905          * only visible to the secure world.
906          */
907         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
908         qemu_fdt_add_subnode(vbi->fdt, nodename);
909         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
910         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
911                                      2, flashbase, 2, flashsize);
912         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
913         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
914         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
915         g_free(nodename);
916 
917         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
918         qemu_fdt_add_subnode(vbi->fdt, nodename);
919         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
920         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
921                                      2, flashbase + flashsize, 2, flashsize);
922         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
923         g_free(nodename);
924     }
925 }
926 
927 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
928 {
929     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
930     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
931     char *nodename;
932 
933     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
934 
935     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
936     qemu_fdt_add_subnode(vbi->fdt, nodename);
937     qemu_fdt_setprop_string(vbi->fdt, nodename,
938                             "compatible", "qemu,fw-cfg-mmio");
939     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
940                                  2, base, 2, size);
941     g_free(nodename);
942 }
943 
944 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
945                                 int first_irq, const char *nodename)
946 {
947     int devfn, pin;
948     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
949     uint32_t *irq_map = full_irq_map;
950 
951     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
952         for (pin = 0; pin < 4; pin++) {
953             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
954             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
955             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
956             int i;
957 
958             uint32_t map[] = {
959                 devfn << 8, 0, 0,                           /* devfn */
960                 pin + 1,                                    /* PCI pin */
961                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
962 
963             /* Convert map to big endian */
964             for (i = 0; i < 10; i++) {
965                 irq_map[i] = cpu_to_be32(map[i]);
966             }
967             irq_map += 10;
968         }
969     }
970 
971     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
972                      full_irq_map, sizeof(full_irq_map));
973 
974     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
975                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
976                            0x7           /* PCI irq */);
977 }
978 
979 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
980                         bool use_highmem)
981 {
982     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
983     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
984     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
985     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
986     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
987     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
988     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
989     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
990     hwaddr base = base_mmio;
991     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
992     int irq = vbi->irqmap[VIRT_PCIE];
993     MemoryRegion *mmio_alias;
994     MemoryRegion *mmio_reg;
995     MemoryRegion *ecam_alias;
996     MemoryRegion *ecam_reg;
997     DeviceState *dev;
998     char *nodename;
999     int i;
1000     PCIHostState *pci;
1001 
1002     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1003     qdev_init_nofail(dev);
1004 
1005     /* Map only the first size_ecam bytes of ECAM space */
1006     ecam_alias = g_new0(MemoryRegion, 1);
1007     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1008     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1009                              ecam_reg, 0, size_ecam);
1010     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1011 
1012     /* Map the MMIO window into system address space so as to expose
1013      * the section of PCI MMIO space which starts at the same base address
1014      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1015      * the window).
1016      */
1017     mmio_alias = g_new0(MemoryRegion, 1);
1018     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1019     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1020                              mmio_reg, base_mmio, size_mmio);
1021     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1022 
1023     if (use_highmem) {
1024         /* Map high MMIO space */
1025         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1026 
1027         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1028                                  mmio_reg, base_mmio_high, size_mmio_high);
1029         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1030                                     high_mmio_alias);
1031     }
1032 
1033     /* Map IO port space */
1034     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1035 
1036     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1037         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1038     }
1039 
1040     pci = PCI_HOST_BRIDGE(dev);
1041     if (pci->bus) {
1042         for (i = 0; i < nb_nics; i++) {
1043             NICInfo *nd = &nd_table[i];
1044 
1045             if (!nd->model) {
1046                 nd->model = g_strdup("virtio");
1047             }
1048 
1049             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1050         }
1051     }
1052 
1053     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1054     qemu_fdt_add_subnode(vbi->fdt, nodename);
1055     qemu_fdt_setprop_string(vbi->fdt, nodename,
1056                             "compatible", "pci-host-ecam-generic");
1057     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1058     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1059     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1060     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1061                            nr_pcie_buses - 1);
1062     qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0);
1063 
1064     if (vbi->msi_phandle) {
1065         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1066                                vbi->msi_phandle);
1067     }
1068 
1069     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1070                                  2, base_ecam, 2, size_ecam);
1071 
1072     if (use_highmem) {
1073         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1074                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1075                                      2, base_pio, 2, size_pio,
1076                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1077                                      2, base_mmio, 2, size_mmio,
1078                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1079                                      2, base_mmio_high,
1080                                      2, base_mmio_high, 2, size_mmio_high);
1081     } else {
1082         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1083                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1084                                      2, base_pio, 2, size_pio,
1085                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1086                                      2, base_mmio, 2, size_mmio);
1087     }
1088 
1089     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1090     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1091 
1092     g_free(nodename);
1093 }
1094 
1095 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1096 {
1097     DeviceState *dev;
1098     SysBusDevice *s;
1099     int i;
1100     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1101     MemoryRegion *sysmem = get_system_memory();
1102 
1103     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1104     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1105     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1106     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1107 
1108     fdt_params->system_params = &platform_bus_params;
1109     fdt_params->binfo = &vbi->bootinfo;
1110     fdt_params->intc = "/intc";
1111     /*
1112      * register a machine init done notifier that creates the device tree
1113      * nodes of the platform bus and its children dynamic sysbus devices
1114      */
1115     arm_register_platform_bus_fdt_creator(fdt_params);
1116 
1117     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1118     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1119     qdev_prop_set_uint32(dev, "num_irqs",
1120         platform_bus_params.platform_bus_num_irqs);
1121     qdev_prop_set_uint32(dev, "mmio_size",
1122         platform_bus_params.platform_bus_size);
1123     qdev_init_nofail(dev);
1124     s = SYS_BUS_DEVICE(dev);
1125 
1126     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1127         int irqn = platform_bus_params.platform_bus_first_irq + i;
1128         sysbus_connect_irq(s, i, pic[irqn]);
1129     }
1130 
1131     memory_region_add_subregion(sysmem,
1132                                 platform_bus_params.platform_bus_base,
1133                                 sysbus_mmio_get_region(s, 0));
1134 }
1135 
1136 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1137 {
1138     MemoryRegion *secram = g_new(MemoryRegion, 1);
1139     char *nodename;
1140     hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1141     hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1142 
1143     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1144     vmstate_register_ram_global(secram);
1145     memory_region_add_subregion(secure_sysmem, base, secram);
1146 
1147     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1148     qemu_fdt_add_subnode(vbi->fdt, nodename);
1149     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1150     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1151     qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1152     qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1153 
1154     g_free(nodename);
1155 }
1156 
1157 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1158 {
1159     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1160 
1161     *fdt_size = board->fdt_size;
1162     return board->fdt;
1163 }
1164 
1165 static void virt_build_smbios(VirtGuestInfo *guest_info)
1166 {
1167     FWCfgState *fw_cfg = guest_info->fw_cfg;
1168     uint8_t *smbios_tables, *smbios_anchor;
1169     size_t smbios_tables_len, smbios_anchor_len;
1170     const char *product = "QEMU Virtual Machine";
1171 
1172     if (!fw_cfg) {
1173         return;
1174     }
1175 
1176     if (kvm_enabled()) {
1177         product = "KVM Virtual Machine";
1178     }
1179 
1180     smbios_set_defaults("QEMU", product,
1181                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1182 
1183     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1184                       &smbios_anchor, &smbios_anchor_len);
1185 
1186     if (smbios_anchor) {
1187         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1188                         smbios_tables, smbios_tables_len);
1189         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1190                         smbios_anchor, smbios_anchor_len);
1191     }
1192 }
1193 
1194 static
1195 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1196 {
1197     VirtGuestInfoState *guest_info_state = container_of(notifier,
1198                                               VirtGuestInfoState, machine_done);
1199     virt_acpi_setup(&guest_info_state->info);
1200     virt_build_smbios(&guest_info_state->info);
1201 }
1202 
1203 static void machvirt_init(MachineState *machine)
1204 {
1205     VirtMachineState *vms = VIRT_MACHINE(machine);
1206     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1207     qemu_irq pic[NUM_IRQS];
1208     MemoryRegion *sysmem = get_system_memory();
1209     MemoryRegion *secure_sysmem = NULL;
1210     int gic_version = vms->gic_version;
1211     int n, virt_max_cpus;
1212     MemoryRegion *ram = g_new(MemoryRegion, 1);
1213     const char *cpu_model = machine->cpu_model;
1214     VirtBoardInfo *vbi;
1215     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1216     VirtGuestInfo *guest_info = &guest_info_state->info;
1217     char **cpustr;
1218     ObjectClass *oc;
1219     const char *typename;
1220     CPUClass *cc;
1221     Error *err = NULL;
1222     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1223     uint8_t clustersz;
1224 
1225     if (!cpu_model) {
1226         cpu_model = "cortex-a15";
1227     }
1228 
1229     /* We can probe only here because during property set
1230      * KVM is not available yet
1231      */
1232     if (!gic_version) {
1233         if (!kvm_enabled()) {
1234             error_report("gic-version=host requires KVM");
1235             exit(1);
1236         }
1237 
1238         gic_version = kvm_arm_vgic_probe();
1239         if (!gic_version) {
1240             error_report("Unable to determine GIC version supported by host");
1241             exit(1);
1242         }
1243     }
1244 
1245     /* Separate the actual CPU model name from any appended features */
1246     cpustr = g_strsplit(cpu_model, ",", 2);
1247 
1248     vbi = find_machine_info(cpustr[0]);
1249 
1250     if (!vbi) {
1251         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1252         exit(1);
1253     }
1254 
1255     /* If we have an EL3 boot ROM then the assumption is that it will
1256      * implement PSCI itself, so disable QEMU's internal implementation
1257      * so it doesn't get in the way. Instead of starting secondary
1258      * CPUs in PSCI powerdown state we will start them all running and
1259      * let the boot ROM sort them out.
1260      * The usual case is that we do use QEMU's PSCI implementation.
1261      */
1262     vbi->using_psci = !(vms->secure && firmware_loaded);
1263 
1264     /* The maximum number of CPUs depends on the GIC version, or on how
1265      * many redistributors we can fit into the memory map.
1266      */
1267     if (gic_version == 3) {
1268         virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1269         clustersz = GICV3_TARGETLIST_BITS;
1270     } else {
1271         virt_max_cpus = GIC_NCPU;
1272         clustersz = GIC_TARGETLIST_BITS;
1273     }
1274 
1275     if (max_cpus > virt_max_cpus) {
1276         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1277                      "supported by machine 'mach-virt' (%d)",
1278                      max_cpus, virt_max_cpus);
1279         exit(1);
1280     }
1281 
1282     vbi->smp_cpus = smp_cpus;
1283 
1284     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1285         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1286         exit(1);
1287     }
1288 
1289     if (vms->secure) {
1290         if (kvm_enabled()) {
1291             error_report("mach-virt: KVM does not support Security extensions");
1292             exit(1);
1293         }
1294 
1295         /* The Secure view of the world is the same as the NonSecure,
1296          * but with a few extra devices. Create it as a container region
1297          * containing the system memory at low priority; any secure-only
1298          * devices go in at higher priority and take precedence.
1299          */
1300         secure_sysmem = g_new(MemoryRegion, 1);
1301         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1302                            UINT64_MAX);
1303         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1304     }
1305 
1306     create_fdt(vbi);
1307 
1308     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1309     if (!oc) {
1310         error_report("Unable to find CPU definition");
1311         exit(1);
1312     }
1313     typename = object_class_get_name(oc);
1314 
1315     /* convert -smp CPU options specified by the user into global props */
1316     cc = CPU_CLASS(oc);
1317     cc->parse_features(typename, cpustr[1], &err);
1318     g_strfreev(cpustr);
1319     if (err) {
1320         error_report_err(err);
1321         exit(1);
1322     }
1323 
1324     for (n = 0; n < smp_cpus; n++) {
1325         Object *cpuobj = object_new(typename);
1326         if (!vmc->disallow_affinity_adjustment) {
1327             /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1328              * GIC's target-list limitations. 32-bit KVM hosts currently
1329              * always create clusters of 4 CPUs, but that is expected to
1330              * change when they gain support for gicv3. When KVM is enabled
1331              * it will override the changes we make here, therefore our
1332              * purposes are to make TCG consistent (with 64-bit KVM hosts)
1333              * and to improve SGI efficiency.
1334              */
1335             uint8_t aff1 = n / clustersz;
1336             uint8_t aff0 = n % clustersz;
1337             object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1338                                     "mp-affinity", NULL);
1339         }
1340 
1341         if (!vms->secure) {
1342             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1343         }
1344 
1345         if (vbi->using_psci) {
1346             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1347                                     "psci-conduit", NULL);
1348 
1349             /* Secondary CPUs start in PSCI powered-down state */
1350             if (n > 0) {
1351                 object_property_set_bool(cpuobj, true,
1352                                          "start-powered-off", NULL);
1353             }
1354         }
1355 
1356         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1357             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1358                                     "reset-cbar", &error_abort);
1359         }
1360 
1361         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1362                                  &error_abort);
1363         if (vms->secure) {
1364             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1365                                      "secure-memory", &error_abort);
1366         }
1367 
1368         object_property_set_bool(cpuobj, true, "realized", NULL);
1369     }
1370     fdt_add_timer_nodes(vbi, gic_version);
1371     fdt_add_cpu_nodes(vbi);
1372     fdt_add_psci_node(vbi);
1373 
1374     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1375                                          machine->ram_size);
1376     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1377 
1378     create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1379 
1380     create_gic(vbi, pic, gic_version, vms->secure, vmc->no_its);
1381 
1382     fdt_add_pmu_nodes(vbi, gic_version);
1383 
1384     create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1385 
1386     if (vms->secure) {
1387         create_secure_ram(vbi, secure_sysmem);
1388         create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1389     }
1390 
1391     create_rtc(vbi, pic);
1392 
1393     create_pcie(vbi, pic, vms->highmem);
1394 
1395     create_gpio(vbi, pic);
1396 
1397     /* Create mmio transports, so the user can create virtio backends
1398      * (which will be automatically plugged in to the transports). If
1399      * no backend is created the transport will just sit harmlessly idle.
1400      */
1401     create_virtio_devices(vbi, pic);
1402 
1403     create_fw_cfg(vbi, &address_space_memory);
1404     rom_set_fw(fw_cfg_find());
1405 
1406     guest_info->smp_cpus = smp_cpus;
1407     guest_info->fw_cfg = fw_cfg_find();
1408     guest_info->memmap = vbi->memmap;
1409     guest_info->irqmap = vbi->irqmap;
1410     guest_info->use_highmem = vms->highmem;
1411     guest_info->gic_version = gic_version;
1412     guest_info->no_its = vmc->no_its;
1413     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1414     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1415 
1416     vbi->bootinfo.ram_size = machine->ram_size;
1417     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1418     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1419     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1420     vbi->bootinfo.nb_cpus = smp_cpus;
1421     vbi->bootinfo.board_id = -1;
1422     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1423     vbi->bootinfo.get_dtb = machvirt_dtb;
1424     vbi->bootinfo.firmware_loaded = firmware_loaded;
1425     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1426 
1427     /*
1428      * arm_load_kernel machine init done notifier registration must
1429      * happen before the platform_bus_create call. In this latter,
1430      * another notifier is registered which adds platform bus nodes.
1431      * Notifiers are executed in registration reverse order.
1432      */
1433     create_platform_bus(vbi, pic);
1434 }
1435 
1436 static bool virt_get_secure(Object *obj, Error **errp)
1437 {
1438     VirtMachineState *vms = VIRT_MACHINE(obj);
1439 
1440     return vms->secure;
1441 }
1442 
1443 static void virt_set_secure(Object *obj, bool value, Error **errp)
1444 {
1445     VirtMachineState *vms = VIRT_MACHINE(obj);
1446 
1447     vms->secure = value;
1448 }
1449 
1450 static bool virt_get_highmem(Object *obj, Error **errp)
1451 {
1452     VirtMachineState *vms = VIRT_MACHINE(obj);
1453 
1454     return vms->highmem;
1455 }
1456 
1457 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1458 {
1459     VirtMachineState *vms = VIRT_MACHINE(obj);
1460 
1461     vms->highmem = value;
1462 }
1463 
1464 static char *virt_get_gic_version(Object *obj, Error **errp)
1465 {
1466     VirtMachineState *vms = VIRT_MACHINE(obj);
1467     const char *val = vms->gic_version == 3 ? "3" : "2";
1468 
1469     return g_strdup(val);
1470 }
1471 
1472 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1473 {
1474     VirtMachineState *vms = VIRT_MACHINE(obj);
1475 
1476     if (!strcmp(value, "3")) {
1477         vms->gic_version = 3;
1478     } else if (!strcmp(value, "2")) {
1479         vms->gic_version = 2;
1480     } else if (!strcmp(value, "host")) {
1481         vms->gic_version = 0; /* Will probe later */
1482     } else {
1483         error_setg(errp, "Invalid gic-version value");
1484         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1485     }
1486 }
1487 
1488 static void virt_machine_class_init(ObjectClass *oc, void *data)
1489 {
1490     MachineClass *mc = MACHINE_CLASS(oc);
1491 
1492     mc->init = machvirt_init;
1493     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1494      * it later in machvirt_init, where we have more information about the
1495      * configuration of the particular instance.
1496      */
1497     mc->max_cpus = MAX_CPUMASK_BITS;
1498     mc->has_dynamic_sysbus = true;
1499     mc->block_default_type = IF_VIRTIO;
1500     mc->no_cdrom = 1;
1501     mc->pci_allow_0_address = true;
1502 }
1503 
1504 static const TypeInfo virt_machine_info = {
1505     .name          = TYPE_VIRT_MACHINE,
1506     .parent        = TYPE_MACHINE,
1507     .abstract      = true,
1508     .instance_size = sizeof(VirtMachineState),
1509     .class_size    = sizeof(VirtMachineClass),
1510     .class_init    = virt_machine_class_init,
1511 };
1512 
1513 static void machvirt_machine_init(void)
1514 {
1515     type_register_static(&virt_machine_info);
1516 }
1517 type_init(machvirt_machine_init);
1518 
1519 static void virt_2_8_instance_init(Object *obj)
1520 {
1521     VirtMachineState *vms = VIRT_MACHINE(obj);
1522 
1523     /* EL3 is disabled by default on virt: this makes us consistent
1524      * between KVM and TCG for this board, and it also allows us to
1525      * boot UEFI blobs which assume no TrustZone support.
1526      */
1527     vms->secure = false;
1528     object_property_add_bool(obj, "secure", virt_get_secure,
1529                              virt_set_secure, NULL);
1530     object_property_set_description(obj, "secure",
1531                                     "Set on/off to enable/disable the ARM "
1532                                     "Security Extensions (TrustZone)",
1533                                     NULL);
1534 
1535     /* High memory is enabled by default */
1536     vms->highmem = true;
1537     object_property_add_bool(obj, "highmem", virt_get_highmem,
1538                              virt_set_highmem, NULL);
1539     object_property_set_description(obj, "highmem",
1540                                     "Set on/off to enable/disable using "
1541                                     "physical address space above 32 bits",
1542                                     NULL);
1543     /* Default GIC type is v2 */
1544     vms->gic_version = 2;
1545     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1546                         virt_set_gic_version, NULL);
1547     object_property_set_description(obj, "gic-version",
1548                                     "Set GIC version. "
1549                                     "Valid values are 2, 3 and host", NULL);
1550 }
1551 
1552 static void virt_machine_2_8_options(MachineClass *mc)
1553 {
1554 }
1555 DEFINE_VIRT_MACHINE_AS_LATEST(2, 8)
1556 
1557 #define VIRT_COMPAT_2_7 \
1558     HW_COMPAT_2_7
1559 
1560 static void virt_2_7_instance_init(Object *obj)
1561 {
1562     virt_2_8_instance_init(obj);
1563 }
1564 
1565 static void virt_machine_2_7_options(MachineClass *mc)
1566 {
1567     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1568 
1569     virt_machine_2_8_options(mc);
1570     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1571     /* ITS was introduced with 2.8 */
1572     vmc->no_its = true;
1573 }
1574 DEFINE_VIRT_MACHINE(2, 7)
1575 
1576 #define VIRT_COMPAT_2_6 \
1577     HW_COMPAT_2_6
1578 
1579 static void virt_2_6_instance_init(Object *obj)
1580 {
1581     virt_2_7_instance_init(obj);
1582 }
1583 
1584 static void virt_machine_2_6_options(MachineClass *mc)
1585 {
1586     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1587 
1588     virt_machine_2_7_options(mc);
1589     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1590     vmc->disallow_affinity_adjustment = true;
1591 }
1592 DEFINE_VIRT_MACHINE(2, 6)
1593